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Abstract  

There are two major applications of fMRI in paediatric focal epilepsy. The 

first is mapping of eloquent cortex. The second is the use of simultaneous 

EEG-fMRI to map the epileptogenic zone. The main methodological issues 

faced by these fMRI applications are: motion, physiological noise, quality 

assurance, and statistical analysis. To address the issues of subject motion 

and physiological noise we constructed a simple analytical biophysical model 

of Blood Oxygenation Level Dependent (BOLD) signal capable of identifying 

and correcting these artefacts (named FIACH). This model was validated in a 

sample of children performing a language task with high motion levels. 

FIACH outperformed 6 other competitive methods of noise control. In the 

second study, we characterized how metrics of quality assurance could 

predict the clinical utility of EEG-fMRI. We also quantified the impact of a 

natural stimulus (a cartoon) on reducing subject motion. During this analysis 

it was noted that the corrections for multiple comparisons employed using 

Random Field Theory (RFT) at an individual level were overly conservative. 

This led to an exploration of RFT sensitivity and its relationship to image 

smoothing and degrees of freedom. By reviewing over 150 papers published 

in 2016 it was possible to estimate that 80% of studies suffer from a similar 

loss in sensitivity. Simulations are provided to help identify and prevent this 

loss in sensitivity. In the final study we sought to use EEG-fMRI to 

characterize the relationship between the brain’s functional organization and 

Interictal Epileptiform Discharges (IEDs) in paediatric focal epilepsy. 

Interestingly, we identified increasing connectivity of the piriform cortex and 

caudate to the default mode network as a function of IEDs. This suggested a 

mechanism by which IEDs may propagate through functional networks in the 

brain. 

 

 

 



2 
 

Acknowledgements 

This completion of this thesis would not have been possible were it 

not for the help and support of so many people. 

Firstly, I would like to thank my supervisor David Carmichael who not 

only taught me all I know about MRI but also made it a thoroughly enjoyable 

experience. He always supported me in the development of my own ideas 

and assisted me in their execution. I also would like to thank my supervisor 

Chris Clark without whom I would not have even started the PhD. I was 

never very good with deadlines but Chris happily edited my PhD application 

on New Year’s Eve 2012 for submission on New Year’s Day 2013.  

I also was incredibly lucky to be surrounded by a great group of 

people all working together in the Developmental Imaging Biophysics Section 

and the Cognitive Neurosciences and Neuropsychiatry Section of the 

Institute of Child Health. Ellie Shamshiri, Suejen Perani, Maria Centeno, 

Fabio Nery, Danilo Maziero, Torsten Baldeweg and Louise Weiss-Croft have 

all been fantastic colleagues and friends to work with over the course of my 

PhD (even when that “work” involved hiking up a hill at 1 in the morning 

inside the Arctic Circle). 

Most importantly, I would like to thank my family. My Mom and Dad 

have always been my biggest champions. I can’t begin to express how much 

that means to me and can only apologize for my infrequent trips home. I’ve 

only ever wanted to follow in your footsteps and push myself to the full extent 

of my abilities.  

My brother Sean has been my idol as far back as I can remember and 

has always been a source of inspiration and drive. When I come home the 

highlight of my time is usually waiting up until 2/3 AM for him to get back from 

work so we can chat about nothing in particular. My sister Muireann has, 

more often than not, been a source of frustration in my life. However, now 

more than ever than ever I find myself looking forward to her screaming at 

me when I come home because I know it will have nothing to do with my 

PhD. And finally I would like to thank Roger, Raffa, Ben, Steffi, Fiach and 

Sam for listening to me ramble when no one else would.  



3 
 

List of Publications 

Tierney T.M., Weiss-Croft L.J., Centeno M., Shamshiri E.A., Perani S., 

Baldeweg T., Clark C.A., Carmichael D.W. (2016): FIACH: A biophysical 

model for automatic retrospective noise control in fMRI. Neuroimage 

124:1009–1020. 

Tierney, T. M., Clark, C. A., & Carmichael, D. W. (2016). Is Bonferroni 

correction more sensitive than Random Field Theory for most fMRI 

studies? arXiv. Applications; Medical Physics. Retrieved from 

http://arxiv.org/abs/1607.08205 

Shamshiri, E. a., Tierney, T. M., Centeno, M., St Pier, K., Pressler, R. M., 

Sharp, D. J., … Carmichael, D. W. (2016). Interictal activity is an 

important contributor to abnormal intrinsic network connectivity in 

paediatric focal epilepsy. Human Brain Mapping, 00(August), 1–16.  

Murta, T., Chaudhary, U., Tierney, T.M., Dias, A., Leite, M., Carmichael, D., 

… Lemieux, L. (2016). Phase-amplitude coupling and the BOLD signal: 

A simultaneous intracranial EEG (icEEG) - fMRI study in humans 

performing a finger-tapping task. NeuroImage.  

Murta, T., Hu, L., Tierney, T.M., Chaudhary, U., Walker, M., Carmichael, D., 

… Lemieux, L. (2016). A study of the electrohaemodynamic coupling 

using simultaneously acquired intracranial EEG and fMRI data in 

humans. NeuroImage.  

Centeno, M., Tierney, T. M., Perani, S., Shamshiri, E. a, StPier, K., 

Wilkinson, C., … Carmichael, D. W. (2016). Optimising EEG-fMRI for 

Localisation of Focal Epilepsy in Children. PloS One, 11(2),  

 

 

 

 

 

 

 

 

http://arxiv.org/abs/1607.08205


4 
 

Contents 

Abstract .......................................................................................................................................... 1 

Acknowledgements ........................................................................................................................ 2 

List of Publications ......................................................................................................................... 3 

Table of Tables .............................................................................................................................. 8 

Table of Abbreviations ................................................................................................................... 9 

1. Theory of NMR, MRI and fMRI ................................................................................................ 10 

1.1 From NMR to MRI .................................................................................................................. 11 

1.2 Nuclear Spin ........................................................................................................................... 12 

1.2.1 Spin ............................................................................................................................. 12 

1.2.2 The Nucleus ................................................................................................................ 12 

1.3 Magnetic Moments ................................................................................................................. 12 

1.4 Resonance ............................................................................................................................. 13 

1.5 Precession ............................................................................................................................. 14 

1.6 Magnetization ......................................................................................................................... 15 

1.7 The Rotating Frame ............................................................................................................... 16 

1.8 Radiofrequency Pulses .......................................................................................................... 17 

1.9 Bloch Equations ..................................................................................................................... 18 

1.10 Relaxation ............................................................................................................................ 18 

1.11 T1 ......................................................................................................................................... 19 

1.12 T2 ......................................................................................................................................... 19 

1.13 T2* ........................................................................................................................................ 20 

1.14 Imaging ................................................................................................................................ 20 

1.15 Signal Detection ................................................................................................................... 21 

1.16 Spatial Encoding and k-Space ............................................................................................. 21 

1.17 Image Resolution ................................................................................................................. 22 

1.18 EPI k-Space Trajectory ........................................................................................................ 23 

1.19 Typical fMRI analysis pipelines ............................................................................................ 25 

1.20 fMRI pre-processing ............................................................................................................. 25 

1.20.1 Realignment (motion correction) ............................................................................... 25 

1.20.2 Spatial Smoothing ..................................................................................................... 26 

1.20.3 Spatial Normalisation. ............................................................................................... 26 

1.21 fMRI Analysis (The General Linear Model) .......................................................................... 26 

1.21.1 Parameter estimation ................................................................................................ 27 

1.21.2 Standard Error estimation ......................................................................................... 27 

1.21.3 Random Field Theory................................................................................................ 28 

1.22 fMRI Analysis (functional connectivity) ................................................................................ 28 

1.22.1 Stationary connectivity .............................................................................................. 29 

1.22.2 Non stationary/dynamic connectivity ......................................................................... 29 



5 
 

1.23 References ........................................................................................................................... 30 

2. Epilepsy .................................................................................................................................... 34 

2.1 Epilepsy .................................................................................................................................. 35 

2.2 Seizures ................................................................................................................................. 36 

2.3 The Neurophysiology of Seizures, Interictal Epileptiform Discharges, and EEG .................. 37 

2.4 Epilepsy Aetiology .................................................................................................................. 38 

2.4.1 Focal Cortical Dysplasia.............................................................................................. 39 

2.4.2 Polymicrogyria ............................................................................................................. 39 

2.4.3 Hippocampal Sclerosis ................................................................................................ 39 

2.4.4 Stroke .......................................................................................................................... 40 

2.5 The contribution of MRI to Epilepsy ....................................................................................... 40 

2.6 Problems with the Application of fMRI in the Context of Paediatric Focal Epilepsy .............. 42 

2.6.1 fMRI is an indirect Measure ........................................................................................ 42 

2.6.2 Motion and Quality Assurance .................................................................................... 43 

2.6.3 Statistical Analysis ...................................................................................................... 44 

2.6.4 The Effect of IEDs on the Brain’s Functional Organisation......................................... 44 

2.7 Research Questions ............................................................................................................... 45 

2.8 References ............................................................................................................................. 45 

3. FIACH: A biophysical model for automatic retrospective noise control in fMRI ....................... 52 

3.1 Introduction ............................................................................................................................ 53 

3.1.1 The Problem of Noise in fMRI ..................................................................................... 53 

3.1.2 Motion.......................................................................................................................... 53 

3.1.3 Localized Large Amplitude Signal Changes ............................................................... 54 

3.1.4 Physiological Noise ..................................................................................................... 55 

3.1.5 Methodological Aims and Hypothesis ......................................................................... 56 

3.2 Theory .................................................................................................................................... 56 

3.2.1 Identifying Large Amplitude Signal Changes .............................................................. 56 

3.2.2 Identifying Physiological Noise ................................................................................... 59 

3.2.3 Theory implementation ................................................................................................ 60 

3.2.4 Theory Summary ......................................................................................................... 62 

3.3 Method ................................................................................................................................... 62 

3.3.1 Participants ................................................................................................................. 62 

3.3.2 Task and Stimuli .......................................................................................................... 62 

3.3.3 Data Acquisition .......................................................................................................... 63 

3.3.4 FIACH Validation ......................................................................................................... 63 

3.3.5 Data Analysis Pipelines ............................................................................................... 64 

3.4 Results ................................................................................................................................... 65 

3.4.1 Illustrative Example ..................................................................................................... 65 

3.4.2 Group level Results ..................................................................................................... 66 



6 
 

3.5 Discussion .............................................................................................................................. 71 

3.5.1 Summary of Findings .................................................................................................. 71 

3.5.2 Sentence Comprehension and Naming ...................................................................... 72 

3.5.3 Sentence Generation .................................................................................................. 74 

3.5.4 Local and Global Signal Changes. .............................................................................. 75 

3.5.5 Methodological Considerations and Limitations ......................................................... 76 

3.5.6 Conclusion .................................................................................................................. 77 

References ................................................................................................................................... 77 

4. Optimising EEG-fMRI for application in paediatric focal epilepsy ............................................ 83 

4.1 Introduction ............................................................................................................................ 84 

4.2 Method ................................................................................................................................... 85 

4.2.1 Subjects....................................................................................................................... 85 

4.2.2 Data Acquisition .......................................................................................................... 87 

4.2.3 Natural Stimulus Paradigm ......................................................................................... 87 

4.2.4 EEG-fMRI analysis ...................................................................................................... 88 

4.2.5 Defining Concordance ................................................................................................. 89 

4.2.6 Analysis ....................................................................................................................... 89 

4.3 Results ................................................................................................................................... 90 

4.4 Discussion .............................................................................................................................. 92 

4.4.1 Exploring the impact of the natural stimulus. .............................................................. 92 

4.4.2 A priori metrics of data quality ..................................................................................... 93 

4.4.3 Limitations ................................................................................................................... 94 

4.5 Conclusions ............................................................................................................................ 95 

4.6 References ............................................................................................................................. 95 

5. Is Bonferroni correction more sensitive than random field theory for most fMRI studies? ...... 98 

5.1 Introduction ............................................................................................................................ 99 

5.2 Theory .................................................................................................................................. 101 

5.3 Methods ............................................................................................................................... 101 

5.3.1 Analysis ..................................................................................................................... 101 

5.3.2 Software .................................................................................................................... 104 

5.4 Results ................................................................................................................................. 104 

5.4.1 Descriptive Statistics ................................................................................................. 104 

5.4.2 When does RFT produce less conservative thresholds than Bonferroni? ................ 106 

5.4.3 Do current data analysis strategies meet the assumptions of RFT? ........................ 108 

5.5 Discussion ............................................................................................................................ 110 

5.5.1 Summary ................................................................................................................... 110 

5.5.2 Alternate Solutions .................................................................................................... 111 

5.5.3 Implications ............................................................................................................... 112 

5.5.4 Limitations ................................................................................................................. 113 



7 
 

5.6 Conclusions .......................................................................................................................... 114 

5.7 References ........................................................................................................................... 115 

6. Stationary and dynamic connectivity in paediatric focal epilepsy .......................................... 118 

6.1 Introduction .......................................................................................................................... 119 

6.2 Method ................................................................................................................................. 121 

6.2.1 Participants ............................................................................................................... 121 

6.2.2 Data Acquisition ........................................................................................................ 121 

6.2.3 Paradigm ................................................................................................................... 122 

6.2.4 Preprocessing ........................................................................................................... 122 

6.2.5 Analysis ..................................................................................................................... 123 

6.3 Results ................................................................................................................................. 125 

6.3.1 Stationary Connectivity ..................................................................................................... 125 

6.3.2 The effects of IEDs on stationary connectivity .......................................................... 134 

6.3.3 Dynamic Connectivity ................................................................................................ 137 

6.4 Discussion ............................................................................................................................ 137 

6.4.1 Stationary Connectivity (not controlling for the effects of IEDs)................................ 137 

6.4.2  Stationary Connectivity (controlling for the effects of IEDs) ..................................... 138 

6.4.3 Contrast between stationary and dynamic connectivity. ........................................... 140 

6.4.4 Limitations ................................................................................................................. 141 

6.5 Conclusion ........................................................................................................................... 141 

6.6 References ........................................................................................................................... 142 

7. Conclusions and Future Research ......................................................................................... 146 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

Table of Figures 

Figure 1. The rotation of the magnetic moment (μ) about the magnetic field (B). ................. 14 

Figure 2. EPI pulse sequence diagram (a) and EPI k –space trajectory (b). ......................... 24 

Figure 3. Convolution of stimulus with HRF. .......................................................................... 27 

Figure 4. The effect of through-plane motion. ........................................................................ 54 

Figure 5. BOLD Contrast. ....................................................................................................... 58 

Figure 6. Segmentation of high noise areas. ......................................................................... 60 

Figure 7. Flowchart for an Analysis Pipeline using FIACH. ................................................... 61 

Figure 8. Illustrative example of the physiological noise correction. ...................................... 66 

Figure 9.  Example of FIACH step 2. ..................................................................................... 66 

Figure 10. t-maps for both tasks (task>rest) .......................................................................... 70 

Figure 11. Comparison of FIACH (Step 2) with Frame Censoring ........................................ 71 

Figure 12. Task t-maps (task>rest) generated by FIACH ...................................................... 72 

Figure 13. Schematic depicting structure of video session. ................................................... 88 

Figure 14. The effect of time (x-axis) on framewise displacement (y-axis). .......................... 91 

Figure 15. Rate of Interictal Epileptiform discharges (IED). ................................................... 92 

Figure 16. Standard Error of Regression Coefficient (B) ....................................................... 94 

Figure 17. Histograms of smoothing kernel widths and voxel sizes and. ............................ 105 

Figure 18. Histogram of estimated residual smoothness ..................................................... 106 

Figure 19. Sensitivity of RFT to degrees of freedom and smoothness. ............................... 108 

Figure 20. Normality of FWHM / voxel size. ......................................................................... 109 

Figure 21 Estimate of residual smoothness in current studies. ........................................... 110 

Figure 22. The Auditory Network. ........................................................................................ 127 

Figure 23. Primary Visual Network. ..................................................................................... 128 

Figure 24. Sensorimotor Network. ....................................................................................... 129 

Figure 25. Secondary Visual Network. ................................................................................. 130 

Figure 26. Right Fronto-Parietal Network. ........................................................................... 131 

Figure 27. Left Fronto-Parietal Network. .............................................................................. 132 

Figure 28. The Default Mode Network. ................................................................................ 133 

Figure 29. The Left Fronto-Parietal Network (Controlling For the effect of IEDs). ............... 135 

Figure 30. The Default Mode Network (Controlling for the effect of IEDs). ......................... 136 

Figure 31. Regions of reduced connectivity in the priform cortex. ....................................... 139 

Table of Tables 
Table 1 Sentence Comprehension and Naming t-values (Cluster extents) ........................... 67 

Table 2. Sentence generation, t-values(cluster extents) ....................................................... 68 

Table 3. Summary of wilcoxon signed-rank tests for both tasks............................................ 69 

Table 4. Clinical information pertaining to subjects ............................................................... 86 

Table 5. Metastability across ICNs. ..................................................................................... 137 

 

 

 

 

 

file:///F:/ThesisMinorCorrections/MinorCorrectionsSubmission.docx%23_Toc476582645


9 
 

Table of Abbreviations 

fMRI Functional Magnetic Resonance Imaging 
EEG electroencephalogram 
BOLD Blood Oxygenation Level Dependent 
FIACH Functional Image Artefact Correction Heuristic 
RFT Random Field Theory 
IED Interictal Epileptiform Discharge 
MRI Magnetic Resonance Imaging 
NMR Nuclear Magnetic Resonance  
RF Radiofrequency 
EMF electromotive force 
FOV Field of View 
EPI Echo Planar Imaging 
HRF Haemodynamic Response Function 
FC Functional Connectivity 
ILAE International League Against Epilepsy 
PDS Paroxysmal Depolarisation Shift 
FCD Focal Cortical Dysplasia 
PMG Polymicrogyria 
HS Hippocampal Sclerosis 
NOS Nitric Oxide Synthase 
NO Nitric Oxide 
GLM General Linear Model 
rs-fcMRI Resting State Functional Connectivity MRI 
TR Repetition Time 
RP Realignment Parameter 
ICA Independent Component Analysis 
PCA  Principal Component Analysis 
TE Echo Time 
rTSNR Robust Temporal Signal to Noise Ratio 
PCs Principal Components 
aCompCor Anatomical Component Correction 
tCompCor Temporal Component Correction 
RPE Realignment Parameter Expansion 
MFP Motion Fingerprint 
RWLS Robust Weighted Least Squares 
PET Positron Emission Tomography 
FD Framewise Displacement 
MFD Mean Framewise Displacement 
SPM Statistical Parametric Mapping  
FWHM Full Width at Half Maximum 
FLAIR  Fluid Attenuated Inversion Recovery 
SPECT Single-photon emission computed tomography 
MEG Magnetoencephalography 
SD  Standard Deviation 
SE Standard Error 
IQ Intelligence Quotient 
DMN Default Mode Network 
ICN Intrinsic Connectivity Network 
Fps Frames per second 

  



10 
 

1. Theory of NMR, MRI and fMRI 

 

 

The main method utilised in this thesis is functional Magnetic Resonance 

Imaging. Therefore prior to discussing the issues surrounding this method’s 

application I give a brief overview of the signal’s origin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration of Contribution: This Theory section was written by Tim Tierney 

and was largely adapted from a combination of sources (Gadian, 1982; 

Haacke, Brown, Thompson, & Venkatesan, 1999). 
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1.1 From NMR to MRI 

Magnetic Resonance Imaging (MRI) is fundamentally the spatial 

localisation of the Nuclear Magnetic Resonance (NMR) signal. The 

theoretical underpinnings of MRI are therefore also shared with NMR and a 

certain level of understanding of NMR is required before an adequate 

treatment of MRI can be given. NMR is essentially the frequency selective 

process by which nuclei respond to magnetic fields. 

 This phenomenon was initially discovered by  bombarding a molecular 

beam of Lithium with oscillating magnetic fields at the appropriate frequency 

(Rabi, Zacharias, Millman, & Kusch, 1938). These findings were expanded 

upon by demonstrating the feasibility of NMR in liquids and solids (Bloch, 

Hansen, & Packard, 1946; Purcell, Torrey, & Pound, 1946). This posed a 

major advance in the study of naturally occurring substances as the method 

was not restricted to work solely with atoms or molecules. Concurrently a 

general theory of how the NMR signal changes following the application of 

oscillating magnetic fields termed “Nuclear Induction” was proposed (Bloch, 

1946). This laid the foundation for the understanding and theoretical 

treatment of MRI. 

 Nearly thirty years later NMR was used to create an image of water in 

two separate capillary tubes by linearly varying the magnetic field across the 

image in different directions (Lauterbur, 1973). This was in part inspired by 

the multiple projection approach that was used in the development of x-ray 

computed tomography. The method was, at the time, termed 

“zeugmatography”. 

 Even at this early stage the clinical ramifications were already 

apparent as it was suggested that the method could be used for the study of 

malignant tumours as their NMR signal was fundamentally different to that of 

normal tissue (Lauterbur, 1973). A number of years later the first image of a 

human was produced, albeit a finger (Mansfield & Maudsley, 1977). As many 

of the principles of MRI had been elucidated and medical interest was rising 

clinical trials commenced (Gadian, 1982). The use of MRI became 

widespread and now an estimated 2.5 million MRI examinations are carried 

out in the UK each year (OECD, 2015). 
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1.2 Nuclear Spin 

1.2.1 Spin 

The concept of magnetic resonance has already been introduced but 

not how this process arises. It arises through the quantum properties of 

atomic nuclei (which is why it is termed nuclear magnetic resonance). All 

fundamental particles, composite particles and atomic nuclei exhibit a 

property called “spin”. Spin can be conceptualized but not realised as 

magnetic dipole arising from a charged particle’s rotation around its principal 

axis.  The behaviour of spin is therefore often mathematically described 

using classical mechanics and is often referred to as spin angular 

momentum.  In contrast to classical depictions of momentum, spin angular 

momentum can only take on discrete values in the presence of an external 

magnetic field (when measurement takes place). This was illustrated by 

demonstrating that silver beams were deflected in the presence of a 

magnetic field in two directions as opposed to a continuum of possible 

momentums (Stern & Gerlach, 1922). However, in this thesis we adopt the 

classical interpretation of NMR by conceptualising spin as a magnetic dipole 

arising from a charged particle’s rotation around its principal axis. 

1.2.2 The Nucleus 

 The nuclei of atoms are not fundamental particles and are in fact 

composed of protons and neutrons (collective term: nucleons) which are 

fundamentally composed of quarks. The spin of these quarks adds up to give 

a “net spin” of the nucleon referred to as “isospin”. All nucleons have isospin 

(I = ½ ℎ). The net sum of the isospins gives the net spin angular momentum 

(ℎ is Planck’s constant). 

 In the case of the hydrogen atom I = ½ ℎ as the atom contains only 

one nucleon. However, as well as a net spin angular momentum nuclei can 

also have an orbital angular momentum due to the motion of the electrons. 

With regards to hydrogen this form of momentum is zero so the total angular 

momentum (J) in hydrogen is +/-½ ℎ. This makes hydrogen an ideal system 

to study as its total angular momentum has a simple form. 

1.3 Magnetic Moments  

If a particle has a non-zero angular momentum (J) it also has a non-zero 
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magnetic moment (𝜇). In fact the magnetic moment is directly proportional to 

the angular momentum. 

 𝜇 = 𝛾𝐽 = 𝛾ℎ/2 
1 

𝛾 is a constant of proportionality (gyromagnetic ratio). This gyromagnetic 

ratio is inversely proportional to the atom’s mass (m) and proportional to the 

atom’s charge (c). 

 𝛾 ∝
𝑐

2𝑚
 2 

When an external magnetic field (B) is applied the magnetic moment 

experiences a torque (N). This torque can represented as the crossproduct 

(×) of the moment with the field. 

 𝑁 =  𝜇 × 𝐵 
3 

If the system experiences nonzero torque it implies that the total angular 

momentum of the system is changing over time. 

 
𝑁 =  

𝑑𝐽

𝑑𝑡
 4 

If the total angular momentum is changing over time it also implies that the 

magnetic moment is changing over time.  

 𝑑𝜇

𝑑𝑡
= 𝛾 

𝑑𝐽

𝑑𝑡
 5 

By combining the information of (3) and (4) the expression for the change in 

magnetic moments can be formulated in a more intuitive form. 

 

 𝑑𝜇

𝑑𝑡
= 𝛾𝜇 × 𝐵 6 

This is the equation of motion for a dipole in a magnetic field and 

demonstrates the relationship between field strength, gyromagnetic ratio and 

magnetic moment. 

1.4 Resonance 

NMR has previously been described as the frequency selective 

process by which matter responds to oscillating magnetic fields but the 

conditions under which this phenomenon occurs have not been described.  
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Due to the discrete nature of spin the moments can be oriented in a fixed 

number of directions with respect to the magnetic field (2I +1 directions). 

These directions are often referred to as spin eigenstates. In the case of the 

hydrogen atom there are two, commonly named “spin up” and “spin down”, 

states. The transition between these states is accompanied by an emission 

of energy. This is resonance. 

 

 ∆𝐸 = ℎ𝜔0 
7 

Where ∆𝐸 = is the change in energy, ℎ is Planck’s constant and 𝜔0 is the 

frequency at which the magnetic moment rotates around its axis. From this 

equation it is important to note that, as the spin states are discrete, the 

frequencies at which energy will be emitted are also discrete (i.e. to observe 

a change in energy the applied magnetic field must oscillate at 

frequency 𝜔0). Therefore if resonance is to occur  𝜔0 must be known. 

1.5 Precession  

 Precession in the 

context of NMR can be 

conceptualised as the 

rotation of the magnetic 

moment about its axis (a 

classical description). By 

using the laws of angular 

momentum we can derive 

the frequency at which the 

magnetic moment will rotate 

around its axis. An 

illustration of the system is 

given in Figure 1. 

 

 

Figure 1. The rotation of the magnetic moment (μ) about the magnetic field 

(B).  
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The magnitude of  𝑑𝜇 can be found by computing the arc length. If the angle 

is measured in radians the arc length is only contingent upon the radius (𝑟) 

and change in angle (𝑑𝜙). 

 𝑑𝜇 = 𝑟 𝑑𝜙 
8 

As the vector B and 𝜇 form a right angled triangle with the circle describing 

the rotation of the moment, the radius can easily be derived. 

 

 𝑟 = 𝜇 sin (𝛳) 
9 

However, from (6) and the rules of cross products (|A x B| = |A||B|sin(𝛳)) we 

know that 

 𝑑𝜇 = 𝛾𝜇𝐵sin(𝛳) 𝑑𝑡 
10 

Equating (8) and (10) we find the following 

 

 𝜇sin (𝛳)𝑑𝜙 = 𝛾𝜇𝐵sin(𝛳) 𝑑𝑡 
11 

By expressing (11) in terms of its angular frequency the following 

simplification is made. 

 

 𝑑𝜙

𝑑𝑡
= 𝜔0  = 𝛾𝐵 12 

1.6 Magnetization 

 At this point a caveat must be made. While these rules successfully 

define the precession of a single magnetic moment in an external magnetic 

field, single moments are not subjected to external magnetic fields. Instead 

populations of spins or “ensembles” of moments are subjected to external 

magnetic fields. The discrete behaviour of the magnetic moment (𝜇) no 

longer holds. The individual moments are no longer oriented parallel or anti 

parallel (their eigenstates) to the main magnetic field. Instead the distribution 

of angles with which the moments orient with respect to the main magnetic 

field is near uniform (due to nuclear interactions). There is only a slight 
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tendency to be aligned with the field. In the quantum mechanical framework 

the individual spins are said to exist in a superposition of their eigenstates. 

 However, the average effect of the magnetic field on the population 

of spins can be described by still using the equation of motion described in 

(6) with a slight adjustment. This is because the magnetization (M) is just the 

sum of all resonating magnetic moments (𝑛) per unit volume (𝑉). 

 

 
𝑀 =

1

𝑉
∑ 𝜇𝑖

𝑛

𝑖=1

 
13 

Because of this fact the equation of motion now changes from describing the 

rotation of the magnetic moment about its access to describing the rotation of 

the magnetisation vector about its axis. 

 

 𝑑𝑀

𝑑𝑡
= 𝛾𝑀 × 𝐵 14 

Unfortunately this magnetisation signal is weak due to the near uniform 

distribution of spins states with respect to the main magnetic field.  However 

as the magnetisation is proportional to the number of spins in the sample 

resonance is feasible in realistic samples which contain large amounts of 

magnetic moment producing particles. 

 
𝑀 = 𝑁/𝑉

ℏ2𝛾2𝐵0

4𝐾𝑇
 15 

K is the Boltzmann constant; T is the absolute temperature in Kelvin, ℏ is 

Planck’s constant and 𝑁/𝑉 is the number of spins per unit volume.  

1.7 The Rotating Frame 

 If the magnetisation precesses about the main magnetic field there 

is a periodic component to all calculations involving magnetisation. By 

adopting a rotating frame of reference (rotating the coordinate system around 

Z) this periodic motion can be effectively eliminated. For instance when the 

coordinate system rotates at an angular frequency (𝜔) the equation of motion 

changes as follows. 
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 𝑑𝑀

𝑑𝑡
= 𝛾𝑀 × 𝐵 −  𝜔 × 𝑀 16 

This simplifies to the following. 

 𝑑𝑀

𝑑𝑡
= 𝑀 × (𝛾𝐵 +  𝜔) 17 

Considering (12) and if  𝜔 is chosen to equal −𝜔0 

 𝑑𝑀

𝑑𝑡
= 𝑀 × (𝜔0 −𝜔0) = 0 18 

The magnetisation is now no longer changing with respect to time in this 

frame of reference.  

1.8 Radiofrequency Pulses 

Radiofrequency (RF) pulses are magnetic fields oscillating at the larmor 

frequency of the sample under investigation in order to induce resonance. As 

they are a magnetic field (𝐵1) perpendicular to 𝐵0 they add with the main 

magnetic field (𝐵0) to produce an effective magnetic field (𝐵𝑒𝑓𝑓). 

 

 

𝐵𝑒𝑓𝑓 = √(𝐵0 +
𝜔

𝛾
)2 + (𝐵1)2 

19 

If  𝜔 is chosen to equal  −𝜔0  the effective field takes on a much simpler 

form. 

 

 𝐵𝑒𝑓𝑓 = √(𝐵0 − 𝐵0)2 + (𝐵1)2 =  𝐵1 20 

Now in this rotating frame the effect of 𝐵0 vanishes and the magnetisation 

rotates about 𝐵1 with angular frequency 𝜔0. The angle with which the 

magnetisation has been rotated away from the main magnetic field is given 

by the following formula. 

 

 𝜃 = 𝛾𝐵1𝑡 
21 

Theta is the angle rotated in radians, 𝛾 is the gyromagnetic ratio, 𝐵1 is the 

strength of the magnetic field and 𝑡 is the duration of the RF pulse. 
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1.9 Bloch Equations 

 The equation of motion for the magnetisation (16) M has already 

been introduced as a macroscopic equivalent for the equation of motion for 

the magnetic dipole (6). Expanding (16) via the crossproduct leads to the 

following differential equations. 

 𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵𝑧 −  𝛾𝑀𝑧𝐵𝑦 = 𝛾𝑀𝑦𝐵𝑧 22 

 𝑑𝑀𝑦

𝑑𝑡
= 𝛾𝑀𝑧𝐵𝑥 −  𝛾𝑀𝑥𝐵𝑧 = − 𝛾𝑀𝑥𝐵𝑧 23 

 𝑑𝑀𝑧

𝑑𝑡
= 𝛾𝑀𝑥𝐵𝑦 −  𝛾𝑀𝑦𝐵𝑥 = 0  24 

However this is an oversimplification that does not take into account the 

interaction of the spins with their local environment. Bloch (1946) introduced 

extra terms to the equation of motion to take account of these interactions. 

 𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵𝑧 − 

𝑀𝑥

𝑇2
 25 

 𝑑𝑀𝑦

𝑑𝑡
= − 𝛾𝑀𝑥𝐵𝑧 −  

𝑀𝑦

𝑇2
 26 

 𝑑𝑀𝑧

𝑑𝑡
= −

𝑀0 − 𝑀𝑧

𝑇1
  27 

By transforming (25) and (26) to the rotating reference frame the following 

simplification can be by assuming (18) 

 𝑑𝑀𝑥𝑦

𝑑𝑡
= − 

𝑀𝑥𝑦

𝑇2
 28 

By solving (27) and (28) the equations for magnetisation in the longitudinal 

and transverse plane can be found. 

 𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0)𝑒−𝑡/𝑇2 29 

 

 𝑀𝑧(𝑡) = 𝑀𝑜 + (𝑀𝑧(0) − 𝑀𝑜)𝑒−𝑡/𝑇1 30 

1.10 Relaxation 

It is necessary to add the terms T1 and T2 to the equations of motion as they 
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account for the changes in magnetisation due to the interactions of the 

magnetic moments with their local environment. The time constant T1 is 

related to the time taken for the magnetisation to return to thermal 

equilibrium. The time constant T2 is related to change in magnetisation due 

to the interaction of magnetic moments with each other.  

 As already stated the values of T2 and T1 are determined by the 

spin ensemble’s interaction with the local environment. The interaction which 

dominates the change in T2 and T1 is molecular motion. The correlation time 

(τ) describes the time taken for a molecule to undergo one full revolution. 

The following two expressions relate molecular motion and relaxation. 

 1

𝑇1
∝

τ B𝑥𝑦
2

1 + 𝜔0
2τ2

 31 

 

 1

𝑇2
∝  τ B𝑧

2 32 

1.11 T1 

 The first equation captures the frequency sensitive nature of T1.  In 

essence any molecular rotations that are at or near the larmor frequency will 

decrease T1. While any molecular motions further away from the larmor 

frequency will increase the T1 of the substance. This is because the rotating 

molecules are producing changing magnetic fields that oscillate at the larmor 

frequency and essentially function as RF pulses and induce resonance. As 

resonance has been induced energy is lost to the surrounding environment. 

This keeps occurring and causes  𝑀𝑧 to approach 𝑀𝑜 according to (30). 

1.12 T2 

 While the effect on T1 of molecular motion is frequency specific the 

effect of molecular motion on T2 is not. The local magnetic field can be 

approximately considered a sum of the externally applied field and the 

contribution from the magnetic fields of the other neighbouring spins. This 

coupled with the oscillating fields experienced due to molecular motion cause 

the local magnetisation to precess at different frequencies. This “fanning out” 

of precessional frequencies in the transverse plane results in a decrease of 

the net magnetisation. As this continues to happen the magnetisation tends 
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towards its equilibrium value of 0.  

1.13 T2* 

 In practice after an RF pulse the decay of the magnetisation in the 

transverse plane is not governed by the time constant T2 but is instead 

governed by molecular motion and changes in the local susceptibility 

(indicates degree of magnetisation in response to a magnetic field). This is 

T2* A simple substitution updates equation (29). 

 

 𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(0)𝑒−𝑡/𝑇2
∗
 33 

 

Where T2* is simply the sum of the effects due to T2 and the change in 

susceptibility and local field inhomogeneities (T2’) 

 1

𝑇2∗
=

1

𝑇2
+

1

𝑇2′
 34 

This is often expressed in a more simple form using the reciprocal of the 

above terms  

 𝑅2∗  =  𝑅2 + 𝑅2′ 
35 

As this is an additive effect it means that anything that increases the 

magnitude of 𝑅2′ will increase the rate of signal decay.  While at first this may 

seem undesirable it can be taken advantage of for the study of human brain 

function using a technique called functional Magnetic Resonance Imaging 

(fMRI).  

 When the energy demand of the brain increases due to neural 

activity blood is delivered to the site of neural activity to increase the supply 

of oxygen. As oxygenated blood is diamagnetic and deoxygenated blood is 

paramagnetic when the tissue becomes more oxygenated the susceptibility 

increases in magnitude and so does the magnetisation (Ogawa, Lee, Kay, & 

Tank, 1990). This allows for magnetisation to dynamically change over time 

in response to brain function. This is the theoretical basis of fMRI (The 

Biological basis for this technique is discussed in chapter 2). 

1.14 Imaging 

 We have introduced how the property of spin gives rise to a 
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magnetic moment and how the resulting moment behaves in a magnetic 

field. We have also described how multiple moments (which give rise to a net 

magnetisation) interact with their local environment (relaxation). It has not yet 

been described how we detect this change or we spatially encode this 

information (image creation). The purpose of this thesis is largely the 

application of MRI in epilepsy and not the development of MRI sequences so 

the imaging portion of MRI is given less weight then the signal origin itself. 

1.15 Signal Detection 

 The time varying magnetisation produced by the resonating spins in 

the transverse plane causes an electromotive force (emf) to be induced in 

any nearby conductor. This emf is equal to the negative of the changing flux 

(𝜙) through the conductor. 

 
𝑒𝑚𝑓 = −

𝑑𝜙

𝑑𝑡
 36 

The flux that the conductor experiences is directly related to the 

magnetisation and the magnetic field produced by the conductor. 

 
𝜙(𝑡) =  ∭  𝑀(𝑟, 𝑡) 𝐵𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑟) 𝑑3𝑟 37 

The triple integral indicates that the flux at time t is equal to the integral of the 

magnetisation with respect to spatial position (r) across the three spatial 

dimensions (𝑑3𝑟). This integral is modified by the 𝐵𝑅𝑒𝑐𝑒𝑖𝑣𝑒(𝑟) field which if 

non uniform causes the flux to deviate from the expected value. By placing a 

RF receive coil near the sample this dynamically changing flux produces a 

voltage in the coil that varies with time.  

1.16 Spatial Encoding and k-Space 

In order to spatially encode the induced voltage magnetic field 

gradients are employed. These gradients vary the magnetic field linearly 

(usually) with respect to space. As a result the precessional frequencies vary 

as a function of space.  

If a RF pulse is applied to a sample all the on resonance spins will 

produce a signal that contributes to the magnetisation. However, if a constant 

linear gradient is turned on in a direction normal to the plane that is intended 

to be imaged the resonance frequency changes as a function of position.  
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 𝜔(𝑧) =  𝛾(𝐵0 + 𝐺(𝑧)) 
38 

By applying a RF pulse which is frequency selective for the frequency at 

position 𝑧  defined by (38) only the integral of the magnetisation in that plane 

contributes to the induced voltage.  

Having selected a slice the flux is further encoded by applying 

frequency encoding and phase encoding gradients. These both are linearly 

varying magnetic field but have different shapes. Their shape can be related 

to the spatial frequencies they are sensitive to by the following relations. 

 
𝑘𝑥(𝑡) =  𝛾 ∫ 𝐺𝑥

𝑡

0

(𝑡)𝑑𝑡 

𝑘𝑦(𝑡) =  𝛾 ∫ 𝐺𝑦

𝑡

0

(𝑡)𝑑𝑡 

39 

 

40 

Essentially these integrals produce the x and y coordinates in 2 dimensional 

Fourier space. This space is often referred to as k-space in MRI. Therefore at 

time (t) the induced voltage (36) in the receiver by the changing magnetic 

flux (37) will represent the integral of the magnetisation (modulated by the 

receive field) due to the spatial frequencies dictated by the integral of the 

gradient waveforms (39 

 and 40).  

1.17 Image Resolution 

The image resolution in the frequency encoding direction is 

determined by the Field of View (FOV) and the desired number of samples 

(𝑁𝑥). 

 
∆𝑥 =

𝐹𝑂𝑉𝑥

𝑁𝑥
 41 

The desired number of samples is limited by time taken to acquire that line of 

k-space (𝑇𝑥). The user may wish to keep 𝑇𝑥 small in order to increase the 

speed of the sequence. This then constrains the number of points that can 

be acquired for a fixed sampling rate. 

 𝑇𝑥 = 𝑁𝑥∆𝑡𝑥 
42 
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Where ∆𝑡 is the time between samples of the induced emf. It is sometimes 

referred to as the dwell time.  The inverse of the dwell time is the bandwidth 

(∆𝑣) 

 

 
∆𝑣𝑥 =

1

∆𝑡
 43 

The bandwidth is determined by the field of view (𝐹𝑂𝑉𝑥), gradient strength 

(𝐺𝑥) and gyromagnetic ratio (𝛾) 

 ∆𝑣𝑥 =  𝛾𝐺𝑥𝐹𝑂𝑉𝑥 
44 

Therefore if one wishes to keep scan time low while increasing 

resolution bandwidth needs to be increased. If the field of view is fixed this 

requires stronger gradients to be utilised. Importantly if the desired 𝐹𝑂𝑉𝑥 is 

less than the length of the object being imaged aliasing can occur on the 

frequency encode direction. If this occurs an anti-aliasing filter must be used 

to correct the resulting artefact. 

For determining resolution in the phase encoding direction similar 

strategy can be used. 

 
∆𝑦 =

𝐹𝑂𝑉𝑦

𝑁𝑦
 45 

 The total time for acquiring 𝑁𝑦 points in the phase encoding direction is as 

follows. 

 𝑇𝑦 = 𝑁𝑦𝑇𝑥 
46 

This means that the effective bandwidth in the phase encoding 

direction is much lower than in the frequency encoding direction. Therefore 

the number of points acquired in the phase encoding direction is limited by 

the time taken to acquire 1 line in the frequency encoding direction. 

1.18 EPI k-Space Trajectory 

k-space has been described as the Fourier space in which signal is 

acquired. The coordinate is dictated by the gradients. The signal at that 

coordinate is dictated by the flux in the coil due to the magnetisation. There 

are a number of strategies for optimally filling k-space known as k-space 

trajectories. By way of example we describe a typical EPI trajectory used for 
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fMRI acquisition as fMRI is the primary imaging method used in this thesis.  

 EPI represented a crucial step forward in the application of MRI due to 

the increased speed at which images could be acquired. This increase in 

speed was brought about by utilising the frequency encode gradients to form 

echoes by reversing their direction rapidly and using phase encoding “blips” 

to jump lines in k space following a single radiofrequency pulse. A schematic 

of the pulse sequence is presented in Figure 2. as well as the k-space 

trajectory. 

 

 

 

Figure 2. EPI pulse sequence diagram (a) and EPI k –space trajectory (b). In 

(b) circles represent sampling points  

Initially the slice is excited with a frequency selective RF pulse. The 

positive portion of the slice selective gradient dictates the change in the 

resonant frequency across slices. The negative portion rephases 

magnetisation dephased by the gradient.  The initial negative lobe of the 

frequency and phase encoding gradients initialise the k-space trajectory in 

(b) to the bottom left hand corner of k-space. The increasing integral of the 

frequency encode gradient waveform drives the trajectory to the right. When 

the integral is zero due the cancellation of the positive and negative 

waveform an echo is formed in the central circle of the current line of k-

space. The integral then continually increases until the end of the line is 

reached. At this point the phase encoding blip increases the phase encode 

gradient integral and causes the trajectory to jump to the next line. At this 

point the integral of the frequency encode gradient begins to decrease due to 
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the negative portion of the gradient waveform and the trajectory is now sent 

from right to left. This zig-zag trajectory is continued until all lines of k-space 

are filled.  

This rapid imaging is utilised in the acquisition of fMRI data to acquire 

T2* weighted images every few seconds which are sensitive to changes in 

oxygenation and therefore indirectlty to neural activity (see section 1.13 T2). 

We now give a brief overview of how fMRI is used to study nerual activity  

and how the data is processed.  

1.19 Typical fMRI analysis pipelines 

Typically fMRI data is acquired while a subject is performing a 

cognitive or behavioural task. As an example while in the scanner a subject 

may tap one of their fingers for 10-15 seconds then rest for 10-15 seconds 

and repeat for a predetermined amount of time (e.g. 3-10 minutes). However 

the signal changes in fMRI are typically small (a few percent) as T2* does 

not change drastically in response to neural activity. Therefore a rigorous 

statistical framework is employed to optimally detect these changes in neural 

activity. Prior to the statistical analysis a number of preprocessing steps are 

employed to ensure optimal analysis. There are a number of fMRI analysis 

strategies available in the literature but we briefly review one of the most 

popular: Statistical Parametric Mapping (Friston et al., 1995). 

1.20 fMRI pre-processing 

1.20.1 Realignment (motion correction) 

As fMRI acquisition takes anywhere between 100ms and 3s per 

image subjects can move between acquisitions. This motion results in each 

successive image being out of alignment with respect to each other. 

However if the assumption is made that the differences between the images 

are purely the result of a transformation of space (and not intensity) this 

motion can be corrected for.  

 This is achieved by first calculating the partial spatial derivatives of 

the target image (the image we wish to be in alignment with) with respect to 

translation in x, y and z and rotation around the x, y and z axes (roll, pitch 

and yaw). These derivative images are then regressed on the difference 
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between the target and the source image (the image that has moved). The 

resulting parameter estimates define a transformation between source and 

target space that optimally aligns the images. If the motion is large this 

process is iterated using a Gauss-Newton optimisation scheme (Friston, 

Williams, Howard, Frackowiak, & Turner, 1996) until the desired accuracy is 

achieved. 

1.20.2 Spatial Smoothing 

 Images in fMRI are often smoothed with an isotropic Gaussian kernel. 

This is done for three main reasons. The first is that it enhances the signal to 

noise ratio. Secondly it supresses the inherent anatomical variability between 

subjects if a group study is performed (requires averaging across subjects).  

The last reason smoothing is performed is that it makes the parametric 

assumptions of methods used to threshold statistical maps more tenable. 

1.20.3 Spatial Normalisation.  

If one wishes to analyse a group of subjects to determine the average 

neural response to a stimulus in a given population the subjects’ brains must 

be warped into a common space. This is because neural anatomy is different 

between subjects making direct averaging of subjects’ brains impossible. 

This transformation is conceptually identical to that of realignment. The only 

difference is that the difference between the source and target image is now 

modelled using non-linear warps parameterised by a basis set of 3D cosines. 

The Gauss-Newton optimisation is also employed in this case (Friston et al., 

1995). This model can be improved by incorporating prior knowledge of the 

anatomy into the estimation procedure (Ashburner & Friston, 2005). 

1.21 fMRI Analysis (The General Linear Model) 

The analysis of a stimulus driven fMRI tells us where in the brain 

responded to our stimulus. Whether or not a particular brain region is 

declared to have been “activated” is dependent on the results of a null 

hypothesis significance test. This test is performed on a parameter estimate 

(𝐵) obtained from a linear model.  The linear model can be summarised in 

the following matrix equation. 
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 𝑌 = 𝑋𝐵 +  𝜀 
47 

Essentially the data (𝑌) is considered to be a weighted (𝐵) sum of 

independent variables (𝑋) with additive noise (𝜀). The time course (𝑋) that we 

fit to our data (𝑌) is obtained by convolving the stimulus timings with a 

Haemodynamic Response Function (HRF). This HRF captures how we 

expect the T2* weighted signal to change in response to a stimulus (Buxton, 

Uludağ, Dubowitz, & Liu, 2004) and is depicted in Figure 3. 

 

 

1.21.1 Parameter estimation 

It can be shown that that there is an analytical solution to estimating 𝐵 

if we choose to minimise the sum of square error ( 𝜀𝑇𝜀). This solution is as 

follows: 

 𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 
48 

However, this direct solution is numerically unstable as the formation of the 

inner product can be poorly conditioned. To avoid this decompositions of 𝑋 

are used to solve this equation instead of this direct solution. One highly 

stable method is the pseudo inverse method which is implemented by 

singular value decomposition of 𝑋. The pseudoinverse of 𝑋 is often 

symbolised as 𝑋+. Therefore to estimate 𝐵 becomes  

 𝐵 = 𝑋+𝑌 
49 

1.21.2 Standard Error estimation 

Once the parameter is estimated it is converted into t-value by dividing the 

parameter (𝐵) by its standard error (𝑆𝐸) 

 
𝑡 =

𝐵

𝑆𝐸
 50 

The standard error is computed as follow 

Figure 3. Convolution of stimulus with HRF. 
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𝑆𝐸 = √
(𝑋𝑇𝑋)−1𝜀𝑇𝜀

𝑑𝑓
 

51 

The 𝑑𝑓 term in the denominator represents the degrees of freedom. In the 

case where the matrix (𝑋) is not rank deficient (columns are linearly 

independent) is simply the number of time points minus the number of 

parameters estimated. 

1.21.3 Random Field Theory 

This process of calculating t-values and standard errors is done at 

every voxel resulting in a large number of t values being computed. As such 

the chance of false positives is high. To control for these false positives a 

multiple comparisons correction procedure known as Random Field Theory 

is employed (Worsley, Evans, Marrett, & Neelin, 1992). This technique is 

unique in that it unites the fields of topology with probability by noticing that 

at high statistical thresholds the Euler Characteristic (a topological property) 

counts the number of local maxima in a statistical map. The Euler 

characteristic can therefore be thought of as asymptotically being a p-value 

as it calculates the expectation of the number of maxima above a given 

threshold. In one formalism (Adler, 1976) the Expectation (𝐸) of the Euler 

characteristic (𝜒(𝐴)) for a zero mean, unit variance Gaussian Random Field 

of volume (𝑉) can be calculated as follows 

 
𝐸{𝜒(𝐴)} = 𝑉(2𝜋)−2 |𝐴|

1
2 (𝑡2 − 1)𝑒

−𝑡2

2  52 

Where  |𝐴|
1

2 is the square root of determinant the spatial covariance matrix 

and 𝑡 is the statistical threshold. This work has been extended by (Worsley et 

al., 1996) who provide Euler characteristics for many different statistical 

fields (t, F, chi squared and Gaussian). 

1.22 fMRI Analysis (functional connectivity) 

Functional connectivity is a branch of fMRI analysis that aims to 

understand the functional organisation of the human brain. (Biswal, Yetkin, 

Haughton, & Hyde, 1995) reported that this was possible even in the 
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absence of an explicit task by demonstrating correlations between brain 

regions (which can be considered nodes in a network) when the subject was 

at rest. This was of great interest to the neuroscience community as it meant 

it was possible to probe neural function without an explicit task. This was 

advantageous for studying populations of wide age range and cognitive 

ability who may struggle to perform some tasks in the scanner. Subsequent 

studies have demonstrated that functional connectivity at rest is capable of 

explaining explain individual variability in brain activity, perceptual efficiency 

and IQ (Tavor et al., 2016; van den Heuvel, Stam, Kahn, & Hulshoff Pol, 

2009) 

1.22.1 Stationary connectivity  

Stationary connectivity is the study of the brains functional 

connectivity over long time periods (5-10 minutes). This mode of analysis 

has found that the brain can be organised into Intrinsic Connectivity 

Networks (ICNs). These ICNs are characterised by a high degree of 

statistical similarity between the time courses of the brain regions that 

comprise the ICN (Smith et al., 2009).These brain regions can be thought of 

as nodes in a network. The similarity between these nodes is often 

measured with a correlation coefficient. If the correlation exceeds some 

predefined statistical threshold (e.g. using Random Field theory) we can 

conclude that these nodes are connected. Due to the linear nature of this 

analysis the general theory is exactly the same as that of the General Linear 

Model. The difference being that instead of 𝑋 representing a stimulus 𝑋 now 

represents a time course of neural activity obtained from fMRI. 

1.22.2 Non stationary/dynamic connectivity 

One of the limitations of the stationary approach to measuring 

functional connectivity is that it assumes that nodes in a network do not 

change their connectivity over time. Recent work has sought to explore 

whether it is possible for fMRI to explore the dynamics of functional 

connectivity (how connectivity changes over time). The use of dynamic 

connectivity (Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014), typically 

involves windowing data into overlapping temporal segments and then 

calculating metrics of functional connectivity (again linear correlation). 
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However, it is debated as how data should be windowed to extract 

meaningful information (Lindquist, Xu, Nebel, & Caffo, 2014) 

 Techniques such as phase synchrony circumvent this issue by 

creating an instantaneous measure of synchrony within a network (Glerean, 

Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012) which is claimed to be 

more sensitive than a sliding window based approach (Omidvarnia et al., 

2016). These phase synchrony approaches typically utilise Hilbert transforms 

to transform the data into a space where the phase of a time course can be 

measured over time (𝛳𝑛(𝑡)). The synchrony (connectivity) between phase 

time courses is then easy established by performing a circular average 

across the phase time courses 

 
𝑅(𝑡)𝑒−𝑖𝜙(𝑡) =

1

𝑁
∑ 𝑒−𝑖𝛳𝑛(𝑡)

𝑁

𝑛=1
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The parameter 𝑅(𝑡) then represents the synchrony over time with a value of 

1 representing complete synchrony and 0 representing complete 

asynchrony.  

The phase synchrony based approach has seen successful 

application in traumatic brain injury where the phase synchrony can be 

summarised with metrics such as metastability (Hellyer, Scott, Shanahan, 

Sharp, & Leech, 2015). This metric of metastability is simply the standard 

deviation of 𝑅(𝑡) In essence this metric directly measures the variability of 

functional connectivity over time with larger values indicating less temporally 

stable ICNs and lower values indicating more temporally stable ICNs. 
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2. Epilepsy 
 

 

 

 

 

 

 

 

 

 

 

This chapter gives a brief overview of epilepsy, its clinical presentation, 

aetiology, and neurophysiology. It also outlines the role MRI has in epilepsy 

and what needs to be improved in fMRI if the technique is to be clinically 

applied in the context of paediatric focal epilepsy. 
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2.1 Epilepsy  

Epilepsy is described by the International League Against Epilepsy (ILAE) as 

a disease of the brain where at least one of the following conditions is met ( 

Fisher, 2014): 

1. At least two unprovoked (or reflex) seizures occurring >24 h apart,  

2. One unprovoked (or reflex) seizure and a probability of further seizures 

similar to the general recurrence risk (at least 60%) after two unprovoked 

seizures, occurring over the next 10 years. 

3. Diagnosis of an epilepsy syndrome 

The exact world-wide prevalence of the disease is difficult to estimate 

(Bell, Neligan, & Sander, 2014). However, some estimates of prevalence lie 

between 1.5% and 5% (Sander & Shorvon, 1996) in the developed and 

developing world. This is slightly higher in comparison to (Ngugi, Bottomley, 

Kleinschmidt, Sander, & Newton, 2010) who estimate a median prevalence 

of approximately 5.8 per 1000 population in higher income countries, 10.3 

per 1000 in the urban areas of lower income countries and  15.8 per 1000 in 

the rural areas of lower income countries. It is also notable that while 

incidence rates are higher in lower income countries lifetime prevalence is 

broadly similar across countries (Bell et al., 2014). This has been explained 

as a result of increased risk of premature death in lower income countries 

(Bell et al., 2014). 

In the population of individuals who have seizures an estimated 30-

40% will respond poorly to the medication designed to prevent seizures 

(Cascino, 2008). The increased burden seizures play in the lives of 

individuals who do not  respond to medication can result in disruption to 

education and cognitive ability (Berg & Scheffer, 2011). Furthermore, 

everyday activities like crossing a road or driving a car can suddenly become 

incredibly dangerous if seizures are accompanied with loss of awareness or 

motor control.   

These are not trivial issues and not only place a burden on the family 

caring for the individual with epilepsy (Jones & Reilly, 2016) but on the 

healthcare system trying to treat the individual. It was estimated in the United 

States that the direct cost of epilepsy per year per individual lies between 
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10000$ and 50000$ (Begley & Durgin, 2015). It has been further noted that 

these costs inflate when the individual does not respond to medication 

(Begley & Durgin, 2015) or has a comorbid condition (Wilner, Sharma, 

Thompson, Soucy, & Krueger, 2014).  All these reasons motivate the need 

for research that can improve the effectiveness of current treatments. 

However, before we discuss the possibility of improvements we must first 

discuss in greater depth the aetiology and clinical presentation of an 

individual with epilepsy. 

2.2 Seizures 

A seizure is defined as “a transient occurrence of signs and/or 

symptoms due to abnormal excessive or synchronous neuronal activity in the 

brain” (Fisher, 2014). The terminology surrounding seizures and epilepsy has 

changed over the last few decades. Using terms such as “grand mal”, 

“catastrophic” and “complex partial” to describe seizures is no longer 

recommended (Fisher, 2016). The emotional undertone to these 

classifications is clear and the potential to mislead a patient into thinking their 

seizures are more complicated/harmful than others is not helpful. The ILAE 

has chosen to binarise their definition of the seizure into generalised and 

focal seizures (Fisher, 2016).The distinction made between generalised and 

focal is with regards to the origin of the seizure. If the seizure is regarded as 

having originated within brain networks limited to one hemisphere it is 

classified as focal (Berg & Scheffer, 2011). If the seizure is regarded as 

having originated within bilaterally distributed networks it is considered 

generalised (Berg & Scheffer, 2011). 

Focal seizures can be further classified as to the extent they exhibit 

motor or non-motor symptoms. If motor symptoms are exhibited they can be 

described as tonic (stiffening of muscles), myoclonic (sudden and brief (<100 

ms) contraction of muscles), atonic (loss of muscle tone without preceding 

myoclonic or tonic event), clonic (rhythmic contraction and relaxation of 

muscles), tonic-clonic (combination of tonic and clonic), epileptic spasms 

(flexion, extension or mixed flexion-extension of mainly truncal muscles 

(lasting longer than myoclonic but not as long as tonic)) or hypermotor 

(prominent bilateral motion, thrashing, kicking, hugging).  
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Non motor signs may also be present and should be described as 

sensory (e.g. auditory/olfactory/visual sensation), cognitive (e.g. aphasia, 

hallucinations, memory impairment), emotional (e.g. fear, laughter, pleasure, 

anxiety) or autonomic (nausea, vomiting, cold, hot). Lastly, the individual’s 

awareness should be noted (aware/not aware/unknown awareness). As the 

purpose of this thesis regards the examination of children with focal epilepsy 

we will not consider generalised epilepsy further. The interested reader is 

directed elsewhere (Fisher, 2016) for a comprehensive overview of the 

classification of generalised seizures in non-focal epilepsy. 

2.3 The Neurophysiology of Seizures, Interictal Epileptiform 

Discharges, and EEG 

Seizures have already been described as a transient occurrence of 

“signs and/or symptoms due to abnormal excessive or synchronous neuronal 

activity in the brain” (Fisher, 2014). This definition clearly links abnormal 

neural behaviour to outwardly observable clinical correlates. However, 

isolated, brief and excessive synchronous brain activity can also occur in the 

absence of clinical correlates. This type of activity is not limited to individuals 

with epilepsy and is estimated to be observable in 1-5% of the normal 

population (Kasteleijn-Nolst Trenité & Vermeiren, 2005; Okubo et al., 1994). 

These events are referred to as Interictal Epileptiform Discharges (IEDs), in 

individuals with epilepsy, and have a controversial relationship to cognition 

and clinical treatment (Sanchez Fernandez, Loddenkemper, Galanopoulou, 

& Moshe, 2015).  Regardless of whether the hypersynchronous activity has 

outward clinical correlates or not the origin of this synchrony is of interest as 

it may elucidate the mechanisms by which focal epilepsy can be treated. 

 Most theories concerning the neurophysiological underpinnings of 

epileptic events relate their occurrence to an imbalance of excitation and 

inhibition of neural activity. At a single cell level epileptic events are a result 

of a Paroxysmal Depolarisation Shift (PDS). 

The following description of the PDS has largely been adapted from 

(Bromfield, Cavazos & Sirven, 2006). The PDS is the result of the sustained 

depolarisation of a neuron which allows a burst of action potentials to occur. 



38 
 

The burst of action potentials is a result of the influx of Ca++ from the 

extracellular environment. This then opens the voltage gated Na+ which 

allows for a sudden inflow of Na+ causing production of action potentials. 

Subsequently a rapid repolarisation occurs to restore the negative resting 

potential. However, this process overshoots resulting in a more negative 

potential than which the cell started with (this is termed hyperpolarisation). 

This is mediated by either the outflow of K+ ions or the inflow of Cl- ions.  The 

epileptic events can then spread to the rest of the brain by a number of 

mechanisms. This can be by accumulation of Ca++ in presynaptic terminals 

which causes excess neurotransmitter release or the excess K+ in the 

extracellular environment can result in depolarisation of neighbouring 

neurons. 

It is worth noting that while the PDS is occurring at a cellular level in 

the clinical environment cellular level recordings are not made. Instead an 

Electroencephalogram (EEG) is used to measure the brain’s electrical 

activity. The EEG was initially utilised in humans by Hans Berger in 1924 but 

published later (Berger, 1929). EEG utilises electrodes placed on the scalp to 

measure the brain’s electrical activity. As the measurement takes place on 

the scalp we do not measure individual cells but the vector sum of the 

dipoles produced by the cells. The dipole produced by the cell is the 

difference in charge between the positively charged cell body and the 

negatively charged dendrites. The number of cells required to fire 

synchronously to get observable signal is on the order of 50000 cells (Da 

Silva, 2010).  Furthermore, the ability to observe signal at the electrode site 

fades the further the source is from the scalp. EEG is therefore 

predominantly sensitive to neurons near the surface of the cortex. However, 

even with this limited spatial resolution EEG is of significant clinical value as 

it can assist in the detection of epileptic events, determine seizure type or 

help support diagnosis of epilepsy (Panayiotopoulos, 2010). 

2.4 Epilepsy Aetiology 

Up until now a descriptive account of epilepsy has been given by 

including the mechanisms by which seizures occur, their clinical presentation 

and the medical/financial ramifications they have. We have not described 
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what might cause these events.  We now give an aetiological account of 

epilepsy with particular attention paid to some of the focal epilepsies that 

were studied in this thesis. Epilepsy is ultimately a disease defined by a 

common symptom: the seizure. However there are a wide variety of causes. 

The aetiologies advocated by the ILAE include the following: Genetic, 

Structural/Metabolic, Unknown (Berg et al., 2010). The children studied in 

this thesis largely fell under the categories of structural/metabolic (~50%) or 

unknown (~50%). The structural aetiologies largely consisted of focal cortical 

dysplasia, polymicrogyria, hippocampal sclerosis, and stroke. 

2.4.1 Focal Cortical Dysplasia 

 Focal Cortical Dysplasia (FCD) is a malformation of cortical development 

that disrupts the typical layered structure of the cortex. The ILAE has 

proposed a three tiered structure for the classification of FCDs (Blümcke et 

al., 2011)FCD type I can be characterised by the presence of abnormal 

radial cortical lamination (type 1a), abnormal tangential cortical lamination 

(type Ib) or both (type Ic). Type II FCDs are defined by the presence of 

dysmorphic neurons (type IIa) or the presence of both dysmorphic neurons 

and balloon cells (type IIb). Type III FCD can be characterised by abnormal 

cortical lamination with an accompanying lesion (hippocampal sclerosis-Type 

IIIa, glial or glioneuronal tumour- Type IIIb, vascular malformation – Type IIIc, 

any other acquired lesion during the early life period – Type IIId). 

2.4.2 Polymicrogyria 

Polymicrogyria (PMG) is another cortical malformation that can be 

characterized by large quantities of small irregular gyri in the cerebral cortex. 

When viewed with MRI an abnormal appearance of the cortical surface is 

observed.  It is thought that the onset of PMG is in the later stages of 

neuronal migration (Barkovich, Kuzniecky, Jackson, Guerrini, Dobyns, 2005) 

with causes linked to ischemia, infection and genetic mutation (Wang et al., 

2015). 

2.4.3 Hippocampal Sclerosis 

Hippocampal Sclerosis (HS) is one of the most common histopathological 

findings when surgery is performed in adults (Blümcke et al., 2013). It has 

been found in a surgical series of over 5000 adult patients with drug resistant 
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epilepsy that over 33% had hippocampal sclerosis (Blümcke & Spreafico, 

2012). HS is subdivided into three subtypes according to the ILAE (Blümcke 

et al., 2013) depending on the location of cell loss within the hippocampus. 

Type I is characterised by neuronal cell loss predominantly in CA1 and CA4 

with accompanying gliosis. Type II is characterised by predominant cell loss 

in CA1 and gliosis. Type III is characterised by predominant cell loss in CA4 

and gliosis. 

2.4.4 Stroke 

Post-stroke epilepsy is a common occurrence, particularly in older adults 

(Olsen, 2001). Seizures have been reported to occur in approximately 10% 

of patients following stroke (Burn et al., 1997). However, there are some 

subtleties to the presentation of seizures following stroke. Approximately 5% 

of patients will experience seizures within the first two weeks following stroke 

and a further 5% experience seizures after two weeks (Olsen, 2001).  This 

does not mean however that all individuals who have seizures will go on to 

receive a diagnosis of epilepsy. Approximately 3.8% of individuals with 

stroke in one study (over a five year follow up period) had recurrent seizures 

and therefore qualified for a diagnosis of epilepsy (Burn et al., 1997). The 

mechanism that allows for seizures to occur in some stroke patients and not 

others is poorly understood but one hypothesis is that the surrounding area 

(the penumbra) containing excess excitotoxic glutamate may play a role in 

generating the early onset seizures (Olsen, 2001). 

2.5 The contribution of MRI to Epilepsy  

Many of the structural problems described would not be easy to 

diagnose were it not for MRI and as a result MRI is now considered 

mandatory for diagnosis (Cross et al., 2006). Advanced post processing 

methods have further helped with detection of structural abnormalities, 

particularly in FCD (Colliot et al., 2006; El Azami et al., 2016; Mellerio et al., 

2014; Riney, Chong, Clark, & Cross, 2012) and HS (Maccotta, Moseley, 

Benzinger, & Hogan, 2015). However, there is currently very little agreement 

on the exact MRI sequences that should be used. Recent recommendations 

state that at a minimum a 3D T1-weighted gradient echo, coronal T2-

weighted and axial Fluid Attenuated Inversion Recovery (FLAIR) should be 
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utilised (Mouthaan et al., 2016). That being said MRI is continually evolving 

and with the advent of higher field strengths (7 tesla) patients that were 

previously classified as being “MR-Negative” now can successfully have 

lesions identified that are histophatologically confirmed (De Ciantis et al., 

2016). Once these lesions have been identified a neurosurgeon can resect 

the tissue in an attempt to alleviate the seizures.  

In many cases traditional radiological review of MRI or advanced post 

processing of structural images can be uninformative. For instance, in the 

sample of patients with focal epilepsy included in this thesis nearly 50% (at 

the time of writing) do not have a known structural aetiology. In this sample it 

is clear that other methods for delineating the epileptic focus are required. In 

this case the use of simultaneous EEG and functional Magnetic Resonance 

Imaging (fMRI) has shown promise.  

The goal of simultaneous EEG-fMRI is to harness both the strengths 

of EEG (high temporal resolution and direct measure of neural activity) with 

the strengths of fMRI (high spatial resolution and access to deep sources) to 

map the epileptic events observed with EEG. The combination of these two 

techniques has successfully allowed for the mapping of epileptic networks 

(Gotman & Pittau, 2011; Rosenkranz & Lemieux, 2010) and identification of 

the epileptic focus (Pittau, Dubeau, & Gotman, 2012; Salek-Haddadi et al., 

2006; Thornton et al., 2010). There is also evidence that the combination of 

EEG-fMRI can result in the prediction of surgical outcome (Chaudhary et al., 

2012; Fahoum et al., 2012). 

The use of fMRI without EEG is capable of mapping the parts of the 

brain responsible for the production of meaningful speech (Duncan, Winston, 

Koepp, & Ourselin, 2016). This is important as careful tailoring of surgery, 

particularly in children, can have a positive impact on cognitive ability in the 

long-term (Skirrow et al., 2015).  The procedure has been widely adopted 

across Europe with 20/22 centres (from a recent survey) reporting utilisation 

for the purpose of mapping eloquent cortex (Mouthaan et al., 2016). 

Previously the highly invasive Wada test has been utilised to map eloquent 

cortex but fMRI has shown high rates of concordance with Wada testing 

(Janecek et al., 2013) and does not come with the following risks: seizures, 
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status epilepticus, internal carotid artery vasospasm, inadvertent injection of 

anaesthetic in the external carotid artery (Beimer, Buchtel, & Glynn, 2015). It 

has been suggested by some that non-invasive methods such as fMRI 

should completely replace Wada testing (Papanicolaou et al., 2014). For all 

these reasons fMRI is clearly a valuable tool in the clinical care of individuals 

with epilepsy. However, fMRI is not without its drawbacks. 

 

2.6 Problems with the Application of fMRI in the Context of Paediatric 

Focal Epilepsy 

2.6.1 fMRI is an indirect Measure 

The first problem associated with fMRI is that it is an indirect measure of 

neural activity. Before we describe why this is a problem it is worth reviewing 

the basic biological mechanism by which fMRI signal is determined.  

The fMRI signal is weighted towards changes in magnetic 

susceptibility (a property of an object that determines the degree to which the 

object can be magnetised in an external magnetic field). These changes in 

magnetic susceptibility occur because the oxyhaemoglobin (a diamagnetic 

substance) concentration in the blood changes when neural activity 

increases.  As oxyhaemoglobin concentration increases the fMRI signal 

increases also. The relationship between the activity of the neurons and the 

increase in oxyhaemoglobin is a complex one.  

There are three primary mechanisms by which this interaction is 

mediated. The first is that glutamate released by excitatory neurons binds to 

interneurons containing Nitric Oxide Synthase (NOS) resulting in the opening 

of Ca++ channels. The influx of Ca++ causes the NOS to activate and produce 

Nitric Oxide (NO). NO then diffuses out of the cell and acts on smooth 

muscle cells of arterioles to produce vasodilation (Drake & Iadecola, 2007). 

This increase in vasodilation results in decreased vascular resistance which 

in turn gives rise to increased flow. This increase in blood flow means more 

oxygen is delivered to the site of neural activity and thus the fMRI signal 

increases. Another hypothesis is that  astrocytes are activated by the 

excitatory neurons and release NO at their feet which are in contact with the 
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smooth muscle wall of the arterioles resulting in the vasodilation (Toda, 

Ayajiki, & Okamura, 2009). The last mechanism is more direct where 

nitrergic neurons can directly release NO and act directly on the vessel walls 

(Toda & Okamura, 2003). 

This complex sequence of events that gives rise to fMRI signal is far 

removed from neural activity that generated it. Furthermore while neural 

activity can give rise to fMRI signal not all fMRI signal is related to neural 

activity. For instance changes in heart rate or respiration give rise to changes 

in blood flow and oxygen but are not necessarily associated with neural 

activity (Birn, Diamond, Smith, & Bandettini, 2006). This is further 

confounded in the paediatric context where variables such as Cerebral Blood 

Flow and haematocrit are different to adult populations (Hales, Kawadler, 

Aylett, Kirkham, & Clark, 2014; Hales, Kirkham, & Clark, 2015). Careful 

modelling of these effects is required to ensure that the application of fMRI in 

a clinical context is not confounded. 

2.6.2 Motion and Quality Assurance  

Motion is perhaps one of the biggest confounds experienced by 

researchers working with any age group (Friston, Williams, Howard, 

Frackowiak, & Turner, 1996; Lemieux, Salek-Haddadi, Lund, Laufs, & 

Carmichael, 2007; Wilke, 2012). This can be such a large confound in 

younger populations that scan success rate is very low (Yerys et al., 2009). 

In the research context exclusion of these subjects is suboptimal because it 

can lead to sampling bias (Wylie, Genova, DeLuca, Chiaravalloti, & 

Sumowski, 2014) where individuals with behavioural problems or low 

cognitive ability are never examined.  In the clinical context this is not 

typically possible because the results from a single subject are of interest 

rather than a group or population. Furthermore with scan costs currently at 

approximately 500£ an hour a failed scan is a significant cost to the health 

service. It is therefore necessary to remedy this issue. 

 On a related note if a researcher/clinician is suspicious that the data 

is of poor quality and not of sufficient standard for inference to be made how 

do they objectively establish this without looking at their results first? Prior to 

this thesis no study utilising EEG-fMRI in a clinical context had ever 
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discussed this issue.  Considering the variability in subject compliance in 

paediatric populations this is of crucial concern if EEG-fMRI is to be used 

clinically. 

2.6.3 Statistical Analysis  

There has, in the last few years, been considerable debate concerning 

the application/misapplication/validity of statistical inference in fMRI, 

particularly parametric statistical inference (Bennett, Baird, Miller, & Wolford, 

2011; Bennett, Wolford, & Miller, 2009; Eklund, Nichols, & Knutsson, 2016; 

Flandin & Friston, 2016). This can have severe ramifications in the clinical 

environment as typically inference in the individual is required and increased 

false positive/false negative rates undermine the transition of the technique 

to the clinical environment. If statistical methods cannot be automated due to 

poor validity then the transition from fMRI being a research tool to clinical tool 

will halt. It is therefore necessary to characterise when these methods can 

and cannot be used in the application to clinical data. 

2.6.4 The Effect of IEDs on the Brain’s Functional Organisation. 

It has previously been discussed that IEDs have a complex 

relationship to cognition (Sanchez Fernandez et al., 2015). They have an 

even more complex relationship to clinical treatment (Sanchez-Fernandez et 

al, 2015) yet these events have largely been ignored in the literature on 

EEG-fMRI in terms of their ability to disrupt the brains functional organisation 

(Centeno & Carmichael, 2014).  

Typically reduced connectivity within ICNs and increased connectivity 

between ICNs is observed (Ibrahim, Morgan, et al., 2014) in patients with 

epilepsy. However this is often found when simultaneous EEG has not been 

acquired (Centeno & Carmichael, 2014). This is a prerequisite for accurate 

inference when studying ICNs using fMRI as IEDs can be an important 

contributor to abnormal ICN connectivity (Shamshiri et al., 2016) over long 

time scales in addition to their immediate effects on network topology 

(Ibrahim, Cassel, et al., 2014). However, the association between ICN 

connectivity and IEDs has previously been limited to stimulus driven 

connectivity (Shamshiri et al., 2016) and it is still uncertain how ICN 

connectivity may be modulated in the absence of stimuli. Furthermore 
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considering there is evidence of immediate changes in connectivity 

surrounding IEDs (Ibrahim, Cassel, et al., 2014) it would be appropriate not 

just to investigate the stationary connectivity of ICNs in focal epilepsy but 

also the dynamic connectivity. 

2.7 Research Questions 

Considering the issues raised in the previous section this thesis poses the 

following research questions. 

For fMRI in a paediatric/clinical setting can we better address the issues of   

1. Motion? 

2. Physiological noise? 

3. Data quality? 

4. Poor sensitivity due to inappropriate use of parametric statistical 

inference? 

5. Finally in the context of better control of data quality and analysis can we 

then explore the disruption of the brain’s functional organisation in epilepsy 

and establish the role that IEDs might play therein? 
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3. FIACH: A biophysical model for automatic retrospective 

noise control in fMRI 

 

In this chapter we address two common confounds in the application of fMRI 

to paediatric populations: Motion and Physiological Noise. 

 

Abstract 

Different noise sources in fMRI acquisition can lead to spurious false 

positives and reduced sensitivity. We have developed a biophysically-based 

model (named FIACH: Functional Image Artefact Correction Heuristic) which 

extends current retrospective noise control methods in fMRI. FIACH can be 

applied to both General Linear Model (GLM) and resting state functional 

connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving 

the identification and correction of non-physiological large amplitude 

temporal signal changes and spatial regions of high temporal instability. We 

have demonstrated its efficacy in a sample of 42 healthy children while 

performing language tasks that include overt speech with known activations. 

We demonstrate large improvements in sensitivity when FIACH is compared 

with current methods of retrospective correction. FIACH reduces the 

confounding effects of noise and increases the study's power by explaining 

significant variance that is not contained within the commonly used motion 

parameters. The method is particularly useful in detecting activations in 

inferior temporal regions which have proven problematic for fMRI. We have 

shown greater reproducibility and robustness of fMRI responses using 

FIACH in the context of task induced motion. In a clinical setting this will 

translate to increasing the reliability and sensitivity of fMRI used for the 

identification of language lateralisation and eloquent cortex. FIACH can 

benefit studies of cognitive development in young children, patient 

populations and older adults. 

 

Declaration of Contribution: The model presented in this chapter was 

developed by Tim Tierney. However, the data used to validate this method 

was collected by Dr. Louise Weiss-Croft.  
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3.1 Introduction 

3.1.1 The Problem of Noise in fMRI 

The question of how to separate signal from noise in fMRI is one of 

crucial importance. This is primarily due to the fact fMRI signals are weak in 

magnitude (a few percent) and are therefore easily concealed by increased 

noise levels. Whether the noise is due to subject motion, physiological 

processes or scanner hardware it all can lead to spurious results (Murphy, 

Birn, & Bandettini, 2013). Specifically with regards to subject motion error 

variance is increased resulting in reduced sensitivity (Friston, Williams, 

Howard, Frackowiak, & Turner, 1996) and false positives (see Figure 4). In 

rs-fcMRI it has been demonstrated that noise due to head motion can result 

in a spurious increase in local connectivity  (Van Dijk, Sabuncu, & Buckner, 

2011) and that many of these issues are not remedied fully by regression of 

the realignment parameters (RPs) from the signal (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012). 

3.1.2 Motion 

To account for the effects of motion induced noise a variety of 

retrospective methods have been proposed. Many motion-focused correction 

methods rely on modelling some transformation of the parameters attained 

from volumetric spatial realignment or from some measure of signal intensity 

across the whole brain such as DVARS (Derivative of VARiation) or mean 

global signal (Desjardins, Kiehl, & Liddle, 2001; Friston et al., 1996; Lemieux, 

Salek-Haddadi, Lund, Laufs, & Carmichael, 2007; Wilke, 2012). 

The use of methods incorporating global signal have been debated in 

the literature ever since it was demonstrated that regressing out global signal 

can result in spurious negative correlations (Murphy, Birn, Handwerker, 

Jones, & Bandettini, 2009). Furthermore, if an artefact's structure is spatially 

specific (as is the case in Figure 4) it will only be partially reflected in the 

global signal. This will result in less efficient control of the artefact when it 

comes to the regression stage of the analysis.  

It has been demonstrated that global signal is a poor reflection of 

motion related signal changes at each voxel (Beall & Lowe, 2014). It was 

concluded that it is not justifiable as a method of motion control.  However, 
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there is conflicting opinion on this matter (Power, Schlaggar, & Petersen, 

2014). 

3.1.3 Localized Large Amplitude Signal Changes  

While correction methods that are based on the volumetric RPs are 

useful (Lund, Nørgaard, Rostrup, Rowe, & Paulson, 2005) they can have 

limitations when used as subject exclusion criteria or metrics of data quality. 

This is because they do not model motion, but net displacement relative to a 

reference sampled every TR. This is particularly problematic in paediatric or 

patient populations where head motion may be faster than the volumetric 

sampling rate (TR). We present an illustrative example of this point where 

the volumetric RP is a poor reflection of subject motion in a 2D gradient echo 

sequence with axial acquisition (Figure 4).  

 

 

Figure 4. The effect of through-plane motion. Through-plane motion 

produces a spurious observation in the time series (a). This artefact presents 

spatially with a slice-specific profile (b). The effect on the time series is not 

reflected in the through plane derivative of the realignment parameter despite 

the fact that the effect of the motion is predominantly in this direction. The red 

sphere shows the time point where the motion occurred (c). The resulting 

statistical map shares the same spatial location as the artefact (d) due to 

motion-task correlation. The contrast is an F-contrast across the canonical 

haemodynamic response and its derivatives thresholded at FWE (p<.05). 
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 By not fully modelling the noise effects in the data, a false positive 

has been obtained in Figure 4d. This false positive was obtained even after 

using scan nulling  and the autoregressive polynomial expansion of the RPs 

(Friston et al., 1996; Lemieux et al., 2007).  

Recent work would suggest that this is an unsurprising finding(Beall & 

Lowe, 2014) as the frequently used volumetric measures of motion  were 

described as not being able to “robustly identify motion corrupted events, 

especially in the most realistic scenario of sudden head movement”. 

Furthermore this type of signal change (Figure 4b) is not uncommon and has 

been described as the “predominant effect of motion” in a sample ranging 

from 8-23 year olds (Satterthwaite et al., 2012).  

Large amplitude signal changes can also be observed due to k-space 

spikes and are localized to specific slices. Volumetric realignment 

parameters do not necessarily detect this type of noise. In recognition of 

potential artefacts from electronic noise as well as from rapid motion, 

software has been developed to address them such as the ArtRepair toolbox 

for SPM (http://cibsr.stanford.edu/tools/human-brain-project/artrepair-

software.html) and 3dDespike by AFNI (http://afni.nimh.nih.gov/afni/).   

3.1.4 Physiological Noise 

Methods that control for physiological noise have been developed. 

These include utilizing external monitors of physiological processes, 

modelling mean white matter and CSF signals, modelling principal 

components from white matter, grey matter and temporally unstable areas 

(Behzadi, Restom, Liau, & Liu, 2007; Birn, Diamond, Smith, & Bandettini, 

2006; Glover, Li, & Ress, 2000; Satterthwaite et al., 2013). 

However, the efficacy of these techniques is debated.  The utility of 

using PCA to create nuisance regressors from white matter and CSF signals 

has been described as not producing encouraging results (Power et al., 

2014). Whereas, in contrast, other groups (Muschelli et al., 2014)  have 

described utilizing the aCompCor approach (Behzadi et al., 2007)  as just as 

effective as full frame-censoring approach (Siegel, Power, & Dubis, 2014). 

The efficacy of external monitors is also debated as it has been suggested 

that data-driven techniques such as tCompCor, aCompCor and multi-echo 

ICA denoising provide comparable or more efficient noise reduction without 

http://afni.nimh.nih.gov/afni/
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external monitoring (Behzadi et al., 2007; Kundu, Inati, Evans, Luh, & 

Bandettini, 2012).  

 It must be noted that some of these techniques do not purely model 

physiological noise. For instance modelling signals from white matter, grey 

matter and temporally unstable areas may also contain information 

concerning motion. Furthermore techniques such as ICA denoising and 

Robust Weighted Least Squares (RWLS) may model both physiological 

noise and motion artefacts (Beckmann & Smith, 2004; Diedrichsen & 

Shadmehr, 2005; Griffanti et al., 2014).  

There are also practical limitations to these methods as well. For 

instance, external monitoring and multi-echo EPI are acquisition-dependent 

and while promising cannot be applied retrospectively. As for ICA denoising 

the process is not easily automated as it requires a training dataset that may 

be difficult to create. The focus of this paper is both automatic and 

retrospective techniques and these methods shall not be discussed further.  

3.1.5 Methodological Aims and Hypothesis 

Considering there is wide agreement that modelling volumetric RPs is 

useful (Lund et al., 2005; Power et al., 2014; Satterthwaite et al., 2013) the 

question becomes how to extend this approach to address the issue of 

physiological noise and localized large amplitude signal changes (where 

there is less agreement). We propose to develop a biophysical framework 

that can be used for identifying and addressing both of these issues. This 

model will be applicable regardless of sequence, hardware, field strength 

and subject population. It is hypothesized that a method developed to these 

specifications will provide improvements in correction of data over existing 

available methods. 

3.2 Theory 

3.2.1 Identifying Large Amplitude Signal Changes 

We define non-physiological large amplitude signal changes as those 

that display signal changes larger than the possible BOLD response. To 

estimate the signal we simulate gradient echo signal decay as follows: 

 𝑆 = 𝑆𝑚𝑎𝑥𝑒−𝑇𝐸 𝑅2∗
 (54) 
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Where S = Signal, S = 100 (to describe signal changes in % change), TE = 

echo time and 

 𝑅2∗ =  𝑅2 +  𝑅2′  
(55) 

Where R2 = transverse relaxation rate of grey matter and R2’ is the 

contribution to the relaxation rate from the local magnetic field 

inhomogeneities. R2 is estimated using empirical results (Uludağ, Müller-

Bierl, & Uğurbil, 2009): 

 𝑅2 = 1.74𝐵0 + 7.77 
(56) 

B0 is the magnetic field strength in Tesla (T). The following theoretical model 

is adopted for estimating R2’ (Yablonskiy & Haacke, 1994) 

 𝑅2′ =  𝜍𝛿𝜔 
(57) 

Where 𝜍 = blood volume fraction and 𝛿𝜔 isthe characteristic frequency of the 

object causing the magnetic field inhomogeneities. 𝜍 can be estimated using 

the following empirical equation (Grubb, Raichle, Eichling, & Ter-Pogossian, 

1974): 

 𝜍 =  .8 𝐶𝐵𝐹.38/100 (58) 

Where CBF = Cerebral Blood Flow (ml 100g-1). We can estimate 𝛿𝜔 

according to (Yablonskiy & Haacke, 1994)by assuming the static dephasing 

regime and a random distribution of vessel orientation as: 

 𝛿𝜔 =  𝛾 𝐵0 𝛥𝜒 𝐻𝑐𝑡 4𝜋/3 (1 − 𝑌) 
(59) 

Where  𝛾 = gyromagnetic ratio of the proton, 𝛥𝜒  = the volume susceptibility 

difference between oxygenated and deoxygenated blood, Hct = Hematocrit, 

Y= fraction of oxygenated blood. To simulate activation we solve the 

following equation: 

 𝑆 = 𝑆𝑚𝑎𝑥𝑒−𝑇𝐸 𝑅2𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
∗

−  𝑆𝑚𝑎𝑥𝑒−𝑇𝐸 𝑅2𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∗

 (60) 

The difference between  𝑅2𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
∗  and  𝑅2𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∗ is that we allow both Y 

and 𝜍 to vary. To calculate the expected response magnitude we allow Y to 

vary from .6 - .9. The baseline of .6 is assumed so as to be similar to other 

studies employing this model (Buxton, Miller, Wong, & Frank, 1998; Mildner, 

Norris, Schwarzbauer, & Wiggins, 2001; Winawer, Horiguchi, & Sayres, 
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2010; Yablonskiy & Haacke, 1994). The second value of Y determines the 

threshold for the detection of non-physiological signal changes. We assume 

a value of .9 for the second value of Y as the typical range from rest to strong 

activation is .6 - .8 (Obata et al., 2004). This was chosen to make the 

threshold robust in children and in clinical populations where there may be 

greater variation in response magnitudes and to be conservative in terms of 

how much data is corrected. 

For calculating 𝜍 we assume 100% change in CBF from a baseline of 

55 ml 100g-1 min-1. The resulting values estimated for 𝜍 (3.667-4.77%) are in 

good agreement with empirical values of vascular density which have been 

measured as having a mean value of ~3.5% and a maximum of ~4.5% 

(Lauwers, Cassot, Lauwers-Cances, Puwanarajah, & Duvernoy, 2008). The 

remaining parameters assumed to calculate 𝛿𝜔 are as follows: 𝛥𝜒 = 4 𝜋  x 

1.8 x 10-7 (Weisskoff & Kiihne, 1992),  𝛾 = 42:57 MHz, Hct = .4. Solving Eq 

60) for a 1.5 T scanner acquiring data with a TE of 30 ms produces the 

following threshold of 4.9 %. The following figure illustrates this process. 

 

Figure 5. BOLD Contrast. The blue line represents the signal decay of the 

voxel during activation while the red line represents decay at rest. The green 

line shows one's sensitivity to the BOLD contrast. The BOLD sensitivity is 

given in percentage of the maximum value. 



59 
 

 

3.2.2 Identifying Physiological Noise 

The model to identify large amplitude signal changes assumes a low 

blood volume fraction (typically < 5%). This assumption is violated in brain 

regions with large vascular density and is therefore not applicable in these 

areas.  However, by using the same framework as was used to identify 

spurious signal changes we can identify these brain regions and model their 

effects. If we assume that 𝛿𝜔 stochastically fluctuates with time we can 

describe the variable by a distribution (D) characterised by a centrality (𝒞D) 

and variability (VD) parameter as follows: 

 𝛿𝜔(𝑡)~D(𝒞D,VD) 
(61) 

As R2’ ∝ blood volume (𝜍) then R2’(t) will be time varying with a distribution 

ℛ that is a scaled version of D: 

 𝑅2′(𝑡)~ℛ(𝒞ℛ, Vℛ) 
(62) 

Where 𝒞ℛ = 𝜍 𝒞D and Vℛ = 𝜍VD. Rewriting Eq (54) in terms of R2’(t) we find 

that: 

 𝑆(𝑡) = 𝑆𝑚𝑎𝑥𝑒−𝑇𝐸 𝑅2−𝑇𝐸 𝑅2′(𝑡) (63) 

To investigate the effect of R2’(t) on S(t) we take the partial derivative of Eq 

(63) with respect to R2’. We assume R2 to be constant. 

 𝜕𝑆(𝑡)

𝜕𝑅2′(𝑡)
=  −𝑇𝐸 𝑆𝑚𝑎𝑥𝑒−𝑇𝐸 𝑅2∗

 (64) 

The partial derivative implies that for positive values of R2’ S(t) will be 

decreasing. Therefore the resulting voxel time-series will be characterised by 

a centrality parameter (𝒞𝒮 )that decreases and a variability parameter (V𝒮 ) 

that increases as R2’ increases. Therefore, an area of higher blood volume 

could be characterised by signal with lower centrality and higher variability 

compared to areas with lower blood volume. By taking the ratio of these 

parameters 𝒞𝒮  / V𝒮  we create a parameter that is sensitive to blood volume 

and temporal stability. 
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3.2.3 Theory implementation  

3.2.3.1 Step 1: Physiological Noise Control 

Physiological noise is identified automatically using the Expectation-

Maximization (EM) algorithm to fit a mixture of Gaussians on a measure of 

robust Temporal Signal to Noise Ratio (rTSNR). We define rTSNR as the 

Median/Median Absolute Deviation of the realigned images (i.e. the 𝒞𝒮  / V𝒮  

parameter) which have slow drifts removed by a high pass filter. The high 

pass filter consists of a basis set of cosines defaulting to remove frequencies 

with a period greater than 128s. However this filter cut-off can be altered to 

better suit one’s study design. Once the mixture model is estimated a mask 

is created from the voxels that have a 𝒞𝒮  / V𝒮  parameter less than the .05 

quantile of the larger distribution. The first six principal components (PCs) 

are then extracted from within the mask. These components can then be 

included in the first level analysis as a parsimonious noise model. Figure 

6illustrates this process. This step is similar to temporal Component based 

noise Correction (tCompCor) developed by (Behzadi et al., 2007). However, 

both the image used to identify the physiological noise and methods of 

segmentation differ. 

 

Figure 6. Segmentation of high noise areas. The rTSNR of a lower axial slice 

(a) is fitted with two Gaussians (b) and the high noise areas are 

segmented(c). The arteries, venous sinuses and the periphery of the brain 

are typically identified. The black line in (b) is the .05 quantile of the larger 

distribution where the masks are binarized. 
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3.2.3.2 Step 2: Large Amplitude Signal Change Correction 

To identify a time point in a voxel as artefactual we add a measure of 

noise (2 x Median Absolute Deviation) to the theoretically derived threshold 

for a biologically plausible signal change in the presence of noise. Signal 

changes relative to the previously calculated median exceeding this 

threshold are then interpolated using a natural cubic spline with the two time 

points on either side. If consecutive time points of the same voxel are 

corrupted the spurious change is replaced with the median to avoid 

interpolation errors. This method is implemented using the R statistical 

programming language (R Core team, 2015), The following packages were 

used: Rcpp, RcppArmadillo and oro.nifti, (D Eddelbuettel & Francois, 2011; 

Dirk Eddelbuettel & Sanderson, 2014; Whitcher, Schmid, & Thornton, 

2011).This method can be applied to both GLM style analysis and rs-fcMRI. 

Figure 7graphically explains the analysis pipeline. The only requirement is 

that the images are realigned prior to usage. Subsequently any fMRI analysis 

method can be applied with the addition of the derived regressors. 

 

Figure 7. Flowchart for an Analysis Pipeline using FIACH.  The GLM design 

matrix includes the task, six realignment parameters and the PCA 

components. 
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3.2.4 Theory Summary 

The theory proposed for artefact identification can be broken down 

into two sub-models: One that identifies instances of abrupt temporal 

instability and one that identifies consistent temporal instability. These 

models form a two-step procedure for retrospective artefact correction in 

fMRI. We will refer to this model from now as the Functional Image Artefact 

Correction Heuristic (FIACH: The Irish verb to hunt). 

3.3 Method 

 3.3.1 Participants 

 Forty two children with no history of psychological, neurological or 

sensory impairment (21 males) aged 5-16 years (mean = 11, SD = 4) were 

recruited from local schools via poster advertisement. 

3.3.2 Task and Stimuli 

The two tasks reported here were performed as part of a larger fMRI 

task battery investigating the development of language. In each task, twenty 

four stimuli were presented in a blocked event related design. The four task 

blocks were separated by 16 seconds of rest (with fixation to cross hairs). In 

each task block six stimuli were presented every six seconds, with total task 

block duration of 36 seconds. Each task lasted three minutes and 49 

seconds. 

3.3.2.1 Sentence Comprehension and Naming Task 

This comprehension task was designed to induce complex auditory 

processing, sentence level semantic and syntactic processing from 

phonological input, word retrieval and articulation. Participants were asked to 

listen to sentence level auditory descriptions of objects and animals and then 

name the object or animal. 

3.3.2.2 Sentence Generation 

This sentence generation task was designed to induce visual 

processing, syntactic processing from visual input, and articulation. 

Participants were asked to describe what was happening in a picture, using 
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one simple sentence with a subject-verb-object (S-V-O) structure. Each 350 

x 350 pixel colour picture showed a subject and an object, with the subject 

involved in one of four actions: eating, drinking, jumping or falling. 

3.3.3 Data Acquisition 

Functional data were acquired using a 1.5 Tesla Siemens Avanto 

System (Erlangen, Germany), equipped with a 12 channel head coil. Signal 

changes were measured using a 2D gradient echo sequence (TR = 2160 

ms, TE = 30 ms, flip angle = 75 degrees, FoV = 210 mm, 3mm slice and 

1mm inter-slice gap, slices = 30 (axial acquisition in  ascending order), voxel 

size = 3.3 x 3.3 x 4 mm). The first two volumes were discarded as dummy 

scans resulting in 104 volumes per task. Stimuli were presented using 

Cogent 2000 software; Cogent 2000 team at the Welcome Trust Centre for 

Neuroimaging (WTCN) and the UCL Institute of Cognitive Neuroscience 

(www.vislab.ucl.ac.uk). Auditory stimuli were transmitted through MR 

compatible headphones equipped with an active noise cancellation system 

and speech responses were transmitted using a sensitive head-mounted 

microphone (http://www.mrconfon.de/en/technology.html) . Visual stimuli 

were presented via an MR-compatible wall-mounted screen behind the 

scanner, and were viewed through a mirror fixed to the head coil. 

3.3.4 FIACH Validation 

 In order to validate FIACH we analysed data obtained from healthy 

children while performing two different language tasks. This population was 

chosen for three reasons; 1) Paediatric populations typically present with 

large amounts of motion. 2) There is considerable evidence in the literature 

as to what constitutes valid activations with regards language tasks (Price, 

2010). 3) Both tasks induced task correlated motion as the children engaged 

in overt speech. This approach is similar to the one employed by Lund et al 

(2005) for assessing the impact of motion on fMRI data. 

To compare the different methods we identified regions of interest 

(ROI), a priori, which were likely to be active in the Sentence Comprehension 

and Naming task (Price, 2010, 2012). These expected regions consisted of 

the following: left inferior frontal gyrus, bilateral superior temporal gyrus, 

bilateral middle temporal gyrus, bilateral primary motor, bilateral 

http://www.vislab.ucl.ac.uk/
http://www.mrconfon.de/en/technology.html
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somatosensory, bilateral cerebellum, bilateral temporal pole, left 

hippocampus and supplementary motor area. With regards to the Sentence 

Generation task the regions were as follows: bilateral cerebellum, bilateral 

fusiform gyrus, bilateral middle occipital gyrus, bilateral inferior occipital 

gyrus, bilateral inferior temporal gyrus, bilateral middle temporal gyrus, 

supplementary motor area, bilateral primary motor, bilateral somatosensory, 

bilateral lingual gyrus, bilateral hippocampus, bilateral parahippocampal 

gyrus, bilateral superior occipital gyrus. The AAL atlas (Tzourio-Mazoyer et 

al., 2002) was used to assist in anatomical localisation. 

Binomial tests and Wilcoxon signed-rank tests were used to assess 

whether FIACH produced greater t-values and cluster extents than the other 

methods in the a priori defined regions of interest. All hypothesis tests, 

unless stated otherwise, are corrected for multiple comparisons using 

methods Hochberg’s correction for multiple comparisons (Hochberg, 1988)at 

p=.05. All statistical maps, unless stated otherwise, are thresholded at FWE 

(p<.05) with a cluster extent threshold = 0. 

3.3.5 Data Analysis Pipelines 

All images are realigned, normalised to 2x2x2mm template using SPM 

and smoothed with an 8mm FWHM Gaussian kernel. The specifics of each 

method are given below. 

Five other methods of automatic retrospective noise control were also 

investigated to compare the performance of FIACH. The first method was 

spatial realignment followed by the regression of the RPs (we will refer to this 

as the SPM method). We also analysed the autoregressive polynomial 

expansion of the RPs and scan nulling (Friston et al., 1996; Lemieux et al., 

2007). The threshold for scan nulling (Also termed frame censoring) was set 

at 1mm volume-volume displacement measured using the volumetric 

realignment parameters. We will refer to this method as Realignment 

Parameter Expansion (RPE).  

At this point we also calculated the percentage of volumes that were 

censored for comparison with the percentage of data that the FIACH Step 2 

(the filter and the 6 RPs, no physiological noise regression) altered. The 

fraction of data changed was calculated as follows. 
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 𝑁𝑜.  𝑜𝑓 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠/(𝑁𝑜. 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑚𝑎𝑠𝑘 × 𝑁𝑜. 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒𝑠) 
(65) 

 

The no. of imputations is simply the number of data points altered by 

the method. The third method was Motion Fingerprint (MFP). This method 

contrasts with RPE as it reduces the motion model complexity. It also 

accounts for the varying effect of motion across the brain which RPE does 

not (Wilke, 2012). We also compared FIACH against two methods not reliant 

on the RPs, RWLS (Diedrichsen & Shadmehr, 2005) and tCompCor 

(Behzadi et al., 2007). We did not compare against aCompCor as in the 

original manuscript tCompCor is described as producing better results. 

 

3.4 Results  

3.4.1 Illustrative Example 

We provide examples of both steps; 1) the physiological noise 

correction and 2) the correction for large amplitude signal changes. First we 

present a subject performing the Sentence Comprehension and Naming 

task. This subject displayed no large amplitude signal changes. In Figure 8 

bilateral motor and artefactual activations in the cerebellum can be seen (the 

lower most portion of the cerebellum was not acquired. This resulted in 

signal instability due to motion interacting with the normalization). After 

applying FIACH the motor cortex activations have increased statistics and 

additional activations in the right superior temporal gyrus and the inferior 

temporal lobe are revealed (Figure 8b). The cerebellar artefact is corrected 

due to the variance extraction in this area (Figure 8c, axial image).  In Figure 

8d we cap the maximum display values at F = 60 to examine the spatial 

distribution of the regressors effect. Maxima are now seen in the transverse 

sinus, inferior sagittal sinus, fourth ventricle, brain stem and the inferior 

temporal lobe. All these areas exhibit large and consistent variability: the 

sinuses due to blood volume, as predicted in section 3.2.2, the brain stem 

and fourth ventricle due to pulsatile motion. The inferior temporal signal 

instability is due susceptibility related artefacts that interact with bulk and 

pulsatile head motion. It is therefore suggested that the improvement is a 

result of modelling these effects. 
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Figure 8. Illustrative example of the physiological noise correction. a) 

Estimated t-map before correction. b) Estimated t-map after correction. c) F-

contrast across the PCs. d) same as `c' but display thresholded at F=60. All 

statistical maps are grey matter masked and thresholded at p<.001 (k=10). 

  

In Figure 9 we show an example of the effect of the large amplitude signal 

change correction on a corrupted voxel time series. The artefact seen in 

Figure 9a is corrected in Figure 9b. No other time points are altered and 

neither are spatial locations outside the affected slice (see Figure 7for 

corrected image and Figure 4for the corrupted image). 

 

Figure 9.  Example of FIACH step 2. a) Corrupted voxel time course. b) 

Corrected voxel time course. 

3.4.2 Group level Results  

In the sentence comprehension and naming task FIACH produced the 

highest t-value in 8 out of the 16 ROIs specified. This was found to be a 

statistically significant effect using a binomial test (p<.05). The probability of 

the proposed method having the highest t-value in the ROIs = 0.5 (95% CI 

[0.247, 0.753]). FIACH had the maximum number of voxels in 11 out of the 

16 areas specified. This was found to be a statistically significant effect using 

a binomial test (p<.05). The probability of the proposed method having the 

greatest extent in the region of interest = 0.688 (95% CI [0.413, 0.89]). 
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Figure 10and Table 1 summarize the results obtained for the Sentence and 

Naming task using all 6 approaches. 

 

  FIACH FIACH(Step 2) MFP RPE RWLS SPM tCompCor 

STGl 13.66(575) 11.75(494) 12.66(512) 10.92(423) 10.56(483) 10.8(470) 13.24(540) 

STGr 13(327) 12.14(334) 12.52(354) 9.41(307) 11.54(314) 11.06(326) 12.31(335) 

Cr 8.18(210) 5.92(60) 0(0) 0(0) 7.04(62) 6.22(53) 7.47(174) 

MTGl 10.1(170) 8.62(83) 8.23(50) 6.49(37) 7.13(37) 7.38(63) 10.23(116) 

Cl 8.65(167) 5.41(4) 5.99(2) 5.44(3) 6.46(15) 5.8(9) 6.08(30) 

MTG 10.83(105) 10.85(97) 10.19(94) 8.26(67) 9.33(62) 9.38(80) 11.23(110) 

Sr 8.35(101) 6.86(36) 7.56(61) 7.29(19) 6.46(8) 6.06(12) 7.19(55) 

Sl 7.7(92) 7.04(73) 7.92(61) 7.18(20) 8.2(78) 7.02(32) 7.09(52) 

IFGl 7.25(90) 5.94(9) 6.62(30) 0(0) 6.34(15) 6.26(3) 7.95(30) 

SMA 8.55(86) 5.97(4) 6.72(18) 6.73(21) 6.33(5) 0(0) 0(0) 

PMl 8.38(70) 7.23(25) 7.94(46) 7.06(24) 8.33(59) 7.33(26) 7.28(32) 

TPl 9.21(42) 7.41(29) 9.24(83) 7.65(35) 5.74(5) 7.66(25) 8.7(38) 

ITGl 6.9(38) 7.41(28) 5.54(1) 0(0) 0(0) 5.47(1) 6.12(13) 

Hl 7.41(30) 6.49(53) 7.13(35) 7.14(17) 8.42(68) 6.81(57) 7.04(63) 

PMr 7.88(29) 6.19(7) 7.41(26) 6.54(14) 6.84(16) 5.67(6) 6.53(11) 

TPr 6.95(9) 7.51(8) 7.65(55) 6.57(14) 6.31(5) 7.59(8) 7.58(13) 

Table 1 Sentence Comprehension and Naming t-values (Cluster extents) for all correction methods: 

STGl = left superior temporal gyrus, STGr = right superior temporal gyrus, Cr = right cerebellum, 

MTGl = left middle temporal gyrus, Cl = left cerebellum, MTGr = right middle temporal gyrus, Sr = 

right somatosensory, Sl = left somatosensory, IFGl = left inferior frontal gyrus, SMA = 

supplementary motor area, PMl = left primary motor, TPl = left temporal pole, ITGl = left inferior 

temporal gyrus, Hl = left hippocampus, PMr = right primary motor, TPr = right temporal pole. A 

value of 0 indicates that the area did not survive FWE (p<.05). 

 

In the sentence generation task FIACH had the highest t-value in 19 

out of the 25 areas specified. This was found to be a statistically significant 

effect using a binomial test (p<.05). The probability of the proposed method 

having the highest t-value in the regions of interest = 0.76 (95% CI [0.549, 

0.906]). FIACH had the maximum number of voxels in 21 out of the 25 areas 

specified. This was found to be a statistically significant effect using a 

binomial test (p<.05). The probability of the proposed method having the 

greatest extent in the regions of interest = 0.84 (95% CI [0.639, 0.955]). 

Figure 10 and Table 2 summarize the results obtained for the Sentence 

Generation task using all 6 approaches 

 

  FIACH FIACH(Step 2) MFP RPE RWLS SPM tCompcor 

Cr 13.46(478) 9.46(191) 6.81(64) 7.53(76) 7.95(68) 8.46(111) 9.27(180) 

FGr 14.3(392) 11.82(300) 7.94(244) 7.26(180) 8.95(197) 8.97(201) 10.72(285) 

MOGr 11.48(366) 10.66(274) 10.24(279) 8.7(179) 11.53(301) 10.69(183) 7.83(120) 
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Cl 12.02(328) 8.73(115) 6.63(20) 6.83(41) 6.02(11) 6.28(41) 7.71(122) 

FGl 12.99(320) 9.69(143) 7.85(161) 7.35(89) 8.47(116) 7.59(113) 8.37(124) 

IOGl 12.15(256) 12.7(214) 7.9(127) 8.16(75) 10.52(114) 8.98(94) 8.71(183) 

ITGl 12.46(217) 9.94(143) 7.38(164) 6.95(100) 9.17(120) 7.73(116) 8.61(121) 

IOGr 14.03(195) 13.07(136) 7.7(95) 7.05(59) 8.39(58) 9.36(63) 9.41(112) 

MOGl 11.85(170) 11.65(132) 7.98(117) 8.17(35) 11.08(120) 9.06(72) 7.33(28) 

MTGl 10.55(134) 8.37(62) 7.06(37) 5.59(7) 7.64(47) 7.44(38) 8.11(21) 

ITGr 13.7(116) 11.84(71) 7.75(53) 6.31(12) 9.01(37) 8.19(40) 9.28(61) 

SMA 8.41(110) 0(0) 6.71(99) 0(0) 0(0) 5.39(5) 5.85(20) 

PMl 7.97(69) 6.37(20) 7.32(46) 7.42(11) 7.02(11) 0(0) 5.58(7) 

Sl 8.19(62) 6.3(14) 7.1(22) 6.82(7) 7.39(19) 5.1(1) 6.51(21) 

MTGr 10.61(60) 8.8(17) 6.15(11) 0(0) 6.98(7) 7.07(13) 7.44(10) 

Sr 7.39(32) 0(0) 6.21(11) 5.5(1) 0(0) 0(0) 0(0) 

LGr 7.55(27) 5.59(2) 0(0) 0(0) 0(0) 0(0) 5.18(1) 

Hl 6.56(22) 5.7(1) 6.02(4) 0(0) 7.47(14) 0(0) 0(0) 

LGl 9.02(19) 7.52(5) 6.45(5) 6.36(3) 8.12(3) 6.31(4) 6.77(2) 

PMr 6.7(18) 0(0) 6.47(20) 5.83(4) 0(0) 0(0) 0(0) 

PHGl 6.39(8) 0(0) 6.68(12) 0(0) 5.54(1) 0(0) 0(0) 

Hr 6.33(6) 6.36(14) 6.41(13) 5.82(1) 8.95(29) 5.91(3) 5.49(1) 

PHGr 7.6(5) 7.35(4) 5.7(6) 0(0) 7.27(5) 6.45(4) 6.37(4) 

SOGr 5.92(5) 0(0) 0(0) 0(0) 6.15(1) 0(0) 0(0) 

SOGl 5.73(4) 0(0) 0(0) 0(0) 5.72(1) 0(0) 0(0) 

Table 2. Sentence generation, t-values(cluster extents) for all correction methods: Cr = right 

cerebellum, FGr = right fusiform gyrus, MOGr = right middle occipital gyrus, Cl = left cerebellum, 

FGl = left fusiform gyrus, IOGl = left inferior occipital gyrus, ITGl= left inferior temporal gyrus, 

IOGr = right inferior occipital gyrus, MOGl = left middle occipital gyrus, MTGr = left middle 

temporal gyrus, ITGr = right inferior temporal gyrus, SMA = supplementary motor area, PMl = left 

primary motor, Sl = left somatosensory, MTGr = right middle temporal gyrus, Sr = right 

somatosensory, LGr = right lingual gyrus, Hl = left hippocampus, LGl = left lingual gyrus, PMr = 

right primary motor, PHGl = left parahippocampal gyrus, Hr = Right Hippocampus, PHGr = right 

parahippocampal gyrus, SOGr = right superior occipital gyrus, SOGl = left superior occipital gyrus. A 

value of 0 indicates that the area did not survive FWE (p<.05) 

 

To compare the change in t-values and cluster extent (k) in both tasks 

Wilcoxon signed-rank tests were used. The hypothesis that FIACH would 

outperform each of the other methods was tested. We also tested the 

hypothesis that FIACH Step 2 (the filter and the 6 RPs, no physiological 

noise regression) would provide improvements relative to the SPM approach 

in order to demonstrate the individual contribution of this step. All these 

hypotheses were found to be statistically significant at p < .05. The 

summaries of these tests are provided in Table 3. 

 

   Δ Median Statistic(V)     ΔMedian 
 

Statistic(V) 

FIACH(t) > FIACH Step 2(t)  1.23 130*** 
 

FIACH(t) > FIACH Step 2(t)  1.89 320*** 

FIACH(t) > MFP(t)  0.76 124** 

 

FIACH(t) > MFP(t)  1.42 321*** 
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FIACH(t) > RPE(t)  1.47 136*** 
 

FIACH(t) > RPE(t)  2.13 325*** 

FIACH(t) > RWLS(t)  1.43 129*** 
 

FIACH(t) > RWLS(t)  2.09 300*** 

FIACH(t) > SPM(t)  1.45 134*** 

 

FIACH(t) > SPM(t)  2.11 325*** 

FIACH(t) > tCompCor(t)  0.99 116** 

 

FIACH(t) > tCompcor(t)  1.65 325*** 

FIACH Step 2(t) > SPM(t)  0.22 101* 

 

FIACH Step 2 (t) > SPM(t)  1.2 192*** 

FIACH(k) > FIACH Step 2 (k)  58.5 126** 
 

FIACH(k) > FIACH Step 2(k) 52 320*** 

FIACH(k) > MFP(k)  43 110* 
 

FIACH(k) > MFP(k)  47 312*** 

FIACH(k) > RPE(k)  71.5 135*** 
 

FIACH(k) > RPE(k)  62 325*** 

FIACH(k) > RWLS(k)  64.5 128*** 

 

FIACH(k) > RWLS(k)  55 293*** 

FIACH(k) > SPM(k)  65.5 130*** 

 

FIACH(k) > SPM(k)  64 325*** 

FIACH(k) > tCompCor(k)  46 120** 

 

FIACH(k) > tCompcor(k)  49 325*** 

FIACH Step 2(k) > SPM(k)  7 108**   FIACH Step 2 (k) > SPM(k)  12 185*** 

(a) Sentence Comprehension and Naming 

 

(b) Sentence Generation 

Table 3. Summary of wilcoxon signed-rank tests for both tasks. t = t-value, k = cluster extent, *** = 

significant at p < .001, ** = significant at p < .01,* = significant at p < .05.  Statistic (V) = is the non-

parametric equivalent of a t- value in the Wilcoxon-signed rank test 

 

 

As there was a large discrepancy between the percentages of data 

changed using FIACH compared to the percentage of data censored using 

scan nulling (see Figure 11) we conducted further Wilcoxon singed-rank 

tests to directly compare the FIACH (Step 2) only with RPE. It was found that 

using the FIACH  (Step 2) in combination  with 6 RPs resulted in more voxels 

and greater t-values in the sentence comprehension and naming task 

compared to the RPE approach (V = 103, p < .05; V = 116:5, p < .05). The 

same result was found in the sentence generation task (V = 195, p < .05; V = 

224, p < .05). 
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Figure 10. t-maps for both tasks (task>rest)  rendered on a normalized T1, 

thresholded at FWE (p<.05). Intensity is proportional to the activations 

distance from the cortical surface. FIACH = Functional Image Artefact 

Correction Heuristic, RPE = Realignment Parameter Expansion, SPM = 

Statistical Parametric Mapping, MFP = Motion Fingerprint, RWLS = Robust 

Weifghted Least Squares, tCompCor= temporal Component based 

Correction 
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Figure 11. Comparison of FIACH (Step 2) with Frame Censoring across both 

tasks. The histograms demonstrate that traditional frame censoring using a 

1mm threshold results in on average ~20 times more data changes than 

using FIACH. Mean(FIACH)= 0.25%,  mean(Censored)= 6:18%, 

range(FIACH)= 0 - 3.41%, range (Censored) = 0 - 65.38%. 

 

3.5 Discussion 

3.5.1 Summary of Findings 

We have evaluated the efficacy of 5 currently available automatic 

retrospective noise corrections methods in the context of paediatric fMRI 

where motion control is problematic. We have developed a method that 

performs favourably in comparison with these methodologies. FIACH 

produced increased t-value and cluster extent in plausible task related areas. 

Moreover this effect was largely consistent across brain areas. This was not 

the case for the other methodologies which had variable performance across 

brain areas (see Table 1,Table 2 and Figure 10). We will now discuss some 

of the key findings from each task. 

 



72 
 

 

Figure 12. Task t-maps (task>rest) generated by FIACH rendered on 

normalized T1, thresholded at FWE (p<.05). Areas where FIACH 

substantially improved statistical power relative to other methods are 

surrounded in red. Intensity is proportional to the activations distance from 

the cortical surface. 

 

3.5.2 Sentence Comprehension and Naming 

Of substantial interest is the varying performance of the reviewed 

methodologies in identifying activation in the inferior frontal gyrus. This area 

is of particular interest as it can be used to assess language laterality in 

candidates for brain surgery (Liegeois, 2002). It has also been documented 

that activations in this area correlate most with the results of the Wada test 

(Lehericy et al., 2000). A potential reason for this area’s vulnerability to 

motion artefact is due to its position (regions further from the neck 

experience greater displacement when an individual rotates/nods their head). 

Due to its anterior position a rotation through plane is quite likely to result in 

the more anterior position of the slice being excited twice in rapid succession 

leading to magnetisation saturation and a large signal reduction. It is also 

possible that the FIACH PCs are modelling the signal variance effects 

produced by the large vessels located near the gyrus. This would explain the 

large difference between the improved results of FIACH in this area 

compared to the other methodologies. 
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An interesting difference was also observed between the 

methodologies concerning the left inferior temporal gyrus. In this area the 

signal is very unstable due to its position at the brain's edge and the local 

susceptibility induced distortions which are exacerbated by motion. By the 

application of Step 2 alone and a substantial activation is yielded (28 voxels, 

see Table 1). By applying both steps of FIACH the cluster size increases by 

a factor of ~3 (38 voxels) compared to the next most competitive method 

(see Table 1). The increased efficacy of FIACH is most likely due to the 

noise regressor’s capabilities of representing a reasonable model of the 

signal instability in these areas (see Figure 8d & b, axial images). It has 

previously been reported that due to the high magnetic susceptibility effects 

in the areas next to the air-filled sinuses it would be more appropriate to use 

small volume corrections for observing activations in these areas (Devlin et 

al., 2000). Furthermore, in the same study it was shown that these 

activations are observable with PET and less so with fMRI. Optimised 

sequences have also been developed for observing activations in these 

areas (Weiskopf, Hutton, Josephs, & Deichmann, 2006) which produce 

moderate improvement in signal levels. However, we show that by directly 

modelling the temporal instability in these areas it is possible to recover the 

activations at high statistical thresholds. This suggests that it is not sufficient 

to recover signal in these areas but also necessary to model sources of 

signal instability to recover activations in these regions. 

Another brain region of interest for speech/language is the 

cerebellum. The cerebellum has been heavily implicated in articulation and 

language and substantial activations would be expected in this area (Price, 

2010). The large difference in activation strength between FIACH and the 

other methods is due to the use of the FIACH PCs. These regressors 

typically model information from the transverse sinuses which are adjacent to 

the cerebellum. The sinuses cause local disruptions to the main (B0) 

magnetic field and can therefore corrupt the surrounding area. This problem 

has been identified previously) in the context of fMRI studies of the visual 

system (Winawer et al., 2010). 
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3.5.3 Sentence Generation 

This task was more corrupted by motion as the children overtly 

produced entire sentences. This also served to increase the correlation of 

the task with the motion parameters. It is unsurprising therefore that the t-

values of the RPE method decrease in 19 of the 25 areas compared to the 

standard SPM method and that the cluster extent decrease in 21 out of the 

25 areas. The overall poor performance of RPE can potentially be explained 

by the limitations of the RPs. In this task the head motion was task correlated 

and as a result it is likely that the correction methods derived from these 

parameters regresses true information from task related areas. MFP, 

although similarly derived from motion parameters, reduces model 

complexity and therefore is more sensitive than RPE. The reduction in model 

complexity is not a trivial issue as, on average, the lower bound for the 

amount of real signal variance removed by chance will be rank (Nuisance 

Regressors)/number of scans (Friston et al., 1996).  

The difference between FIACH and the other methodologies is much 

more pronounced in this task (see Table 2). This is because the majority of 

expected activations (inferior temporal, fusiform, and occipital) all are next to 

areas of pronounced susceptibility (air filled sinuses, transverse sinus). 

Furthermore, the increased period of overt speech in this task leads to far 

more through plane movements which FIACH is optimally suited to correct. 

This is particularly important as the use of overt tasks has been advocated 

over covert tasks (Croft et al., 2013). The other methods lack the spatial 

specificity to substantially correct these artefacts. 

An interesting and unexpected finding was FIACH's ability to identify 

activations in the inferior parietal regions where other methods failed to do so 

(see Figure 10b). The inferior parietal lobe has recently been implicated in 

cross-modal semantic processing (Binder, Desai, Graves, & Conant, 2009; 

Seghier, 2013). However, parietal activations have only been reported 

previously in two studies of sentence production in adults (Blank, Scott, 

Murphy, Warburton, & Wise, 2002; Müller et al., 1997). As such, we did not 

hypothesise activation in these regions. Crucially, the fact that FIACH may 

be able to enhance activation of these regions is encouraging, as it may 

enable us to better understand the neural substrates of language production. 
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Activation in the IFG was not hypothesised for this task as results from 

previous studies in adults are variable (Awad, Warren, Scott, Turkheimer, & 

Wise, 2007; Tremblay & Small, 2011). Further, functional neuroanatomical 

models of language predict tasks with a large semantic load induce 

activation of the IFG (Price, 2012). However, the semantic and syntactic 

demands of the sentence generation task were relatively low; participants 

were asked to construct a sentence based on images which contained 

animals and objects with high word frequency, using a limited set of only four 

common verbs.  

3.5.4 Local and Global Signal Changes. 

A large difference was observed between the amount of data that was 

changed by FIACH step 2 and by frame censoring highlighting that 

aggressive cleaning strategies may be sub-optimal. This may be attributed to 

the most damaging effects of motion being local (due to repeated excitation 

of the same tissue or in regions of spatially fast changing signal intensity 

such as at the edges of the brain) while the average signal changes across 

the brain are much lower in magnitude. The results shown in Figure 11 

suggest that when an individual meets the threshold for a frame to be 

censored the image does not always exhibit widespread signal changes 

large enough to be discriminated from BOLD signal amplitudes.  

 This difference could also be attributed to the limited accuracy in using 

volumetric realignment parameters as models of motion. This has been 

previously highlighted by (Beall & Lowe, 2014) who had ground truth 

measures of motion which we do not have in this study. 

It should also be noted that the FIACH model is very conservative in 

terms of data correction so a direct comparison between FIACH step 2 and 

RPE is difficult. Less conservative thresholds for FIACH step 2 or more 

conservative thresholds for censoring will result in more comparable 

amounts of data being changed/censored. Furthermore FIACH may correct 

artefacts due to electrical noise which frame censoring (based on RPs) 

cannot. As such this further limits the comparison. Bearing in mind these 

limitations the application of FIACH step 2 was still seen to increase t-values 

and cluster extent relative to the RPE method. This highlights that there may 

be diminishing returns to using expansions of the realignment parameters.  
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More widespread signal changes that are lower in magnitude may 

become more problematic in less efficient designs such as in those seen in 

studies of epilepsy where the method of censoring used in this paper was 

developed (Lemieux et al., 2007). In this context,the combination of FIACH 

step 2 and censoring may be beneficial in these situations. Furthermore if 

there are global changes still present in the data after FIACH step 2 (or 

censoring) a statistically elegant strategy would be to use a weighted least 

squares approach such as RWLS as a subsequent step to FIACH. 

3.5.5 Methodological Considerations and Limitations 

A primary limitation of FIACH is the single imputation of values for 

corrupt time points. While we do show improvements in observed activations 

a more statistically optimal strategy would be to use a multiple imputation 

framework (Rubin, 1988). A potential secondary benefit of multiple 

imputation would be for spectral analysis of rs-fcMRI which can potentially be 

affected by single imputation/scrubbing (replacing with mean/median). Future 

work will focus on the development of this approach in the context of fMRI. 

It is also worth considering the choice of model parameters used in 

this study.  In this work we deliberately chose to estimate the maximum 

possible magnitude of the BOLD response. This was done to deliberately 

minimise data alteration, and in the knowledge that children and patients 

may have responses greater than the range typically found in healthy adults. 

More realistic parameters could be chosen but we demonstrate that FIACH 

still performs favourably in comparison with other methods even with a 

conservative approach to data correction. We have demonstrated that 

applying FIACH produces superior results in both tasks compared to the 

other methods reviewed.  

However, we have not explored the possibility of combining FIACH 

with other methods for an even better method. For instance one could 

combine the FIACH regressors with motion estimates from Motion 

Fingerprint and then estimate the model using RWLS. Frame-censoring/scan 

nulling could also be applied. This is because the results presented are not 

primarily intended to be comparative but highlight the potential gains from 

utilizing a biophysical framework for extending traditional approaches. 
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3.5.6 Conclusion 

We have developed a biophysical framework for extending the 

traditional approach of using volumetric measures of motion to control for 

noise in fMRI. It can be integrated as a pre-processing step within current 

standard strategies for mass-univariate GLM based analysis and rs-fcMRI. 

This method is a two-step procedure involving the identification and 

correction of large amplitude signal changes and modelling the effects of 

regions of high temporal instability. 

 We have demonstrated its efficacy in a paediatric population during 

overt speech where subject motion is a severely limiting factor in both 

research and clinical applications of fMRI. We have shown that FIACH 

reveals additional brain areas involved in language at the group and 

individual level. It also substantially increases the statistical power in 

language related areas relative to other methods. Furthermore, this 

methodology is capable of improving results in regions of low SNR due to 

local field inhomogeneities (inferior temporal and high blood volume regions). 

These areas have proven particularly problematic for fMRI, and FIACH 

provides the opportunity to improve knowledge of the function within these 

areas. 
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4. Optimising EEG-fMRI for application in paediatric focal epilepsy 

 

 

In this chapter I discuss the benefits of implementing a natural stimulus 

during simultaneous EEG-fMRI and evaluate the clinical utility of 3 metrics 

used for quality assurance.  

 

 

Abstract 

The application of EEG-fMRI in paediatric populations is limited by one’s 

ability to ensure the quality of the data is sufficient for clinical inference to be 

made. One issue is subject compliance; the other is assessment of data 

quality. Both these topics will be addressed in this chapter. To increase 

subject compliance a natural stimulus was played (a cartoon) while 46 focal 

epilepsy patients were scanned using simultaneous EEG-fMRI. It was found 

that the implementation of the natural stimulus did not have an adverse effect 

on the rate of occurrence of Interictal Epileptiform Discharges (IEDs). This 

means that the stimulus can be implemented without the risk of losing 

statistical power due to suppression of IEDs. It was also noted that the 

natural stimulus reduced subject motion if played within the first twenty 

minutes of scanning. Lastly commonly used metrics of data quality such as 

temporal Signal to Noise Ratio (tSNR) and Mean Framewise Displacement 

(MFD) were not capable of predicting clinical utility of EEG-fMRI in the 

current sample. However, design efficiency was predictive of clinical utility 

and it is recommended this metric be reported when conducting EEG-fMRI 

experiments on patients with focal epilepsy. 

 

Declaration of Work: Dr Maria Centeno recruited the subjects who 

participated in this study. Maria Centeno created the EEG-fMRI maps. David 

Carmichael and Maria Centeno created the definition of concordance used in 

this study. Tim Tierney performed all subsequent analyses and interpretation 

presented in this chapter. 
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4.1 Introduction 

A primary limitation of fMRI in the paediatric population is subject 

compliance. Most previous EEG-fMRI studies in children have used sedation 

to ensure compliance (Jacobs et al., 2007; Moeller et al., 2013). This is 

problematic as it is poorly understood how sedation may affect epileptic 

activity and haemodynamics. Sedation also confounds group studies as the 

degree of sedation may vary between patients and is extremely unlikely to be 

performed in control groups. The current study examines the feasibility of 

EEG-fMRI in a paediatric population of focal epilepsy population and 

explores ways in which the process can be optimised. This is of key 

importance as paediatric populations are the most likely group to benefit from 

surgery (Skirrow et al., 2015). 

Natural stimulation has been proposed as a non-invasive approach to 

increase compliance in paediatric populations (Kana et al., 2011). Natural 

stimulation essentially involves the presentation of low level (usually audio-

visual) stimulation (such as a video). The impact of natural stimuli on the 

occurrence of epileptic activity is unknown although some research suggests 

that stimulation may suppress epileptic activity (Aarts, Binnie, Smit, & 

Wilkins, 1984). If this is the case then the efficacy of EEG-fMRI would be 

reduced as fewer epileptic events would reduce the statistical power of the 

experiment by reducing the design efficiency (Dale, 1999).  

Furthermore the issue of how to assess data quality in EEG-fMRI 

(without looking at the resulting statistical map) is unknown. In the previous 

chapter we demonstrated that some typical measures of data quality such as 

framewise displacement may overestimate the rate of data corruption due to 

movement (Figure 11). It is therefore of interest to assess what measures 

can be calculated before analysis is performed to predict clinical utility of 

EEG-fMRI. The metrics we intend to look at are design efficiency, a metric 

proportional to the BOLD signal induced by the epileptic events (Dale, 1999), 

Mean Framewise Displacement (MFD: a metric describing subject motion 

derived from the realignment parameters) and temporal Signal to Noise Ratio 

(tSNR: defined in this study as the median of the signal divided by the 

median absolute deviation in time). Of special note is how design efficiency 
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differs from rate of IEDs. Usually the number of IEDs per minute is reported 

for each patient. However two patients with the same IED rate (e.g. 10 per 

minute) may have different design efficiencies. This is because the IED rate 

is not stationary over time. The design efficiency captures this non 

stationarity mathematically and is therefore a better representation of 

epileptic activity.  The three primary research questions associated with this 

study were as follows.  

a) What is the effect of the natural stimulation on in-scanner movement 

b) What is the effect of the natural stimulation on the occurrence of Interictal 

Epileptiform Discharges (IED) 

c) Can design efficiency, tSNR and framewise displacement predict clinical 

utility of EEG-fMRI 

4.2 Method 

4.2.1 Subjects 

Forty-six children (25 female) with drug resistant were recruited. Patient’s 

ages ranged from 7 to 18 with a mean age of 13.7 years. A control group of 

20 healthy volunteers (11 female) with an age range (6.61-16.73 years) and 

mean age of 11.64 were also recruited. Localization of the epileptogenic 

region was agreed for every patient by consensus between a group of expert 

epileptologists after reviewing a panel of diagnostic tests. The tests included 

T1 weighted MRI, T2 weighted MRI, FLAIR, PET, SPECT, EEG, MEG and 

electro-clinical information derived from video-EEG telemetry by a 

neurologist (MC). The relevant clinical information is presented in Table 4  

ID 
Age 
(Gender) 

Localisation MRI diagnosis Scalp EEG IED  
EEG-FMRI 
Concordance 

# 1 8(F) L Temporal TS L temporal D 

# 2 14(F) L Frontal pole N/A No IED N/A  

# 3 11(M) Hypothalamus Hypothalamic hamartoma Left temporal D 

# 4 15(M) L Fronto-Temporal N/A No IED  N/A 

# 5 11(F) R Fronto-Temporal N/A R Fronto-Temporal D 

# 6 17(M) R Parietal FCD R Temporal C 

# 7 15(M) R Frontal-central N/A No IED  N/A 

# 8 15(M) L Temporal/R Frontal FCD R Frontal C 

# 9 11(F) L Frontal-central Unspecific cortical atrophy L central C 

# 10 14(F) R Temporal FCD 2B R Temporal C 

# 11 11(F) R Frontal pole FCD R Fronto-Temporal C 
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# 12  11(F) R Fronto-temporal  N/A R Fronto-polar C 

# 13 12(M) R central R hemispheric  atrophy  R central D 

# 14 17(F) R Frontal N/A R Frontal C 

# 15 16(F) L Frontal N/A spike-wave runs C 

# 16 11(F) L Frontal N/A L Frontal lateral D 

# 17 14(M) L fronto-temporal Autoimmune L Temporal C 

# 18 16(F) L posterior insula FCD L central D 

# 19 18(M) R precuneus  FCD 2A R Parietal D 

# 20 11(M) R Frontal N/A R Frontal C 

# 21 16(F) L frontal Polymicrogyria  L posterior quadrant C 

# 22 15(M) Temporo-Occipital HS L posterior quadrant C 

# 23 17(F) L Unknown N/A No IED  N/A 

# 24 17(F) L Frontal N/A No IED  N/A 

# 25 8(F) L Frontal MCA stroke spike-wave runs C 

# 26 16(M) R Frontal N/A R Frontal D 

# 27 11(M) L posterior quadrant Choroid plexus papilloma L posterior quadrant D 

# 28 13(M) L Frontal FCD L Frontal D 

# 29 10(F) L Frontal N/A L Frontal D 

# 30 11(M) R Temporo-Parietal N/A R Parietal C 

# 31 14(M) L Occipital PCA stroke L Occipital C 

# 32 17(M) L Frontal N/A No IED N/A  

# 33 17(M) R Occipital Posterior territory stroke L Occipital C 

# 34 13(M) L Occipital Unspecific cortical atrophy L posterior quadrant C 

# 35 18(F) R Frontal  FCD No IED N/A  

# 36 17(F) R Fronto-temporal Polymicrogyria R Temporal C 

# 37 18(F) R Fronto-Parietal FCD No IED  N/A 

# 38 11(F) R Parietal N/A R central D 

# 39 18(M) R Parietal  DNET R Parietal D 

# 40 11(F) R Parietal FCD R Parietal C 

# 41 13(F) R medial Temporal DNET R anterior Temporal C 

# 42 12(M) R Perisylvian Polymicrogyria R Fronto-Parietal D 

# 43 17(F) L Frontal N/A L Frontal-vertex C 

# 44 13(F) L Frontal FCD L Frontal lateral C 

# 45 15(F) R posterior cingulate DNET R Frontal D 

# 46 7(M) L Frontal N/A L Frontal vertex C 

Table 4. Clinical information pertaining to subjects. In the age and gender 

column M indicates Male and F indicates Female. The localisation columns 

describe the localisation defined by clinical consensus. In MRI diagnosis the 

following acronyms are used: TS = Tuber sclerosis, FCD = Focal Cortical 

Dysplasia, MCA = Middle Cerebral Artery, DNET = Dysembryonic 

Neuroepithelical Tumour. In the Scalp EEG IED column the location of the 

observed IED spike field is described. In the concordance column the letter C 

indicates concordance while D indicates Discordant. If the patient did not 
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have an IED no localisation was obtained and therefore a value of N/A was 

ascribed.  

4.2.2 Data Acquisition 

We acquired simultaneous EEG-fMRI in a 1.5T Siemens Avanto 

scanner (Erlangen, Germany) at the Great Ormond Street Hospital MRI 

Department with a 12 channel receive coil. Subjects were fitted with a 

vacuum cushion during scanning to reduce head movement, and given 

headphones to dampen the noise from the MRI. Subjects were videoed 

inside the scanner with an MRI compatible camera (Nordic NeuroLabs, 

Bergen, Norway) interfaced with Brain Products recording software.  Scalp 

EEG was recorded with a 64-channel MR compatible cap (BrainAmp MR 

plus, Brain Products, Gilching, Germany). EEG data were band-pass filtered 

at 0.016 Hz–1 kHz, 16-bit digitalization (0.05 mV resolution) and the 

sampling rate was 5 kHz. MR gradient and pulse-related artefacts were 

removed from the EEG using template artefact subtraction(Allen, Josephs, & 

Turner, 2000; Allen, Polizzi, Krakow, Fish, & Lemieux, 1998) implemented in 

a commercial EEG processing package (Brain Analyzer; Brain Products). 

Subjects underwent four sessions of echo-planar imaging (EPI). The 

parameters of the experiment were as follows: a 3.3x3.3x4 mm effective 

resolution with a field of view FOV =210 mm, TR = 2,160 ms, TE = 30 ms, 

flip angle = 75 degrees, number of slices = 30, slice thickness=3 mm, slice 

gap = 1 mm, ascending order 300 volumes (4 sessions of 300).  

4.2.3 Natural Stimulus Paradigm 

During 2/4 fMRI sessions subjects were asked to rest with eyes 

closed and for the remaining two, to watch a video. Sessions of rest (eyes 

closed) and video were alternated with the first session randomly assigned to 

be a rest or video session. The video sessions were divided into two 

conditions “cartoon” and “please wait”. A schematic depicts the task structure 

(see Figure 13) 
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Figure 13. Schematic depicting structure of video session.  

 

 Participants were either instructed to close their eyes and rest or asked to 

watch the video via the in-scanner headphones. Verbal responses and in-

scanner video monitoring were used to verify that the subjects were following 

these instructions. 

4.2.4 EEG-fMRI analysis 

Patient’s fMRI time series were analysed using a general linear model to 

determine the presence of regional IED-related BOLD changes in SPM8 

(spm.fil.ac.uk). IEDs were modelled as delta function convolved with the 

canonical hemodynamic response function (HRF) and its temporal and 

dispersion derivatives.  

fMRI pre-processing consisted of volume-volume realignment using 

SPM8 followed by pre-processing with FIACH (Tierney et al., 2016) which 

removes non-physiological signal changes and creates a model of 

physiological noise. The six realignment parameters and six FIACH noise 

regressors were entered as regressors of no interest in the GLM. An 

additional regressor with the paradigm waveform convolved with the HRF 

was entered for the video sessions to account for the main effect of the task. 

Images were also smoothed using a Gaussian smoothing kernel with FWHM 

= 8mm. 

An F-contrast was constructed across the canonical Haemodynamic 

Response Function (HRF) and its derivatives. Changes in BOLD signal were 

considered statistically significant above a threshold of p<0.001 and a 

minimum cluster size of five contiguous voxels on a single subject. While this 

threshold is not corrected for multiple comparisons it was defined 
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heuristically by Dr. Centeno to achieve a balance between sensitivity and 

specificity. Issues surrounding sensitivity while using multiple comparisons 

corrections are highlighted in the next chapter of this thesis. 

4.2.5 Defining Concordance 

EEG-fMRI maps were classified as concordant if a cluster of significant 

BOLD signal change was found within the presumed epileptogenic zone or 

discordant if not.  For those patients with multiple types of IED, maps were 

considered concordant if a cluster of significant BOLD signal changes was 

present within the presumed epileptogenic zone for at least one of the IED 

types(Pittau, Dubeau, & Gotman, 2012; Salek-Haddadi et al., 2006). The 

localisation of the epileptogenic zone was based on clinical consensus. 

Consensus was derived from an assimilation of a variety of imaging 

procedures (T1 weighted MRI, T2 weighted MRI, FLAIR, PET, SPECT, EEG, 

MEG) and electro-clinical information derived from video-EEG telemetry by a 

neurologist (MC) 

4.2.6 Analysis 

The effect of natural stimulation on subject movement was estimated using a 

regression model. The dependant variable was movement inside the scanner 

which was quantified by mean frame-wise displacement (MFD); and the 

independent variables were the session type (video/rest sessions), time 

(session order, 1 to 4) and subject age. The interaction between session type 

and time was also explored.  The MFD was transformed using the natural 

logarithm to normalize the distribution of the residuals. 

The model parameters were estimated using a mixed effects model 

using the R statistical programming language (R Core team, 2015). This 

model was chosen to accurately estimate the variance associated with the 

time variable as each individual’s ability to tolerate longer scan times varied 

greatly.  The autoregressive component of the model was described by an 

AR(1) process. 

To compare the rate of IED during the video and the rest sessions 

across all the patients we divided video sessions into the different blocks of 

the paradigm (cartoon and “please wait” blocks) to account for potential 

differences in IED rate during the stimulus periods with the cartoon or 
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“please wait” screen. To establish whether design efficiency, framewise 

displacement or temporal signal to noise ratio could predict clinical utility, a 

logistic regression was performed. The dependent variable was the binary 

classification of concordant/not concordant. The independent variables were 

design efficiency, tSNR and MFD.  

4.3 Results 

The movement inside the scanner was greater for sessions 2-3-4 

relative to session 1, t (176) = 2.54, 2.72, 4.34 respectively (p<0.05 for all). 

The main effect of time on motion is displayed in Figure 14. Older subjects 

moved less than younger subjects as there was an effect of age, t (64) = -

2.49, p <0.05. There was a non-significant main effect of video across all 

sessions. However the video significantly reduced movement when played in 

the first two sessions, as evidenced by the significant video-time interaction: 

t(176) = -2.495, p <0.05.  In these sessions this amounted to, on average, an 

approximately 40% reduction in movement as measured by MFD. 

For those patients that had IEDs, the mean rate of IED was not 

significantly different between rest sessions, video and “please wait” screen 

blocks (Figure 15). Mean rate of IEDS in these three conditions across all 

patients was 11.160009 IEDs/minute (SE 1.01),   9.69 (SE 1.0) and 9.92 (SE 

1.0) respectively. Using an ANOVA There was no statistically significant 

effect of condition observed on IED rate (F (2,226)=0.273,p>.05). 
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Figure 14.  The effect of time (x-axis) on framewise displacement (y-axis). 

Bars represent mean framewise displacement for each session. The 

standard error is used to reflect uncertainty in the estimate.  
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Figure 15. Rate of Interictal Epileptiform discharges (IED).  Bars represent 

mean number of IEDs per minute during the resting state sessions and 

during the two conditions of the video session (video clip and “please wait” 

screen). The standard error is used to reflect uncertainty in the estimate.  

 

The classification accuracy of the logistic regression of design 

efficiency on EEG-fMRI concordance was 65%. This was found to be a 

statistically significant effect (Z = 2.925, p<0.05). The effect of motion on 

concordance as measured by mean framewise displacement, was found not 

to be statistically significant (Z = -1.43, p>.05). TSNR was did not predict 

concordance either (Z = -.453, p>.05). 

4.4 Discussion 

4.4.1 Exploring the impact of the natural stimulus.  

Interestingly there was no effect of stimulation reported on the rate of 

occurrence of IEDs despite this being suggested in previous literature (Aarts 
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et al., 1984). This is encouraging as the implementation of the natural 

stimulus decreased subject motion, albeit only within the first twenty minutes. 

It seemed there was duration of scanning beyond which the children in this 

study were not going to keep still. This decrease in motion is important for a 

number of reasons. The first is data quality. Less motion means less reliance 

on post processing techniques (that may fail) to remove the effects of motion.  

The second is patient comfort. If patients are not comfortable in the scanner 

they may leave earlier (in a research setting) or require general anaesthetic 

(in a clinical context) which is costly and not without risks.  

4.4.2 A priori metrics of data quality 

Perhaps surprisingly MFD was not capable of predicting concordance. 

As the definition of concordance used in this study (see section 4.2.5) 

measured the sensitivity of EEG-fMRI one might expect the sensitivity of the 

method to be altered due to biased parameter estimation (due to motion). 

While it is true that some motion events bias parameter estimation (see 

Chapter 3. Figure 4.) this is made substantially less likely by utilising FIACH. 

After the application of FIACH all signal changes are roughly constrained to 

be in the range of what is physiologically possible. As such each data point 

will contribute more or less equally to the regression making biased 

parameter estimation unlikely.  

That does not mean there are no motion related signal changes in the 

time-series. However these changes will simply serve to increase residual 

variance and thus contribute to decreasing sensitivity. This however was not 

the case as our metric of concordance explicitly tests sensitivity which MFD 

was not capable of predicting. Instead it is more likely that MFD is simply not 

appropriate for use in paediatric populations as it is a global measure of 

motion. Often the children we scan move so quickly the effects on the image 

are often local and thus not reflected in the MFD or the maximum FD or the 

FD at the point in time that motion occurred (See Chapter 3 Figure 4; 

Chapter 3 Figure 11).  

 It was also found that tSNR was not predictive of concordance. 

However, upon closer inspection an analytical conclusion can be drawn. A 

schematic is provided to assist interpretation (see Figure 16). The mean 
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tSNR in our sample was 61 while the 5th percentile was 47 which 

demonstrates that the tSNR varied very little in our sample. If we assume 

that the beta is estimated in an unbiased way then only the standard error of 

the beta is affected by the drop in tSNR. According to the variations in tSNR 

observed in our sample we would expect at most an increase of 30% in the 

standard error and thus a 30% drop in the magnitude of the t-value. However 

when we consider design efficiency this parameter varies as much as 3 

orders of magnitude between individuals (.075- 75, units are arbitrary). This 

has a very large effect on the standard error of the beta as it will cause 

standard error to vary by approximately a factor of 30 (sqrt(1000)). Once this 

fact is noted, it is entirely expected that design efficiency is a better predictor 

of concordance than MFD and tSNR.  This makes it so much more important 

that individuals performing EEG-fMRI report their design efficiencies when 

assessing the clinical utility of their technique (which has never been done 

before). 

 

 

Figure 16. Standard Error of Regression Coefficient (B) 

  

4.4.3 Limitations 

There are two primary limitations associated with this study. The first 

is the definition of concordance between the EEG-fMRI map and the 

localisation of the epileptogenic zone which was based on clinical 

consensus. Consensus was derived from an assimilation of a variety of 

imaging procedures (T1 weighted MRI, T2 weighted MRI, FLAIR, PET, 

SPECT, EEG, MEG) and electro-clinical information derived from video-EEG 

telemetry by a neurologist (MC). A greater confidence in the localisation 
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would be determined typically by post-surgical follow up.  However this 

severely limits the population and may itself be biased (e.g. patients with 

greater seizure frequency are more likely to be operated). Furthermore 

concordance is defined if a blob occurs in the presumed epileptogenic zone. 

This strictly speaking only captures the sensitivity of the method. No 

correction is made for the fact that many other blobs may co-occur with the 

concordant one. 

The second limitation is one of statistical inference. We have used a 

heuristic threshold that is not corrected for multiple comparisons to define the 

threshold at which concordance is assessed (p<.001, k>5). Using a threshold 

such as this is typically not advised (Eklund, Nichols, & Knutsson, 2016). 

However the use of this threshold was clinically defined by Dr. Centeno as 

striking a balance between sensitivity and specificity. This contrast between 

clinical definition and statistical best practices motivated further investigation. 

Upon inspection it was found that in nearly every case a Bonferroni 

correction offered more sensitivity than utilising Random Field Theory within 

SPM for multiple comparisons correction. This indicated that the use of FWE 

correction was indeed overly conservative and motivated the work found in 

the following chapter to explore this issue in greater detail 

4.5 Conclusions  

In this study we have demonstrated the feasibility and benefits of 

employing a natural stimulus when performing EEG-fMRI. Subject motion is 

reduced while the rates of IED occurrence are not affected. We also identify 

design efficiency as increasing the likelihood of getting a concordant 

localisation making it an important factor when using EEG-fMRI in a clinical 

context. It is recommended that studies performing EEG-fMRI should report 

this metric. 
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5. Is Bonferroni correction more sensitive than random field theory for 

most fMRI studies? 

 

In the previous chapter we made the observation that the many of the EEG-

fMRI studies performed would have had greater sensitivity using a Bonferroni 

correction for multiple comparisons than corrections using Random Field 

Theory. In this chapter we therefore discuss the implications of the 

inappropriate use of Random Field Theory as a method of multiple 

comparisons correction with reference to a review of parameters derived 

from recently published studies.  

 

Abstract 

Random Field Theory has been used extensively in the fMRI literature to 

address the multiple comparisons problem. The method provides an 

analytical solution for the computation of precise p-values when its 

assumptions are met.  When its assumptions are not met the thresholds 

generated by Random Field Theory can be more conservative than 

Bonferroni corrections, which are arguably too stringent for use in fMRI. As 

this has been well documented theoretically it is surprising that a majority of 

current studies (~80%) would not meet the assumptions of Random Field 

Theory and therefore would have reduced sensitivity. Specifically most data 

is not smooth enough to meet the good lattice assumption. Current studies 

smooth data on average by twice the voxel size which is rarely sufficient to 

meet the good lattice assumption.  We provide simulations that identify the 

critical smoothness at which the application of RFT becomes appropriate. 

For some applications such as presurgical mapping or, imaging of small 

structures, probing the laminar/columnar structure of the cortex these 

smoothness requirements may be too great to preserve spatial structure. As 

such, this study suggests developments are needed in Random Field Theory 

to fully exploit the resolution of modern neuroimaging. 

  

Declaration of work: The review presented and simulations performed were 

conducted by Tim Tierney. 
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5.1 Introduction 

The question of how to address the issue of multiple comparisons in 

fMRI has received a lot of attention during recent years. It has been 

suggested that a large number of studies were using thresholds uncorrected 

for multiple comparisons (Bennett, Wolford, & Miller, 2009). Furthermore, the 

inadequacy of uncorrected thresholds  have been highlighted when it was 

demonstrated that post-mortem images of a salmon could display “activation” 

when multiple comparisons were not controlled for (Bennett, Baird, Miller, & 

Wolford, 2011).   

 The key difference between the multiple comparisons issue in 

traditional statistics and imaging is the presence of spatial correlation. Spatial 

correlation makes methods such as Bonferroni correction inappropriate for 

the control of statistical error rates in imaging as they are too conservative. 

Topological inference was introduced to address this issue using the theory 

of stochastic processes (Friston, Frith, Liddle, & Frackowiak, 1991) and the 

Euler characteristic (Worsley, Evans, Marrett, & Neelin, 1992), which is often 

referred to as Random Field Theory (RFT: Worsley et al., 1996). The 

advantage of RFT is that it recognises that data is sampled from a 

continuous field. This means that researchers can make inference on 

topological features (and not voxels) at arbitrary resolution.  

This method is computationally inexpensive and accurate when its 

assumptions are met. Unfortunately the mathematical complexity of the 

method means that it is difficult to precisely test the assumptions necessary 

for its application. However, a reviews of the assumptions are available 

(Petersson, Nichols, Poline, & Holmes, 1999). This lack of clarity surrounding 

the assumptions concerning RFT is evident from the fact that few studies (in 

the fMRI literature) have explicitly tested and reported whether or not they 

have met all the assumptions of RFT before utilising the method. Therefore 

in each case the validity of RFT is implicitly assumed. 

 This can potentially explain the large number of studies that  have 

reported that RFT can be conservative (Durnez, Moerkerke, & Nichols, 2014; 

Eklund, Nichols, & Knutsson, 2016; Hayasaka & Nichols, 2003; Hayasaka, 

Phan, Liberzon, Worsley, & Nichols, 2004; Li et al., 2014; Li, Nickerson, 
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Zhao, Nichols, & Gao, 2015; Pantazis, Nichols, Baillet, & Leahy, 2005; 

Roels, Bossier, Loeys, & Moerkerke, 2015; Worsley, 2003; Worsley, 2005). 

The conservative nature of RFT in these scenarios is most likely due to 

situations where the good lattice assumption is not met as these studies 

largely report results are smoothness dependent. The good lattice 

assumption has been stated by as the following (Flandin & Friston, 2015): 

“The component (error) fields conform to a reasonable lattice approximation 

of an underlying random field with a multivariate Gaussian distribution.” 

This statement can be broken down into two sub-statements. The first 

is that the component (error) fields have a multivariate Gaussian distribution. 

This is a testable assumption using Mardia’s test for multivariate normality 

(Barnes, Ridgway, Flandin, Woolrich, & Friston, 2013). We will not consider 

further how departures from multivariate normality may hinder inferences 

using RFT.  

 However, the second statement that the components (error) fields 

conform to a reasonable lattice approximation to an underlying random field 

is not as easily testable. This statement can be intuitively understood as 

meaning the data needs to be sampled sufficiently to represent the 

topological features of interest. This can be facilitated by smoothing the data 

so the topological features (the “blobs”) become large relative to the voxel 

size and therefore well sampled. The question remains as to how smooth the 

data needs to be to meet this assumption.  

The literature is quite variable concerning advice on this matter. 

Smoothing is recommended to be between 3-5 times the native space voxel 

size for RFT to be accurate (Barnes et al., 2013; Petersson et al., 1999; 

Worsley, 2003; K. J. Worsley, 2005). This ambiguity in the literature means 

that it is difficult for a researcher to assess if their dataset has met this 

assumption. This is problematic because if this assumption is not met then 

the thresholds produced by RFT will be more conservative than a Bonferroni 

correction ( Worsley, 2005). This study therefore poses the following 

question.  
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1. Do current data analysis and acquisition strategies produce 

thresholds more stringent than Bonferroni? 

To answer this question, we performed simulations using parameters derived 

from a survey of recent fMRI studies.  

5.2 Theory 

It is possible to argue that RFT and Bonferroni should not be 

compared as RFT is designed to work in continuous space and Bonferroni in 

discrete space. This fundamental difference means that RFT theory derived 

thresholds do not change by image resampling whereas a bonferroni will as 

it is based on the number of voxels. 

However, one can use the Bonferroni correction to establish the lower 

bound on smoothness above which RFT provides accurate p-values. In other 

words, by decreasing the spatial resolution of images, (or increasing voxel 

size for a fixed smoothness) there will be a point at which the RFT correction 

becomes more conservative than the Bonferroni correction. For the purposes 

of this study we use this point as our definition of when the good lattice 

assumption is violated. This definition is chosen for practical reasons as it 

defines regimes of smoothness (or voxel size) in which it is and is not 

appropriate to apply RFT and is therefore of practical relevance to the 

imaging community. 

5.3 Methods 

5.3.1 Analysis  

5.3.1.1 fMRI Survey Descriptive Statistics 

Brain volume data is taken from a meta-analysis of brain volume 

(Borzage, Bluml, & Seri, 2014). Voxel size and smoothness are taken from 

fMRI studies published in NeuroImage and NeuroImage:Clinical between 

January 1st and February 25th 2016.  This included articles in press. For the 

survey we assume that papers published in NeuroImage are a representative 

sample of the data analysis and acquisition practices of imaging researchers 

and therefore allow us to make an appropriate generalisation of current 

practice. 
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 Using Science Direct 198 studies included the word fMRI. Only 137 

were included in the analysis due to the following reasons: 1) not all studies 

reported smoothness and voxel size, 2) they were simulations, 3) they were 

introducing software/repositories, 4) they were animal studies, 5) they were 

not fMRI studies but mentioned fMRI (fNIRS, optogenetics), 6) they were 

reviews/meta analyses.   

The 137 studies used a variety of different error control methods. 

These were corrected parametric (68/137 = 49.6%), uncorrected parametric 

(24/137 = 17.5%), simulation-based corrections (17/137 =12.4%, machine 

learning (8/137=5.8%)  FDR (6/137 = 4.4%), threshold free cluster 

enhancement (3/137 =2.2%), non-parametric permutation (1/137 = 0.73%), 

mixture modelling (1/137 = 0.73%), Bonferroni (1/137 = 0.73%), not reported 

(8/137 = 5.8%). One might expect that as only the corrected parametric 

approaches (RFT) make assumptions concerning the image smoothness the 

smoothness may be different between studies that use RFT and those that 

do not. This was not found to be the case (using Welch’s two sample t-test).  

Studies that use RFT on average smooth their data by 2.05 times voxels size 

where as those that do not use RFT smooth by 1.94 times voxel size( t 

(133.85)  = 1.0225, p = .3084, effect size: r = .088 ). As such, using values of 

smoothing obtained from all of these studies is justified when trying to infer 

the appropriateness of RFT for current image acquisition and analysis 

strategies. 

As no study reported the estimated residual smoothness from their 

analysis, which is crucial to determining the appropriateness of RFT, we only 

documented the applied smoothing kernel width. This is an underestimate of 

the smoothness of the component error fields as images are already slightly 

smooth due to the point spread function of the image, T2* blurring and post 

processing techniques such as interpolation which also increase 

smoothness. We account for this in our analysis by using empirical data to 

describe the relationship between estimated residual smoothness and 

applied smoothing kernel width.  

This empirical data is drawn from 47 EEG-fMRI studies of focal 

epilepsy patients (for the purpose of localising the epileptic focus) conducted 
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in the data’s native space (Chapter 4). The fact that these studies were 

conducted in native space is important because the process of 

normalisation/nonlinear warping alters smoothness in an algorithm specific 

fashion which we do not intend to investigate here. Having calculated the 

ratio of estimated residual smoothness to applied smoothing kernel width we 

use the 5th, 50th and 95th quantiles to quantify the uncertainty in this 

relationship.  

5.3.1.2 Simulation of RFT thresholds and Bonferroni Thresholds 

In order to simulate RFT thresholds smoothness was defined relative 

to native voxel size (e.g. if voxel size is 3mm and FWHM = 9 the smoothness 

was 3) and was varied between 1 and 6. The degrees of freedom (𝑑𝑓) were 

varied between 10 and 100. This was repeated for 1mm, 2mm and 3mm 

isotropic voxels. This simulation was performed using t-fields designed to 

achieve FWE correction at p<0.05. We make the following simplification for 

calculating the Resel Count (𝑅) from the image volume (𝑉) and smoothness 

(𝐹𝑊𝐻𝑀). 

 
𝑅 =

𝑉

𝐹𝑊𝐻𝑀𝑥𝐹𝑊𝐻𝑀𝑦𝐹𝑊𝐻𝑀𝑧
 66 

While this is not strictly true it is a reasonable approximation for large 

unmasked volumes (Worsley et al., 1996). Furthermore, if all the 

components that constitute 𝑅 were to be included in the analysis RFT 

thresholds would be even more conservative (Worsley et al., 1996). It is also 

worth noting that the volume can be in mm3 or cubic voxels as long as the 

FWHM is measured in the same unit.  The Bonferroni correction was 

calculated based on the number of voxels, for a given resolution, that would 

fit in a whole brain volume of 1.4 litres. The expectation of the Euler 

characteristic (𝐸{𝜒(𝑅)}: asymptotically the p-value) was then calculated as 

follows  with 𝑡 the t-statistic and 𝑑𝑓 being the degrees of freedom: 

 

𝐸{𝜒(𝑅)} =  𝑅 
(4𝑙𝑜𝑔𝑒2)

3
2

(2𝜋)2
(1 +

𝑡2

𝑑𝑓
)

−
1
2

(𝑑𝑓−1)

(
𝑑𝑓 − 1

𝑑𝑓
 𝑡2 − 1) 

67 
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5.3.1.3 Comparison of Theory and Practice 

Having established when RFT would produce overly conservative 

thresholds (from the simulation described in Section 5.3.1.2 ) and given the 

typical values of smoothness and voxel sizes found in the literature  (found in 

the survey described in Section 5.3.1.1) we can now assess how likely a 

given study is to meet the assumptions of RFT.  By taking the ratio of the 

smoothing kernel width to the voxel size (both found from the survey) we 

create a new distribution. This new variable (the ratio of smoothness to voxel 

size) can be compared to the simulation described in section 5.3.1.1 to see 

how many studies reach the critical smoothness required for the successful 

application of RFT.  

To account for the limitation of unknown residual smoothness we 

assume a multiplicative relationship between residual smoothness and 

smoothing kernel width. We use the empirical quantiles described in section 

5.3.1.1to get more realistic estimates of residual smoothness. As we will 

show that the distribution of applied smoothing kernel width relative to voxel 

sizes is normal the adjusted distribution, obtained using the empirical 

quantiles, has an analytical form that is obtained by simply multiplying the 

mean and the standard deviation of the original distribution by the quantiles 

described in section 5.3.1.1 to calculate a an upper bound, measure of 

central tendency and lower bound on the number of studies likely to meet the 

good lattice assumption. 

5.3.2 Software  

All probabilities are computed using the R programming language (R 

Core team, 2015). The normal distribution of the ratio of smoothness to voxel 

size was fit using the fitdistrplus package (Delignette-muller & Dutang, 2015). 

The RFT thresholds are computed using SPM12 (www.fil.ion.ucl.ac.uk).  

5.4 Results 

5.4.1 Descriptive Statistics 

 Of the 137 studies reviewed the average voxel size in the x and y 

direction is 3.01 mm (SD = 0.62 mm). In the slice direction the average slice 

thickness was found to have a mean of 3.53 mm (SD= .080 mm). The 

http://www.fil.ion.ucl.ac.uk/
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average FWHM of smoothing kernels used was 6.12 mm (SD =2.11 mm).  

The histograms describing these variables are presented in Figure 17. 

 

Figure 17. Histograms of smoothing kernel widths and voxel sizes and.  

From Figure 17 it is clear that the observed distributions are complex 

and do not obviously conform to easily describable probability distributions. 

In particular the histogram of smoothing kernel width is interesting as it 

shows a clear peak at 8mm which corresponds to the SPM default 

smoothing kernel width (89/137 studies used SPM). 

 The ratio of estimated smoothness to applied smoothing kernel width 

from Chapter 4 had a .05 quantile = 1.26, median (.5 quantile) = 1.36 and .95 

quantile = 1.77. The distribution is graphically represented in Figure 18.  
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Figure 18. Histogram of estimated residual smoothness  (i.e. the smoothness 

of residual fields – as opposed to signal) relative to applied smoothing kernel 

width in a sample of N=46 subjects taken from chapter 4. 

5.4.2 When does RFT produce less conservative thresholds than 

Bonferroni? 

To address this question we compare RFT theory thresholds to the 

Bonferroni threshold for different degrees of smoothness and degrees of 

freedom using a t-field. The results are represented graphically in Figure 19. 

The black lines in Figure 19 indicate the location of the critical smoothness 

threshold at which RFT becomes more conservative than Bonferroni. As 

expected there is strong dependence of the critical threshold on the degrees 

of freedom but there is a more surprising dependence on resolution as well. 

High resolution data needs to be smoothed relatively more in order to meet 

the good lattice assumption: the black lines are shifted to the right indicating 

larger relative smoothness is required. These results show that there is no 

rule of thumb that is valid for all experimental designs. The smoothness 

requirements to meet the good lattice assumption are study specific.  
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Figure 19. Sensitivity of RFT to degrees of freedom and smoothness. The x 

axis represents the smoothness relative to the voxel size. The y axis displays 

the degrees of freedom. The colour bar encodes the height of the t-statistic 

required to achieve FWE p<.05 using RFT on a brain that is 1.4 litres in 

volume. The black line shows where the RFT threshold is equal to the 

Bonferroni threshold (where RFT starts producing accurate thresholds). To 

the right of the black line RFT is less conservative than Bonferroni and to the 

left of the black line RFT is more conservative than Bonferroni. This 

simulation is repeated for 3mm, 2mm and 1mm voxels. For display purposes 

colour bars have been capped at t=10.   

5.4.3 Do current data analysis strategies meet the assumptions of RFT? 

The histogram of the applied smoothing kernel width relative to voxel 

size is displayed in Figure 20. Empirical and theoretical quantiles, 

probabilities and a cumulative density function accompany this histogram to 

illustrate the reasonably close fit of this variable to a normal distribution (The 

closer the points are to the lines the more appropriate the assumption of 

normality is). The mean of this distribution = 1.99 voxels (SD =.64 voxels).  

Using this distribution we can predict the probability of a study having 

smoothness greater than 3.5 (the point in Figure 19 where the degrees of 

freedom dependence begins to vanish in the lowest resolution condition) 

times the voxel size – therefore satisfying the RFT assumptions. The 

probability is .009 corresponding to a less than 1% chance of a study fulfilling 

RFT assumptions and obtaining a threshold less conservative than 

Bonferroni.  
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Figure 20.  Normality of FWHM / voxel size. The empirical values for 

FWHM/voxel size are compared with theoretical values for a normal 

distribution of mean = 1.99 voxels, SD =.64 voxels. As the empirical, 

quantiles, probabilities and cumulative density function are a good fit to their 

theoretically predicted values the assumption of normality of FWHM/voxel 

size is reasonable.  

This is an overestimate of the numbers of studies that do not meet the 

assumptions of RFT – as it is based on smoothing kernel width and not the 

residual smoothness. However, using the empirical bounds described in 

Section 5.3.1.1we can adjust the distribution in Figure 20 and recompute the 

probabilities. This produces a more realistic probability of a study being 

sufficiently smooth enough to meet the assumptions of RFT.  

Adjusting by the multiplicative factors in Section 5.4.1 the median 

prediction of the percentage of studies likely to not meet the assumptions of 

RFT is 82%. The upper and lower bounds for the prediction derived using the 

.95 and .05 quantile described in Section 5.3.1.3 and computed in Section 
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5.4.1 are 49% and 89% (obtained by multiplying mean and standard 

deviation by 0.95 and 0.05 quantiles respectively). Therefore the majority of 

studies are unlikely to meet the assumptions of RFT. This is graphically 

represented in Figure 21.  

 

Figure 21. Estimate of residual smoothness in current studies.  In this figure 

the distribution of smoothness to voxel size is re-estimated accounting for 

relationship between residual smoothness and applied smoothing kernel 

width. The figure demonstrates that ~80% of studies are unlikely to meet the 

good lattice assumption in the most lenient case of low resolution data (3mm 

isotropic) where the criteria for meeting the good lattice assumption is that 

smoothness be ~3.5 times voxel size. 

5.5 Discussion 

5.5.1 Summary 

We have demonstrated that there is no rule of thumb regarding how 

smooth one’s data should be that can account for the variability in study 

designs found in the literature. However researchers can use Figure 19 to 

identify the critical smoothness necessary to apply RFT in a meaningful way. 

Although it should be noted this is a lower bound on the smoothness that 

should be applied to the data and the threshold will still be conservative just 

less so than a Bonferroni correction. In reality, to achieve optimal control of 

FWE the data may need to be smoothed even further. The simulations 
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presented in this chapter (Figure 19) build upon  previous simulations 

(Worsley, 2005) by examining a greater range in degrees of freedom and 

image resolution. These figures are important to interpret the empirical data 

we have reviewed. We have presented empirical data that shows that – on 

average – researchers smooth by twice their voxel size and very few are 

likely to reach the minimal smoothness required  to meet the assumptions of 

RFT. In short for the majority (~80%) of current fMRI studies Bonferroni 

corrections are more sensitive than RFT.  

5.5.2 Alternate Solutions 

If researchers do not wish to smooth their data sufficiently to meet the 

assumptions of RFT (which was found to be the case in this study) a number 

of other options exist. An initial framework for addressing these issues has 

been developed (Worsley, 2005) but  requires numerical integration, is 

inaccurate for t and F fields with low degrees of freedom and requires that 

the autocorrelation function of the field be Gaussian. Furthermore, the results 

were often conservative for some values of smoothness.  

Different error rates could be controlled such as the False Discovery 

Rate (FDR : Genovese, Lazar, & Nichols, 2002) as described by While this is 

a reasonable form of error control the continuity inherent in brain imaging 

data means there are a number of situations where the direct application of 

FDR (although it does not make any assumptions on image smoothness) is 

limited. There have been attempts to address these issues (Chumbley & 

Friston, 2009) but they rely  on the use of theoretical results from RFT, which 

require smooth data. 

 Alternate approaches to control for FWE include non-parametric 

permutation tests. These methods make minimal assumptions about the data 

and are suitable for group-level studies regardless of smoothness, voxel size 

and degrees of freedom (unlike RFT). The cost incurred is one of 

computational burden and difficulties in construction of models with 

covariates and nuisance variables (Winkler, Ridgway, Webster, Smith, & 

Nichols, 2014). Furthermore the application of permutation tests to the 

analysis of individual subjects (important in clinical applications) is difficult as 

the assumption of exchangeability is often violated due to autocorrelation in 
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the data. This is not a trivial issue as modern fMRI sequences can reach 

repetition times of 100ms in clinical applications (Jacobs et al., 2014). Some 

work has been done to address this issue but requires knowledge of the 

autocorrelation function (Adolf et al., 2014). 

In practice some software such as SPM simply chooses the minimum 

of the Bonferroni correction and the RFT correction. While this is a perfectly 

reasonable approach to prevent the use of needlessly strict thresholds it 

should be noted that the Bonferroni correction itself is an overly stringent 

threshold and inappropriate for smooth data (Worsley, 2005). 

 

5.5.3 Implications 

 In theory the use of RFT for topological inference seems a reasonable 

choice for controlling FWE in any spatial dataset as it allows for inference 

that is independent of the native resolution, has an analytical solution for 

many different statistical fields, can be computed quickly and is highly 

accurate for smooth fields of arbitrary dimensionality and geometry.  

 However, in spite of these benefits our simulations and empirical data 

presented seem to suggest that very few current studies would benefit from 

the use of RFT; indeed the thresholds generated are more conservative than 

a Bonferroni correction. This is because the RFT derived p-values are valid 

only for continuous fields. Measured data is always discrete but can 

approximate continuous data if smoothed sufficiently. In short, the reviewed 

data is not smoothed sufficiently. 

As the majority of studies in the fMRI literature are group-level studies 

the situation becomes slightly more complex as one cannot assume the 

degrees of freedom are large. In fact when degrees of freedom are less than 

30 (see Figure 19) the smoothness requirements begin to increase rapidly. It 

is therefore difficult to know how much inference is hampered at the group 

level due to varying sample sizes and nonlinear warping methods (which will 

influence smoothness in an algorithm specific fashion). As such it is crucial 

that residual smoothness values are reported and smoothing kernels are 

chosen carefully with respect to these factors if RFT is used. In these 
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situations, if the assumptions are not met non-parametric inference may be a 

reasonable alternative so as to ensure validity (Winkler, Ridgway, Webster, 

Smith, & Nichols, 2014).  

There are a number of situations where it is not feasible to perform 

group analyses. In these cases there are very few alternatives to RFT for the 

control of FWE rates. These include clinical applications such as the 

presurgical mapping of epilepsy patients (Duncan, Winston, Koepp, & 

Ourselin, 2016) or basic science applications involving small structures. In 

particular researchers are now interested in probing the layered/columnar 

structure of the cortex using high resolution fMRI which must be done in the 

single subject space (Heinzle, Koopmans, den Ouden, Raman, & Stephan, 

2016; Yacoub, Harel, & Ugurbil, 2008). 

The increased capability to image at high resolution brought about by 

the availability of MRI scanners with increased magnetic field strength and 

high density receive array coils means that there is a much greater need for 

methods that can control for multiple comparisons in this context. It is 

therefore necessary for developments in RFT to explicitly incorporate the 

sampling of the continuous field (the brain) in situations where image 

smoothness needs to be kept at a minimum. 

RFT would then be bounded by Bonferroni (so that RFT thresholds 

are never higher than Bonferroni thresholds) and make them appropriate 

with less stringent requirements for smoothing (which is crucial for imaging at 

higher resolution). This would allow for the application in single subject 

analysis and high resolution imaging. Some work has been done to address 

this issue using simulations (Li et al., 2014, 2015) but it is not an analytical 

solution and as such it is difficult to treat theoretically or extend the results to 

other statistical fields.   

5.5.4 Limitations 

The results presented suggest that 80% of current studies do not 

meet the assumptions of RFT at an individual level. However, we had to 

approximate residual smoothness as it is seldom reported and therefore 

could not be incorporated into our analysis. We finessed this limitation by 
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assuming a multiplicative relationship between estimated smoothness and 

applied smoothing kernel and created bounds on this relationship with 

empirical data at the individual level. While this is not optimal, it is likely to be 

a reasonable approximation. 

The implications for cluster based inference are also not considered 

here but are considered elsewhere (Eklund et al., 2016; Guillaume Flandin & 

Friston, 2016). This is because the purpose of this study was not to provide 

a complete validation of RFT but to highlight this issue of reduced sensitivity 

researchers may face when trying to interpret their data at an individual 

level. That being said the number of studies using parametric  peak level 

statistics (29/137, peak level corrected and 24/137 peak level uncorrected ) 

outweighed the number of studies using parametric cluster level corrected 

(39/137) further highlighting the need for  the simulations presented to 

achieve optimal peak level statistics. 

5.6 Conclusions 

We have argued that the Bonferroni correction provides a crucial point 

of reference that identifies a critical bound on smoothness (or voxel size), 

which permits the use – or not – of RFT. We have further shown that it is 

impossible to generate a rule of thumb that could guide researchers on how 

much smoothing should be applied to their data considering the variability in 

study designs. They must instead carefully choose the kernel to account for 

their voxel size, degrees of freedom (at the single subject level and group 

level) and registration routines (although for the “average” study with 3mm 

resolution and more than 20 subjects a FWHM = 4 times voxel size may 

suffice). While the effects of smoothing have been previously documented 

we extend these results over a greater range of degrees of freedom and 

image resolutions. We also present evidence suggesting most published 

studies in 2016 (80%) do not meet the assumptions of RFT. However this 

inference is limited by the lack of reported estimated smoothness values in 

the literature. This information is crucial to understanding the validity of 

statistical thresholds and should always be reported. Future work is required 

in RFT to explicitly incorporate the sampling of continuous fields in order to 

fully exploit the ever increasing spatial precision of fMRI data. 
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6. Stationary and dynamic connectivity in paediatric focal epilepsy 

In this chapter, having determined optimised procedures for fMRI data 

acquisition and analysis we aim to characterise, using fMRI, differences in 

functional connectivity between individuals with focal epilepsy and healthy 

controls in terms of network dynamics and Interictal Epileptiform Discharges. 

Abstract 

It has been frequently reported that individuals with focal epilepsy have 

abnormal stationary Functional Connectivity (FC) measured with fMRI. 

However, the contribution of Interictal Epileptiform Discharges (IEDs) to this 

abnormal stationary FC and dynamic FC is not fully yet understood. 

Therefore we examined both dynamic and stationary FC in a sample of 21 

healthy children and 47 paediatric focal epilepsy patients with heterogeneous 

aetiology and seizure onset zone. We performed a factor analysis to identify 

Intrinsic Connectivity Networks (ICNs) in both groups in a multivariate 

fashion. We then compared dynamic and stationary FC between both groups 

within each of the networks to determine spatial and temporal differences in 

FC. The factor analysis decomposed the brain into seven commonly 

observed ICNS: Primary Visual Network, Secondary Visual Network, 

Auditory Network, Motor, Default Mode, Left Fronto-Parietal and Right 

Fronto-Parietal. When controlling for the effects of IEDs it was found that the 

Default Mode Network and the Left Fronto-Parietal network had reduced 

stationary FC in the patient group. The dynamic connectivity (as 

characterised by phase synchrony metastability) did not differ between 

groups in any of the ICNs. Interestingly it was found that the stationary FC of 

the piriform cortex (a functionally defined seizure trigger zone) to the default 

mode network was increased by the occurrence of IEDs despite the variable 

location of the epileptogenic zone. This is the first demonstration of how the 

connectivity of the piriform cortex is associated with IEDs. This leads to the 

postulation of a general mechanism by which widespread changes in 

connectivity, epileptogenicity and IEDs may be related.  

Declaration of contribution: Dr Maria Centeno recruited the subjects who 

participated in this study. Tim Tierney designed and performed all analysis 

presented in this chapter. 
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6.1 Introduction 

The use of functional connectivity in fMRI studies has revealed that 

the brain can be organised into Intrinsic Connectivity Networks (ICNs). The 

functioning of these networks at rest has been demonstrated to explain 

individual variability in the brain’s response to stimuli, perceptual efficiency 

and IQ (Tavor et al., 2016; van den Heuvel, Stam, Kahn, & Hulshoff Pol, 

2009). As such there has been great interest in utilising functional 

connectivity in the study of patients with focal epilepsy. This is because focal 

epilepsy is now regarded by the International League Against Epilepsy 

(ILAE) as a “Network” disease where seizures arise within networks limited 

to one hemisphere (Berg et al., 2010).  

A large number of studies have reported network abnormalities in 

patients with focal epilepsy (Centeno & Carmichael, 2014). However, many 

studies were conducted without simultaneous EEG and therefore are not 

able to control for the confounding effects of Interictal Epileptiform 

Discharges (IEDs) which have a controversial relationship to cognition and 

clinical treatment (Aja-Fernández & Tristán-Vega, 2013).  

A number of recent studies have tried to estimate the network 

connectivity while controlling for the effects of IEDs (Iannotti et al., 2016; 

Shamshiri et al., 2016; Warren, Abbott, Vaughan, Jackson, & Archer, 2016) 

although their methodologies and samples differ. When studying the epileptic 

network itself it has been  concluded that the epileptic network was very 

highly connected even when IED related connectivity increases were 

controlled for (Iannotti et al., 2016). In contrast, when investigating  how IEDs 

affect ICNs associated with a natural stimulus (not at rest)  it was found that 

IEDs were a strong driver of abnormal ICN connectivity observed across 

heterogeneous groups of paediatric focal epilepsy patients (Shamshiri et al., 

2016).  

These results (Shamshiri et al., 2016) suggest a common mechanism 

by which IEDs may interact with ICNs regardless of epilepsy syndrome. This 

finding will be developed upon in this study by using a multivariate framework 

to separate the effect of IEDs on multiple ICNs at rest from the effects of 

IEDs on stimulus driven ICNs (Shamshiri et al., 2016). To explore the 
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common effects of epilepsy on the functional organisation of the brain FC will 

be measured in a sample of heterogeneous focal epilepsy patients at rest. 

This offers the potential to relate the effects of IEDs on FC to the majority of 

studies examining FC in epilepsy which were also conducted at rest 

(Centeno & Carmichael, 2014). One could identify the ICNs using 

Independent Component Analysis (Warren et al., 2016) but we chose to 

employ a factor analysis to identify ICNs as this methodology will be 

sensitive to the temporal disruption IEDs cause (Shamshiri et al, 2016) due 

to fact that the factor analysis directly decomposes the temporal correlation 

matrices.  Ultimately this portion of the study aims to determine the main 

ICNs in our data and ascertains whether they demonstrate a differing 

stationary pattern of FC. 

As previously stated epilepsy is characterised as a network disease 

(Berg et al., 2010) where the network can periodically display 

hypersynchrony (due to IEDs). However, it is unclear what the impact of 

differences in synchrony at the timescale of fMRI is. Furthermore, it is 

unknown whether the stationary measures of FC are associated with 

dynamic changes in synchrony. Therefore, in addition to determining any 

stationary changes in network connectivity, we also sought to examine if 

there were temporal differences in the dynamics of the observed networks. 

We will characterise the dynamic changes in synchrony by metastability (see 

Chapter 1, Eq 53) which directly measures the variability in phase synchrony 

over time. 

  This style of approach also has been applied previously in cases of 

Major Depressive Disorder, traumatic brain injury (Demirtas et al., 2016; 

Hellyer, Scott, Shanahan, Sharp, & Leech, 2015) and in predicting 

performance in narrative comprehension (Simony et al., 2016). This 

multivariate dynamical framework will allow us to explore whether the 

differences previously reported in stationary FC  in focal epilepsy (Iannotti et 

al., 2016; Shamshiri et al., 2016; Warren et al., 2016) are also associated 

with metastability  in children with epilepsy which has not previously been 

explored.  As such there were a number of research questions posed by this 

study 
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1. Are there common stationary FC differences observable at rest 

across ICNs in a heterogeneous sample of focal epilepsies? 

2. Are these stationary differences associated with IEDs 

3. Are ICN abnormalities associated with changes in 

metastability? 

6.2 Method 

6.2.1 Participants 

Fifty-one children with drug-resistant focal epilepsy undergoing 

assessment for surgery at Great Ormond Street Hospital (GOSH), London, 

United Kingdom were recruited for this study. Inclusion criteria for the study 

were: the presence of frequent IEDs on EEG and ages between 6 and 18. 

Exclusion criteria were: large structural lesions that prevent successful 

normalisation to group template space.  Forty six patients remained (see 

Table 4, Chapter 4). 21 volunteer controls also participated in the study age 

range 6–16 years old (mean 11.64). These included 11 females. Subjects 

were recruited through advertisements to GOSH staff webpages advertising 

participation. The study was approved by the UK national research ethics 

service (NRES 11/LO/1421). All participants/families provided informed 

consent and assent as appropriate. 

6.2.2 Data Acquisition 

We acquired simultaneous EEG-fMRI in a 1.5T Siemens Avanto 

scanner (Erlangen, Germany) at the Great Ormond Street Hospital MRI 

Department with a 12 channel receive coil. Subjects were fitted with a 

vacuum cushion during scanning to reduce head movement, and given 

headphones to dampen the noise from the MRI. Subjects were videoed 

inside the scanner with an MRI compatible camera (Nordic NeuroLabs, 

Bergen, Norway) interfaced with Brain Products recording software.  Scalp 

EEG was recorded with a 64-channel MR compatible cap (BrainAmp MR 

plus, Brain Products, Gilching, Germany). EEG data were band-pass filtered 

at 0.016 Hz–1 kHz, 16-bit digitalization (0.05 mV resolution) and the 

sampling rate was 5 kHz.  Subjects underwent four sessions of echo-planar 

imaging (EPI). The parameters of the experiment were as follows: a 

3.3x3.3x4 mm effective resolution with a field of view FOV =210 mm, TR = 
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2,160 ms, TE = 30 ms, flip angle = 75 degrees, number of slices = 30, slice 

thickness=3 mm, slice gap = 1 mm, ascending order 300 volumes (4 

sessions of 300). 

6.2.3 Paradigm 

During 2/4 fMRI sessions subjects were asked to rest with eyes 

closed and for the remaining two, to watch a video. Sessions of rest (eyes 

closed) and video were alternated with the first session randomly assigned to 

be a rest or video session. The first session of rest (eyes closed) was 

analysed in the current study. The first session was chosen as it was least 

likely to be contaminated by motion artefacts (see Chapter 4, Figure 14) and 

affected by issues such as vigilance or drowsiness.  In a separate study 

(Shamshiri et al., 2016) the video sessions were analysed and the video 

paradigm is described therein. Participants were either instructed to close 

their eyes and rest or asked to watch the video via the in-scanner 

headphones. Verbal responses and in-scanner video monitoring were used 

to verify that the subjects were following these instructions. 

6.2.4 Preprocessing 

Images were realigned to the first image in the series (after excluding 

the first 4 to account for T1 equilibrium effects).  FIACH (Tierney et al., 2016) 

was used to identify and correct for large amplitude signal changes (such as 

those due to spin history effects) and physiological noise. The subsequent 

images were then normalised to a T1 weighted MNI template at a resolution 

of 2x2x2mm3. The images were then smoothed using a Gaussian kernel of 

FWHM = 8mm. 

The realignment, normalisation and smoothing was performed with 

SPM12 (www.fil.ion.ucl.ac.uk). Nuisance regression was performed to further 

reduce the effects of motion and physiological noise by regression of the 6 

realignment parameters and the 6 physiological noise regressors produced  

by FIACH. The time series were then bandpass-filtered to within the range 

0.1- 0.01 Hz. The nuisance regression and band pass filter were performed 

using the FIACH package (Tierney et al., 2016). Mean time series were then 

extracted from 112 cortical and subcortical regions using the AAL atlas 

(Tzourio-Mazoyer et al., 2002). 
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6.2.5 Analysis 

6.2.5.1: Comparison of multivariate stationary connectivity between 

patient and control groups. 

 We constructed a correlation matrix for each individual by using all the 

seeds in the atlas. Each individual therefore had a 112x112 correlation 

matrix.  We then averaged the correlation matrices within groups to create a 

“Control” correlation matrix and a “Patient “correlation matrix. As we were 

interested in documenting how regions with shared temporal dynamics 

differed between groups we performed a factor analysis which aimed to 

maximise the temporal correlation within networks and reduced temporal 

correlation between networks.  A direct oblimin rotation was performed to 

assist in interpretation and to prevent brain regions heavily loading on one 

factor (this is because the rotation does not enforce that the resulting 

networks be orthogonal). The factor analysis was conducted using the Psych 

Package (Revelle, 2016) 

 

 The number of factors to extract was automatically determined using a 

parallel analysis (Glorfeld, 1995; Horn, 1965) which involves generating a 

null distribution of eigenvalues from randomly generated correlation matrices. 

Once the null data is generated any factors with eigenvalues greater than 

what would be expected from the null data are retained. This resulted in 14 

factors being selected for both groups. We were able to reconstruct a factor 

time course for each factor in each individual by post multiplying the factor 

loadings matrix by each individual’s seed matrix. We then had a total of 14 

factor time courses in each individual which allowed us to perform a standard 

seed to voxel connectivity analysis for each of the networks (Whitfield-

Gabrieli & Nieto-Castanon, 2012).  

 Seven networks were identified visually as corresponding to 

traditionally observed ICNs. These were the networks that we subsequently 

analysed. They consisted of the Primary Visual Network, Secondary Visual 

Network, Auditory Network, Motor, Default Mode, Left Fronto-Parietal and 

Right Fronto-Parietal. 

 Once each network was constructed in each individual a series of 

second level analyses (one for each network) were performed by performing 
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two sample t-tests using the fisher transformed correlation map as a 

summary statistic in SPM 12. Homogeneity of variance was not assumed 

and corrected for within the SPM framework. During the analysis a total of 18 

t-contrasts were constructed.  Therefore to appropriately control for multiple 

comparisons we divided the p-value obtained from SPM12 using RFT by 18 

to achieve a global FWE of p<.05. We further employed an arbitrary cluster 

extent threshold of 20 voxels. FWHM of the residuals were all greater than 4 

times the voxels size indicating an appropriate usage of Random Field 

Theory (see Chapter 5, Figure 19). 

6.2.5.2: Comparison of stationary connectivity between patient and 

control groups (controlling for the effects of IEDs). 

To control for the effects of IEDs we re-estimated the individual 

correlation maps. However, in this case we included the IEDs convolved with 

the canonical haemodynamic response function as well as its temporal and 

dispersion derivatives as confounds. This effectively amounts to calculating a 

partial correlation between the factor time course and the rest of the brain 

while partialling out the effect of IEDs. 

6.2.5.3: Comparison of multivariate dynamic connectivity between 

patient and control groups. 

To compare dynamic connectivity between groups we constructed 

phase synchrony time series per individual per network (Glerean, Salmi, 

Lahnakoski, Jääskeläinen, & Sams, 2012).  In brief, to construct the phase 

synchrony time series we calculated the phase of the Hilbert transformed 

bandpass filtered data within each network. Each network mask was defined 

as the intersection between the control and patient networks identified in the 

stationary connectivity analysis. We took the intersection to maintain a 

constant number of voxels contributing to the synchrony measure across 

groups.  

We then took the circular average (See Chapter 1, Eq 53) of all the 

time series within each network to create one time series per network 

reflecting the dynamic connectivity. The values of the time series ranged 

between 0 and 1 (with 0 representing no synchrony and 1 representing 

complete synchrony).  
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We then calculated the metastability of each network as a summary 

statistic to be compared between groups. This amounted to calculating the 

standard deviation of the phase time series. Intuitively the metastability 

reflects the rate of change of connectivity over time with larger values 

indicating greater variability in connectivity over time. We then compared the 

metastability between the patients and the controls using a Wilcoxon test for 

each network. The phase synchrony and metastability was calculated using 

custom scripts developed using the R programming language (R Core team, 

2015).   

6.3 Results 

6.3.1 Stationary Connectivity  

6.3.1.1 The Auditory Network. 

The network was visually identified as being the Auditory Network. There 

were no statistically significant differences identified between patient and 

control groups (see Figure 22)  

6.3.1.2 The Primary Visual Network 

The following network was visually identified as being the Primary 

Visual Network. There were no statistically significant differences identified 

between patient and control groups (see Figure 23). 

6.3.1.3 The Sensorimotor Network 

The following network was visually identified as being the Sensorimotor 

Network. There were no statistically significant differences identified between 

patient and control groups (see Figure 24). 

6.3.1.4 The Secondary Visual Network 

The following network was visually identified as being the Secondary Visual 

Network. There were no statistically significant differences identified between 

patient and control groups (see Figure 25). 

6.3.1.5 The Right Fronto-Parietal Network 

The following network was visually identified as being the Right Fronto-

Parietal Network. There were no statistically significant differences identified 

between patient and control groups (see Figure 26). 
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6.3.1.6 The Left Fronto-Parietal Network 

The following network was visually identified as being the Left Fronto-

Parietal Network (See Figure 27). In the contrast Controls>Patients there 

was one statistically significant difference in the right superior parietal cortex 

(MNI coordinate = 24,-64, 54). In the contrast Patients>Controls there were 5 

statistically significant differences: left inferior parietal (MNI coordinate = -40,-

60, 28), Medial Frontal (MNI coordinate = -2,-5, 26), Middle Temporal Gyrus 

(MNI coordinate = -65,-20, -11), Left Precuneus (MNI coordinate = -6,-54, 30) 

and Right Precuneus (8, -48, 24). 

 

6.3.1.7 The Default Mode Network 

The following network was visually identified as being the Default 

Mode Network (See Figure 28). In the contrast Controls>Patients there was 

1 statistically significant differences: The Superior Medial Frontal Gyrus (MNI 

Coordinate = 12, -56, 46) and right Middle Occipital Gyrus (MNI Coordinate = 

-4, 44, 22). In the contrast Patients>Controls there were 2 statistically 

significant differences: Right Precuneus (MNI Coordinate = 12, -56, 46) and 

right Middle Occipital Gyrus (MNI Coordinate = 40,-66,34). 
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Figure 22. The Auditory Network. Images are thresholded at FWE p<.05 and 

rendered on a normalised surface of the brain 
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Figure 23. Primary Visual Network. Images are thresholded at FWE p<.05 

and rendered on a normalised surface of the brain. 
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Figure 24. Sensorimotor Network. Images are thresholded at FWE p<.05 and 

rendered on a normalised surface of the brain. 
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Figure 25. Secondary Visual Network. Images are thresholded at FWE p<.05 

and rendered on a normalised surface of the brain. 
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Figure 26. Right Fronto-Parietal Network. Images are thresholded at FWE 

p<.05 and rendered on a normalised surface of the brain. 
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Figure 27. Left Fronto-Parietal Network. Images are thresholded at FEW 

p<.05 and rendered on a normalised surface of the brain.
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Figure 28.The Default Mode Network.Images are thresholded at FWE p<.05 

and rendered on a normalised surface of the brain. 
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6.3.2 The effects of IEDs on stationary connectivity 

6.3.2.1 Left Fronto-Parietal (controlling for IEDs) 

Having controlled for the effects of IEDs the contrast 

Controls>Patients  displayed there were 8 statistically significant differences:  

Left Inferior Frontal-Pars Triangularis (MNI coordinate = -42,38, 2), Left 

Precentral Gyrus (MNI Coordinate = -52, 6 ,26), Left Inferior Parietal(MNI 

Coordinate = -53 -46 ,44),Right Precentral Gyrus (64,14,16), Right Inferior 

Parietal(MNI Coordinate = -40 -44 ,46), Right Inferior Frontal-Pars 

Triangularis (MNI Coordinate = 44, 38,14). In the contrast Patients>Controls 

there were no statistically significant differences (See Figure 29). 

6.3.2.2 Default Mode Network (controlling for IEDs) 

Having controlled for the effects of IEDs the contrast 

Controls>Patients displayed 6 statistically significant differences:  The 

Anterior Cingulate (MNI Coordinate = -4, 42, 20), Left Caudate (MNI 

Coordinate = -12, 12, 14), Right Caudate (MNI Coordinate = 12, 14, 16), 

Right l inferior orbitofrontal Cortex (22, 16,-18), Left inferior Orbitofrontal 

Cortex (MNI Coordinate = 12, 14, 16). In the contrast Patients>Controls there 

were no statistically significant differences (See Figure 30). 

 

 

. 
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Figure 29. The Left Fronto-Parietal Network (Controlling For the effect of 

IEDs). Images are thresholded at FWE p<.05 and rendered on a normalised 

surface of the brain. 
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Figure 30. The Default Mode Network (Controlling for the effect of IEDs). 

Images are thresholded at FWE p<.05 and rendered on a normalised surface 

of the brain. 
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6.3.3 Dynamic Connectivity  

Wilcoxon rank sum tests were employed to assess if metastability 

varied between control and patient groups across each of the seven 

networks identified. The test statistics are summarised in Table 5. There were 

no statistically significant results identified. 

 

Network  Statistic (W) p 

Auditory 595 0.24 

Basal Ganglia 439 0.4032 

Default Mode 590 0.2672 

Lateral Visual 500 0.9639 

Left Fronto-parietal 548 0.5733 

Primary Visual 508 0.9639 

Right Fronto-parietal 496 0.9227 

Sensorimotor 549 0.5645 

Table 5. Metastability across ICNs. W refers to the test statistic of the 
Wilcoxon rank sum-test and p refers to the p-value associated with the 
statistic.  

6.4 Discussion 

6.4.1 Stationary Connectivity (not controlling for the effects of IEDs) 

 The multivariate Factor Analysis identified seven ICNs that were 

subsequently tested in a univariate fashion to establish the functional 

integrity of these networks. There were no differences observed in the 

sensory/ motor networks at rest in this study (Primary Visual, Secondary 

Visual, Auditory, Sensorimotor) regardless of whether the effects of IEDs 

were controlled for. This provides an interesting contrast to Shamshiri et al 

(2016) who demonstrated connectivity differences in the visual network in the 

same sample(under different experimental conditions). However the 

observed connectivity differences in Shamshiri et al (2016) were no longer 

present when the effects of IEDs were controlled for. 

 The key differences between the two studies is the fact that Shamshiri 

et al (2016) performed their experiment during a cognitively  low demand 

natural stimulus task whereas the current study was performed at rest (eyes 

closed).  This suggests a mechanism by which IEDs can interfere with the 



138 
 

brains functional organisation in a cognitive load dependent manner (i.e. the 

disruptive influence of IEDs increases with cognitive/behavioural demand). 

This should be caveated with the fact the difference in attentional load 

between rest and natural stimulus watching has not been determined and is 

not generalizable to other ICNs without the construction of tasks designed to 

probe the function of those networks. That being said it has previously been 

suggested in the field of transient cognitive impairment that less 

cognitively/behaviourally demanding actions are less susceptible to the 

performance impairment associated with IEDs (Aarts, Binnie, Smit, & 

Wilkins, 1984). 

 Interestingly, the patient group initially displayed greater connectivity 

between the left fronto-parietal network and the default mode network 

(medial frontal, precuneus and inferior parietal: Figure 27) while displaying 

reduced connectivity in the superior parietal cortex. This is also in line with 

previous work which has found greater inter-network connectivity and 

reduced intra-network connectivity in epilepsy patients (Ibrahim et al., 2014; 

Warren et al., 2016). 

 The results in the default mode network are perhaps less in line with 

previous work as increased intra-network connectivity was brain area specific 

(with the precuneus displaying increased connectivity and the medial frontal 

displaying reduced connectivity). However, as these results have not 

controlled for the effects of IEDs they should be interpreted with caution due 

to the substantial effects IED can have on network connectivity (Shamshiri et 

al., 2016) 

6.4.2  Stationary Connectivity (controlling for the effects of IEDs) 

 Once the effects of IEDs were controlled for a number of changes 

were observed. Interestingly we no longer noted increased network 

connectivity between the Fronto-parietal network and the default mode 

network (see Figure 27).  Instead a pronounced reduction in connectivity 

within the left fronto-parietal network was observed (see Figure 29). The 

regions affected included the bilateral inferior frontal gyrus, inferior parietal 

and precentral gyrus. These areas comprise the key brain nodes for 

expression of language (Price, 2012). This is perhaps unsurprising as it has 

been previously noted that the ventral language network is particularly at risk 
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of functional disruption in children with focal epilepsy (Croft et al., 2014). 

  Once the effects of IEDs had been controlled for in the default mode 

network (Figure 30) the initially observed increased patient connectivity was 

no longer apparent. Instead only decreased patient connectivity was 

observed. This decreased connectivity was apparent in the anterior cingulate 

and the medial frontal cortex (both nodes of the default mode network) 

bilaterally in the caudate and bilaterally in the inferior orbitofrontal cortex. 

Interestingly, the clusters in the orbitofrontal cortex are situated just anterior 

to the junction of the temporal and frontal lobes (the piriform cortex).  

It has been postulated in humans that the anterior portion constitutes 

the “area tempestas” which is not anatomically defined but functionally 

defined as an area in the piriform cortex that can be easily chemically 

manipulated to produce seizures (Piredda & Gale, 1985; Vaughan & 

Jackson, 2014). It can also be defined functionally due to this brain regions 

role in olfaction (Wiesmann et al., 2006). We therefore include an image from  

a study on olfaction (Wiesmann et al., 2006) as a reference point for the 

definition of piriform cortex (See Figure 31). 

The simultaneous change in caudate function is also not surprising as 

both the piriform cortex and the caudate are often the first sites to experience 

cell damage following status epilepticus (Vaughan & Jackson, 2014) and the 

FC of the caudate has previously been associated with IEDs (Shamshiri et 

al., 2016). The fact that the current cohort were not in status but producing 

IEDs is interesting as it suggests that even mild epileptic events are 

associated with increased connectivity of highly epileptogenic zones with the 

default mode network. 

  

Figure 31. Regions of reduced connectivity in the priform cortex.  (a) The t-

(a) (b) 
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contrast of patients > controls for the Default Mode Seed thresholded at 

p<.05 FWE on a normalised T1-weighted template in MNI space. (b) 

Combined anatomical and functional definition of piriform cortex (Wiesmann 

et al., 2006, reproduced with permission) as a comparison for localisation of 

piriform cortex. 

Previous work has demonstrated IEDs across focal epilepsies activate 

this region (Fahoum, Lopes, Pittau, Dubeau, & Gotman, 2012; Flanagan, 

Badawy, & Jackson, 2014; Laufs et al., 2011). However the exact region is 

not consistent between studies with some activations being more temporal 

and some being frontal. However, this is the first demonstration in a 

paediatric population and the first to explore how the brain’s connectivity to 

these regions may be altered by the occurrence of IEDs. The fact that these 

regions (caudate and piriform have increased connectivity to the DMN when 

IEDs occur is of significance as it could suggest a mechanism by which 

propagation of IEDs to other networks occur. Alternatively it could suggest 

that IEDs occur preferentially when there is a particular connectivity state 

where the DMN is connected to the piriform and caudate.  

6.4.3 Contrast between stationary and dynamic connectivity. 

In contrast to the stationary connectivity no statistically significant 

differences were observed in the dynamic connectivity. There are a number 

of possible reasons for this to occur. Firstly we may be underpowered to 

detect the effect. However, if that is the case the effect size is most likely 

small. Another possibility is that the sample is simply too heterogeneous and 

that sub-group analysis may be more sensitive. Another possibility is that 

fMRI is not appropriate for detecting neural dynamics (Laumann et al., 2016). 

However, this is in contrast to other studies which have produced 

theoretically plausible results (Demirtas et al., 2016; Hellyer et al., 2015). The 

last explanation is that there simply is no appreciable difference in dynamic 

connectivity between patients and focal epilepsy and controls. If this is the 

case it suggests that the disease process and IEDs can produce abnormal 

connectivity but ICN dynamics, at least on the timescale measureable by 

fMRI, are normal. 
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6.4.4 Limitations 

Subjects were recruited for the purpose of establishing the utility and 

feasibility of unsedated simultaneous EEG-fMRI in children (Centeno et al., 

2016). As such subjects were selected from the population of focal epilepsy 

patients undergoing surgical evaluation. As such the conclusions of this 

study do not necessarily generalise to all of focal epilepsy but instead to 

those where the disease is severe enough to warrant surgical intervention. 

 The second limitation concerns the choice to study a heterogeneous 

population. This decision results in reduced power to detect effects that may 

be specific to sub-populations of children with focal epilepsy. However, the 

increased numbers of subjects that this approach results in offers increased 

power to detect effects that are common across focal epilepsies. This may 

offer insight into important issues such as common mechanisms of cognitive 

impairment or IED/seizure propagation. 

 Lastly all subjects were taking a variety of medications at the time of 

scanning which we were not able to control for in this analysis.  

6.5 Conclusion 

 We have developed upon previous work that has identified IEDs as an 

important contributor to stimulus driven functional connectivity. We have 

extended these findings using a multivariate data driven framework to a 

heterogeneous population of focal epilepsy patients at rest. We have 

identified the FC of the default mode network and the expressive language 

network as being associated with changes in IEDs. We found no evidence 

that these differences are associated with sustained abnormal neural 

dynamics as measured by metastability. Interestingly IEDs were associated 

with increased connectivity of the piriform cortex and caudate to the default 

mode network. This effect appears quite general as the focal epilepsy 

population studied was quite heterogeneous. Moreover this suggests a 

canonical mechanism by which focal epileptic activity may involve intrinsic 

connectivity networks in humans via regions of high connectivity (caudate) 

and epileptogenicity. 
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7. Conclusions and Future Research 
This thesis sought to develop and apply fMRI in the context of 

paediatric focal epilepsy. This posed a number of challenges, the first being 

subject motion. In Chapter 3 we have demonstrated that the effects of motion 

can be controlled for in tasks that involve overt speech in children. This is an 

area of crucial importance because the ability to map the areas of the brain 

responsible for speech production is crucial to optimising surgical procedures 

in children with focal epilepsy. To achieve this biophysical model named 

FIACH was developed in order to identify spurious signal changes in fMRI 

data that are associated with motion. This model has been implemented at 

Great Ormond Street Hospital to optimise the mapping of language function 

in children with focal epilepsy demonstrating immediate translation.  

However the model’s impact has not been specific to paediatric focal 

epilepsy.  It has been used to improve data quality in acquisitions with limited 

signal to noise ratio such as simultaneous intracranial EEG-fMRI, 

simultaneous stimulation-intracranial EEG-fMRI and fMRI studies in healthy 

adults studying the function of the inferior temporal lobe. It has also been 

used to study drug-naïve paediatric patients with generalised epilepsy. It has 

even been applied to the study of memory function in individuals with 

Alzheimer’s.  

Despite the success of the model’s application it is not an ideal 

correction method for the effects of motion. If a motion event causes a signal 

change that has magnitude similar to a normal BOLD response it will not be 

corrected. This means there will still be many motion related signal changes 

in the data. However there will not be any signal changes capable of radically 

biasing parameter estimation. Ideally data should be acquired at the best 

quality possible. This has become more feasible due to the advent of 

prospective motion correction (PMC) systems which dynamically track 

motion at incredibly high temporal resolution (80fps) and subsequently 

update the scanner gradients in real time to improve the data quality. A 

comparison of parameter estimation using FIACH vs PMC would ideally 

clarify what motion events FIACH can and cannot correct.  
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A subsequent issue is the bias that FIACH introduces to the 

estimation of the standard error of the t-statistic. To calculate the standard 

error of the t-statistic the degrees of freedom must be known. However, 

FIACH essentially functions as a non-linear filter which reduces the degrees 

of freedom by replacing motion corrupted time points with values from an 

interpolation procedure. Ideally this should be accounted for. This could be 

possible if multiple imputation was performed (a statistical technique 

designed to address the issue of “missing data”). However, the development 

of this method in the context of fMRI was not pursued during the course of 

this PhD. 

 To address the issue of physiological noise in fMRI in chapter 3 we 

have extended FIACH to identify areas of the brain with high blood volume 

(large vessels) which contribute substantially to physiological noise. Having 

automatically identified these areas we model their effects on the fMRI time 

series using principal components analysis to derive a parsimonious model. 

This model was validated in a comparison with six other methods of 

retrospective noise control. However the model is not specific to identifying 

areas of high blood volume capable of producing physiological noise. There 

are a number of other factors that can contribute to large changes in signal 

variance in fMRI. Most notably increased Iron content in the basal ganglia 

would elevate signal variance. Ideally the model should be adapted to be 

more specific to identifying areas of high blood volume.  

The issue of quality assurance in the application of simultaneous 

EEG-fMRI is an important one.  In Chapter 4 we have identified what metrics 

can and cannot predict clinical utility (defined here as obtaining a localisation 

of the presumed epileptogenic zone) of simultaneous EEG-fMRI before the 

analysis is performed. We were able to identify design efficiency as an 

important predictor of clinical utility. We have also quantified the reduction in 

subject motion that can be achieved by utilising a natural stimulus (cartoon 

watching) without reducing epileptic discharge rate. Both of these results are 

important due to their impact in the clinical and research setting. Firstly, in 

the research setting statistical power can be realistically determined prior to 

analysis by calculating design efficiency. In the clinical setting we can display 
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low level stimuli with confidence knowing that compliance can be improved 

without the risk of reducing epileptic activity and thus negatively affecting 

statistical power.   

In chapter 4 it was noted that Bonferroni correction was always a 

more sensitive correction for multiple comparisons than Random Field 

Theory (RFT). Therefore in chapter 5 we characterised sensitivity when RFT 

is employed to analyse fMRI data. Furthermore this sensitivity issue was 

found to be a widespread problem in the current literature and largely reflects 

poor understanding of the current methods utilised for statistical analysis of 

fMRI data. We provide simulations that can be used to determine the 

parameters necessary to avoid this loss in sensitivity and to identify regimes 

in which the parametric methods should and should not be used.  

Future work will centre on trying to develop Random Field Theory in 

the regimes identified in this thesis where its application resulted in poor 

sensitivity (low smoothness). This will be important for clinical studies 

utilising fMRI as it means that optimal sensitivity will be achieved for 

identifying the epileptogenic zone or mapping the brain areas responsible for 

speech and language. Furthermore this work will also be extended to 

examine high resolution fMRI where the high levels of smoothness required 

by RFT are not plausible to achieve. 

 Finally, in chapter 6 having focused heavily on data quality and 

statistical analysis throughout the thesis, we were capable of characterising 

how the brain’s functional organisation at rest is influenced by the occurrence 

of Interictal Epileptiform Discharges (IEDs) in paediatric focal epilepsy.  A 

novel finding was that the piriform cortex (an epileptogenic trigger zone) and 

caudate (an area of high connectivity) were commonly found to increase their 

functional connectivity to the Default Mode Network (DMN) as a function of 

IEDs. This suggests a common basis for the widespread effects of focal IEDs 

from different brain regions whereby the DMN and epileptic network appear 

to interact via the piriform cortex and caudate.   

 Ultimately this thesis outlines the challenges faced when one attempts 

to apply fMRI in the context of paediatric focal epilepsy. However, this thesis 



149 
 

also provides methods/practical advice to address these challenges. This 

thesis therefore highlights the potential of applying fMRI in the context of 

paediatric focal epilepsy despite the challenges faced.   

 

 

 


