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Abstract

In this paper we will discuss different coupling methods suitable for use in the framework of the

recently introduced CutFEM paradigm, cf. Burman et al. [6]. In particular we will consider mortaring

using Lagrange multipliers on the one hand and Nitsche’s method on the other. For simplicity we will

first discuss these method in the setting of uncut meshes, and end with some comments on the extension

to CutFEM. We will, for comparison, discuss some different types of problems such as high contrast

problems and problems with stiff coupling or adhesive contact. We will review some of the existing

methods for these problems and propose some alternative methods resulting from crossovers from the

Lagrange multiplier framework to Nitsche’s method and vice versa.

1 Introduction

Recently there has been increased interest in unfitted finite element for the imposition of boundary condi-

tions or more generally for the coupling of physical systems over an interface. The unfitted discretization

is then made as independent as possible of the geometric description of interfaces and domain bound-

aries in order to minimize the complexity of mesh generation. One such method is the Cut Finite Element

Method (CutFEM) [6], the goal of which is to retain the accuracy and robustness of a standard finite el-

ement method. To reach this aim, stabilization techniques are applied to make both the accuracy of

the approximation and the system condition number independent of the mesh/boundary intersection and

physical parameters. Thanks to this robustness of the discretization, powerful linear algebra techniques

developed for finite element methods are made available for solving the linear systems obtained by the

CutFEM discretization.

In the CutFEM approach the boundary of—or interfaces in—a given domain is represented on a

background grid, e.g., using a level set function, and the background grid is also used to discretize the

governing partial differential equations. CutFEM builds on a general finite element formulation for the

approximation of partial differential equations, in the bulk and on surfaces (interfaces or boundaries),

that can handle elements of complex shape and where boundary and interface conditions are built into

the discrete formulation. CutFEM requires only a low-quality, even non-conforming, surface mesh rep-

resentations of the computational geometry, thus mitigating mesh generation work.

Unfitted methods typically use either Lagrange multipliers or Nitsche’s method for the mortaring on

interfaces or boundaries and it has been shown that Nitsche’s method can be derived from a stabilized

Lagrange muliplier method, due to Barbosa and Hughes [2] after static condensation of the multiplier

[27, 23], cf. Section 2.2.

Another, fluctuation based, stabilization of the Lagrange multiplier was proposed in [10] and further

developed in the works [9, 5, 3] and also [25] of this collection. For this type of methods the multiplier

typically may not be eliminated, which can be a disadvantage; however, in some situations it is desirable

to define the multiplier on a different space anyway.

Regardless of the relative virtues of the two approaches it is interesting to compare them and see how

developments for one type of methods can be exploited in the context of the other. Similarly as in [27] we

will here be interested in deriving methods using Lagrange multipliers and then recover the associated

Nitsche method by formal elimination of the multiplier. However in our case we will base the discussion
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on the concept of augmented Lagrangian methods, which has recently been successfully applied in the

context of contact problems using Nitsche’s method [16, 17] and Lagrange multipliers [12].

The idea behind the augmented Lagrangian is to add a least squares term on the constraint to the

Lagrangian functional of the constrained optimization problem on the discrete level. Provided this mod-

ification is not too strong it is expected to improve the conditioning as well as improving the control of

the constraint compared to the case where only the multiplier is used to enforce the constraint. For early

work on augmented Lagrangian methods in computational methods for partial differential equations we

refer to Glowinski and le Tallec [20] or Fortin and Glowinski [19]. However, in cases where the problem

depends on physical parameters that have some singular behavior, the augmented Lagrangian can lead

to a severely ill-conditioned problem. This is typically the case for problems with high contrast in the

diffusivity or strongly bonded adhesive problems. The ill-conditioning results from the fact that in the

singular limit the least squares term on the constraint blows up, leading to ill-conditioning and also lock-

ing, unless the mesh-size is small enough to resolve the singularity. In many problems such a resolution

is unfeasible and it is then useful to relax the size of the least squares term. This idea has been implicitly

used in a number of works, starting with the paper [22] on debonding problems using Nitsche’s method

on unfitted meshes and then further developed for free flow porous media coupling in [8] and boundary

conditions in [24]. A recent inventive use of this framework was proposed in [18] where it was applied

to coupling schemes in fluid-structure interaction. All of these works are concerned with Nitsche type

formulations.

Nevertheless there seems to have been no attempts at exploring these ideas directly in the framework

of augmented Lagrangian methods. Our main objective in this paper is to study some model problems,

exhibiting the typical parameter dependent behaviour, in the framework of augmented Lagrangian meth-

ods.

The idea is to first revisit the imposition of boundary conditions with Lagrange multipliers and

Nitsche’s method. Then we consider three different situations of domain decomposition. Here we as-

sume that the problem is set on a domain Ω with two systems, defined in the subdomains Ω1 and Ω2, that

are coupled over a smooth boundary Γ. For simplicity we consider Poisson type problems and do not

discretize the boundary Γ, that is, we consider the semi-discretized setting. The discussion can easily be

extended to for instance compressible elasticity. We will consider the following three model problems:

1. general boundary conditions;

2. Poisson’s equation with high contrast in the diffusion coefficient;

3. debonding and adhesive contact.

First, in Section 2, we will recall, for an uncut mesh with Dirichlet boundary conditions, how least

squares stabilized Lagrange multiplier methods lead to Nitsche’s method following [27], and show how,

alternatively, the augmented Lagrangian approach leads to the same formulation. Then, in Sections 3–

5 we consider the three different model problems in the augmented Lagrangian framework and derive

robust Nitsche methods as well as robust Lagrange multiplier methods, still formulated on uncut meshes.

Some of the proposed methods appear to be new, whereas others are known in the literature and we will

discuss existing results for the methods and without going into technical details we will speculate on

what results are likely to carry over to the cases considered herein. In Section 6, we round off with some

remarks considering the extension to cut finite element meshes, in particular with respect to stabilization

of the discrete system, and, finally, in Section 7, we give a numerical example for one of the model

problems.

2 Derivations of Nitsche’s method from Lagrange multipli-

ers

2.1 Model problem

Let us first consider the typical Poisson model problem of finding u such that

−∆u = f in Ω, u = g on Γ := ∂Ω, (1)

where Ω is a bounded domain in two or three space dimensions, with outward pointing normal n, and f

and g are given functions. For simplicity, we shall assume that Ω is polyhedral (polygonal). The typical
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way of prescribing u = g on the boundary is to pose the problem (1) as a minimization problem with side

conditions and seek stationary points to the functional

L (v,µ) :=
1

2
a(v,v)−〈µ,v−g〉Γ − ( f ,v)Ω, (2)

where

( f ,v)Ω :=
∫

Ω
f vdΩ, a(u,v) :=

∫

Ω
∇u ·∇vdΩ, 〈µ,v−g〉Γ :=

∫

Γ
µ(v−g)ds.

The stationary points are given by finding (u,λ ) ∈ H1(Ω)×H−1/2(Γ) such that

a(u,v)−〈λ ,v〉Γ = ( f ,v) ∀v ∈ H1(Ω), (3)

〈µ,u〉Γ = 〈µ,g〉Γ ∀µ ∈ H−1/2(Γ). (4)

As is well known, the discretization of this problem requires balancing of the discrete spaces for the

multiplier λ and the primal solution u in order for the method to be stable, for examples cf. [4]. In the

following we shall not consider balanced (inf-sup stable) discrete methods but instead focus on stabilized

methods.

2.2 Nitsche’s method as a stabilized multiplier method

Formally, the Lagrange multiplier in (3) is given by λ = ∂nu, where ∂nv := n ·∇v, and a well known

stabilization method [2] for the discretization of (3)–(4) to is to add a term penalizing the difference

between the discrete multiplier and the discrete normal derivative of the primal solution. To this end, we

assume that Th is a conforming shape regular meshe on Ω, consisting of triangles T and define Vh as the

space of H1–conforming piecewise polynomial functions on T ,

Vh := {vh ∈ H1(Ω) : vh|T ∈ Pk(T ), ∀T ∈ T }, for k ≥ 1.

As discrete space for the multiplier, we define the trace mesh on Γ as the set Fh of element faces F on Γ

and set

Λh := {qh ∈ L2(Γ) : qh|F ∈ Pl(F), ∀F ∈ F}, for l ≥ 0.

Then we seek (uh,λh) ∈Vh ×Λh such that

a(uh,v)−〈λh,v〉Γ −〈µ,uh〉Γ −
1

γ0
〈h(λh −∂nuh),µ −∂nv〉Γ = ( f ,v)−〈µ,g〉Γ (5)

for all (v,µ) ∈Vh×Λh. Here h is the meshsize of the trace mesh on Γ, interpreted as a piecewise constant

function along Γ and γ0 is a number to be chosen sufficiently large to obtain a stable method. Following

Stenberg [27] we now let Ph : L2(Γ)→ Λh denote the L2–projection, and considering Λh to be a space of

discontinuous discrete multipliers, continuous inside each face F of the Lagrange multiplier mesh on Γ,

we can eliminate the multiplier from (5):

λh|E = Ph∂nuh|E − γ0h−1Ph(uh −g)|E ∀E. (6)

Now considering the limiting case of Λh → L2(Γ) we see that

λh → ∂nuh − γ0h−1(uh −g)

and we can reintroduce this multiplier into our stabilized method, replacing also µ by ∂nv− γ0h−1vh, to

obtain the problem of finding uh ∈Vh such that

a(uh,v)−〈∂nuh,v〉Γ −〈∂nvh,uh〉Γ + γ0

〈

h−1uh,v
〉

Γ
= L(v) ∀v ∈Vh, (7)

where

L(v) := ( f ,v)−〈∂nv,g〉Γ + γ0

〈

h−1v,g
〉

Γ

which is Nitsche’s method [26].
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2.3 Nitsche’s method as an augmented Lagrangian method

The other approach to deriving Nitsche’s method from Lagrange multipliers is more in the vein of

Nitsche’ original paper [26] where the method was derived from a discrete minimization problem with-

out multipliers. The Lagrangian in (2) on the discrete spaces is augmented by a penalty term mutliplied

by γ ∈ R
+ so that we seek stationary points to

L (v,µ) :=
1

2
a(v,v)−〈µ,v−g〉Γ +

1

2
‖γ1/2(v−g)‖2

Γ − ( f ,v)Ω, (8)

leading to the problem of finding (u,λ ) ∈ H1(Ω)×H−1/2(Γ) such that

a(u,v)−〈λ ,v〉Γ + 〈γ u,v〉Γ −〈µ,u〉Γ = ( f ,v)Ω + 〈γ g,v〉Γ −〈µ,g〉Γ

for all (v,µ) ∈ H1(Ω)×H−1/2(Γ). Choosing now in the discrete case λh := ∂nuh, µ = ∂nv, and γ =
γ0h−1 we recover (7). It should be noted that augmented Lagrangian methods are not in general inf-sup

stable; typically an unstable method remains unstable and the augmentation rather serves the purpose of

strengthening a method where the side condition is too weakly enforced. It is therefore rather remarkable

that in the particular case where the discrete multiplier is replaced by the discrete normal derivative, the

augmentation always works as a stabilization mechanism, see also the discussion in [5].

An important feature of the augmented Lagrangian approach is that it directly carries over to the case

of inequality constraints, as first shown by Chouly and Hild in the context of elastic contact [16]. In our

model problem we replace the constraint u = g on Γ by an inequality constraint u−g ≤ 0 on Γ. We then

have the following Kuhn–Tucker conditions on the multiplier and side condition:

u−g ≤ 0, λ ≤ 0, λ (u−g) = 0. (9)

The key to incorporating these conditions into the augmented Lagrangian scheme, as pioneered by Alart

and Curnier [1], is to make the observation that (9) is equivalent to

λ =−γ [u−g− γ−1 λ ]+ and u−g = [u−g− γ−1 λ ]− (10)

where γ ∈ R
+, [x]± =±max(±x,0), cf. [16]. Denoting Pγ(u,λ ) := γ (u−g)−λ we see that

λ =−[Pγ(u,λ )]+ = [Pγ(u,λ )]−−Pγ (u,λ ). (11)

We then formally write the augmented Lagrangian, similar to (8), but using the second relation in (10)

for the contact constraint,

L (v,µ) :=
1

2
a(v,v)−〈µ,v−g− [v−g− γ µ]−〉Γ

+
1

2
γ‖v−g− [v−g− γ−1 λ ]−‖

2
Γ − ( f ,v)Ω. (12)

Observe that this naive formulation is not differentiable, so of little practical use. Our aim is now to

propose a modified Lagrangian that is consistent with (12), but smoother. We use the relations (9) for

the modifications, in order not to perturb the stationary points. The modifications must also respect the

saddle point structure of the system. First observe that by the two relations of (10) the stationary point

must satisfy 〈µ, [v−g− γ µ]−〉Γ = 0, using this in the second term in the right hand side of (12) and

developing the square of the third term we obtain

L (v,µ) :=
1

2
a(v,v)−〈µ,v−g〉Γ +

1

2
γ‖v−g‖2

+
1

2
γ−1‖[Pγ (u,µ)]−‖

2
Γ −

〈

(v−g), [Pγ (u,µ)]−
〉

Γ
− ( f ,v)Ω.

We then use that the stationary point must satisfy the second relation of (10) implying that

〈

(v−g), [Pγ (u,µ)]−
〉

Γ
= γ−1‖[Pγ(u,µ)]−‖

2
Γ

resulting in

L (v,µ) :=
1

2
a(v,v)−〈µ,v−g〉Γ +

1

2
γ‖v−g‖2

−
1

2
γ−1‖[Pγ(u,µ)]−‖

2
Γ − ( f ,v)Ω.
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This formulation is differentiable and the corresponding Euler-Lagrange equations read

a(u,v)−〈λ ,v〉Γ + 〈γ u,v〉Γ −〈µ,u〉Γ

− γ−1 〈[γ(u−g)−∂nu]−,γ v−µ〉Γ = ( f ,v)Ω + 〈γ g,v〉Γ −〈µ,g〉Γ .

Choosing now in the discrete case λh := ∂nuh and µ = ∂nv results in a formulation that equals (7) up to

a nonlinear perturbation: we seek uh ∈Vh such that

a(uh,v)−〈∂nuh,v〉Γ −〈∂nvh,uh〉Γ + 〈γuh,v〉Γ

− γ−1 〈 [γ(uh −g)− ∂nuh]−,γ v−∂nv〉Γ = L(v) ∀v ∈Vh, (13)

where

L(v) := ( f ,v)−〈∂nv,g〉Γ + γ 〈v,g〉Γ

for all v ∈Vh.

To see the equivalence of this formulation with that introduced by Chouly and Hild [16] we once

again use the relation (11) to write

− γ−1 〈 [γ(uh −g)− ∂nuh]−,γ v−∂nv〉Γ =

−
〈

[Pγ(u,∂nu)]−−Pγ (u,∂nu),v− γ−1∂nv
〉

Γ
−
〈

Pγ(u,∂nu),v− γ−1∂nv
〉

Γ

=
〈

[Pγ(u,∂nu)]+,v− γ−1∂nv
〉

Γ
−
〈

Pγ(u,∂nu),v− γ−1∂nv
〉

Γ
.

Applying this relation in the last term of the left hand side of (13) and simplifying results in we seek

uh ∈Vh such that

a(uh,v)+
〈

γ [uh −g− γ−1 ∂nuh]+,v− γ−1 ∂nv
〉

Γ
−
〈

γ−1 ∂nuh,∂nv
〉

Γ
= ( f ,v), (14)

for all v ∈ Vh. With the choice γ = γ0/h (14) precisely coincides with the nonlinear Nitsche method

proposed by Chouly and Hild [16]. This variational problem corresponds to stationarity of the Lagran-

gian

L (v,µ) :=
1

2
a(v,v)+

1

2
‖γ1/2[v−g− γ−1µ]+‖

2
Γ −

〈

γ−1µ,µ
〉

Γ
− ( f ,v)Ω,

cf. [1].

In the following we shall explore how the augmented Lagrangian approach can be used in different

situations.

3 Poisson’s equation with general boundary conditions

We first consider the simple case of imposing general boundary conditions in a finite element method

with the mesh fitted to the boundary. Following [24] we consider the model problem

−∇ · (ε∇u) = f in Ω (15)

ε∂nu = κ−1(u0 −u)+g on Γ = ∂Ω, (16)

where ε , u0, and κ are given functions of sufficient regularity. The problem can be equivalently formu-

lated as the stationary points of the Lagrangian

L (v,µ) :=
1

2
a(v,v)−〈µ,v〉Γ −

1

2
κ‖µ2‖Γ − ( f ,v)Ω + 〈(u0 +κg),µ〉Γ .

where

a(u,v) := (ε∇u,∇v)Ω.

The augmented Lagrangian is obtained by adding a scaled least squares term on the constraint. This

leads to

L (v,µ) :=
1

2
a(v,v)−〈µ,v〉Γ −

1

2
κ‖µ‖2

Γ

+
1

2κ
‖κµ +v−u0 −κg‖2

Γ − ( f ,v)Ω + 〈(u0 +κg),µ〉Γ . (17)
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Developing the square of the least squares contribution leads to the elimination of the multiplier and the

form

L (v) := a(v,v)−
1

2κ
‖v‖2

Γ − ( f ,v)Ω −
〈

(κ−1u0 +g),v
〉

Γ
. (18)

The corresponding optimality system is the standard weak formulation of the Robin problem: find u ∈
H1(Ω) such that

a(u,v)+κ−1 〈u,v〉Γ = ( f ,v)Ω +
〈

(κ−1u0 +g),v
〉

Γ
, ∀v ∈ H1(Ω). (19)

Restricting the formulation to finite dimensional spaces results in the finite element formulation: find

uh ∈Vh such that

a(uh,vh)+κ−1 〈uh,vh〉Γ = ( f ,vh)Ω +
〈

(κ−1u0 +g),vh

〉

Γ
. (20)

We see that as the “compliance” κ → 0, u|Γ → u0, implying a Dirichlet condition in the limit and as

κ → ∞ we recover the weak formulation for the Neumann problem with ε∂nu|Γ = g. As was pointed out

in [24] the corresponding linear system becomes ill-posed if κ << h. As a remedy for this we will temper

the coefficient in front of the least squares term in the augmented Lagrangian. Indeed if we introduce

Sh = (κ +h/γκ )
−1,

where γκ is a free parameter, and use this as coefficient, we obtain the augmented Lagrangian

L (v,µ) :=
1

2
a(v,v)−〈µ,v〉Γ −

1

2
κ‖µ‖2

Γ

+
Sh

2
‖κµ +v−u0 −κg‖2

Γ − ( f ,v)Ω −〈(u0 +κg),µ〉Γ . (21)

The cancellations that led to the previous simple optimality system will not take place this time as the

moderated parameter Sh will prevent the system from becoming too stiff. Deriving we find the following

optimality system

a(u,v)−〈(1−κSh)λ ,v〉Γ −〈(1−κSh)µ,u〉Γ

−〈κ(1−Shκ)λ ,µ〉Γ + 〈Shu,v〉Γ =

( f ,v)Ω + 〈(u0 +κg),(1−Shκ)µ +Shv〉Γ . (22)

Using this formulation in a finite element method with a pair Vh ×Λh that satisfies the inf-sup condition

leads to a robust and accurate method. Formally replacing λ by ε∂nu and µ by ε∂nv and writing the form

on the finite space Vh yields the method: find uh ∈Vh such that

a(uh,vh)−〈(1−κSh)ε∂nuh,vh〉Γ −〈(1−κSh)ε∂nvh,uh〉Γ

−〈κ(1−Shκ)ε∂nuh,ε∂nvh〉Γ + 〈Shuh,vh〉Γ

= ( f ,vh)Ω + 〈(u0 +κg),(1−Shκ)ε∂nvh +Shvh〉Γ . (23)

We identify the Nitsche method proposed in [24] and conclude that their analysis is valid for uh if the

parameter γκ is chosen large enough. Observe that the Lagrange multiplier formulation (22), which

appears to be new, also varies robustly between a Neumann and a Dirichlet condition in the two limits,

without succumbing to the ill-conditioning in the limits of high or low κ . We note in passing that

sometimes the multiplier method can have advantages compared to Nitsche’s method, in particular if

fields defined on different meshes must be coupled, see for instance [10].

4 FEM for Poisson’s problem with discontinuous coefficients

We are interested in the following problem: find ui : Ωi 7→ R, i = 1,2, such that

−∇ · εi∇ui = f in Ωi, i = 1,2 (24)

ui = 0 on ∂Ω∩Ωi i = 1,2 (25)

[[ε∂nu]] = g on Γ := ∂Ω1 ∩∂Ω2 (26)

[[u]] = 0 on Γ. (27)
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We use the notation u = (u1,u2) ∈V1 ×V2 with the continuous spaces

Vi =
{

vi ∈ H1(Ωi) : ∂vi/∂ni ∈ L2(Γ), vi|∂ Ω∩∂ Ωi
= 0

}

, i = 1,2.

Then [[u]] denotes the jump of u over Γ defined as

[[u]] := lim
ε→0+

u(x− εn)−u(x+ εn)

for x ∈ Γ and n denoting the normal on Γ pointing from Ω1 to Ω2. The diffusion coefficients εi, i = 1,2,

are assumed to be constant functions. We will also use the weighted averages

{{u}}w := lim
ε→0+

(w1u(x− εn)+w2u(x+ εn))

and

〈〈u〉〉w := lim
ε→0+

(w2u(x− εn)+w1u(x+ εn))

where w1, w2 ≥ 0 are positive weights such that w1+w2 = 0. This problem can be shown to be equivalent

to finding (u,λ ) ∈ H1(Ω1 ∪Ω2)×H− 1
2 (Γ), the saddle point of the constrained minimization problem

defined by the Lagrangian

L (v,µ) :=
1

2
a(v,v)+ 〈µ, [[v]]〉− 1

2
, 1

2
,Γ − ( f ,v)Ω −〈g,〈〈v〉〉w〉Γ .

where now

a(u,v) := (ε∇u,∇v)Ω1∪Ω2
.

Thus, (u,λ ) fulfills

L (u,λ ) = inf
v∈V

sup
µ∈Λ

L (v,µ). (28)

We also know that for the exact solution there holds λ = −{{ε∇u · n}}w, for any admissible weights

w1,w2.

To formulate a discrete method, we suppose that we have regular finite element partitionings T i
h

of

the subdomains Ωi into shape regular simplexes. These two meshes have corresponding trace meshes on

the interface and for simplicity we assume that the meshes match across the interface so that the trace

meshes are equivalent and we may write

Fh = { F : F = T ∩Γ, T ∈ T
i

h , i = 1 or 2 }. (29)

We seek the approximation uh = (u1,h,u2,h) in the space V h =V h
1 ×V h

2 , where

V h
i = {vi ∈Vi : vi|T ∈ Pk(T ), ∀T ∈ Th} , for k ≥ 1,

and for λh in

Λh := {qh ∈ L2(Γ) : qh|F ∈ Pl(F), ∀F ∈ Fh}, for l ≥ 0.

If we now restrict the infimum of the supremum in (28) to our finite dimensional subspaces Vh and Λh

chosen such that the discrete spaces satisfy the inf-sup condition, we immediately obtain the standard

Lagrange multiplier domain decomposition method [4], with the Lagrangian given by

L (vh,µh) :=
1

2
a(vh,vh)+ 〈µh, [[vh]]〉Γ − ( f ,vh)Ω −〈g,〈〈vh〉〉w〉Γ .

The augmented Lagrangian is obtained by adding a least squares penalty on the constraint:

L (vh,µh) :=
1

2
a(vh,vh)+ 〈µh, [[vh]]〉Γ +

γ

2
‖[[vh]]‖

2
Γ − ( f ,vh)Ω −〈g,〈〈vh〉〉w〉Γ .

This allows us to instead look for stationary points of the following augmented Lagrangian since we are

working in discrete spaces and all pairings are L2 scalar products:

L (vh,µh) :=
1

2
a(vh,vh)+

1

2γ
‖µh + γ [[vh]]‖

2
Γ

−
1

2

〈

γ−1µh,µh

〉

Γ
− ( f ,vh)Ω −〈g,〈〈vh〉〉w〉Γ .
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The Euler–Lagrange equations characterising the saddle point of the system (if it exists) takes the

form: find (uh,λh) ∈Vh ×Λh such that

a(uh,vh)+ γ−1 〈λh + γ [[uh]],µh+ γ [[vh]]〉Γ −
〈

γ−1λh,µh

〉

Γ
= ( f ,vh)Ω

+ 〈g,〈〈vh〉〉w〉Γ (30)

for all vh,µh ∈Vh ×λh. Developing the second term of the left hand side we see that this is equivalent to

a(uh,vh)+ 〈λh + γ [[uh]], [[vh]]〉Γ = ( f ,vh)Ω + 〈g,〈〈vh〉〉w〉Γ (31)

〈[[uh]],µh〉Γ = 0. (32)

This shows that the effect of the augmented Lagrangian compared to the standard Lagrange multiplier

method is simply the addition of a penalty term on the constraint which, as mentioned above, gives us

stronger control of the constraints than would otherwise be possible. Indeed for the standard Lagrange

multiplier method only πΛ[[uh]] is controlled, where 〈πΛ[[uh]],µh〉Γ = 〈[[uh]],µh〉Γ for all µh ∈ Λh. This

formulation is however stable only for well balanced choices of Vh and Λh. In case the spaces do not

satisfy the inf-sup condition one may add a stabilizing term j(λh,λh) satisfying

‖h
1
2 (λh −πΓλh)‖Γ . j(λh,λh)

1
2

where πΓ satisfies 〈πΓµh,vh〉Γ = 〈µh,vh〉Γ for all vh in the trace mesh of T1 (or T2). For instance if Vh is

the space of piecewise affine, continuous functions in each subdomain and Λh is the space of piecewise

constant functions defined on the elements cut by Γ we may choose

j(λh,λh) := ∑
F∈F

‖h[[λh]]‖
2
∂ F\∂ Γ

and follow the analysis of [10] to prove error estimates for the formulation: find (uh,λh) ∈Vh ×Λh such

that

a(uh,vh)+ 〈λh + γ [[uh]], [[vh]]〉Γ = ( f ,vh)Ω + 〈g,〈〈vh〉〉w〉Γ (33)

〈[[uh]],µh〉Γ − j(λh,µh) = 0 (34)

for all vh,µh ∈ Vh × λh. On the other hand, if we formally replace λh by −{{µ∂nuh}}w and µh by

−{{µ∂nvh}}w we obtain the formulation: find uh ∈Vh such that

a(uh,vh)−〈{{µ∂nuh}}w, [[vh]]〉Γ −〈[[uh]],{{µ∂nvh}}w〉Γ + 〈γ [[uh]], [[vh]]〉Γ

= ( f ,vh)Ω + 〈g,〈〈vh〉〉w〉Γ (35)

for all vh ∈Vh, and we recognise Nitsche’s formulation from [21].

5 Debonding and adhesive contact

A robust discretization of the debonding problem was proposed in [22]. We will revisit their arguments in

the context of Lagrange multipliers as an augmented Lagrangian formulation . The linear model problem

in this case takes the form

−∇ · ε∇u = f in Ω1 ∪Ω2 (36)

u = 0 on ∂Ω (37)

[[ε∂nu]] = 0 on Γ (38)

[[u]] =−κ{{ε∂nu}}w on Γ. (39)

Here we note that by the continuity of the fluxes the formulation is independent of the choice of the

weights wi, i = 1,2. This time the physical solution is discontinuous over the boundary and u ∈ H1(Ω1 ∪
Ω2).

The critical case is when κ becomes large and a naive coupling strategy leads to an ill-conditioned

system or even locking on the interface. We therefore follow [22], but contrary to the discussion in that

paper we herein use the augmented Lagrangian formulation to arrive at the method. In the intermediate

step we obtain a robust Lagrange multiplier method for the debonding problem. This time we start
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from the following Lagrangian, the saddle points of which coincides with the solution of the debonding

problem,

L (v,µ) :=
1

2
a(v,v)−〈µ, [[v]]〉− 1

2
, 1

2
,Γ −

1

2
κ‖µ‖2

Γ − ( f ,v)Ω.

The augmented Lagrangian is obtained adding a least squares term on the constraint

L (v,µ) :=
1

2
a(v,v)−〈µ, [[v]]〉− 1

2
, 1

2
,Γ −

1

2
κ‖µ‖2

Γ +
1

2κ
‖[[v]]+κµ‖2

Γ − ( f ,v)Ω.

Developing the square we see that the multiplier is eliminated and we obtain

L (v) :=
1

2
a(v,v)+

1

2κ
‖[[v]]‖2

Γ− ( f ,v)Ω. (40)

Studying the corresponding optimality system leads to: find uh ∈Vh such that

a(uh,vh)+S〈[[uh]], [[v]]〉Γ = ( f ,v)Ω, ∀vh ∈Vh. (41)

where S = κ−1. As for the problem in Section 3 this formulation becomes ill-conditioned for κ small

since the two terms of the left hand side will have sizes of different orders of magnitude. A possible

remedy is to replace κ by max(h,κ) in equation (41), but this results in a nonconsistent perturbation of

the system and reduced accuracy, in the regime where κ < h.

If we instead modify the size of the least squares contribution in the augmented Lagrangian we

can moderate the strength of the imposition of the constraint in a consistent manner. Introducing the

parameter

Sh = (hk/γκ +κ)−1,

similarly as for the method in Section 3, we may write

L (v,µ) :=
1

2
‖ε

1
2 ∇v‖2

Ω −〈µ, [[v]]〉− 1
2
, 1

2
,Γ −

1

2
κ‖µ‖2

Γ +
1

2
Sh‖[[v]]+κµ‖2

Γ − ( f ,v)Ω.

Observe that the saddle point to this system is a weak solution to (36)–(39), but the size of the weight

in front of the least squares term can never be larger than γκ/h, effectively bounding the stiffness of the

system. The corresponding optimality system now reads:

a(u,v)−〈(1−κSh)λ , [[v]]〉Γ −〈(1−κSh)µ, [[u]]〉Γ

−〈κ(1−Shκ)λ ,µ〉Γ + 〈Sh[[u]], [[v]]〉Γ = ( f ,v)Ω. (42)

Formally replacing λ by {{ε∂nu}}w and µ by {{ε∂nv}}w and writing the form on the finite space Vh yields:

find uh ∈Vh such that

a(uh,vh)−〈(1−κSh){{ε∂nuh}}w, [[vh]]〉Γ −〈(1−κSh){{ε∂nvh}}w, [[uh]]〉Γ

−〈κ(1−Shκ){{ε∂nuh}}w,{{ε∂nvh}}w〉Γ

+ 〈Sh[[uh]], [[vh]]〉Γ = ( f ,vh)Ω. (43)

We recognise the same Nitsche type method as proposed in [22], but this time with the weights chosen

as in the previous section to also be robust with respect to the contrast in the diffusivity.

5.1 Adhesive contact

In the previous linear model only the adhesive forces are accounted for, which implies that penetration

is possible. A more physically realistic model excludes penetration by formulating the problem as a

variational inequality. Our last model problem concerns this nonlinear model and we will combine the

arguments developed above with those of [16, 17]. Here for simplicity we assume that both Ω1 and Ω2

intersects the boundary ∂Ω.

−∇ · ε∇u = f in Ω1 ∪Ω2 (44)

u = 0 on ∂Ω (45)

[[ε∂nu]] = 0 on Γ (46)

[[u]]≤ 0 on Γ (47)

κ−1[[u]]+{{ε∂nu}}w ≤ 0 on Γ (48)

[[u]](κ−1[[u]]+{{ε∂nu}}w) = 0 on Γ (49)

9



To cast this problem on the form of an augmented Lagrangian method we start out with the functional

(40) with an additional constraint on [[v]]:

L (v,µ) :=
1

2
‖ε

1
2 ∇v‖2

Ω −〈µ, [[v]]〉− 1
2
, 1

2
,Γ +

1

2κ
‖[[v]]‖2

Γ − ( f ,v)Ω. (50)

The Euler–Lagrange equations are to find (u,λ ) such that

a(u,v)−〈λ , [[v]]〉− 1
2
, 1

2
,Γ +

1

κ
〈[[u]], [[v]]〉Γ = ( f ,v)Ω ∀v ∈ H1(Ω1 ∪Ω2), (51)

〈µ, [[u]]〉− 1
2
, 1

2
,Γ = 0 ∀µ ∈ H− 1

2 (Γ), (52)

and we note from (51) that, formally, the multiplier is given by

λ = {{ε∂nu}}w +κ−1[[u]] (53)

but of course (52) enforces [[u]] = 0 weakly. In order to create a one-sided contact condition we now

consider the Kuhn–Tucker conditions (47)–(49) as

λ ≤ 0, [[u]]≤ 0, and λ [[u]] = 0 on Γ. (54)

These conditions can equivalently be formulated as

λ =−γ [[[u]]− γ−1λ ]+, (55)

where [x]+ = max(x,0), cf. [16]. To introduce this condition in the Lagrangian (50) we note that, if

λ ,µ ∈ L2(Γ) (or if γ−1 : H− 1
2 (Γ) 7→ H

1
2 (Γ), with suitable properties), in (51) we have

−〈λ , [[v]]〉Γ =−
〈

λ , [[v]]− γ−1µ
〉

Γ
−
〈

λ ,γ−1µ
〉

Γ
.

Using now (55) in the first term of the right hand side we have

a(u,v)+
〈

γ [[[u]]− γ−1λ ]+, [[v]]− γ−1µ)
〉

Γ
+

1

κ
〈[[u]], [[v]]〉Γ = ( f ,v)Ω. (56)

Moving over to discrete spaces, where the assumption on λh makes sense, we write the corresponding

Lagrangian on augmented form as

La(vh,µh) := a(vh,vh)+
γ

2
‖[[[vh]]− γ−1µh]+‖

2
Γ −

1

2γ
‖µh‖

2
Γ +

1

2κ
‖[[vh]]‖

2
Γ − ( f ,vh)Ω

leading to the problem of finding (uh,λh) ∈Vh ×Λh such that

a(uh,vh)+ γ
〈

[[[uh]]− γ−1λ ]+, [[vh]]− γ−1µh)
〉

Γ
− γ−1 〈λh,µh〉Γ

+
1

κ
〈[[uh]], [[vh]]〉Γ = ( f ,vh)Ω

for all (vh,µh) ∈Vh ×Λh.

Inserting now the definition (53) of the multiplier and choosing µ = {{ε∂nv}}w + κ−1[[v]] we seek

uh ∈Vh such that

a(uh,vh)+
1

κ
〈[[uh]], [[vh]]〉Γ

+ γ
〈

[(1− (γκ)−1)[[uh]]− γ−1{{ε∂nuh}}w]+,(1− (γκ)−1)[[v]]− γ−1{{ε∂nv}}w)
〉

Γ

− γ−1
〈

{{ε∂nuh}}w +κ−1[[uh]],{{ε∂nvh}}w +κ−1[[vh]]
〉

Γ
= ( f ,vh)Ω ∀vh ∈Vh. (57)

It is instructive to consider the two limiting cases of full contact and of no contact: at contact, (57)

gives

a(uh,vh)−〈[[uh]],{{ε∂nvh}}w〉Γ −〈[[vh]],{{ε∂nuh}}w〉Γ

+

(

γ −
1

κ

)

〈[[uh]], [[vh]]〉Γ = ( f ,vh)Ω ∀vh ∈Vh.
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With the particular choice

γ :=
γκ

h
+

1

κ
,

we obtain the following discrete problem: find uh ∈Vh such that

a(uh,vh)−〈{{ε∂nuh}}w[[vh]]〉−〈{{ε∂nvh}}w[[uh]]〉+
γκ

h
〈[[uh]], [[vh]]〉Γ = ( f ,vh)Ω

for all vh ∈Vh, which is the standard Nitsche method (35) for the adhesion free problem (with γκ = γ0).

In the case of no contact observe that by using γ−1 = γ−1 −κ +κ ,

1

κ
〈[[uh]], [[vh]]〉Γ − γ−1

〈

{{ε∂nuh}}w +κ−1[[uh]],{{ε∂nvh}}w +κ−1[[vh]]
〉

Γ

=−〈{{ε∂nuh}}w, [[vh]]+κ{{ε∂nvh}}w〉Γ

−〈[[uh]]+κ{{ε∂nuh}}w,{{ε∂nvh}}w〉Γ −〈κ{{ε∂nuh}}w,{{ε∂nvh}}w〉Γ

(κ − γ−1)
〈

{{ε∂nuh}}w +κ−1[[uh]],{{ε∂nvh}}w +κ−1[[vh]]
〉

Γ
.

The finite element formulation then takes the form: we seek uh ∈Vh such that

( f ,vh)Ω = a(uh,vh)−〈{{ε∂nuh}}w, [[vh]]+κ{{ε∂nvh}}w〉Γ

−〈[[uh]]+κ{{ε∂nuh}}w,{{ε∂nvh}}w〉Γ −〈κ{{ε∂nuh}}w,{{ε∂nvh}}w〉Γ

+
1

γ1
〈[[uh]]+κ{{ε∂nuh}}w, [[vh]]+κ{{ε∂nvh}}w〉Γ , ∀vh ∈Vh,

where

γ1 :=
κ2

κ − γ−1
= κ +

h

γκ
,

which coincides with the form (43).

6 Stabilization for the extension to CutFEM

Contrary to the methods discussed above, where the domains are meshed in the usual way, the CutFEM

approach instead represents the boundary of a given domain on a background grid, for instance using a

level set function. The background grid is then also used to represent the approximate solution of the

governing partial differential equations. Consequently, CutFEM eases the burden of mesh generation

by requiring only a low-quality surface mesh representation of the computational geometry. Cutting the

mesh will, however, result in boundary elements with very small intersection with the physical domain.

This may lead to a poorly conditioned system matrix or failure of stability of the discrete scheme. A

remedy to this problem is to add a penalty term in the cut element zone that extends the coercivity

to the whole mesh domain, i.e., in the O(h) zone of the mesh domain (of each subdomain for interface

problems) that does not intersect the associated physical domain. This penalty term, termed ghost penalty

due to it acting partly outside of the domain of interest, must be carefully designed to add sufficient

stability, while remaining weakly consistent for smooth solutions. The basic methods described above

are then applied to the cut meshes and the only additional term is the ghost penalization.

To illustrate this idea, we consider the CutFEM method for the Poisson problem (7). We observe that

by taking v = uh in the bilinear form a(uh,v), we have the coercivity

‖∇uh‖
2
L2(Ω) ≤ a(uh,uh).

However, to obtain coercivity of the form ah(uh,v) using this stability and the boundary penalty term,

the penalty parameter will depend on how the elements are cut, since, denoting the set of elements that

are cut by Γ by

Gh := {K ∈ Th : K ∩Γ 6= /0}

we have, with

ah(uh,v) := a(uh,v)−〈∂nuh,v〉Γ −〈∂nvh,uh〉Γ + 〈γuh,v〉Γ

that

ah(uh,uh)≥ ‖∇uh‖
2
L2(Ω)+‖γ

1
2 uh‖

2
L2(Γ)

−2 ∑
K∈Gh

‖∇uh‖L2(Γ∩K)‖uh‖L2(Γ∩K). (58)
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Using the following well known trace inequality: under reasonable mesh assumptions there exists a

constant CT , depending on Γ but independent of the mesh, such that

‖w‖2
L2(ΓK)

≤CT

(

h−1
K ‖w‖2

L2(K)+hK‖∇w‖2
L2(K)

)

, ∀w ∈ H1(K), (59)

we have,

‖∇uh‖L2(Γ∩K) ≤CΓ

(

|K ∩Γ|

|K ∩Ω|

)
1
2

‖∇uh‖L2(K∩Ω),

where | · | denotes the measure of the indicated quantity. It follows that in principle we obtain coercivity

by choosing

γ |K > 2C2
γ

(

|K ∩Γ|

|K ∩Ω|

)

,

since by an arithmetic-geometric inequality, we have

ah(uh,uh)≥‖∇uh‖
2
L2(Ω)+‖γ

1
2 uh‖

2
L2(Γ)−

1

2
‖∇uh‖

2
L2(Ω)

− ∑
K∈Gh

C2
Γ

(

|K∩Γ|
|K∩Ω|

)

‖uh‖
2
L2(K∩Γ)

≥
1

2
‖∇uh‖

2
L2(Ω)+‖

(

γ −2C2
Γ

(

|K∩Γ|
|K∩Ω|

))
1
2

uh‖
2
L2(Γ).

Unfortunately this makes γ strongly dependent on the cut, since for |K∩Γ|=O(hK), the volume measure

|K∩Ω| can be arbitrarily small, resulting in problems both with conditioning and accuracy. A solution to

this problem is to add a stabilizing term gh(uh,v) to the form ah(·, ·). The role of this term is to extend the

coercivity from the physical domain Ω to the mesh domain ΩT := Ω∪Gh. In order to have this effect,

the stabilization term should have the following properties.

1. It should give a bound on the energy norm on the mesh domain in the sense that

cG‖∇uh‖
2
ΩT

≤ ‖∇uh‖
2
Ω +gh(uh,uh), (60)

where cG > 0 is bounded away from zero independent of the mesh/boundary intersection for posi-

tive ghost penalty stabilization parameter γg.

2. For an interpolant of the extension of u, ihu := ihEu we must have the weak consistency

gh(ihu, ihu)≤Chk‖u‖Hk+1(Ω).

where the constant C is independent of the mesh/boundary intersection.

One example of such a term is the ghost penalty stabilization

gh(uh,v) := ∑
F∈FG

(γgh[[∂nF
uh]], [[∂nF

v]])F , (61)

valid for piecewise affine approximation. Here, we introduced the set of element faces FG associated

with Gh, defined as follows: for each face F ∈ FG there exists two simplices K and K′ such that F =
K ∩K′ and at least one of the two is a member of Gh. This means in particular that the boundary faces

of the mesh Th are excluded from FG. We also used ∂nF
to denote the derivative in the direction of the

normal to F .

Coercivity now follows from (58) and (60) as follows

ah(uh,uh)≥‖∇uh‖
2
L2(Ω)+ γ‖h−

1
2 uh‖

2
L2(Γ)

−2CT ‖∇uh‖L2(Gh)‖h−
1
2 uh‖L2(Γ)+gh(uh,uh)

≥cG‖∇uh‖
2
ΩT

+ γ‖h−
1
2 uh‖

2
L2(Γ)−2CT ‖∇uh‖L2(ΩT )‖h−

1
2 uh‖L2(Γ)

≥
cG

2
‖∇uh‖

2
ΩT

+(γ −2C2
T c−1

G )‖h−
1
2 uh‖

2
L2(Γ). (62)

Here CT is the constant of the trace inequality (59) and cG is the coercivity constant of the stability

estimate (60). We conclude by choosing γ0 > 2C2
T c−1

G , where the lower bound is independent of the

mesh/boundary intersection, but not of the penalty parameter γg in gh(·, ·). Error estimates now follow
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in a similar fashion as for the standard Nitsche’s method, using (62) and the consistency of the penalty

term. One may also show that the conditioning of the system matrix is bounded independently of the

mesh/boundary intersection. For further details see [11].

Extension to the other model problems is straightforward. We consider the problem of interface

coupling using (35). In the original paper on cut finite elements [21] the method for meshed subdomains

was carried over to the cut element case using piecewise affine elements and weights

w1 = K ∩Ω2/|K|, w2 = K ∩Ω1/|K|. (63)

However, for problems with large contrast εmax/εmin it is known that thise choice is not stable for ar-

bitrary cuts if the mesh size is not small enough to resolve the contrast. Indeed too large contrast

can lead to a phenomenon reminiscent of locking for unfortunate cuts (i.e. if no H1-conforming sub-

space with approximation exists). In case robustness is necessary we instead choose the weights to be

w1 = ε2/(ε1+ε2) and w2 = ε1/(ε1+ε2) and γ−1 = γ0h−1ω(ε) with ω(ε) := 2(ε1ε2)/(ε1+ε2) we iden-

tify this method as the Nitsche method discussed in [13, 14] which was shown to be stable on unfitted

meshes provided a ghost penalty term is added. This additional stabilization term should here have the

properties analogous to those for the cut fictitious domain method discussed above, and a typical example

is the modification of (61) now acting across the faces of the cut elements on the interface. The resulting

method takes the form

a(uh,vh)−〈{{µ∂nuh}}w, [[vh]]〉Γ −〈[[uh]],{{µ∂nvh}}w〉Γ

+ 〈γ [[uh]], [[vh]]〉Γ +gh(uh,vh)

= ( f ,vh)Ω + 〈g,〈〈vh〉〉w〉Γ . (64)

In particular it was proven in [7] that for piecewise affine elements and smooth enough Γ there holds

2

∑
i=1

‖εi∇(ui −ui,h)‖Ωi
≤Ch‖ f ‖Ω

where the constant C is independent of ε and h. This result is possible to obtain thanks to the fact that

the weights shift the interface term to the side where εi is the smallest.

Observe now the resemblance between the formulation (64) and (33). The latter formulation however

is not in general robust for large contrast. Indeed regardless of the contrast the constraint will be satisfied

equally strongly and we know from the experience of [15] that the trick to obtaining robustness is to

relax the control obtained by the multiplier by redefining λh. Instead of identifying λh = {{ε∂nuh}}w we

use that {{ε∂nuh}}w = ω(ε){∂nuh} where {·} denotes the standard arithmetic average. If we then instead

identify λh = {∂nuh} and introduce the factor ω(ε) in the formulation (33) we obtain

a(uh,vh)+ 〈ω(ε)λh + γ [[uh]], [[vh]]〉Γ = ( f ,vh)Ω + 〈g,〈〈vh〉〉w〉Γ (65)

〈[[uh]],ω(ε)µh〉Γ − j(λh,µh) = 0 (66)

where once again γ = γ0h−1ω(ε) and the stabilization operator j(·, ·) also must scale as ω(ε). This

formulation will relax the jump in a similar fashion as (64), but control of λh is sacrificed as ω(ε)
becomes small.

7 A numerical example

We give an example of how the method works in the case of adhesion, with and without contact. To

exemplify how the different aspect of adhesion come into play we consider a domain (0,1)× (0,1) with

u = 0 at x = 0 and at y = 0 and with ∂nu = 0 on other boundaries. The domain is cut by a half circle with

radius r = 0.74; ε = 2 on the domain Ω1 containing the origin and ε = 1/2 on Ω2. The right-hand side

is given by

f =







1 if y ≤ 1/2,

−7/2 if y > 1/2.

We set γ0 = 100, used no jump stabilization, and set ω(ε) = 1 but used geometric averages of the type

(63).

In Fig.1 we show the solution using the standard Nitsche method (35), in Fig. 2 we show the solution

with a cohesive interface with κ = 1/2 using (43), and in Fig. 3 we show the solution using a one sided

contact condition as in (57).
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Figure 1: Continuity enforced by Nitsche’s method.

Figure 2: A cohesive interface law enforced by Nitsche’s method.
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Figure 3: Cohesive interface combined with a contact condition by Nitsche’s method.
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