
Calendrical Calculation  

 

     1 
 

Published in Infancia y Aprendizaje, 2001, 93, 53-65 

Running head: CALENDRICAL CALCULATION 

 

Why and how people of limited intelligence become calendrical calculators 

Richard Cowan, Neil O’Connor and Katerina Samella 

 Institute of Education University of London 

 

KEYWORDS: savant syndrome, autism, memory, intelligence, exceptional individuals 

 

 Author Notes 

 Neil O’Connor, Psychology and Special Needs; Richard Cowan, Katerina Samella, 

Child Development and Learning.  

Tragically, Neil O’Connor died while the research was conducted.  We miss his 

intellectual leadership and unfailing good humour.   

The sample of calendrical savants came from the pool built up over several years by Dr 

O’ Connor and Dr Beate Hermelin. We thank Dr Hermelin and Dr Lisa Heavey for 

introducing us to two more.  We thank an anonymous benefactor, the University of London 

Central Research Fund, and the University of London Tregaskis Bequest for financial support. 

We thank the savants, their families and carers for their co-operation.  

Correspondence and requests for reprints should be addressed to Dr Richard Cowan, 

Child Development and Learning, Institute of Education University of London, 20 Bedford 

Way, London WC1H 0AL, UK. Electronic mail may be sent via Internet to 

r.cowan@ioe.ac.uk.   



                                                                                                        Calendrical Calculation 

 

  2 
 

 

 Abstract 

Calendrical calculation is the rare talent of naming the days of the week for dates in the past 

and future. Calendrical savants are people with low measured intelligence who have this talent. 

This paper reviews evidence and speculation about why people become calendrical savants and 

how they answer date questions. Most savants are known to have intensively studied the 

calendar and show superior memory for calendrical information. As a result they may answer 

date questions either from recalling calendars or by using strategies that exploit calendrical 

regularities. While people of average or superior intelligence may become calendrical 

calculators through internalising formulae, the arithmetical demands of the formulae make 

them unlikely as bases for the talents of calendrical savants. We attempt to identify the 

methods used by a sample of 10 savants. None rely on an internalised formula. Some use 

strategies based on calendrical regularities probably in conjunction with memory for a range of 

years. For the rest a decision between use of regularities and recall of calendars cannot be 

made.  
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Why and how people of limited intelligence become calendrical calculators 

Calendrical calculators are people who can tell you the days of the week for dates in 

the past, and sometimes the future. Some of them can also nominate years with particular 

calendrical features, such as having five Wednesdays in July. They perform these feats without 

using external aids such as reference books or calendars and do not need to write down 

intermediate steps. While these are remarkable achievements in themselves, what has 

particularly intrigued psychologists is the discovery of such talents in people with restricted 

intellectual ability. Calendrical calculation has been placed alongside exceptional talents in 

drawing, music, memory, and language learning as an example of savant syndrome 

(Nettelbeck, 1999; Treffert, 1989). Several case studies of calendrical savants have appeared 

since Langdon Down’s original description of a 38 year old man with a phenomenal memory 

for numbers who could answer questions for dates in a period of five years (Tredgold & 

Soddy, 1956). Most calendrical savants would appear to have developed their talents while 

children without instruction by others. In this paper we shall review the explanations of why 

people acquire this talent and how they answer date questions. We shall then use 

characteristics of our sample of savants to attempt to identify their methods. 

Why do people become calendrical calculators? 

Why anybody should want to learn to calculate dates is at first sight puzzling. Such a 

skill has no obvious purpose or value. In contrast to art or music, where exceptional skill is 

highly regarded in Western culture, prodigious skill in date calculation holds limited appeal. 

One of us knew a university professor who could calculate dates but was rather ashamed of his 

talent and we have been told of another high-functioning autistic calculator who gave up doing 

it because he thought it was childish. A party trick it may be, yet it is one that succeeds in 
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impressing other people and providing the calculator with plenty of social reinforcement: 

Gould (1997) describes the attention and approval his son receives through being able to tell 

people what day of the week they were born on. While praise and approval may encourage 

calculators to develop their talent further, it still does not explain why they would begin to 

develop it. Calendrical calculation is an uncommon skill, so children who become calculators 

are unlikely to have met anyone who could do it, or seen that such a skill attracts attention. 

Intriguingly, one of the more adept calculators in our sample assumes that other people share 

his skill in date calculation and memory for birthdays.  

  If the initial motivation to become a calendrical calculator is not social, then it might be 

intrinsic to the object of study or the person. In speculating what might lead someone to 

become a calendrical calculator, one may consider what may attract them to study the 

calendar. Although the calendar is a fascinating product of human science and religion, no 

previous report describes a calendrical calculator as being interested in the history of the 

calendar. Indeed questioning our sample of 10 calculators revealed only one who knew about 

the origins of the calendar. Nor do they show interest in astronomy. This would be relevant as 

astronomers sometimes use Julian day numbers (the number of days since noon at Greenwich 

on January 1
st
 4713 B.C.) for observations and finding the day of the week from a given Julian 

date is straightforward (Duffett-Smith, 1981).  

Neither of the above seem to explain why calendars fascinate children who become 

calendrical calculators. Perhaps calendars attract these children because of the social 

significance of birthdays, holidays and religious festivals. Perusal of calendars could lead them 

to discover the variable relation between dates and days of the week in different years, and the 

calendrical patterns between months in the same year and across years. Learning these patterns 

might lead either to a method of date calculation, as detailed in the next section, or efficient 
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memorising of calendars. 

According to this account, anyone may become a calendrical calculator from studying 

the calendar. Apart from a congenitally blind girl (Rubin & Monaghan, 1965), calendrical 

calculators are known to have studied calendars and some are reported to have access to 

perpetual calendars (Horwitz, Kestenbaum, Person, & Jarvik, 1965; Young & Nettelbeck, 

1994). However, many children are interested in knowing when their birthdays and Christmas 

will be, but few become calendrical calculators. This has led to speculation about whether 

calendrical calculators have some unusual personal characteristics that explain why they, but 

not others, develop the talent. Calendrical calculation is, like other savant skills, more common 

in the autistic population than in the general population of people with intellectual disabilities: 

about 1 in 10 autistic people have a savant skill (Rimland, 1978) while the estimate for people 

with intellectual disabilities is 1 in 2000 (Hill, 1977). Possibly, some features characteristic of 

autism may facilitate development of savant skills. Both routines and obsessive preoccupations 

have long been considered cardinal symptoms of autism (Frith, 1989) and both may contribute 

to developing calendrical calculation skill. If someone has particular routines for different days 

of the week, this makes day-date correspondences particularly salient. If they are obsessively 

preoccupied with the calendar, they will spend a much longer time studying it than others. 

Consistent with this, both autistic and nonautistic savants showed more obsessional and 

repetitive behaviour than controls matched for IQ and diagnosis (O’Connor & Hermelin, 

1991).  

Another hypothesis linking  savant skills and autism is that the development of savant 

skills may be aided by weak central coherence, a cognitive processing style characteristic of 

autistic people (Frith, 1989). Weak central coherence refers to a piecemeal processing style 

that focuses on local features at the expense of global features, perceptual forms or meaning. 
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Weak central coherence is proposed to explain the characteristically uneven profiles of autistic 

people on Wechsler Intelligence Scales, with a peak on the Block Design subscale of the 

performance tasks and a trough on the Comprehension subscale (Happé, 1994). Block Design 

requires the analysis of graphic designs with a strong gestalt into components corresponding 

to blocks and the use of these blocks to reconstruct the design. Successful analysis depends on 

the ability to resist the ‘pull’ of the overall design.  Another task where weak central 

coherence is an advantage is the Children’s Embedded Figures Test (Witkin, Oltman, Raskin, 

& Karp, 1971), which requires identification of geometric forms in pictures of familiar objects. 

Weak central coherence enables concentration on the graphic components without distraction 

by the subject of the picture, for example detecting a triangle uninfluenced by recognizing that 

the drawing denotes a pram. Shah and Frith (1983) showed that a group of autistic children 

were more successful on this task than groups of normal children matched for mental age and 

of mildly mentally retarded children matched for mental and chronological age. 

Pring, Hermelin, and Heavey (1995) have argued that weak central coherence may be 

advantageous for the development of savant skills. Being able to analyse a visual scene into 

constituent lines and shapes without meaning may clearly be helpful for a graphic artist. Pring 

et al. (1995) found autistic savant artists and artistically talented normal children were much 

faster on a block design task than controls matched for mental age and diagnosis. In discussing 

other savant skills, they suggested that weak central coherence might favour absolute pitch, 

which is common in musical savants (Miller, 1989) and might plausibly aid their reproduction 

of music.  Heavey (1997) has also proposed that weak central coherence may help the 

development of skill in calendrical calculation. Weak central coherence may favour the 

learning of individual day-date combinations that, in her view, is the first step in developing 

date calculation skill. A study of  our sample of 10 calendrical savants, which includes 8 
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people with autism, failed to support this: none showed unusually high levels of performance 

on Block Design  and variation in Block Design success did not markedly predict skill in 

calendrical calculation (O’Connor, Cowan, & Samella, in press). 

O’Connor and Hermelin (1991) suggested  a tendency to preoccupation in people of 

limited cognitive ability may be necessary for high-level performance, but it could not be  

sufficient. Otherwise savant skills should be more common.  Some extra ingredient is required. 

Exceptional memory has been suggested, both short and long term. Spitz and LaFontaine 

(1973) proposed savants were different from others with similar general intelligence because 

they had higher working memories. They found savants had higher digit spans than a control 

group matched for IQ .  However,  subsequent tests found  inconsistencies and little evidence 

of general memory superiority (LaFontaine, cited in Hill, 1978). Also,  Heavey (1997) found 

no difference in digit spans between a group of calendrical calculators and a group of controls 

matched for verbal IQ, chronological age, and diagnosis. While the groups did not differ in 

either short- or long-term recall of material unrelated to the calendar, her sample of calendrical 

calculators did exhibit a highly efficient, talent-specific memory ability. In comparison with 

controls, they recalled more calendar-related items. 

Greater arithmetical ability than might be expected from their general intellectual ability 

might explain how people with limited intelligence could calculate dates. Several formulae for 

date-calculation exist that derive from the procedure described by Lewis Carroll (1887) and 

simplified by Spitz (1994). Hill (1978) published a procedure that is accurate only for the 

modern calendar, introduced by Pope Gregory and adopted by Spain, Italy, Portugal and 

France in 1582, and by Great Britain and the United States in 1752. Table 1 shows Hill’s 

(1978) procedure.   To carry this out involves mental arithmetic of the following sorts: 

division of 2 digit numbers by 4 into integers plus remainders,  
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addition of several 1 and 2 digit numbers,  

division of 1 and 2 digit numbers by 7 into integers plus remainders.  

This method can be extended to other centuries by the addition of century numbers to the 

result of Step 5. For dates in the nineteenth century, the correction factor is 2; for the twenty-

first century, it is 6. Thus 22nd June 1857 fell on a Monday and the 22nd June 2057 will fall 

on a Friday.  The procedure does not demand much arithmetical ability. It simply requires 

competence in the integer arithmetic that most children learn to do in primary school. Indeed, 

puzzle books for children sometimes include it.   

While some case reports indicate that even this arithmetic competence is beyond the 

calculators, these may have underestimated their abilities. Both Hill (1975) and Roberts (1945) 

claimed the calculators they studied could not do arithmetic involving numbers with more than 

one digit. Similarly, an early report of the mentally retarded identical twins, George and 

Charles, claimed that they too were unable to add, subtract, multiply or divide single digit 

numbers (Horwitz, Kestenbaum, Person, & Jarvik, 1969). However, a subsequent report 

revised this view of George, the more talented twin who could answer dates from years 

between 100 and 40400 (Horwitz, Deming, & Winter, 1969). Later, Sacks (1985) discovered 

that the twins would exchange six-figure prime numbers with each other, and once Sacks 

entered into their game progressed to ten-digit primes and beyond. To verify prime numbers 

would seem to require competence in division. The case of Kit provides another indication of 

how easy it is to underestimate calendrical calculators’ arithmetical abilities (Ho, Tsang, & Ho, 

1991). While he performed poorly on the Arithmetic subtest of the WAIS, he was much better 

on the problems in the Stanford Diagnostic Mathematical Test. These included sums involving 

all four arithmetical operations. The authors suggested that differences in test items explained 

the discrepancy in results. The questions in the intelligence test were set in the context of 
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social or real life situations. The Stanford test simply required manipulations of numbers. Dave 

provides another example of how arithmetical ability may be missed because it is constrained 

in some unusual way (Howe & Smith, 1988). While he failed subtraction problems such as 

‘What is 1,981 minus 1,963?’, he could, however, solve even harder problems when they were 

set in a calendrical context, such as ‘If I was born in 1841, how old would I be in 2302?’. 

Our investigation of the arithmetical abilities of 10 calendrical calculators illustrates the 

difficulties of generalising about arithmetical ability (Cowan, O’Connor, & Samella, 1998). 

From their WAIS scores, none appeared exceptional, and only one had an arithmetic subscale 

score that was markedly superior to his general intelligence. However, four performed at or 

near ceiling level on the Graded Difficulty in Arithmetic test (Jackson & Warrington, 1986) 

which assesses mental addition and subtraction using problems without stories. All 10 showed 

they could add and subtract two digit numbers but for some this competence only appeared in 

conversations with problems set in calendrical contexts. Only 5 showed any ability to do 

division.  

In summary, calendrical savants are often obsessively preoccupied with calendars, 

dates, and routines. They show specific enhanced memory ability for calendrical material, and 

may be unusually adept at mental arithmetic. Whether these characteristics precede or follow 

the development of their ability is uncertain. The evidence is correlational. For example the 

common claim that calendrical calculators are good at remembering birthdays (Howe, 1989) 

may be a consequence of their date calculation skill: birthdays are what many may ask them to 

work out. Or it may reflect the fascination with dates that led them to study calendars and 

develop the skill. A problem for empirical study of what makes someone become a calendrical 

calculator is that existing studies overwhelmingly concern people who have already developed 

the skill, often several years in the past. If the talent were more common, then prospective 
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studies might be feasible. We now turn to consider the methods for answering date questions. 

Methods for answering date questions 

If someone asks us what day a particular date in a different year and month will fall on, 

we would probably use a diary or a calendar. For more remote years in the past or future, we 

could consult a perpetual calendar, such as reference books include. For example the 1998 

edition of Whitaker’s Almanack publishes a set of 14 coded calendar templates, 7 for leap 

years and 7 for nonleap years, which differ according to the weekday for 1st January, and 

codes for each year from 1780 to 2040. Finding the calendar for a particular year is simply a 

matter of matching the year code with the appropriate template. Some calendrical savants may 

be able to answer date questions because they have memorised the calendars corresponding to 

particular years or even the perpetual calendar scheme. Two calculators with ranges of about 

30 years were thought to rely on memory for calendars (Hill, 1975; Roberts, 1945). Several 

with ranges between 200 and 600 years are supposed to have memorised perpetual calendars: 

they include Charles, the less talented twin studied by Horwitz et al. (1965, 1969), and the 

three calculators studied by Young and Nettelbeck (1994). Consistent with this claim, Young 

and Nettelbeck (1994) report that the calculators they studied readily identified which years 

had the same calendrical pattern and two spontaneously gave the perpetual calendar codes for 

the years.  

Memory for calendars undoubtedly contributes to date calculation skill. It may be 

sufficient to explain the talent in those whose range is limited to the years whose calendars 

they have studied. However, it cannot explain the talent in blind savants who have never seen 

calendars (Rubin & Monaghan, 1965). Nor can it account for the ability of some sighted 

calculators to answer date questions outside the range of calendars or perpetual calendars they 

have seen, e.g. George (Horwitz et al., 1965, 1969) and Kit (Ho et al., 1991).  
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Another possible explanation is the use of a formula such as in Table 1. Repeated 

practice in using the formula might result in it being internalised. John Conway, a distinguished  

 

Insert Table 1 about here 

 

mathematician, has devised an algorithm for date calculation which he can use to answer date 

questions in less than two seconds (Alpert, 1999). Further practice may result in the 

internalised formula being carried out rapidly but below the level of conscious awareness. This 

apparently happened to a graduate student who learnt a formula for date calculation and 

practised using it (Rimland, 1978). While an internalised formula may underlie calendrical 

calculation in people of average or superior intelligence, some features of savant performance 

appear inconsistent with it. Apart from the doubts about their ability to comprehend and 

execute the formula in Table 1, several show patterns of latencies and errors that are hard to 

reconcile with the formula explanation. O’Connor & Hermelin (1984) found that latency 

increased with remoteness from the present. Seven of their eight calendrical savants were 

slower for 1963 dates than 1983 dates. Considering the steps in the formula provides no 

reason to expect this. Significant error patterns for dates in other centuries have been reported 

by other investigators (Ho et al., 1991; Horwitz et al., 1965,1969; Howe & Smith, 1988; 

Hurst & Mulhall, 1988). Both Dave (Howe & Smith, 1988) and TMK (Hurst & Mulhall, 

1988) were typically one day out for dates in the nineteenth century, consistent with their 

mistaken belief that 1900 was a leap year. TMK also made errors for dates in the twenty-first 

century consistent with his mistaken belief that 2000 would not be a leap year. Kit was also 

mistaken in his understanding of the calendar: he wrongly believed that all century years, years 

such as 1900 and 2000, were leap years (Ho et al., 1991). He knew that years separated by 28 
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years in the same century are identical. However he had overgeneralised this, probably because 

of his ignorance about century years, to apply across centuries and had as a consequence 

formed the view that years 700 years apart were identical. He used his 700 year rule and the 

28 year rule to calculate remote dates. He would add or subtract multiples of these numbers to 

find an equivalent to the target year in the current century. George knew that the Gregorian 

calendar repeats every 400 years (Horwitz et al., 1969) but he did not know when it was 

introduced or that the days had been dropped at the time of adoption. (When Spain adopted 

the Gregorian calendar, the days from 5
th
 to 14

th
 October 1582 were dropped. Great Britain 

omitted the days from 3
rd

 to 13
th
 September 1752, on changing to the Gregorian calendar.) 

Like Kit, George used addition and subtraction to find proximal years equivalent to the target. 

 A third basis for date calculation may be strategies using calendrical regularities 

(O’Connor & Hermelin, 1984; Norris, 1990; Spitz, 1995). Some calendrical regularities 

concern many years, such as the 28-year and 400-year rules mentioned above. Others are 

narrower in scope. The one year, one day rule applies to adjacent nonleap years. It refers to 

the regularity that the same date falls on the following day in the following year, e.g. 1
st
 

January 1998 a Thursday, 1
st
 January 1999 a Friday). Even more restricted in scope are 

correspondences between months within the same year, e.g. in any year 1
st
 March falls on the 

same day of the week as 1
st
 November. Lastly are regularities between days within a month: 

two days separated by an exact multiple of seven days fall on the same weekday. O’Connor 

and Hermelin (1984) reported that one savant spontaneously commented on consistencies 

between months  and another on the 28 year rule. Hermelin and O’Connor (1986) found that 

most calculators were faster in calculating dates when primed by a date in a corresponding 

month. Several could apply their knowledge of the one year, one day rule to both an imaginary 

calendar with no leap years and a task with a sequence of colours. Knowledge of calendrical 
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regularities may help a calculator learn calendars corresponding to particular years, by 

reducing the amount that needs to be learnt. Knowledge of these rules in conjunction with 

some known day-date correspondences might enable a savant to work out unknown day-date 

combinations.   

 In summary, three bases for calendrical calculation have been suggested: memory for 

calendars, internalised use of formulae, and a combination of memory and strategies based on 

calendrical regularities. Savants probably differ in how they calculate dates, so identifying the 

basis for one savant does not imply that is how others do it. The problem becomes how to 

identify a particular savant’s method. Unfortunately if you ask savants how they answer date 

questions, they typically cannot tell you. Several features of performance make a particular 

method a more credible basis for performance. Someone dependent on memory for calendars 

might show unusually high knowledge of birthdays or other dates and a range restricted to the 

calendars they have seen. In contrast they should not compute while answering date questions. 

Nor should they make consistent errors on dates in other centuries. Someone using a formula 

should demonstrate ability in division but not variation in latency with remoteness, nor errors 

that are consistent with ignorance of which century years are leap years. Savants are likely to 

be using strategies based on calendrical regularities if they explicitly use these in working out 

dates, and take longer with more remote dates. The ability to use calendrical regularities to 

work out the answers to date questions on years outside their range is a positive indication 

that regularities influence their skill but it is not necessary. Both Norris (1990) and Spitz 

(1995) propose that savants may detect regularities at a level below consciousness and so lack 

the ability to articulate them. 

Table 2 summarizes the results of our investigations of a sample of 10 calendrical 

calculators. Their IQs are from administering the Wechsler Adult Intelligence Scales and their 
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Memory Quotients from the Wechsler Memory Scales. Range, consistent errors, explicit use  

 

Insert Table 2 about here 

 

of regularities and variation in latency with remoteness were derived from the sessions 

reported in O’Connor et al. (in press). We assessed their knowledge of birthdays and 

calendrical events by asking them to recall for each day in a specific month whether they knew 

anyone’s birthday for that day or whether anything special had ever happened to them on that 

day. Where possible, we verified their recall with their carers. While no norms exist for this 

task, any number of events recalled greater than 4 seems unusually high, and any number 

greater than 10 particularly striking. Cowan et al. (1998) assessed their ability to divide 

numbers with both orally and visually presented sums. Their ability to apply regularities to 

dates outside their range was assessed by three types of item. Eight items assessed regularities 

within a year, e.g.  ‘1
st
 March 1758 was a Wednesday. What was the 1

st
 November 1758?’ 

(Wednesday). We judged savants could apply these regularities if they correctly answered at 

least 7 items. Other items assessed knowledge of the relations between dates in adjacent years, 

e.g.‘1
st
 May 1756 was a Saturday. What was the 1

st
 May 1757?’ (Sunday). While four items 

concerned dates separated by 365 days like the example, two items concerned dates separated 

by 366, e.g. ‘ 2
nd

 April 1759 was a Monday. What was the 2
nd

 April 1760?’ (Wednesday). We 

considered savants could apply the one year, one day rule if they answered at least 5 items 

correctly. The 28 year rule was assessed with four items, e.g. ‘16
th
 December 1763 was a 

Friday. What was the 16
th
 December 1791?’ (Friday). Savants who answered at least 3 items 

correctly showed they could apply this regularity. 

 Our sample varies in measured intelligence between severe intellectual disability and 



                                                                                                        Calendrical Calculation 

 

  15 
 

average intelligence. Their performance on the Wechsler Memory Scales shows similar 

variation. All apart from JB and PM have received a diagnosis of autism. Their ages range 

from 17 to 49. While all are prodigious at answering date questions their range varies from 

about 60 years to over 800, 000.  

 Several characteristics of their performance make internalisation of a published formula 

an unlikely basis for the talents of any savant in the sample. All except BL reliably take longer 

to answer questions about more remote years. Several (BL, JG, PM, JB, and DK) show no 

ability to do the simple division required in the formula. In addition both DM and JG make 

consistent errors outside the current century and three savants (MW, HP, and GC) make 

explicit use of calendrical regularities such as the 28 year rule and 400 year rule in answering 

date questions.  

Memory for calendars alone is also ruled out for those who make consistent errors 

(DM and JG) or explicit use of calendrical regularities (MW, HP, and GC). Presumably the 

talents of these savants derive from exploitation of calendrical regularities. DM and JG may 

like Kit (Ho et al., 1991) falsely generalise the 28 year rule to apply across century boundaries 

even when the century year is not a leap year. All five are fastest on dates in the last 30 years 

and generally slower outside this period. Possibly they may remember a period of years and 

use repeated addition and subtraction to bring a target year within range like Kit (Ho et al., 

1991) and George (Horwitz et al., 1969).  

Deciding whether the others rely on memory for calendars alone or in combination 

with a technique exploiting regularities of the calendar is not possible. All except BL were 

reliably slower on more remote dates but this may reflect either differences in practice or the 

use of regularities. Savants may receive more practice on more recent dates, as these are easier 

to check. They may also spend more time studying recent calendars as these are more widely 
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available. While both PE and DK showed they knew and could apply calendrical regularities to 

dates outside their range, this knowledge may have followed their memorising of calendars. 

Although their parents report their range of dates is outside those of the calendars they have 

seen, both savants are over 30 years old and so their parents cannot be presumed to know 

everything about their experiences. 

For the others, memory for calendars may seem more plausible but no firm conclusions 

can be reached. Despite PM’s and JB’s lack of ability to apply regularities, they may yet know 

them. Both Norris (1990) and Spitz (1995) have proposed that savants may extract and use 

calendrical regularities in date calculation without conscious awareness. Possibly the ability to 

apply such regularities on our tests requires conscious awareness. Both BL and PM show 

unusual memory for calendrical events, with BL being particularly remarkable. She recalled 

the dates of birth of many people and her mother was able to confirm her accuracy. This 

evidence is not conclusive as HP recalled about as many calendrical events and yet we are 

convinced he does not rely on recall of calendars alone. In contrast to BL, the events HP 

recalled were often historical, e.g. for 6
th
 January he recalled the birth of Richard II (1367), 

Joan of Arc (1412), and the wearing of tights by Keith Weller in a football match in 1979 

(Leicester v Norwich, final score, 3-0). JB’s performance provides no convincing evidence 

about her method. 

  In summary, we have reviewed explanations of why people become calendrical savants 

and how they answer date questions. Several questions remain unanswered although research 

makes certain possibilities unlikely. In common with the study of other exceptional individuals, 

we are handicapped by the typical pattern of investigating people with unusual gifts after these 

have already developed. This makes impossible any conclusive determination of what causes 

someone to become a savant. More progress can be made in determining what method the 
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calculator uses but as our sample illustrates, some savants’ methods are easier to determine 

than others. Knowing about their methods raises further questions. For example have those 

who use calendrical regularities discovered them by themselves or have they been taught? If 

they discovered them for themselves, how are they able to do this and how are they able to 

integrate this knowledge into a technique for answering date questions? Further insights may 

depend on the development of new techniques and tasks. 

Understanding the talents of savants has important implications for general areas of 

psychology such as intelligence and learning. Indeed savant skills play a key role in the 

theories of intelligence proposed by Anderson (1992) and Gardner (1983). They have also 

prompted interest in unconscious learning (Norris, 1990; Spitz, 1995) and provoked insights 

into autistic cognition (Frith, 1989). Some psychologists believe that exceptional practice and 

effective technique are enough to explain the development of any exceptional talent (Ericsson 

& Faivre, 1988). What makes people exceptional is the circumstances that lead them to 

develop relevant strategies and engage in sufficient practice (Howe, 1989). An earlier study 

challenged this view by finding that one ten-year-old calendrical savant (MW) was already 

faster than many adult savants (O’Connor & Hermelin, 1992). However the issue is not 

settled, as we cannot rule out the possibility that MW had, despite his youth, practised more 

often or more effectively than the older savants. We still have much to learn about savant 

skills. 
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Table 1 A Method For Calendrical Calculation (After Hill, 1978) For Dates In The Twentieth 

Century With The Example Of 23rd June 1957 

 
Step 1 

 
Take the last two digits of the year 

 
57 

 
Step 2 

 
Divide the last two digits by four and ignore any 

remainder 

 
14 

 
Step 3 

 
Take the code number of the month given below: 

 
5 

 
 

 
0  April, July  

1  Jan., Oct.  

2  May 

3  Aug.  

 
4  Feb., March, Nov.  

5  June 

6 Sept., Dec. 

 
 

 
Step 4 

 
Subtract one if the year is a leap year and the month is 

either January or February 

 
- 

 
Step 5 

 
Take the date of the month 

 
23 

 
Step 6 

 
Sum the results of steps 1 to 5 

 
99 

 
Step 7 

 
Divide the total by seven  

 
14 remainder 1  

 
Step 8 

 

 
Use the remainder to identify the day of the week (0 is 

Saturday, 1 is Sunday, 2 is Monday, 3 is Tuesday, 4 is 

Wednesday,  5 is Thursday, 6 is Friday)  

 
23rd June 1957 

was a Sunday 
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Table 2 Savants’ Wechsler IQs, Memory Quotients and Features of Their Date Calculation and Performance of Other Calendrical Tasks 

 

 

 Wechsler Date calculation Memory Arithmetic Regularities 

Savant IQ Memory Range ( years) Consistent 

errors
a 

Use of 

rules
 

Variation in 

latency
b
 

Events  

recalled 

Can divide Within 

year 

One year, 

one day 

28-year 

rule 

BL 50 50 1940 - 1997  - - 31 - ?
c 

? ? 

DM 52 49 1772 - 204833 + - + 4 + ?
c 

? ? 

JG 54 58 1772 - 2165 + - + 14 - + - - 

PM 58 57 1912 - 1997  - + 7 - - - + 

JB 60 83 1940 - 1997  - + 2 - - - - 

DK 74 64 1832 - 2024 - - + 1 - + + + 

MW 82 94 1772 - 8378 - + + 6 + + + + 

PE 94 97 1912 - 2024 - - + 2 + + + + 

HP 96 86 1772 - 12823 - + + 30 + 
d 

  

GC 97 86 1772 - 819206 - + + 6 + + + + 
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a 
Makes errors consistent with ignorance of  which century years are leap  

b 
Takes longer to answer more remote years 

c 
We have yet to find a method of explaining the task to these savants 

d
 Not tested 


