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Abstract The Kohnstamm phenomenon refers to the
observation that if one pushes the arm hard outwards
against a fixed surface for about 30 s, and then moves away
from the surface and relaxes, an involuntary movement
of the arm occurs, accompanied by a feeling of lightness.
Central, peripheral and hybrid theories of the Kohnstamm
phenomenon have been advanced. Afferent signals may
be irrelevant if purely central theories hold. Alternatively,
according to peripheral accounts, altered afferent signalling
actually drives the involuntary movement. Hybrid theories
suggest afferent signals control a centrally-programmed
aftercontraction via negative position feedback control
or positive force feedback control. The Kohnstamm phe-
nomenon has provided an important scientific method for
comparing voluntary with involuntary movement, both
with respect to subjective experience, and for investigating
whether involuntary movements can be brought under vol-
untary control. A full review of the literature reveals that a
hybrid model best explains the Kohnstamm phenomenon.
On this model, a central adaptation interacts with afferent
signals at multiple levels of the motor hierarchy. The model
assumes that a Kohnstamm generator sends output via the
same pathways as voluntary movement, yet the resulting
movement feels involuntary due to a lack of an efference
copy to cancel against sensory inflow. This organisation
suggests the Kohnstamm phenomenon could represent an
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amplification of neuromotor processes normally involved in
automatic postural maintenance. Future work should deter-
mine which afferent signals contribute to the Kohnstamm
phenomenon, the location of the Kohnstamm generator,
and the principle of feedback control operating during the
aftercontraction.
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Introduction

Developing an understanding of the involuntary mecha-
nisms of motor control is a primary aim of motor control
science. Historically, most research has focussed on invol-
untary responses to transient perturbations (Marsden et al.
1976b; Feldman et al. 1998; Archambault et al. 2005), and
most experimental models involve brief involuntary reflex
responses (Matthews 1991). These approaches encour-
age the view of involuntary movement as a single, discrete
feedforward event, rather than an ongoing form of continu-
ous control, occurring below the level of conscious voli-
tion. In particular, the ongoing principle of control of the
involuntary movement cannot easily be assessed from brief
responses. The Kohnstamm phenomenon offers a unique
means to study involuntary movement free from the con-
straints imposed by short, transient reflex responses. We
show how studying involuntary movements at this longer
timescale can reveal fundamental control principles under-
lying human movements, both voluntary and involuntary.
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What is the Kohnstamm phenomenon?

The Kohnstamm phenomenon (Fig. 1.), as originally
described, refers to the observation that if one pushes
hard outward against a fixed surface with the back of the
hand for approximately 30 s and then ceases, an abduction
of the arm will occur, accompanied by a feeling that the
movement is involuntary and the arm lighter than usual
(Kohnstamm 1915; Salmon 1915). When pre-screening
is not used, the Kohnstamm phenomenon is reported in
about 75% of healthy participants (Adamson and McDon-
agh 2004; Duclos et al. 2007; Hagbarth and Nordin 1998;
Ivanenko et al. 2006). It is not known why some individuals
do not display the effect, although general anxiety towards
the experimental environment is likely a factor (Craske and
Craske 1985). Researchers have noted large individual dif-
ferences in how easily the aftercontraction can be elicited,
and when it is, differences in movement speed and ampli-
tude (Adamson and McDonagh 2004; Kohnstamm 1915;
Salmon 1916, 1925). Early work claimed that the Kohn-
stamm phenomenon displays uniformity across sessions in
healthy individuals (Allen 1937), though this has not been
verified statistically. The degree variability of the Kohn-
stamm aftercontraction appears to be consistent with the
variability seen in other involuntary movements, such as
the tendon jerk reflex (Dick 2003).

While most studies utilise the deltoid muscle (Adamson
and McDonagh 2004; Fessard and Tournay 1949; Kohn-
stamm 1915; Pinkhof 1922; Salmon 1915, 1916), it has
always been known that the Kohnstamm phenomenon can
be easily demonstrated in many muscles including flexors
and extensors of the arm, wrist, ankle, knee, hip, and also

A

Fig. 1 Kohnstamm phenomenon. The first documented image of
the Kohnstamm phenomenon (a). Dr. Alberto Salmon has one of
his patients push outwards against his arms. Upon relaxation, the
patient’s arms rise involuntarily due to an aftercontraction of the lat-
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the neck muscles (Allen and O’Donoghue 1927; Csiky
1915; Forbes et al. 1926). Indeed, it has been suggested
that an aftercontraction can be elicited from any skeletal
muscle providing a suitable induction exists (Forbes et al.
1926) and early work documented the aftercontractions in
20 different muscles within the same individual (Matthaei
1924a). However, it was also reported that the Kohnstamm
phenomenon is hardest to produce in the muscles of the
hand (Matthaei 1924a). Recently, it has been found that
aftercontractions emerge more clearly in proximal joint
muscles compared to the muscles of distal parts of the limb
(Gregory et al. 1988; Gurfinkel et al. 1989). Traditionally,
the Kohnstamm phenomenon is studied in the context of a
single muscle. Co-contraction of antagonistic muscles such
as the biceps and triceps does not produce any aftercontrac-
tion (Gilhodes et al. 1992). However, with specific complex
movements of the axial muscles, aftercontraction activity
is found simultaneously in antagonistic muscles (Ghafouri
et al. 1998). Pushing the legs together for extended peri-
ods of time can produce involuntary air stepping (Selionov
et al. 2013, 2009), demonstrating that complex muscle syn-
ergies can be recruited.

In all previous studies, the aftercontraction is elicited via
an isometric muscle contraction. This can be achieved by
pushing against a solid surface (Kohnstamm 1915) or hold-
ing a fixed amount of weight stationary out from the body
(e.g., Sapirstein et al. 1937). Even small amounts of force,
requiring just 10% of the muscle’s maximum voluntary
contraction (MVC), maintained for 10 s, are adequate in
some individuals (Allen and O’Donoghue 1927). However,
to induce a robust effect across participants, most para-
digms involve 50-100% MVC for durations of 30-60 s. It is

A

~50-100% MVC
Isometric <- . Y
contraction

Induction Latent Aftercontraction
Period

~30-60 seconds ~1-3 seconds ~15-60 seconds

>

eral deltoid muscles (Adapted from Salmon 1916). b Modern record-
ing of the Kohnstamm phenomenon showing the basic kinematics,
average duration, and a typical EMG trace from the right lateral del-
toid muscle
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possible to generate the effect with the muscle at a variety
of lengths during the induction (Forbes et al. 1926; Hag-
barth and Nordin 1998).

After cessation of the voluntary contraction, there is a
latent period. The muscle is not active and the limb is sta-
tionary (Gurfinkel et al. 1989; Kozhina et al. 1996). The
duration of this period varies across participants, but on
average lasts 1-3 s (Csiky 1915; Kozhina et al. 1996; Mei-
gal et al. 1996; Parkinson and McDonagh 2006; Pinkhof
1922; Sapirstein et al. 1937). Typically, participants are
instructed to relax to trigger the aftercontraction (Sapirstein
et al. 1937; Mathis et al. 1996; Ghafouri et al. 1998). How-
ever, it is unknown what signals are necessary to trigger
the aftercontraction beyond the cessation of the voluntary
contraction. Instruction to relax may result in smaller after-
contractions relative to maintaining normal posture (Hick
1953). However, this observation has not been statistically
verified.

The aftercontraction phase of the Kohnstamm phenom-
enon causes a movement of the limb in the direction of
the induction force. In the deltoid, it is routinely reported
that in many individuals the arm abducts to the maximum
90° (Adamson and McDonagh 2004; Kohnstamm 1915;
Salmon 1916). There is high variability across protocols,
but typically, the aftercontraction duration is in the range
of 10-60 s (Sapirstein et al. 1937; Gurfinkel et al. 1989;
Parkinson et al. 2009), though in one experiment, postural
effects were detected for up to 14 min (Duclos et al. 2004).
The end of the aftercontraction is poorly defined. With
some participants (Matthaei 1924b; Sapirstein et al. 1937)
or protocols (Craske and Craske 1985; Forbes et al. 1926),
it naturally takes on an oscillatory character. However,
in most cases, the arm is brought down from a statically
abducted position either by instruction or by the voluntary
decision to adopt a new posture. Subjective feeling of light-
ness may be the best way to gauge the true duration of the
aftercontraction (Cratty and Duffy 1969).

Why study the Kohnstamm phenomenon?

The Kohnstamm phenomenon has been reported in the lit-
erature for 100 years. It has likely been known about for
much longer (Pereira 1925a) and may be considered a folk
illusion (Barker and Rice 2012). General interest in the
phenomenon is due to the ease with which the effect can
be demonstrated, the accompanying strange sensation, the
surprised reaction it evokes in those experiencing it for the
first time, and the associated pleasure that comes from both
its performance and the passing of ‘secret’ knowledge in a
social context (Barker and Rice 2012). However, the Kohn-
stamm phenomenon is not merely a parlour trick. Early
researchers understood the physiological and psychological
insights that could be gained from its study. It was central

to resolving a long-standing debate about the possibility of
muscle contractions without action currents (Forbes et al.
1926; Pereira 1925a; Pinkhof 1922; Salmon 1925; Salo-
monson 1921; Schwartz 1924; Schwartz and Meyer 1921).
After years of sporadic study, scientific interest in the
Kohnstamm phenomenon began to increase from the late
1980s to the present day. However, many questions remain
regarding its cognitive control. Advances in the under-
standing of motor control (Bizzi et al. 1984; Marsden et al.
1976a) and the neurocognitive basis of the sense of agency
(Blakemore and Frith 2003; Haggard 2008; Shergill et al.
2003; Wolpert and Kawato 1998) mean that there is now
a strong theoretical context in which to interpret findings
from Kohnstamm experiments. The phenomenon’s status as
something of an isolated oddity should not prevent rigorous
study. Researchers have long drawn the analogy with visual
illusions (Fessard and Tournay 1949; Salmon 1916, 1925),
themselves once considered just games, but now recog-
nised as a key source of knowledge about the mechanisms
of visual perception. Similarly, the Kohnstamm phenom-
enon may provide important insights into the fundamental
nature of voluntary and involuntary movement control.

Much research has been conducted to try and isolate the
involuntary mechanisms of low-level motor control, with-
out the normal overlay of voluntary control. Perturbation
studies have focused on responses to unloading the muscle
during tasks in which the participant is instructed not to
intervene to counteract a perturbation (Archambault et al.
2005; Raptis et al. 2010). Imperceptible perturbations have
also been used to bypass voluntary responses to pertur-
bations (Hore et al. 1990). In the case of the Kohnstamm
phenomenon, the involuntary processes are amplified and
prolonged, allowing the mechanisms to be studied isolated
from confounding voluntary interventions.

Isolating the motor commands of other involuntary
reflexes, and determining how they contribute to action
awareness is difficult because of their rapid onset, short
duration, and close interaction with afferent signals (Ghosh
and Haggard 2014). The Kohnstamm phenomenon does
not suffer from this problem. It is the speed of a slow vol-
untary movement, meaning that it can be perturbed, and the
physiological consequences recorded. The quality of being
physically indistinguishable from a voluntary movement,
yet subjectively entirely different, makes the Kohnstamm
phenomenon an attractive tool to study how these two com-
ponents of movement are linked. The results of such exper-
iments will elucidate both voluntary and involuntary move-
ment. They may also help to explain where the Kohnstamm
phenomenon fits within the range of reflexive, postural, and
voluntary motor control. Furthermore, by contrasting vol-
untary motor control and Kohnstamm movements, impor-
tant questions about the inhibition of existing movements
can be addressed.
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Previous literature

The Kohnstamm phenomenon has also been referred to
as the Katatonusversuch (Kohnstamm 1915), after move-
ment (Csiky 1915), residual contraction (Pinkhof 1922),
Salmon-Kohnstamm phenomenon (Henriques and Lindhard
1921), automatic movement (Salmon 1925), automatic con-
traction (Pereira 1925a), involuntary contraction (Forbes
et al. 1926), post-contraction (Allen 1937), and aftercon-
traction (Sapirstein et al. 1937). The literature for the fol-
lowing review was obtained by searching Pubmed and Web
of Science using the above search terms. Once all listed
studies had been found, additional papers were located by
examining the reference lists of all papers. For the purposes
of clarity, in this review, the term Kohnstamm phenomenon
will be used to refer to the entire effect, while individual
stages will be referred to as Induction, Latent period and
Aftercontraction. Papers are only included in the table if
they are peer reviewed, present original research data, and
focus on involuntary aftercontraction (Table 1).

Summary of table

The table identifies 62 original research papers. The most
prolific decade for research was the 1920s (17 papers), and
there was then a steady decline until the 1980s when inter-
est began to increase. The table includes 41 papers written
in English, 10 in French, 7 in German, 2 in Italian, and 2
in Dutch. The most prolific authors are Victor Gurfin-
kel (8 papers: 1989-2016), Martin McDonagh (5 papers:
2001-2009), Milton Sapirstein (5 papers: 1936—1960), and
Albert Salmon (4 papers: 1915-1929). Research was pub-
lished from the USA (11 papers), France (10), UK (9), Italy
(8), Germany (5), Canada (5), Russia (5), Netherlands (4),
Hungary (2), Denmark (1), Switzerland (1), and Sweden
().

Numbers of participants were not typically reported
prior to the 1950s. It is difficult to estimate the mean num-
ber of participants included in subsequent studies because
some experiments used pre-screening, while others did not.
Likewise, the prevalence of the aftercontraction is skewed
by pre-screening, but appears to be 70-80% of healthy par-
ticipants. Kinematic recording was used in 40 experiments,
EMG in 31 experiments, fMRI in 2 experiments, and TMS
in 2 experiments. The most commonly studied muscle is
the deltoid, which was used in 46/62 papers. A variety of
methods have been used to induce the aftercontraction,
but they all involve isometric contractions and an attempt
to maintain a constant force, either against gravity (hold-
ing weight) or a fixed surface (pushing). A standard Kohn-
stamm induction is 40-100% MVC for 20-60 s. Only two
studies (De Havas et al. 2016; Kozhina et al. 1996) appear
to have reported accurate mean data for the latent period
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between the end of induction and the onset of aftercon-
traction. Others report a range with the general consensus
being that the mean is 1-3 s. Little can be concluded about
the size and duration of the aftercontraction owing to the
wide range of methodologies used and muscles studied.
Reports of the mean size and duration of the aftercontrac-
tion are surprisingly rare, perhaps because many studies
used more than one induction protocol. However, it can be
noted that aftercontractions of the deltoid can induce invol-
untary movements of up to 90°, using a variety of induc-
tions. The typical duration of the aftercontraction appears
to be 10-60 s. The percentage of this time involving a mov-
ing versus stationary limb varies considerably across indi-
viduals. Key findings are discussed in the following.

Research themes

What is happening at the muscle
during the Kohnstamm phenomenon?

The muscle itself is the logical starting point for an explo-
ration of the causes of the Kohnstamm phenomenon. Initial
work concerned a wholly muscular origin (but see Roth-
mann 1915; Salmon 1915, 1916). Csiky (1915) was the first
to time and formally describe the individual phases of the
Kohnstamm phenomenon. He noted a close analogy with
the optical afterimage. Both were considered by him to be
caused by fatigue of the peripheral apparatus. Supporting
this muscular theory, high levels of electrical stimulation
of the muscle could apparently induce an aftercontraction
(Csiky 1915). However, this was not replicated (Duclos
et al. 2004; Gurfinkel et al. 1989; Kohnstamm 1915; Mat-
thaei 1924a) and it is likely that the original finding was
due to the participants voluntarily contracting against the
direction of the powerful shocks (Zigler 1944). With the
availability of the string galvanometer, it became possi-
ble to measure innervation of the muscle. Early attempts
showed a lack of EMG activity during the aftercontraction
(Salomonson 1921), suggesting that muscle tone was main-
tained without central innervation (Salomonson 1921).
Kohnstamm’s (1915) own theory was that the aftercontrac-
tion depended on the muscle taking on a new equilibrium
point during the ‘hard push’ and then trying to return to
that point. He speculated that muscle tone was normally
maintained in this local manner and that it was an inhibi-
tion of the voluntary movement signal that actually allowed
the arm to move. However, this ‘holding back’ of the arm
is fundamentally incompatible with the characteristic
latent period of 2-3 s (Csiky 1915). Further experiments
showed EMG activity during the aftercontraction (Hen-
riques and Lindhard 1921; Pinkhof 1921, 1922; Schwartz
and Meyer 1921; Verzar and Kovéacs 1925). There was
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a debate as to whether these were products of the move-
ment itself (Pereira 1925a, b) or true central innervation
(Salmon 1925), but this was elegantly resolved by showing
that they persisted even when the involuntarily rising arm
was obstructed (Forbes et al. 1926). Later, modern electro-
myographic (EMG) recording convincingly showed central
motor drive during aftercontraction (Fessard and Tournay
1949), allowing purely muscular theories to be abandoned.

Central innervation does not preclude changes in the
muscle from being the origin of the aftercontraction. Such
peripheral changes are the basis of the muscle thixotropy
hypothesis (Gregory et al. 1988; Hagbarth and Nordin
1998), which remains an influential account of the Kohn-
stamm phenomenon. Here, the key factor in generating the
Kohnstamm phenomenon is changes in the stiffness and
slackness of intrafusal muscle fibres. The theory states that
a Kohnstamm aftercontraction of the deltoid muscle occurs
for the following reasons: (1) under normal conditions
when we move our arms, the alternating stretching and
shortening movements of largely inactive muscle lead to
development of slack in muscle fibres, including intrafusal
fibres. As a result, the levels of maintained spindle activ-
ity remain low; (2) conversely, the Kohnstamm induc-
tion involves static contraction of muscles at short length,
resulting in the taking up of slack in the intrafusal fibers;
(3) during this voluntary, isometric induction contraction,
stable actin and myosin cross bridges form in intrafusal
muscle fibers; (4) relaxation causes the arm to be slowly
brought back to a longer muscle length; (5) stable cross
bridges in intrafusal fibers remain, maintaining them in a
state of relative shortness (compared to their state follow-
ing alternative contraction histories such as if the arm was
moving normally); (6) relative shortness in intrafusal mus-
cle fibers causes muscle spindles to be stretched and to send
afferent signals; and (7) spindle signalling causes muscular
contraction via spinal reflexes. This reflexive response con-
stitutes the aftercontraction.

Hagbarth and Nordin (1998) modified a muscular con-
ditioning sequence (used in animals to enhance resting
spindle discharge) to act as a Kohnstamm induction for
the lateral deltoid muscle (Fig. 2). The sequence involved:
(1) participants first holding both arms slightly abducted;
(2) actively lifting up their arms against two solid stands
(deltoid shortened) and forcefully pressing (max effort) for
5-10 s; (3) relaxing their arms while the experimenter held
them up in the fully abducted position (deltoid held short)
for 4-8 s; and (4) having their arms passively adducted
(slow lengthening of deltoid) by the experimenter to the
start position (Fig. 2a). On each trial, the full procedure
was performed on one arm, while on the other arm, one
of the steps would be systematically omitted. The proce-
dure was found to produce a small aftercontraction with a
mean angular displacement of 8°. Omitting any of the steps
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produced a significant decline in the amount of angular
displacement (Fig. 2b), suggesting that the aftercontrac-
tion was largest when a procedure was used that maximised
the maintenance of shortness and stiffness in the intrafusal
muscle fibres. For example, omitting the step that involved
passive holding of the muscle at maximum abduction for
4-8 s, purportedly reduced the aftercontraction, because
it reduced the gradual formation of stable cross bridges
(Fig. 2b; trial B). Replacing the slow, passive adduction
with a fast movement purportedly reduced the aftercontrac-
tion, because it disrupted the existing stable cross-bridges
(Fig. 2b; trial E). The aftercontractions were much smaller
than typically seen during a deltoid Kohnstamm (Adamson
and McDonagh 2004; Brice and McDonagh 2001; Fessard
and Tournay 1949; Laignel-Lavastine et al. 1927; Matthaei
1924a; Paillard 1951; Pereira 1925a; Schwartz and Meyer
1921; Verzar and Kovacs 1925). Thus, voluntary move-
ments may have contributed to the effect: for example,
knowledge of the complexity of the induction may have set
up an expectation of movement size. However, Hagbarth
and Nordin (1998) also found that heating the muscle by
3-4°C significantly decreased aftercontraction size, while
cooling by the same amount produced a trend towards
an increase (Fig. 2c¢). This result also fits the thixotropy
hypothesis. Muscle temperature may increase (heating) or
decrease (cooling) the effects of Brownian motion on the
weak physico-chemical bonds that form the actin—myosin
cross bridges (Edwards et al. 1972; Lakie et al. 1984, 1986;
Sekihara et al. 2007). Indeed, significant whole-body heat-
ing and cooling effects on the size of the EMG response
during aftercontraction (Meigal et al. 1996) were reported.
Muscle cooling was also reported to reduce the frequency
of muscle activity during the aftercontraction (Verzar and
Kovéacs 1925). Interestingly, recent evidence suggests the
effects of heating and cooling on the Kohnstamm phe-
nomenon may be more complex. Aftercontraction in the
biceps was significantly increased by whole body cooling,
and tended to decrease with whole body heating (Meigal
and Pis’mennyi 2009). Conversely, in the deltoid muscle,
whole body cooling had no effect, while heating resulted in
a larger aftercontraction.

Whether the muscle itself is the origin of the Kohn-
stamm phenomenon depends on the spindle discharge being
high enough to generate a sufficiently strong and sustained
‘reflex response’. For example, thixotropy models explain
the Kohnstamm phenomenon by pointing out that the mus-
cle contraction history can increase spindle sensitivity,
through formation of stable cross bridges. In the animal lit-
erature, spindle ‘after effects’ are well established (Burke
and Gandevia 1995), with numerous studies showing sus-
tained firing following the cessation of a muscle contrac-
tion (Brown et al. 1969; Morgan et al. 1984; Gregory et al.
1988, 1990). In the cat, resting discharge of 60% of muscle
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spindles has been found to be significantly increased for up
to 15 min following electrically induced contraction (Hut-
ton et al. 1973). Similar results have been obtained follow-
ing isometric contraction (Suzuki and Hutton 1976). There
is also supporting microneurographic evidence in humans
showing spindle after effects (Edin and Vallbo 1988; Mac-
efield et al. 1991). Short periods of isometric contraction
of the ankle (5 s) produce 65% increases in spindle firing
rates, lasting up to 52 s (Wilson et al. 1995). Other human
research has found that fewer than 15% of primary spin-
dles show any post-contraction sensory discharge and that
this discharge never exceeds 40 s in duration (Ribot-Ciscar
et al. 1998, 1991). However, it should be noted that dis-
crepancies are expected when comparisons are made to the
animal literature, owing to differences in physiology and
the difficulties of performing microneurography in humans
(Burke and Gandevia 1995).

How might spindle after effects produce the Kohnstamm
phenomenon? On one account, the isometric voluntary
inducing contraction may ‘sensitise’ the muscle spindles
(Burke and Gandevia 1995). The resulting increased spin-
dle firing would continuously generate the aftercontraction
via spinal and transcortical reflex pathways (Hagbarth and
Nordin 1998). However, there is evidence to suggest this
account may be incomplete. Following a muscle contrac-
tion, increased spindle firing rates are abolished by stretch-
ing the muscle (Wilson et al. 1995). Observations involv-
ing obstructing the aftercontraction (Forbes et al. 1926),
adducting against the aftercontraction (Fessard and Tour-
nay 1949; Ghosh et al. 2014), and tapping the tendon dur-
ing aftercontraction (Gurfinkel et al. 1989), suggest that
introducing stretch to the muscle does not eliminate the
Kohnstamm phenomenon. Recent experiments showed
that brief (~2 s) obstruction of the arm does not abolish the
involuntary aftercontraction and that once the obstacle is
removed, the arm rises to the same angle as if no obsta-
cle had been present (De Havas et al. 2015). Furthermore,
it was found that obstruction of the involuntary movement
by the obstacle produced a stretch response, but that the
stretch-induced increase in EMG did not differ in ampli-
tude from that elicited during obstruction of matched vol-
untary movements. Contrastingly, the muscle thixotropy
account predicts that a stretch response would be larger
than normal due to the shortness of intrafusal muscle fibers
and the resulting increase in spindle gain. The theory also
predicts that a perturbation-induced stretch of the muscle
should disrupt actin-myosin cross bridges, which should
then reduce the strength of the aftercontraction. Neither
effect was observed. Finally, the deltoid aftercontraction
was observed to be still present after novocaine (20 cc., 1%
solution) was injected into the muscle (Matthaei 1924a).
The extent of the afferent block was not documented, so
interpretation is problematic. However, taken together, the

evidence suggests that the Kohnstamm phenomenon is
unlikely to be driven solely by the thixotropic state of the
muscle (for a summary of the evidence for and against
purely peripheral theories of the Kohnstamm phenomenon
see Table 2).

Alternatively, spindle after effects may establish central
changes, leading to the aftercontraction being maintained
even after spindle firing rates have returned to ‘normal’
levels. This could involve alterations of the plateau proper-
ties of spinal motoneurones. The finding that spinal moto-
neurons demonstrate persistent inward currents, producing
sustained firing independent of descending input, is well
established in the animal literature (Hounsgaard et al. 1984,
Bennett et al. 1998). These plateau properties may be trig-
gered by the kind of large afferent input resulting from
post-contraction spindle discharge, establishing sustained
and non-linear motor output (Binder et al. 1993). There is
increasing evidence for the existence of plateau properties
in humans (Heckman et al. 2008; Wilson et al. 2015). Such
a mechanism underlying the Kohnstamm phenomenon
would account for the sustained, involuntary nature of the
aftercontraction and the associated subjective experience.
It would also explain why stretching the muscle once the
aftercontraction has begun and does not abolish the muscle
contraction. However, currently, it is not possible to study
the plateau prosperities of spinal motoneurons directly in
humans, and no experiments have established a direct link
to the Kohnstamm phenomenon.

What sensory signals reach the brain?

Other, non-muscular afferent signals interacting with the
central nervous system may explain the origin of the Kohn-
stamm phenomenon. Cutaneous signals from the dorsum of
the arm during induction were proposed as a cause (Hen-
riques and Lindhard 1921), but can be dismissed due to
numerous experiments using suspended weights to elicit
the isometric contraction and subsequent aftercontrac-
tion (Allen 1937; Allen and O’Donoghue 1927; Ghafouri
et al. 1998; Pinkhof 1922; Sapirstein et al. 1937). Afferent
signals from the muscle spindles have received more sup-
port (Forbes et al. 1926; Matthaei 1924a; Pinkhof 1922;
Schwartz 1924; Schwartz and Meyer 1921; Zigler 1944).
Theoretically, this afferent signal would drive the aftercon-
traction by: (a) establishing central adaptations during the
induction; (b) altering continuous reflex loops with central
regions during the aftercontraction; or (c) a combination of
both. Evidence for the role of afferent signals in the Kohn-
stamm phenomenon comes from its similarity to the Tonic
vibration reflex (TVR).

The TVR is induced by vibrating the muscle tendon
at 80-100 Hz for around 30 s, causing the activation of
muscle spindles (Duclos et al. 2007; Gilhodes et al. 1992;
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Mathis et al. 1996). This produces an involuntary contrac-
tion of the muscle, resulting in a similar kinematic and
EMG profile to the Kohnstamm phenomenon (Gilhodes
et al. 1992; Mathis et al. 1996), along with overlapping
activations in the cortex (Duclos et al. 2007) and the elici-
tation of comparable descriptions of the subjective experi-
ence (Hagbarth and Nordin 1998). If the Kohnstamm phe-
nomenon and TVR are the same phenomenon, it would
follow that afferent signals from muscle spindles are the
common origin (although signals from Golgi tendon organs
could not be completely dismissed). However, there have
been no experiments attempting to dissociate the Kohn-
stamm phenomenon and TVR. Establishing if this affer-
ent signal is necessary for the Kohnstamm phenomenon,
though important, does not reveal what central mechanisms
in the spinal cord or brain may underlie the generation of
the aftercontraction.

The Kohnstamm phenomenon may also be related to the
lean aftereffect. The lean aftereffect refers to the finding
that following a prolonged period (>120 s) of standing on
a tilted surface (induction phase), participants will continue
to lean forward (test phase) when returned to a flat surface
(Walsh 1973; Gurfinkel et al. 1981). The lean aftereffect
was recently shown to occur when an oscillating induction
is used (platform oscillating from 4 to 10°, toes up), and
to be present regardless of whether a rigid or oscillating
surface is used during the test phase (Wright 2011). It was
argued that a variable induction ruled out explanations of
the lean aftereffect based on peripheral adaptation. Instead,
the author suggested that the induction caused a central
shift in a postural reference frame, which caused a change
in descending motor signals (Wright 2011). Nevertheless,
as with the Kohnstamm phenomenon, it is likely that affer-
ent signalling during the induction procedure is necessary
to drive the putative central adaptations.

Determining what afferent signals reach the cortex dur-
ing the aftercontraction can be tested via position sense of
the limb (Kuehn et al. 2015; Longo and Haggard 2010;
Matthews 1933; Proske and Gandevia 2009; Stuart et al.
1970). It is known that isometric contractions and changes
attributed to muscle thixotropy alter position sense (Tsay
et al. 2014). However, it has also been found that sustained,
isometric contractions do not reduce pointing accuracy
during a voluntary movement (Heide and Molbech 1973),
although they do reduce the participant’s confidence in their
responses. However, it should be noted that rapid voluntary
movements would have disrupted the sensory conditioning
caused by the initial voluntary, isometric contraction. Of
more relevance, it has been found that, while postural per-
sistence (turning the head to the right for 10 min) produces
a bias in position sense, this was not found after inducing
a neck turning aftercontraction (Howard and Anstis 1974).
Indeed, positional after-effects have been reported to be
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unrelated to the Kohnstamm phenomenon in terms of how
their duration varies across individuals (Cratty and Duffy
1969). Thus, there is some evidence that afferent signals
from the involuntarily contracting muscle are processed in
the cortex not as purely peripheral sensory events, but as
corollaries of voluntary action.

To determine what sensory signals reach the brain dur-
ing the Kohnstamm phenomenon, it is especially informa-
tive to explore how sensory inputs affect the aftercontrac-
tion. Contractions from other muscles in the body can alter
the aftercontraction. Concurrent voluntary dorsiflexion of
the foot and weighted ipsilateral arm inductions has been
seen to increase the size of hip aftercontractions (Sapirstein
et al. 1937). It has also been observed that bilateral after-
contractions of the lateral deltoid were smaller than those
that were unilateral (Paillard 1951). Flexion of the trunk
and neck towards the involuntarily rising arm has been
observed to decrease the size of the aftercontraction, while
flexion away had the opposite effect (Bellincioni 1926).
EMG was not recorded in any of these studies, making it
impossible to know if the activity of the agonist muscle was
constant across conditions. However, recent studies have
found that despite matched inductions (forces and dura-
tion), sitting and lying supine are associated with signifi-
cantly reduced aftercontraction of the deltoid muscle rela-
tive to standing (Ghafouri et al. 1998; Lemon et al. 2003).
These findings could all be explained by efference-related
changes in central regions.

Contrastingly, a few notable experiments have employed
purely sensory perturbations. Building on the surprising
finding that the aftercontraction sometimes transfers from
one muscle to another (Craske and Craske 1985, 1986;
Gurfinkel et al. 1989), it has been found that this switch-
ing can be triggered by visual input. By having participants
position their arm so that both extension and flexion was
possible, it was demonstrated that under diffuse light condi-
tions (but not darkness) opening and closing the eyes led to
the aftercontraction switching from the biceps to the triceps
and vice versa in 10/14 participants tested (Gilhodes et al.
1992). The effect was also shown in the same participants
for the TVR. EMG recordings showed that switching was
not due to muscle activity during induction. Further work
has confirmed visually induced switching in other mus-
cle groups (Ghafouri et al. 1998). Integration of ascend-
ing sensory signals may occur in tonigenic sub-cortical
structures such as the reticular formation (Gurfinkel et al.
1989), which is known to be strongly activated by visual
input (Mori et al. 1980). However, cortical accounts cannot
be ruled out. The basis of these remarkable effects is not
fully understood. Such results may appear like auto-sugges-
tion or experimenter effects. However, spontaneous muscle
switching has been independently replicated (Meigal et al.
1996). Furthermore, shining strong light into participant’s
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eyes from the left has been shown to reduce a right arm
aftercontraction (during bilateral aftercontractions), while
shining light from the right reduces the left arm aftercon-
traction (Wells 1944).

It is not clear how afferent input from the muscle influ-
ences the aftercontraction. Proprioceptive input in the
form of tendon vibration applied to the ipsilateral arm can
increase the velocity of a contralateral aftercontraction
(Brun et al. 2015). In addition, reducing the weight of the
arm using a counterweight was found to reduce EMG dur-
ing the aftercontraction (Parkinson and McDonagh 2006).
This effect may be due to reduced afferent discharge from
Golgi tendon organs (GTO) or lower spindle firing due
to reduced arm velocity. On that view, the control of the
Kohnstamm movement would involve a putative positive
feedback loop linking GTO discharge to o motor neuron
drive, or the established negative feedback loop linking
spindle discharge to o motor neuron drive. The most direct
way to determine the effects of afferent input on the Kohn-
stamm generator is via physical obstruction of the invol-
untarily rising arm. An early report involving single traces
obtained by a string galvanometer (Fig. 3a) suggested that
obstruction does not end the aftercontraction or reduce
central innervation (Forbes et al. 1926). Furthermore, it
has been shown that EMG during the aftercontraction is
proportional to the angle of the rising arm (Adamson and
McDonagh 2004). Here, the arm was obstructed at 15, 35,
55, and 70° of abduction. Mean EMG at contact with obsta-
cle increased across these positions, differing significantly
between 15° and 70°. Single traces also appeared to show
that at the point of contact with the obstacle, the EMG
remained constant. This was confirmed by a recent inves-
tigation (Fig. 3b), which found that obstructing the after-
contraction caused the increasing linear trend in agonist
EMG to reach a plateau level (De Havas et al. 2015). Thus,
afferent signalling from the agonist muscle can affect the
aftercontraction. Removal of the obstacle caused an imme-
diate return to the previous pattern of increasing EMG,
resulting in a resumption of the involuntary movement and
a final arm angle and EMG level similar to that achieved
in trials without any obstruction. This suggests that the
afferent signals resulting from hitting the obstacle did not
alter the state of the brain circuits that generate the Kohn-
stamm phenomenon. Rather, it implies that the unchanging,
afferent-independent output from this putative Kohnstamm
generator was first integrated with incoming afferent sig-
nals, so that the EMG level reflects the combination of both
influences. Analysis of single trials showed that the ago-
nist EMG was not flat during the obstruction period, but
showed an oscillatory pattern, consistent with a constant
motor command accumulating, but then being repeatedly
reset by an afferent signal (De Havas et al. 2015).

Thus, a variety of afferent signals interact in central
regions to modify the Kohnstamm phenomenon. Position
signals from the contracting muscle seem to combine with
the drive from the Kohnstamm generator to set the level of
the motor command, and thus the observed EMG. It is not
known how strong of an effect such signals have during an
unobstructed aftercontraction, and if these afferent signals
form a negative-position control feedback loop with the
Kohnstamm generator.

What is changing in the brain?

A key question regarding both the mechanisms behind the
Kohnstamm phenomenon and its relevance to voluntary
action is the extent to which changes can be detected in the
brain. Subcortical (Foix and Thevenard 1923; Rothmann
1915) and cortical (Salmon 1915, 1916, 1925; Sapirstein
et al. 1936, 1937, 1938) theories have been advanced. Early
cortical explanations involved a persistence of the volun-
tary movement. This was hypothesised to be a kinaesthetic
after-image (Salmon 1916, 1925), in modern terms this
is akin to a reactivation of the voluntary motor programs
used during the induction in modern terms. Alternatively,
the aftercontraction was hypothesised to result from a per-
sistence of the excitatory state of the motor cortex caused
by the initial strong isometric contraction (Sapirstein et al.
1937, 1938). It was observed that the aftercontraction was
diminished, but present, in patients with Tabes dorsalis
(Kohnstamm 1915; Rothmann 1915; Salmon 1916, 1925),
a condition resulting from untreated syphilis, which caused
demyelination of proprioceptive pathways. Sapirstein, Her-
man, and Wechsler (1938) studied 12 tabetic patients, all of
whom lacked basic proprioception and showed no knee jerk
response to a tendon tap. A normal aftercontraction was
observed in 10 of the patients, and there was no correlation
between symptom severity and aftercontraction size. The
authors also examined seven patients with Parkinson’s and
found that they all exhibited strong, prolonged aftercontrac-
tions, and that in some cases, tremors were visibly reduced
during the movement. This extended duration was noted
by earlier authors (Laignel-Lavastine et al. 1927; Salmon
1916, 1929; Selionov et al. 2013). Amongst patients with
hemiplegia, they found that while that the spinal reflexes
were hypersensitive on the affected side of the body, after-
contractions were markedly reduced. Others noted this
reduction (Rothmann 1915; Salmon 1916, 1925). However,
it could be that these patients could not produce adequate
voluntary induction contractions (Salmon 1929). Finally, a
single case of abnormal cerebellar development was stud-
ied and it was noted that the aftercontraction was strong,
but unusually jerky in character. Together, the results sug-
gest that Kohnstamm generation is cortical and that it is
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modified by sub-cortical structures in a similar fashion to
voluntary movement.

Other evidence purporting to demonstrate a cortical
origin is harder to interpret. Bromides (2 gm sodium bro-
mide) were found to reduce the size of the aftercontrac-
tion, while other drugs that are known to have less effect on
cortical function had no effect (Sapirstein et al. 1936). The
effect of bromides was found to be ameliorated by caffeine
(Sapirstein et al. 1936), which, along with alcohol has been
reported to increase the aftercontraction (Danielopolu et al.
1921; Forbes et al. 1926; Matthaei 1924a). However, with-
out adequate control experiments and EMG recordings, it
is impossible to know if the drugs had a direct effect on the
aftercontraction.

Similarly, there is a notable consensus amongst authors
that personality traits such as positivity and emotional reac-
tivity were correlated with large aftercontractions, while
negativity and low reactivity were associated with smaller
aftercontractions (Kohnstamm 1915; Laignel-Lavastine
et al. 1927; Salmon 1925, 1929; Sapirstein 1948, 1960;
Sapirstein et al. 1937). Indeed, Sapirstein (1948, 1960)
employed the aftercontraction as a diagnostic tool within
the field of psychiatry, testing hundreds of individuals, and
observing that this relationship between traits and the after-
contraction persisted when they were amplified into the
psychiatric range. The appearance of the aftercontraction
predicted the recovery of patients, while its disappearance
predicted periods of worsening mental health. Unfortu-
nately, without physiological recordings, it is impossible to
discount task compliance as the significant variable. There
have been no modern experiments on the topic.

Historically, direct attempts to show a cortical origin
were confined to animal experiments. Sustained stimula-
tion of the monkey motor cortex produced prolonged con-
tractions of the muscle, but these innervations could not be
distinguished from those during seizures (Sapirstein 1941).
However, recent fMRI work in humans has confirmed the
involvement of the cortex in the Kohnstamm phenomenon
(Fig. 4). Duclos et al. (2007) had participants first experi-
ence a small wrist aftercontraction, and then a TVR, involv-
ing the extensor muscle tendon at the wrist level. In the
scanner, these movements were compared to rest and vol-
untary movements. No significant differences were found
between the aftercontraction and TVR. Both activated an
extensive network of regions including primary sensory
and motor cortices, premotor cortex, cingulate cortex, infe-
rior and superior parietal cortex, insula, and the vermis of
the cerebellum. In the contrasts between aftercontraction
and voluntary movement, the aftercontraction was associ-
ated with greater activity in bilateral cerebellar vermis,
right premotor cortex, cingulate cortex, supramarginal
gyrus, and the thalamus. Voluntary movement involved sig-
nificantly higher activity in the left supplementary motor
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area, primary sensory and motor cortices, and posterior
parietal cortex and insular.

The finding that the Kohnstamm phenomenon is asso-
ciated with activity throughout the cortex has been repli-
cated (Parkinson et al. 2009). Both studies found that the
anterior cingulate cortex showed prominent activity during
the aftercontraction. This could be due to the region’s well-
documented role in error monitoring (Carter et al. 1998;
Taylor et al. 2007) or a more direct involvement in gener-
ating movement commands (Ball et al. 1999; Paus 2001),
perhaps via the modulation of postural centres in the brain-
stem (Takakusaki et al. 2004). Both studies found high
levels of activity in the parietal lobes, cerebellum, primary
motor cortex and premotor regions (Duclos et al. 2007,
Parkinson et al. 2009). The supplementary motor area,
which is a key structure in goal-directed movement pro-
gramming (Geyer et al. 2000; Tanji 1996), was either only
active during voluntary movement (Duclos et al. 2007), or
active to the same degree across aftercontraction and vol-
untary movement (Parkinson et al. 2009). The cortex is
clearly involved in the Kohnstamm phenomenon. However,
activity in the cortex could be epiphenomenal, rather than
a direct reflection of the Kohnstamm generator itself. For
example, it could reflect sensory feedback from the mov-
ing limb, or even mental imagery triggered by the unusual
experience (Decety 1996).

More direct evidence comes from the effects of atten-
tion, mental imagery and visual input. Inductions involv-
ing isometric contractions of the elbow and shoulder can
produce aftercontractions in the ipsilateral hip and knee
(Craske and Craske 1985). The effect also worked in the
other direction and involved having participants name the
non-induction limb repeatedly and silently at the point of
relaxation. It was confirmed that this effect of attention
could induce transfer of aftercontraction from one arm to
the other (Craske and Craske 1986). Intriguingly, it was
also found that imagining pushing outwards for 60 s could
also result in an aftercontraction of the shoulder. The
above experiments did not involve verification of transfer
by EMG and featured a reasonable degree of unexplained
spontaneous arm movements, indicative of an expectation
effect. However, the previously cited experiments show-
ing that visual input can induce muscle switching (Gha-
fouri et al. 1998; Gilhodes et al. 1992) do not suffer from
this limitation. These experiments indicate that, regardless
of the origin of the aftercontraction, output to the muscle
must first pass through the cortex. This has been confirmed
(Fig. 5). Applying transcortical magnetic stimulation to the
primary motor cortex during the aftercontraction induces a
silent period in the contracting agonist muscle (Ghosh et al.
2014). The silent period did not differ in terms of latency
or duration from that obtained during a matched volun-
tary movement. Silent periods were >100 ms, which is
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an established indicator of cortical inhibition (Chen et al.
1999; Fuhr et al. 1991; Terao and Ugawa 2002).

Obstruction, or voluntary inhibition, of one arm during
bilateral aftercontractions did not affect agonist EMG in
the other arm. This suggests that each cerebral hemisphere
has an independent Kohnstamm generator (De Havas et al.
2015, 2016). However, it appears that while both arms are
moving there can be some signal integration between puta-
tive Kohnstamm generators in each hemisphere (Brun et al.
2015; Brun and Guerraz 2015). In sum, there is now good
evidence that the aftercontraction is driven by output from
the primary motor cortex. However, many questions remain
regarding cortical involvement in the Kohnstamm phenom-
enon, with comparisons voluntary movement being par-
ticularly informative.

What is the relationship between this involuntary
movement and voluntary control?

Kinematically, the aftercontraction is identical to a slow
voluntary movement. Similarly, the EMG signal is com-
parable to a voluntary movement of similar size and speed
(Fessard and Tournay 1949; Forbes et al. 1926; Schwartz
1924; Schwartz and Meyer 1921). There is also evidence
that the entire motor system shows the same level of excita-
bility during both forms of movement. Mathis et al. (1996)
applied 8-10 Transcranial Magnetic Stimulation (TMS)
pulses (ISI=8 s) to the left motor cortex during right del-
toid aftercontractions and matched voluntary movements
in seven healthy participants. They found that, despite the
maximum abduction being lower in the aftercontraction
compared to the voluntary movement (22° versus 27°),
the EMG did not significantly differ (57 versus 45 mV).
Importantly, there was no significant difference in the mean
amplitude of Motor Evoked Potentials (MEP) elicited by
the TMS (aftercontraction=1.3, Voluntary=1 mV). In
both conditions, MEP size correlated with background
EMG level, and there was no difference in the gain, latency,
or dynamics of the MEPs across conditions. Interestingly,
an additional benefit of rising EMG (i.e., abduction, mus-
cle shortening) compared to falling EMG was found in 20%
of voluntary trials and 30% of aftercontraction trials. These
findings are complemented by the already cited imaging
work which found no significant difference in the activity
in the primary motor cortex during aftercontraction and
matched voluntary movements (Duclos et al. 2007; Parkin-
son et al. 2009).

However, work using intramuscular needle electrodes
does not fully support this account. Kozhina et al. (1996)
recorded single motor unit activity from the deltoid and tri-
ceps muscle in four participants during aftercontraction and
matched voluntary movements (Fig. 6). The standard latent
period of muscle silence was seen after the Kohnstamm

induction (triceps=1.4, deltoid=1.5 s), followed by a
1-2 s when the firing rate increased, before remaining con-
stant for the rest of the aftercontraction. Standard deviation
of spike rate did not differ across voluntary movements and
aftercontraction. In addition, EMG recordings from the
antagonist muscle (bicep) during tricep contractions did not
differ. However, the mean firing rate of motor units was sig-
nificantly lower during aftercontraction (12 pps) compared
to voluntary movements (14 pps), despite the velocity and
amplitude of the voluntary movements never exceeding
that seen during aftercontraction. Thus, while the motor
cortex and descending pathways do not differ in terms of
gross excitability across aftercontraction and matched vol-
untary movements (Mathis et al. 1996), this does not pre-
clude subtle differences in the state of motoneurons. It may
be that the aftercontraction involves adaptations in moto-
neurons, which allow the same movement to be achieved
with a lower firing rate (Kozhina et al. 1996).

Central to understanding involuntary and voluntary
motor control is determining how the two forms of move-
ment interact. The Kohnstamm phenomenon may feel
subjectively like it is uncontrollable, yet the arm can be
easily brought under voluntary control by the partici-
pant (Kohnstamm 1915). Small voluntary movements in
the direction of the aftercontraction may actually aid the
appearance of the phenomenon (Salmon 1916), although
the precise timing of this effect has not been investigated.
The aftercontraction does not prevent simultaneous volun-
tary movements of the same muscle (Fessard and Tournay
1949; Hick 1953; Shea et al. 1991), with voluntary move-
ments apparently superimposed over the involuntary one
(Hick 1953). Furthermore, hip aftercontractions have been
shown to dramatically alter the attempts of blindfolded par-
ticipants to walk in a straight line (Ivanenko et al. 2006).
The effect was always in the direction of the aftercontrac-
tion and disappeared when participants stepped in place
on a treadmill, suggesting specificity in the movement
programs affected. However, the above experiments have
limited interpretability, since the observed behaviour does
not separate the involuntary and voluntary contributions
to the movement. Other voluntary movements have been
found to have an inhibitory effect on the aftercontraction.
Rapid voluntary movements during the latent period can
prevent the aftercontraction from emerging (Duclos et al.
2004; Hutton et al. 1987). Paillard (1951) noted that sudden
voluntary upwards movements of one arm cause transient
inhibition of an aftercontraction occurring in the other arm.
These effects may be due to a form of ‘resetting’ of the sen-
sorimotor system caused by the voluntary movement or a
form of top-down motor inhibition of the developing after-
contraction. Alternatively, the contralateral movement may
just superimpose a postural adjustment on the other arm in
addition to the aftercontraction.
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The possibility of voluntarily stopping the aftercontrac-
tion has always been known about (Kohnstamm 1915).
Early reports indicated that it was easily possible to stop
the aftercontraction during the latent period (Forbes et al.
1926; Pinkhof 1922). Indeed, inhibition of one arm during
latent period apparently does not affect the aftercontraction
in the other arm (Paillard 1951). Voluntarily stopping the
arm and holding it stationary during the involuntary move-
ment was reported to be more difficult (Forbes et al. 1926).
Actively adducting the arm against an abducting aftercon-
traction does not appear to extinguish the phenomenon
(Fessard and Tournay 1949), with the effect that the arm
sometimes begins to rise again once it has been brought
back to the start position. These findings suggest an intrigu-
ing possibility: that voluntary inhibitory commands can
modify involuntary movements.

Ghosh et al. (2014) verified these observations. Follow-
ing an aftercontraction of the lateral deltoid, participants
were randomly instructed ‘gently bring the arm back down
and actively keep it down’. They did this without the use of
the antagonist muscle (pectoralis). After ‘holding’ the arm
down for 1-3 s, it spontaneously rose, albeit with reduced
EMG relative to the first aftercontraction. This suggests
something akin to a ‘negative motor command’ can be sent
to oppose the upward drive from the Kohnstamm genera-
tor. Such commands may originate from ‘negative motor
areas’ upstream of the primary motor cortex. Several corti-
cal areas have been reported to cause slowing and cessa-
tion of movement when directly stimulated (Filevich et al.
2012; Brown and Sherrington 1912). This putative negative
motor command appears not to permanently override the
Kohnstamm generator (Fig. 7). After a brief (~2 s) period
of inhibition (where the participant was instructed to keep
the arm stationary mid-way through an aftercontraction),
the arm begins to immediately rise once the instruction to
inhibit is removed, and reaches the same final angle as if it
had not been inhibited (De Havas et al. 2016). If the inhibi-
tory command directly affected the Kohnstamm generator
one would expect a delay in the resumption of movement
and a reduction in the final arm angle. Instead, it seems the
putative negative motor command is integrated with the
excitatory output from the Kohnstamm generator at a lower
level, perhaps M1 (De Havas et al. 2016). Further work is
needed to determine precisely how the Kohnstamm phe-
nomenon relates to voluntary movement at the level of con-
trol principles and physiology.

Control principles underlying the Kohnstamm
phenomenon

The control principles underlying the Kohnstamm phe-

nomenon have been investigated by systematically varying
the induction contraction. Duration (Fessard and Tournay
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1949; Matthaei 1924a) and amplitude (Allen 1937; Allen
and O’Donoghue 1927; Holway et al. 1937; Matthaei
1924a) of the induction contraction are positively corre-
lated with the amplitude of the aftercontraction in terms
of the angular displacement of the limb. This holds for
durations up to ~2 min, when the aftercontraction begins
to decrease due to fatigue (Salmon 1929). Attempts were
made to characterise this relationship in terms of a log
function (Allen and O’Donoghue 1927) and power func-
tion (Holway et al. 1937). However, these efforts were
based on inadequate samples and were confounded by the
fact that repeating many Kohnstamms within a short space
of time may initially produce reinforcement, resulting in
increased aftercontraction size (Sapirstein et al. 1937) and
then fatigue, resulting in decreased aftercontraction size
(Danielopolu et al. 1921; Sapirstein et al. 1937; Zigler et al.
1948). Other authors have observed possible augmentation
effects resulting from performing multiple Kohnstamms,
interspersed with 20 min rests (Allen and O’Donoghue
1927), rendering the possibility of obtaining simple laws
for aftercontraction size unlikely. A more recent attempt,
using a larger sample size and modern recording equip-
ment, found that once the duration of the induction reaches
a certain threshold (~45 s), the size of the aftercontraction
is related to the size of the muscular contraction (Brice and
McDonagh 2001), with for example, 60 s of 30% deltoid
MVC producing 50° of angular displacement of the arm,
and 70% producing 92° on average.

Persistence of motor activity

The above evidence can be explained by the Kohnstamm
generator being a persistence of the voluntary command
(Salmon 1925; Sapirstein et al. 1937). This theory (see
Table 2) is consistent with reports of aftercontractions
in patients with deafferentation due to Tabes dorsalis,
but reduced aftercontractions in patients with hemiple-
gia (Kohnstamm 1915; Rothmann 1915; Salmon 1925;
Sapirstein et al. 1938). Indeed, it also seems consistent with
reports that muscle length during induction does not seem
important (Forbes et al. 1926; Hagbarth and Nordin 1998).
On such an account, any modulation in the structure of the
inducing contraction would be expected to be present in the
aftercontraction. Previous literature on varying the induc-
tion gives little indication of the control principles of the
Kohnstamm generator. There have been no studies where
the induction contraction is systematically varied, while
controlling for the total amount of muscle activity.

A number of findings disagree with ballistic, feedfor-
ward control. First, it is difficult to reconcile the latent
period of several seconds with a simple replaying of the
motor command (Csiky 1915; Kozhina et al. 1996; Salmon
1929). If the Kohnstamm represents perseveration of a
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Fig. 2 Evidence for muscle thixotropy underlying the Kohnstamm
phenomenon. The first panel a shows arm movement during the con-
ditioning procedure. Normally, the full conditioning procedure was
performed on one arm (control) and a reduced version, with some
steps omitted was performed on the other arm (test). However, the
upper panel here shows single trials when the full procedure was per-
formed for both arms. This consisted of: (1) voluntary arm abduction
up against solid surface; (2) forceful, voluntary abductor contraction
against solid surface (5-10 s; filled bar on graph); (3) relaxation with
experimenter holding the arms in place (4-8 s); and (4) experimenter
assisted lowering of arms. After step 4, the aftercontraction occurred.
The lower panel (a) shows a single trial, where performing the induc-
tion contraction with the arm partially abducted for the test arm

voluntary motor command, why is there a delay before per-
severation starts? Early suggestions, that the latent period is
actually the time taken to release an unspecified inhibitory
control (Kohnstamm 1915), are not supported by the sub-
jective sensation of simply relaxing. This contrasts with the
sensation of active inhibition when participants voluntar-
ily stop the aftercontraction (De Havas et al. 2016; Forbes
et al. 1926; Ghosh et al. 2014). Furthermore, theories of
persistence of excitation within the motor cortex (Sapirstein
et al. 1937) are not supported by the finding that the size
of cortical evoked potentials is small and proportional to
EMG during the Kohnstamm latent period (Mathis et al.
1996). More recently, it has been shown that afferent feed-
back from hitting an obstacle has a strong effect on agonist
EMG during aftercontractions (De Havas et al. 2015), indi-
cating that the Kohnstamm phenomenon does not involve
ballistic, feedforward control. It is also hard to reconcile
simple persistence of motor excitation accounts with the
finding that unidirectional leg and arm inductions can pro-
duce complex patterns of rhythmic leg and arm movement
(Selionov et al. 2013, 2009; Solopova et al. 2016), and with
the finding that visual input can cause muscle switching
(Ghafouri et al. 1998; Gilhodes et al. 1992). Nevertheless,
it remains an open question to what extent the Kohnstamm
generator replays in feedforward fashion the same motor
commands used to generate the voluntary contraction that
induces the Kohnstamm.

(longer muscle length) leads to an absence of aftercontraction, while
an aftercontraction was clearly present for the control arm (short mus-
cle length). The second panel b shows the size of aftercontractions
after omitting steps from the induction (C control arm, T test arm).
For Trial A, the same conditioning procedure was used on both arms.
For trial B, the initial arm abduction was omitted for the test arm, for
trial C, the voluntary isometric contraction was omitted for the test
arm, for trial D, the experimenter-assisted relaxation period was omit-
ted for the test arm, while for trial E, the test arm was returned rap-
idly instead of slowly. The third panel ¢ shows that warming the test
arm significantly reduced the size of the aftercontraction, while cool-
ing produced a trend in the other direction, relative to the control arm
(Figure Adapted from Hagbarth and Nordin 1998)

Negative position feedback

Once the aftercontraction contraction has begun, mus-
cle activity could be controlled via negative position
feedback from muscle afferents (Table 2). It is known
that there exists a tight coupling between the arm angle
during the aftercontraction and EMG (Adamson and
McDonagh 2004; De Havas et al. 2015). Indeed, such
positional theories are consistent with a peripheral ori-
gin of the Kohnstamm phenomenon, whereby the induc-
tion phase would lead to some change in a peripheral
signal that drives motor circuits. One model views the
Kohnstamm phenomenon as a form of proportional-
integral-derivative (PID) control, similar to equilibrium
point control (Feldman 1986; Bizzi et al. 1992), pro-
posed for both stretch reflexes and voluntary actions.
For such control, a central motor signal setting the equi-
librium point of the muscle would result in a follow-up
servo contraction of the muscle, causing a movement
towards that position. Alternatively, the equilibrium
point might move gradually over time, defining a vir-
tual trajectory (Bizzi et al. 1984; Hogan 1985). Here,
increased aftercontraction from longer and more power-
ful induction contractions would be explained by greater
peripheral adaptation. A virtual trajectory account seems
broadly consistent with the existing electrophysiological
evidence of increasing muscular activity with movement
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(Adamson and McDonagh 2004; Fessard and Tournay
1949; Kozhina et al. 1996). Involvement of the motor
cortex (Duclos et al. 2007; Ghosh et al. 2014; Parkinson
et al. 2009) would be interpreted as being a proportional
response to the ‘abnormal’ afferent inflow, existing
within normal transcortical control loops. Here, silence
in the muscle during the latent period (Kozhina et al.
1996) must be the time required for a sufficiently uni-
form afferent volley to reach the cortex, so that an effer-
ent response is triggered.

An obvious way to test the position control theories of
the Kohnstamm phenomenon is to determine how physi-
cal obstruction of the aftercontraction affects motor out-
put. Position control theories predict that EMG should
persist despite physical obstruction, and that involuntary
arm movement should reach a fixed final position once the
obstacle is removed. Existing experiments using this tech-
nique suggest that obstruction does not abolish the after-
contraction (Adamson and McDonagh 2004; Forbes et al.
1926). However, neither experiment examined the time
course of the EMG across participants in response to the
obstruction. Thus, these studies cannot provide strong tests
of position control models of the Kohnstamm phenomenon.
A more recent study (De Havas et al. 2015) did measure
EMG responses. The EMG patterns observed clearly ruled
out the ‘virtual trajectory’ hypothesis, according to which
the equilibrium point moves gradually towards the final
position. That hypothesis predicts continuous increase in
EMG after onset of the obstruction, and restart of move-
ment following release, with a force and acceleration pro-
portional to the duration of the obstruction. Neither pat-
tern was observed. Instead, the EMG level at the start of
the obstruction was maintained throughout the duration of
obstruction. Thus, this particular version of position con-
trol could be conclusively ruled out. However, across two
studies it was found that briefly (~2 s) arresting the arm,
either via a physical obstacle (De Havas et al. 2015) or via
voluntary inhibition (De Havas et al. 2016), did not affect
the final arm position of the aftercontracting arm. This
final position constancy is a characteristic feature of posi-
tion control schemes. Indeed, it may be that these find-
ings only pertain to conditions where the involuntarily ris-
ing arm is fully arrested. It could be that negative position
control normally operates during the aftercontraction, but
that the strong afferent signal associated with an obstacle
causes a switch in the control mechanism determining the
level of muscle activity. However, to date only one experi-
ment has examined perturbation of the aftercontraction
without obstruction (see below), and though the results
were compatible with negative position control, they were
interpreted within a context of force feedback control. Fur-
ther perturbation experiments are required to determine if

negative position control is associated with the Kohnstamm
phenomenon.

Positive force feedback

Force feedback could underlie the Kohnstamm phenom-
enon (Table 2). Based on work showing that EMG was
lower during supine than during standing aftercontractions
it was hypothesised that positive force feedback could be
a critical control principle (Lemon et al. 2003). Parkinson
and McDonagh (2006) tested this principle by manipulat-
ing the weight of nine participant’s arms during a shoulder
Kohnstamm in the frontal plane. Arm weight was systemat-
ically reduced (100, 75, 50, 25, 0%) via the use of a move-
able counter-weight on a lever attached to the arm (Fig. 8).
Across conditions, participants induced the aftercontrac-
tion by pushing upwards with a force of 60% of their max-
imum for 1 min. It was found that mean aftercontraction
EMG (as a percentage of voluntary induction EMG) was
reduced across every arm angle as the weight of the arm
was reduced. At a given arm angle (70°), EMG was signifi-
cantly higher in the 100% arm weight (normal arm weight)
condition than in the 50, 25 and 0% arm weight conditions.
This was interpreted as evidence of positive feedback. As
GTO signal increased throughout the abduction (due to
increased muscle torque), motor efference also increased
via a putative peripheral-central feedback loop. However,
the design and analysis of the experiment limit interpreta-
tions. First, the counter-weight was attached throughout
the induction, latent period and aftercontraction. Afferent
signals during the first two stages could establish central
adaptations, which underlie the EMG reductions observed.
Second, it is perhaps problematic that all EMG values
during the aftercontraction were referenced to the mean
EMG during induction rather than an independent maxi-
mum contraction. This analysis may have been performed
to control for the fact that trial order was not randomised
across conditions. However, the assumption of a linear rela-
tionship between induction size and aftercontraction has
numerous caveats (Brice and McDonagh 2001; Salmon
1925). It would have been preferable to first verify that the
inductions did not differ across conditions and then look
for changes in the aftercontraction EMG as a percentage
of MVC. Velocity of arm movements was not reported, so
no inferences can be made about shoulder torque or spindle
firing rate across conditions. Even if velocity was matched
across conditions, decreased muscle loading might produce
lower spindle firing rates due to alpha-gamma co-activa-
tion (Taylor et al. 2007; Vallbo 1970). As such, a negative
position feedback model could also account for the data.
Finally, the positive force feedback model is inconsist-
ent with the finding that removal of a physical obstacle
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Fig. 3 Results of physically obstructing of the aftercontraction. The
first panel a shows an early experiment to determine whether physical
obstruction of the aftercontraction resulted in a cessation of muscle
activity. Arm position (lines labelled M) and electromyography (lines
labelled E) are shown when no obstacle was present (upper graph)
and when the arm was obstructed at around 20° of abduction (lower
graph). Only single traces could be recorded at that time, but the
experiment confirmed that electrical activity could be detected by a
string galvanometer following obstruction, disproving an earlier claim
that electrical activity detected during the aftercontraction was due
to the movement itself, rather than a reflection of involuntary mus-
cle activity (Adapted from Forbes et al. 1926) The second panel b
shows the results of a more recent experiment involving unpredict-

during an aftercontraction was found to produce an imme-
diate increase in EMG (De Havas et al. 2015). Removal of
an obstacle is associated with a reduction of load on the
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ably obstructing one arm for 2 s during a bilateral aftercontraction.
Group average EMG is shown (error bars show SEM). It was found
that physical obstruction caused a significant reduction in the slope
of the aftercontraction EMG, relative to no obstruction, indicating
that the output of the Kohnstamm generator is modified by afferent
signals. Upon removal of the obstacle the previously obstructed arm
immediately resumed its previous involuntary abduction and accom-
panying pattern of increasing EMG. Final arm angle and EMG level
was the same as for the never obstructed arm, indicating that afferent
information did not alter the state of the Kohnstamm generator itself,
but rather only attenuated its output (Adapted from De Havas et al.
2015). (Color figure online)

muscle, which, according to the positive force feedback
model, should have lead to a decrease in EMG, rather than
the observed increase.
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The Kohnstamm phenomenon may represent an adap-
tation within tonigenic structures, which have some over-
lap with central pattern generators involved in repetitive
actions such as walking (Craske and Craske 1986; Seli-
onov et al. 2013, 2009; Solopova et al. 2016; Waters and
Morris 1972). Complex interactions occur between muscle
groups (Bellincioni 1926; Craske and Craske 1985), while
sensory input can interact with the aftercontraction in sur-
prising and divergent ways (Brun et al. 2015; Brun and
Guerraz 2015; De Havas et al. 2015; Forbes et al. 1926;
Ghafouri et al. 1998). As such, it may be necessary to con-
sider hybrid models, combining both central and periph-
eral mechanisms, to explain the Kohnstamm phenomenon.
Here, a combination of central and/or peripheral sensory
processing may establish a central adaptation, which in turn
interacts with subsequent sensory input during the after-
contraction. Similar models have been suggested to account
for other postural phenomena such as the lean aftereffect
(Wright 2011). However, it is important to first exclude
central-only, or peripheral-only accounts, since they are
simpler than hybrid accounts.

Subjective experience of involuntary movement

Perhaps the most striking, yet least studied, feature of the
Kohnstamm phenomenon is that while the movement looks
the same as a slow voluntary contraction, it feels very
different for the person to whom it is actually happening
(Fessard and Tournay 1949). Participants often report feel-
ing surprised when their limb begins to move (Craske and
Craske 1985; Forbes et al. 1926), and state that the limb
is floating (Craske and Craske 1985; Salmon 1915), either
of its own accord (Craske and Craske 1985) or via some
‘hidden force’ (Kohnstamm 1915). Another, often vivid
sensation is that the limb feels much lighter than normal
(Craske and Craske 1985; Cratty and Duffy 1969; Gurfin-
kel et al. 1989; Hagbarth and Nordin 1998; Hazelhoff and
Wiersma 1922; Kohnstamm 1915). Indeed, it has been
argued that the subjective feeling of lightness is the best
way to gauge the duration of the aftercontraction (Cratty
and Duffy 1969). In the latter study, participants continu-
ously reported whether their arm felt lighter or heavier than
normal, reporting that the arm felt lighter for an average
of 14 s. However, most subjective findings in the literature
are the author’s ad-hoc recollections of participant’s self-
reported phenomenology or spontaneous commentary, with
few attempts to fully catalogue participant’s experiences in
an unbiased manner. Conversely, substantial research has
been conducted on the effects of muscle contraction his-
tory on voluntary movement force generation (Hutton et al.
1984, 1987; Knight et al. 2008; Shea et al. 1991). These
findings show that prior strong contractions cause partici-
pants to overshoot target force levels.

There have been some attempts to quantify the feeling of
lightness during a purely involuntary movement. Matthaei,
(1924a) instructed participants to maintain an equal upward
force on two springs. After inducing an aftercontraction on
one arm it was found that the length of the spring held by
this arm was much longer than the spring held by the non-
aftercontraction arm. The size of this error was found to be
proportional to the strength of the aftercontraction, rather
than the amount of voluntary force used by the other arm.
This experiment showed that the sense of lightness experi-
enced during the aftercontraction is not a form of post-hoc
comparison to everyday voluntary movements. However,
the interpretation is limited, since no statistical results were
presented. Recent work on the perception of force during
the Kohnstamm phenomenon is consistent with the ear-
lier reports. Participants reported that hitting an obstacle
was associated with a greater subjective force than during
matched voluntary movements (De Havas et al. 2015). In a
separate experiment, the forces generated when participants
replicated Kohnstamm forces with a voluntary movement
were greater than when they replicated voluntary forces
with a voluntary movement (De Havas et al. 2015). Again,
the force of the aftercontraction was overestimated. Force
perception during voluntary movement may result from the
cancellation of sensory inflow against an efference copy of
the movement (Blakemore and Frith 2003; Shergill et al.
2003). Perceptual overestimation of Kohnstamm forces can
be explained within this model. For example, if the Kohn-
stamm generator does not produce efference copies, there
would be nothing to cancel the sensory inflow against, and
a resulting overestimation of force relative to matched vol-
untary movements.

Another approach to studying the subjective experi-
ence of the Kohnstamm phenomenon is to ask partici-
pants about their experiences of counteracting the after-
contraction with inhibition. Ghosh et al. (2014) examined
the subjective experience of participants as they lowered
their arms during an aftercontraction, and compared this
to the feeling of lowering the arm without an aftercon-
traction. In the latter condition the arm was first held
in the abducted position at shoulder level for 1 min.
The authors also tested the same effect in five partici-
pants who did not experience an aftercontraction after
the Kohnstamm induction. Here the arm was first pas-
sively raised before being lowered voluntarily, allowing
a test of the hypothesis that any subjective effects were
simply a by-product of the isometric contraction. Across
each condition, participants rated the sense of resistance
on a scale from O to 50. It was found that the strongest
sense of resistance was felt during the downward move-
ment with aftercontraction. In participants with no visi-
ble aftercontraction, the ratings did not differ between the
conditions. The sensation of resistance was reported to be
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Fig. 4 Brain regions active dur-
ing Aftercontraction and TVR.
Brain regions showing a signifi-
cant increase in BOLD-signal in
11 subjects during a voluntary
induction contraction of wrist
extensor muscle, b vibration of
wrist extensor tendon, ¢ invol-
untary aftercontraction of wrist
extensor muscle (here referred
to as a post-contraction), and d
post-vibration response (more
commonly known as TVR)

in contrast with a rest period
(no movement; false discovery
rate, P <0.005). Note the large
regions of sensorimotor cortex
active during the Kohnstamm
aftercontraction (Adapted from
Duclos et al. 2007). (Color
figure online)

like that of compressing an air balloon (Fig. 9a). Thus,
the sensation of resistance arose as a result of the inter-
action between the Kohnstamm generator and normal
sensory inflow from the moving limb. One explanation is
that the upward lift from the Kohnstamm generator was
not perceived as self-generated. If the Kohnstamm gen-
erator does not produce efference copies of the movement
command, than there would be nothing to cancel against
the sensory inflow, resulting in a miss-attribution of a
resistance to overcome (Blakemore and Frith 2003). It is
possible that that the aftercontraction rendered the down-
ward movement less fluent, and that participants were
reporting a feeling of movement jerkiness and dysfluency
rather than true resistance. However, similar results have
been obtained when the arm is stationary (De Havas et al.
2016). Here participants were asked to estimate how
much weight their arm could support during inhibition of
the aftercontraction. This was compared to a series of lin-
early increasing voluntary contractions (Fig. 9b). It was
found that to produce the same subjective perception of
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aftercontraction strength required a voluntary contraction
of almost twice the strength of the aftercontraction. Thus,
again, Kohnstamm forces were relatively overestimated.
This is consistent with the Kohnstamm generator not pro-
ducing efference copies.

A model of the Kohnstamm phenomenon

Figure 10. shows a model of the Kohnstamm phenomenon
consistent with the reviewed literature. There is good evi-
dence that the Kohnstamm generator is located centrally
(De Havas et al. 2015; Duclos et al. 2007; Parkinson et al.
2009; Sapirstein et al. 1938). A strong, sustained isomet-
ric voluntary muscle contraction is necessary to induce
the phenomenon (Fig. 10; left panel). This input shows a
dose-response relationship, with greater input resulting in
a lager output from the Kohnstamm generator (Allen 1937;
Allen and O’Donoghue 1927; Brice and McDonagh 2001;
Fessard and Tournay 1949). However, it is not known if
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Fig. 5 Applying TMS to M1 during aftercontraction shows cortical
involvement in Kohnstamm phenomenon. A Kohnstamm aftercon-
traction was induced by having the participants push against a wall
and then step away and relax the deltoid muscle (a). Kinematic and
EMG traces of the Kohnstamm induction and aftercontraction are
shown from a single representative participant (b). TMS of the motor
cortex during aftercontraction (d) and matched voluntary movements

the necessary input to the Kohnstamm generator arises
centrally, from muscle afferents, or from other peripheral
afferents. A hypothesised link between the Kohnstamm
phenomenon and the TVR argues for afferent signals from
muscle spindles being the necessary input (Duclos et al.
2007; Hagbarth and Nordin 1998). Further work is nec-
essary to determine if this conjecture holds, and whether
other afferent signals from the muscle (e.g., force signal
from Golgi Tendon Organs) or from central regions, also
contribute to establishing the Kohnstamm aftercontraction.

More is known about the sustained control of the after-
contraction (Fig. 10; right panel). Excitatory output from
a central Kohnstamm generator can be reduced by affer-
ent signals arising from the muscle in response to physi-
cal obstruction (Adamson and McDonagh 2004; De Havas

(c) results in a prolonged silent period, suggesting a cortical origin
(representative participant’s data). Mean muscle silent period dura-
tion following application of TMS did not differ across aftercontrac-
tion and voluntary movement conditions (e). Muscular contractions
made a full recovery after the silent period for both Kohnstamm after-
contractions and voluntary movements (f). Adapted from Ghosh et al.
(2014)

et al. 2015). Importantly, this ‘gating’ of signal does not
appear to modify the state of the Kohnstamm generator
directly, as evidenced by the fact that a temporarily arrested
arm, upon obstacle removal, rises to the same angle as an
arm that was never arrested (De Havas et al. 2015). Similar
findings have been observed for voluntary inhibition of the
aftercontraction (De Havas et al. 2016; Fessard and Tour-
nay 1949; Ghosh et al. 2014). It may be that other forms of
afferent input (e.g. visual or vestibular input) can also mod-
ulate descending signals at this stage of the hierarchy (Bell-
incioni 1926; Wells 1944; Gilhodes et al. 1992). Excita-
tory output from the Kohnstamm generator appears to pass
through an efferent output stage, which may be the locus of
these modulations. This output stage may be located in M1,
and may operate in the same manner as during voluntary
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Fig. 6 Mean firing rate of motor units significantly lower during
aftercontraction compared to voluntary movements. The first panel
a shows a raw EMG recorded in human triceps muscle showing
recruitment of a motor unit during the first 2 s of an aftercontraction.
Solid line shows elbow joint angle change. Motor unit firing rate pro-
gressively increases after the latent period, followed by a relatively

J

steady state of firing. Aftercontractions were compared to voluntary
movements of matched velocity (b). It was found that across partici-
pants motor units showed lower firing rates (c¢) during aftercontrac-
tion compared to voluntary movements (Adapted from Kozhina et al.
1996)
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Fig. 7 Voluntary inhibition of Kohnstamm aftercontraction. The
effect of inhibiting, and releasing inhibition, of a single ‘target’ arm
during bilateral Kohnstamm aftercontraction on rectified, smoothed
deltoid EMG. Dashed lines show time of inhibition onset and offset.
Error bars show SEM. Note the significant increase in EMG for the
non-target arm relative to the plateauing of EMG in the target arm,
beginning approximately 500 ms after the instruction to inhibit.

@ Springer

20I00
Time from inhibition offset (ms)

After participants were instructed to stop inhibiting, target arm EMG
increased and the arm began to involuntarily rise once more. Final
arm angle and EMG level was the same for both arms across partici-
pants, indicating that the Kohnstamm generator itself was not modi-
fied by voluntary inhibition (Adapted from De Havas et al. 2016).
(Color figure online)
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Fig. 8 Reduced aftercon-
traction EMG in response to
decreased muscle loading.
Participants pushed upwards
against the force transducer
(60% MVC, 60 s) to induce an
aftercontraction of the anterior
deltoid muscle (a). A movable
counter-weight attached to the
arm via a lever allowed the
loading on the muscle to be
systematically reduced across
conditions. EMG and arm angle
results of a single participant
are shown (b), including the last
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movement (Duclos et al. 2007; Ghosh et al. 2014; Mathis
et al. 1996). However, unlike during voluntary movements,
during the Kohnstamm aftercontraction a copy of the effer-
ent command is not compared against sensory inflow. This
explains the subjectively strange feeling, which differs from
the feeling of voluntary movements (Ghosh et al. 2014;
De Havas et al. 2015, 2016). There is evidence that dur-
ing an unobstructed aftercontraction the strength of the
descending excitatory signal can be reduced by reducing
the load on the muscle (Parkinson and McDonagh 2006).
This reduction may reflect a positive force feedback loop
between afferent signals from Golgi tendon organs and a
central Kohnstamm generator. However, negative position
feedback from muscle spindles could also explain the find-
ing. It is not known if such afferent feedback loops modify
the Kohnstamm generator directly or act at the efferent out-
put level, nor whether they can have excitatory as well as
inhibitory effects.

More work is needed to determine the control mecha-
nisms underlying the Kohnstamm phenomenon. Never-
theless, the proposed model is an important step towards

Joint Angle (%)

understanding the phenomenon and situating it within
existing theories of motor control. On this account, the
Kohnstamm phenomenon shares many features with volun-
tary control, including a hierarchical structure incorporat-
ing multiple levels of afferent feedback. The model high-
lights how voluntary commands and structures can be used
to achieve movement without a feeling of ‘voluntariness’,
calling into question traditional views on the distinctions
between of voluntary and involuntary movement. By situ-
ating the Kohnstamm generator within a larger context of
adaption and learning within the motor system, it may be
possible to explore how the Kohnstamm phenomenon, like
the lean aftereffect (Wright 2011), relates to normal pos-
tural control of the body.

QOutstanding questions
This review has identified the main currents of research

in the Kohnstamm phenomenon over the previous cen-
tury since it was first reported. Despite this body of
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Fig.9 Subjective experience of inhibiting the Kohnstamm after-
contraction. The first panel a shows the results of an experiment in
which the subjective experience of voluntarily bringing the arm down
(adduction) during an aftercontraction was rated (/ strong disagree-
ment, 5 strong agreement). Participants clearly perceived an upward
resistance, most closely resembling an air balloon (Adapted from
Ghosh et al. 2014). The second panel b shows the results of an exper-
iment when the subjective upward drive from the Kohnstamm gen-
erator was compared to the actual muscle contraction strength during
voluntary inhibition of an aftercontraction (b), compared to a range
of isometric voluntary contractions (). Participants rated how much
force their arm could support during inhibition of aftercontraction
(arm held stationary, partially abducted). This rating was plotted (¢
left graph; red squares; single illustrative participant) together with

knowledge, several key research questions remain. Here
we briefly describe the questions that emerge, and could
guide future research efforts.

Where is the Kohnstamm generator? Recent work has
constrained theories, yet the exact anatomical location of
the Kohnstamm generator remains unknown. It is also
unclear if the Kohnstamm generator can be constrained
to a single location or is better conceived of as multiple
adaptions within the CNS.

What control principles govern the aftercontrac-
tion? Simple, purely central feedforward accounts seem
unlikely, yet it is unclear what role negative-position
feedback and positive-force feedback play in controlling
the aftercontraction. Future work involving perturba-
tions below the threshold for perception, and tasks where
participants are instructed not to intervene in response
to perturbations during the aftercontraction, could help
answer this question.

Does afferent firing drive the aftercontraction? It
remains unknown if muscle thixotropy and sustained affer-
ent firing contribute to the aftercontraction or are merely
incidental.
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Aftercontraction Aftercontraction

the relation between perceived and actual force from voluntary tri-
als (c left graph; green diamonds). Interpolating this relation allowed
an estimation of the equivalent Kohnstamm forces that would be
required to generate percepts similar to those on voluntary trials. The
level of voluntary EMG required to generate the equivalent Kohn-
stamm force was calculated, using the relation between EMG and
actual force for voluntary trials (¢ right graph). This perceived after-
contraction was compared to the actual level of aftercontraction EMG
during the period of inhibition across participants (d). Subjective
aftercontraction strength was significantly overestimated, suggesting
the Kohnstamm generator does not produce efference copies to can-
cel against the sensory inflow (Adapted from De Havas et al. 2016).
(Color figure online)

What signals during the induction establish the after-
contraction? The similarity of the Kohnstamm phenom-
enon to the TVR suggests muscle spindle signalling may
establish central adaptions which produce the aftercon-
traction. However, this has not been tested and GTO or
efferent signals may be crucial instead. How these signals
are integrated by the putative Kohnstamm generator is
also unknown.

Why does the Kohnstamm phenomenon feel so
strange? The subjective feeling of the aftercontraction
may be due to a lack of efference copies to cancel against
the sensory inflow. However, it is not clear why the Kohn-
stamm feels so different to passive movements or whether
the lack of efference copy account can truly explain all
the subjective phenomena reported by participants.

What is the functional role of the Kohnstamm genera-
tor during “normal movement”? The Kohnstamm phe-
nomenon may relate to postural control and share some
features with rhythmic movements governed by central
pattern generators. Yet there remains a large theoretical
gap that needs to be bridged to convincingly link putative
Kohnstamm generators to normal postural function.
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Fig. 10 A model of the Kohnstamm phenomenon. The left panel
shows a model of how an aftercontraction is induced from a strong,
sustained voluntary contraction (V). Efferent output produces a con-
traction in the muscle, which will, upon relaxation (cessation of vol-
untary signal), display an aftercontraction. The Kohnstamm generator
(K) is centrally located and must receive input during the induction.
However, it is not known whether the necessary signal to the Kohn-
stamm generator originates from the muscle, and/or directly from
central regions (V). The right panel shows how the aftercontraction
is controlled once it has begun. The Kohnstamm generator (K) does

Conclusion

After many years of only intermittent study, the Kohn-
stamm phenomenon is now gradually gaining attention.
Increasingly, the evidence is moving away from purely cen-
tral or purely peripheral models. Instead, hybrid models are
necessary, to account for both central adaptions and their
interactions with sensory inflow. Modern electrophysiol-
ogy and imaging have made the first steps towards eluci-
dating the location of the putative Kohnstamm generator
and towards comparing the aftercontraction to voluntary
movement. There have also been attempts in recent years
to quantify the subjective experience of the Kohnstamm
phenomenon and relate the experience to the underlying
control principles. However, despite the long history of
study much remains unknown regarding the Kohnstamm
phenomenon (see outstanding questions). Understanding

not output directly to the muscle. Rather a positive signal is sent to an
efferent output stage (E likely M1), which in turn produces the invol-
untary muscle contraction. The strength of the signal sent from the
Kohnstamm generator can be reduced via both voluntary inhibition
and via afferent signals resulting from the limb being arrested by a
physical obstacle. While the limb is moving, it is not known if the
Kohnstamm generator receives modulatory positive force feedback or
negative position feedback from the muscle. Alternatively, this puta-
tive feedback might not modify the Kohnstamm generator directly,
and instead operate at a lower level (E)

the Kohnstamm phenomenon will inform the study of how
body posture is maintained and provide novel insights to
larger questions regarding motor control and the subjective
awareness of movement.
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