Supplementary Material

Dynamic Linear Panel Regression Models

with Interactive Fixed Effects

Hyungsik Roger Moon? Martin Weidner?

August 10, 2015

S.1 Proof of Identification (Theorem 2.1)

Proof of Theorem 2.1. Let Q(B, A, f) = E(HY - pf-X — Af’H?, )\O,fo,w>, where § €

RE X € RV*E and f € RT*E, We have

QB )

:E{Tr (Y = 8- X =AY (Y = 8-X = Af)] (Ao,fo,w}
=BT [0 = A = (5= %) X+ e) (O = Af = (5= 5% X + )] |\°, 12w}
Aﬂ,fo,w}

+E (T [0 = Af = (8= 8% X) (A°F7 = A = (8= 8% X)| |2, £, w}

=E [Tr (€'e)

J/

-

=Q*(8,1.f)

In the last step we used Assumption ID(7i). Because E [Tr (e'e) ‘)\0, 1O, w] is independent of
B, A, f, we find minimizing Q(f, A, f) is equivalent to minimizing Q*(5, A, f). We decompose
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Q*(B, A, f) as follows
Q' (B )
:E{TI' _()\OfOI—)\fI—(5—50)‘)()/()\01”0/—)\]“ (ﬁ BO :|‘)\0 fO }
—E{Te [\ = A = (8= 8) - X) Mo,y (A8 = AF = (8= 8% - X)| X%, 0w}
FE{Te [\ = A = (8= 8- X) Paoy (A8 = A7 = (8= 8% - X)| [, 1w}

= T (37 = 85) - Xii) Moy (B — 659) - Xi50)] |20, 12,0}

(.

iy
FE{T [O0F =0 = (5= ) X) Poon (1" =27 = (5= 8- )] |2, ),

EQIOW(BA,f)

where (et — gobishy . Xhigh = ZK (B,, — B2)X,,. A lower bound on Qe (MR )) is

m=Ki+1
given by

thgh (ﬂhigh, )\)

> : E{T [ high _ gOhighy .y "M~ high _ gOhighy .y ] ‘/\07 O,w}
- XGRNX(g}rlRI}rrank(w)) r ((/8 /8 ) hgh) ()\,)\,’LU) ((B /8 ) hgh) f

min(N,T)

- Z Hoy {E [«ﬁhigh — gohieh) + Xhigh) (whigh — goheh) . X lgh)

r=R+R+rank(w)

(S.1.1)

Because Q*(3, A, f), Qe (5" ) and Q'%(53, ), f), are expectations of traces of positive
semi-definite matrices we have Q*(3, \, f) > 0, Q™Msb(g™e" X) > 0, and Q"(3, A, f) > 0 for
all B, A\, f. Let 3, A and f be the parameter values that minimize Q(f3, A, f), and thus also
Q*(B, )\, f). Because Q*(8% )\, f°) = 0 we have Q*(3, )\, f) = ming,; Q* (8, A, f) = 0. This
implies thgh(ﬁhigh A) = 0 and Q"%(B, ), f) = 0. Assumption ID(v), the lower bound (S.1.1),
and QUish(3™" \) = 0 imply ™" = g*Me" Using this, we find

Q*(BA f)

“E {Tr [ PN = (B = ) X ) (W07 = AT = (B - o) Xlow)} PR w} ,

> mfinE{ [()\Ofo’ A — (B = gy X10W>/ (Aofo’ A = (B = gy Xlow)} )AO, 12, w}
=E {Tr [(AOfO’ (3™ = B0%) - Xiow ) My (X% = (B — oiov) Xlow)] g, w} ,

(S.1.2)



where (BIOW — BY). X = fill (B, — BN X;. Because Q% (5, A, f) = 0 and the last expression

in (S.1.2) is non-negative we must have

E {Tr |:<)\0f0/ . (Blow . Bo,low) ) X10W>/M;\ ()\OfOI . (Blow . Bo,low> . Xlow):| )\07]007“)} —0.

Using M5 = M;Mj5 and the cyclicality of the trace we obtain from the last equality:

Tr{M;AM;} — 0,

where A = E {(A"fo’ = (B = 1) Xigw ) (A% = (B = 5%) - Xiow )

trace of a positive semi-definite matrix is only equal to zero if the matrix itself is equal to zero,

Y F0, w] . The

so we find
M5 AM5 =0,

This together with the fact that A itself is positive semi definite implies (note that A positive
semi-definite implies A = C'C’ for some matrix C', and M5AM;5 = 0 then implies M5C = 0, i.e.,
C = P(C)

A= P AP;,
and therefore rank(A) < rank(P5) < R. We have thus shown
rank {]E [()\Ofo’ B (Blow _ golowy . Xlow) <)\0f0’ . (BIOW _ golow) 'Xlow)/ ‘)\0’ fo,w}} <R
We furthermore find
R > rank {E [(AO FU— (B — pOlowy. Xlow) </\° FU— (B — pOlow). X10w>/ ]AO, 10 w} }
> rank {MwIE {(/\ofo/ — (B — ooy X10W> Py ()\Ofo’ — (B — ooy X10w>, Mw‘)\o’ g w} }
+ rank {PwIE [(AO FO = (B — gy X10W> Mo ()\0 FO— (B = golow). Xlow>/ Pw(AO, f°, w] }
> rank [M,\° f fOAY M,
+ rank {E [((ﬁl"w = ) i ) Mo (B = B2) - X ) 20, 1, w} } .

Assumption ID(iv) guarantees rank (Mw)\ofo’fo)\O'Mw) = rank ()\Ofo’fo)\o') = R, that is, we

must have
B |:<(Blow B BOJOW) 'Xlow> Mo ((BIOW B /BO,IOW) 'Xlow>/ ‘)\07 fo,w} —0.

According to Assumption ID(7i7) this implies BIOW = %% je., we have B = °. This also
implies Q*(B, A, f) = [|A\°f” — Af'||% = 0, and therefore Af' = \°f%. g



S.2 Examples of Error Distributions

The following Lemma provides examples of error distributions that satisty |le|| = O,(y/max(N,T))
as N,T — oo. Example (i) is particularly relevant for us, because those assumptions on e;; are

imposed in Assumption 5 in the main text, i.e., under those main text assumptions we indeed
have |le]| = O,(y/max(N,T)).

Lemma S.2.1. For each of the following distributional assumptions on the errors ey, 1 =

L...,N, t=1,...,T, we have |le|| = Op(y/max(N,T)).

(i) The ey are independent across i and t, conditional on C, and satisfy E(ey|C) = 0, and
E(e}|C) is bounded uniformly by a non-random constant, uniformly over i,t and N,T.
Here C can be any conditioning sigma-field, including the empty one (corresponding to

unconditional expectations).

(ii) The ey follow different MA(00) processes for each i, namely

en= Wyt r, fori=1.. N t=1.T, (S.2.1)
7=0
where the uy, 1 =1...N, t = —o0...T are independent random variables with Eu; = 0

and Eug, uniformly bounded across i,t and N,T. The coefficients 1, satisfy

2
Zo TN Vir < B, Zo Jmax, Y| < B, (S.2.2)

for a finite constant B which is independent of N and T

(i4i) The error matriz e is generated as e = o'/?uX'? where u is an N x T matriz with
independently distributed entries uy and Euy = 0, Eu?, = 1, and Eu}, is bounded uniformly
across i,t and N,T. Here o is the N x N cross-sectional covariance matrix, and ¥ is the

T x T time-serial covariance matriz, and they satisfy

N T
max Zl o] < B, max ; Snl < B, (S.2.3)

for some finite constant B which is independent of N and T. In this example we have

Eeitejr = Uijztr'



Proof of Lemma S.2.1, Example (i). Latala (2005) showed that for a N x T matrix e with

independent entries, conditional on C, we have

1/2 1/2

E (|le] |C) < ¢q max + max +
) J

e >c>]1/4 ,

where ¢ is some universal constant. Because we assumed uniformly bounded 4th conditional

moments for e;; we thus have |le|| = Op(VT) +Op(V/N)+Op((TN)V*) = O,(\/max(N,T)). n

S E () S B0

Example (ii). Let ¢; = (¢y;,...,%y;) be an N x 1 vector for each j > 0. Let U_; be an
N x T sub-matrix of (u;) consisting of uy, 1 =1...N,t=1—7j,...,T —j. We can then write

equation (S.2.1) in matrix notation as

I
s

diag(v;) U_;
0

J

diag(v;) U_; + v,

Il
\M“]

Il
o

J

where we cut the sum at 7', which results in the remainder ryp = 372 .., diag(y;) U-;. When

approximating an MA(oo) by a finite MA(T') process we have for the remainder

E(lrrlle) =32 Y Elwr)y < ond D > v

where 02 is the variance of u;. Therefore, for T — oo we have

(IrnrllF)?
E <—N > — 0,

which implies (||ryz|r)” = Op(N), and therefore ||ryr|| < |[rnellr = Op(VN).

Let V be the N x 2T matrix consisting of u;, 1 =1...N, t=1-T,...,T. For j=0...T
the matrices U_; are sub-matrices of V', and therefore ||[U_;|| < ||V]|. From example (i) we know
V|| = Op(y/max(N, 2T)). Furthermore, we know || diag(v;)| < max; (|v]).



Combining these results we find

lell < Z I diag ()| 1T + lIrwr

Z maX ‘ww
Z maX W@J‘

< (’)p( max(N, T)),

IN

) IVI] -+ 0p(VN)

< max(N, 2T)) + 0,(VN)

as required for the proof. i

Example (iii). Because o and ¥ are positive definite, there exits a symmetric N x N matrix
¢ and a symmetric T x T matrix ¢ such that ¢ = ¢? and ¥ = /*. The error term can then be
generated as e = ¢utp, where u is an N x T matrix with iid entries u;; such that E(u;) = 0 and
E(u},) < co. Given this definition of ¢ we immediately have Ee; = 0 and Eeyejr = 0ijX¢. What
is left to show is ||e|]| = O,(y/max(N,T)). From example (i) we know ||u|| = O,(y/max(N,T)).
Using the inequality ||o|| < v/]lo]i [o]l = llo]l1, where ||o|; = ||o]|o because o is symmetric
we find

lol < llofly = max Z o3| < L,
i=1
and analogously ||X|| < L. Because ||o]| = |[¢]|> and ||Z]| = |||, we thus find |le| <
[elllullll¢ll < LO(y/max(N,T)), ie., [l = Op(y/max(N,T)).

S.3 Comments on Assumption 4 on the regressors

Consistency of the LS estimator B requires the regressors not only satisfy the standard non-
collinearity condition in assumption 4(i), but also the additional conditions on high- and low-
rank regressors in assumption 4(ii). Bai (2009) considers the special cases of only high-rank
and only low-rank regressors. As low-rank regressors he considers only cross-sectional invari-
ant and time-invariant regressors, and he shows that if only these two types of regressors
are present, one can show consistency under the assumption plimy ., Wz > 0 on the re-
gressors (instead of assumption 4), where Wxp is the K x K matrix defined by Wyr gk, =

(NT)~' Tr(Myo X}, Myo Xy,). This matrix appears as the approximate Hessian in the profile



objective expansion in theorem 4.1, i.e., the condition plimy _, ., Wt > 0 is very natural in the
context of the interactive fixed effect models, and one may wonder whether also for the general
case one can replace assumption 4 with this weaker condition and still obtain consistency of
the LS estimator. Unfortunately, this is not the case, and below we present two simple counter

examples that show this.

(i) Let there only be one factor (R = 1) f? with corresponding factor loadings A}. Let there
only be one regressor (K = 1) of the form X;; = wyv, + AV f°. Assume the N x 1 vector
w = (wy,...,wy)’, and the T"x 1 vector v = (vy,...,vy)" are such that the N x 2 matrix
A = (A\°,w) and and the T x 2 matrix F = (f°, v) satisfy plimy ;o (A’A/N) > 0, and
plimy 7, (F'F/T) > 0. In this case, we have Wy = (NT) ™! Tr(M o vw’ Myo wv'), and
therefore plimy o, Wy = plimy 1, o (NT) ™" Tr(Myo vw' Myo wo') > 0. However, § is
not identified because B°X + A°f¥ = (% + 1) X —wv/, i.e., it is not possible to distinguish
(B, A, f) = (8% A% ) and (B, ), f) = (B° + 1, —w,v). This implies that the LS estimator
is not consistent (both 8% and 8° + 1 could be the true parameter, but the LS estimator

cannot be consistent for both).

(ii) Let there only be one factor (R = 1) f? with corresponding factor loadings \). Let the N x
1 vectors \°, wy and wy be such that A = (X°, wy, wy) satisfies plimy 7, (AA/N) > 0. Let
the T'x 1 vectors f?, vy and vy be such that F' = (f°, vy, v) satisfies plimy ., (F'F/T) >
0. Let there be four regressors (K = 4) defined by X; = wyv], Xo = wovhy, X3 = (wy +
A% (va+ f0), Xy = (wo+A°)(v1+ f0). In this case, one can easily check plimy ;. Wyr >
0. However, again f,, is not identified, because 3 ,_, B9X; + A0 f¥ = 370 (B + 1) X, —
(A + wy + wy)(fY 4+ vy + v3)/, ie., we cannot distinguish between the true parameters
and (B, A, f) = (% + 1, =\ —w; — wy, f¥ +v; + v3). Again, as a consequence the LS

estimator is not consistent in this case.

In example (ii), there are only low-rank regressors with rank(X;) = 1. One can easily check
assumption 4 is not satisfied for this example. In example (i) the regressor is a low-rank regressor
with rank(X) = 2. In our present version of assumption 4 we only consider low-rank regressors
with rank(X) = 1, but (as already noted in a footnote in the main paper) it is straightforward
to extend the assumption and the consistency proof to low-rank regressors with rank larger than
one. Independent of whether we extend the assumption or not, the regressor X of example (i)
fails to satisfy assumption 4. This justifies our formulation of assumption 4, because it shows

in general the assumption cannot be replaced by the weaker condition plimy 7, W7 > 0.



S.4 Some Matrix Algebra (including Proof of Lemma A.1)

The following statements are true for real matrices (throughout the whole paper and supplemen-
tary material we never use complex numbers anywhere). Let A be an arbitrary n X m matrix.
In addition to the operator (or spectral) norm ||A|| and to the Frobenius (or Hilbert-Schmidt)

norm ||A||g, it is also convenient to define the 1-norm, the co-norm, and the max-norm by
n m
[Al = max 2 Al s Al = max Z; Al s (| Allmee = max max |Ag| -
1= j=
Lemma S.4.1 (Some useful inequalities). Let A be an n X m matriz, B be an m X p matriz,

and C and D be n x n matrices. Then we have:

(i) Al < [|Alp < [[A] rank (4)"
(i) [[AB|| < [[AllIB]l ,
(i) | ABllp < [|Alz 1Bl < [[All£ 1Bl

() [Te(AB)| < [[Al|lpl|Bllp,  forn=p,
(v) T (O)] < |Crank (C) ,
(vi) IC) < Tr(C) for C' symmetric and C' > 0,

(vii) A" < AL [[A]l
(viii)  [[Allmax < [JA[ < vrm || Allmax ,
(ix) |A'CA| < ||A'DA]|l, for C symmetric and C < D.
For C', D symmetric, and i =1,...,n we have:
() (C) + p (D) < pi(C+ D) < py(C) + (D)
(zi) 1 (C) < p(C+ D), Jor D >0,
(zir)  p,(C) = [ID]| < p;(C+ D) < i (C)+ |1 D] -
Proof. Here we use notation s;(A) for the ith largest singular value of a matrix A.
(i) We have ||A|| = s1(A), and ||A||% = er.inlk(A)(si(A))?. The inequalities follow directly from
this representation. (ii) This inequality is true for all unitarily invariant norms, see, e.g., Bhatia

(1997). (iii) can be shown as follows
|AB||5 = Tr(ABB'A’)
= Tr[|| B||? AA" — A(|| B|]’T — BB')A']
< ||B|PTx(AA) = | B|* |Al7 ,



where we used A(||B||*I — BB’)A’ is positive definite. Relation (iv) is just the Cauchy Schwarz
inequality. To show (v) we decompose C' = UDO’ (singular value decomposition), where U and
O are n x rank(C) that satisfy U'U = O'O =1 and D is a rank(C) x rank(C') diagonal matrix
with entries s;(C'). We then have ||O| = |U|| =1 and ||D|| = ||C|| and therefore

Tr(C)| = |Tr(UDO")| = |Tx(DO'U)|
rank(C)
= Z U;DO/U%‘
i=1
rank(C)
< Y IDNIONV] = rank(C) [ C]| -
i=1
For (vi) let e; be a vector that satisfies ||e;]] = 1 and ||C|| = €,Ce;. Because C' is symmetric
such an e; has to exist. Now choose e;, © = 2,...,n, such that e;, ¢ = 1,...,n, becomes a
orthonormal basis of the vector space of n x 1 vectors. Because C' is positive semi definite we
then have Tr (C) = ). eiCe; > e;Ce; = ||C||, which is what we wanted to show. For (vii) we
refer to Golub and van Loan (1996), p.15. For (viii) let e be the vector that satisfies ||e|| = 1 and
|A'CA|| = ¢ A'C' Ae. Because A'C'A is symmetric such an e has to exist. Because C' < D we
then have ||C|| = (e/!A")C(Ae) < (¢!A")D(Ae) < ||A'DA||. This is what we wanted to show. For
inequality (ix) let e; be a vector that satisfied |le;|| = 1 and ||A'C'A|| = €] A’C'Ae;. Then we have
|ACA| = e ADAe; — e\ A (D — C)Aey < ejA'DAe; < ||ADA|. Statement (x) is a special
case of Weyl's inequality, see, e.g., Bhatia (1997). The inequalities (xi) and (xii) follow directly
from (ix) because p,, (D) > 0 for D > 0, and because —||D|| < u,(D) < ||D|| fori=1,...,n. 1

Definition S.4.2. Let A be an n X r; matriz and B be an n X ro matriz with rank(A) = ry

and rank(B) = 1. The smallest principal angle 045 € [0,7/2] between the linear subspaces
span(A) = {Aa|la € R} and span(B) = {Bb|b € B"} of R™ is defined by
'A'B
cos(f4p) = max ma a b

0fackn obek || Aal[[[Bb]|

Lemma S.4.3. Let A be an n X r1 matriz and B be an n X ro matriz with rank(A) = r; and
rank(B) = ry. Then we have the following alternative characterizations of the smallest principal

angle between span(A) and span(B)

: _ M A
sin0a.n) = 0ackn | Aall
o IMaBY
0£beR2 || B



Proof. Because ||Mp Aal|* + ||Ps Aa|* = ||[Aa|* and sin(645)* + cos(fap)? = 1, we find

proving the theorem is equivalent to proving

cos(04 ) = min [1PpAal . [|[PaBY|
MBS otaekn  [[Aal|  ogber  ||Ab||

This last statement is theorem 8 in Galantai and Hegedus (2006), and the proof can be found
there. g

Proof of Lemma A.1. Let
51(2) =min Tr[(Z = Af) (Z' = fX)]
So(Z) = mfinTr(Z My Z"),
S5(7) = min TH(7' M, 7) |

Si(Z) = min Tr(M5; Z M7 Z")
of

>

S52)= 3 w72
iR
2= 3 wzz)
The theorem claims o
Si(Z) = Sy(Z) = S5(2) = Su(Z) = S5(Z) = Ss(Z) .

We find:

(i) The non-zero eigenvalues of Z'Z and ZZ' are identical, so in the sums in S5(Z) and in

S6(Z) we are summing over identical values, which shows S5(Z) = Sg(Z2).
(ii) Starting with S1(Z) and minimizing with respect to f we obtain the first-order condition
NZ=XNX\f".

Putting this into the objective function we can integrate out f, namely

Te[(Z =AY (Z=N)] =Tx(Z'Z - Z'\f)
=Tr (Z'Z — ZAXNXN) ' (NN )
=Tr (Z'Z — ZAXNXN)HNAN 2)
=Tr(Z' M\ Z) .

This shows S1(Z) = S3(Z). Analogously, we can integrate out A to obtain S;(Z) = S»2(Z2).

10



(iii) Let M5 be the projector on the N — R eigenspaces corresponding to the N — R smallest
eigenvalues® of ZZ', let P; = Iy — Ms, and let wg be the R’th largest eigenvalue of ZZ'.
We then know the matrix P5[ZZ' —wgln|Ps — M5 [ZZ' —wrly|Mj is positive semi-definite.

Thus, for an arbitrary N x R matrix A with corresponding projector M), we have

0 < T { (P[22 — wrlv|P; — M3[27 — wrlly|My) (My - M5)"}
=Tr { (P[22 — wrlN)Ps + M;5[ZZ" — wrly|M5) (M) — M) }
=Tr[Z' My Z]) — Tx [Z' M5 Z] + wg [rank(M),) — rank(M5)] ,

and because rank(M5) = N — R and rank(M,) < N — R we have
Tv [2/ M5 Z) < Tx (2 M, Z) .

This shows M is the optimal choice in the minimization problem of S3(Z), i.e., the optimal
A = X is chosen such that the span of the N-dimensional vectors A (r=1...R) equals to
the span of the R eigenvectors that correspond to the R largest eigenvalues of ZZ’. This
shows S3(Z) = S¢(Z). Analogously one can show Sy(Z) = S5(Z).

(iv) In the minimization problem in S;(Z) we can choose A such that the span of the N-
dimensional vectors Xr (r = 1...Ry) is equal to the span of the R; eigenvectors that
correspond to the Ry largest eigenvalues of ZZ’. In addition, we can choose fsuch that
the span of the T-dimensional vectors f; (r = 1...Rs) is equal to the span of the Ry
eigenvectors that correspond to the (R + 1)-largest up to the R-largest eigenvalue of Z'Z.
With this choice of A and fwe actually project out all the R largest eigenvalues of Z'Z
and ZZ'. This shows that S4(Z) < S5(Z). (This result is actually best understood by

using the singular value decomposition of Z.)

We can write MXZMJ-;: Z — Z, where
Z =P ZM;+ZP;.

Because rank(Z) < rank(P; Z M5) + rank(Z Pr) = Ry + Ry = R, we can always write

'If an eigenvalue has multiplicity m, we count it m times when finding the N — R smallest eigenvalues. In

this terminology we always have exactly N eigenvalues of ZZ’, but some may appear multiple times.

11



Z =\ f' for some appropriate N x R and T' x R matrices A\ and f. This shows that
54(2) = min Tr(M; ZM;:Z')

> min T((Z-Z)(Z-2))
{Z : rank(Z)<R}

= minTr [(Z = Af) (2 = N)] = $i(2) .

Thus we have shown here 51(Z) < S4(Z) < S5(Z), and this holds with equality because
S1(Z) = 95(Z) was already shown above.

S.5 Supplement to the Consistency Proof (Appendix A)

Lemma S.5.1. Under assumptions 1 and j there exists a constant By > 0 such that for the

matrices w and v introduced in assumption 4 we have

w' Myow — Bow'w >0, wpal,

v Mpv — Byv'v>0, wpal.

Proof. We can decompose w = w w, where w is an N x rank(w) matrix and w is a rank(w) x K
matrix. Note w has full rank, and M, = Mg.

By assumption 1(i) we know A”A°/N has a probability limit, i.e., there exists some B; > 0
such that AYA\°/N < BjI wpal. Using this and assumption 4 we find for any R x 1 vector

a # 0 we have

M, X al> @AM, Na _ B

= > — al.
BSCIE d NN B WP
Applying Lemma S.4.3 we find
VW' Myowb _ a’)\O’Mw)\Oa> B .
mn ——>— = min ——————— > — | wpal.
0£beRrank(w) O/ W' Wb o£acRE  a/ A7 \V¢q B, P

Therefore we find for every rank(w) x 1 vector b that b (W' Myow — (B/By)w'w )b > 0, wpal.
Thus @' My w — (B/B;)w'w > 0, wpal. Multiplying from the left with @' and from the
right with @ we obtain w’ Myow — (B/By)w'w > 0, wpal. This is what we wanted to show.

Analogously we can show the statement for v. g

As a consequence of the this lemma we obtain some properties of the low-rank regressors

summarized in the following lemma.

12



Lemma S.5.2. Let the assumptions 1 and 4 be satisfied and let Xiowo = Zfill o X; be a linear

combination of the low-rank regressors. Then there exists some constant B > 0 such that

min HXIOW’Q Mye X{OW’O‘H > B wpal
{a€RK1 [|af|=1} NT ’ ’
_ | M0 Xiow,a Mpo Xl o Mo|
{aGRgll}ﬁiynzl} NT > B, wpal.
Proof. Note ||Myo Xiowa Mpo X[, o Myo|| < || Xiow.a Mpo X, o], because [|[Myol = 1, ie., if

we can show the second inequality of the lemma we have also shown the first inequality.

We can write Xy = wdiag(a)v'.

Lemma S.4.1 we find

Using Lemma S.5.1 and part (v), (vi) and (ix) of

| Myo Xiowa Mo X1y o Myol| = || Myo wdiag(a’) v/ Mo v diag(a) w' M|
> By || My wdiag(a) v" vdiag(a’) w' Myol|

B
> ?0 Tr [Myo wdiag(a’) v" vdiag(a’) w'M,o]
1
B
= ?0 Tr [v diag(a’) w' Myow diag(a’) V']
1

B
> ?0 ||v diag(a’) w' M,ow diag(a’) v'||
1

B2
> ?O ||lv diag(a) w'w diag(a’) /||
1

B2
> F% Tr [v diag(a’) w'w diag(a’) v']
i

B (Xt ]
K12 ow,a<} ow, o

Thus we have ||Myo Xiow.a Mo X{,, o Myo|| /(NT) > (By/K1)* o WY a , where the Ki x K,
matrix Wy is defined by Wy, ., = (NT)"'Tr (X;,X],), i.e., it is a submatrix of Wy7. Because
Wt and thus Wi converges to a positive definite matrix the lemma is proven by the inequality

above.

Using the above lemmas we can now prove the lower bound on §§3’T(6, f) that was used in

the consistency proof. Remember

. 1
SO (B, f) = NT Tr

K K !
(AO £+ (8- ﬂk)Xk> My (AO U+ 8- ﬂk)Xk> P30,

k=1 k=1

13



We want to show under the assumptions of theorem 3.1 there exist finite positive constants ay,

ai, as, agz and ay such that

ao Hﬂlow o /BO,]OW”Q
- 2
Hﬁlow /BO,IOW” +a ||ﬁlow . BO,IOWH + ay
— ag H/Bhigh . BO,hith —ay Hﬂhigh o ﬁo,hith H/Blow o ﬂ ,

V(B f) >

wpal.

Proof of the lower bound on gﬁ%(ﬁ, f). Applying Lemma A.1 and part (xi) of Lemma S.4.1
we find

Ser(B.f) > NT MR+1[<)‘OJC0/+Z Br = B X ) ()\OfOI‘i‘Z (Br = Br)X >]
:%MRH[()\OJCOHLZ —B) wl“z) (Aofol‘i‘z —B) wl"’l)

! K
(AO fO/ + Z Bl wy Ul) P(/\O,w) Z (6977, - Bm)Xm
P m=K,
+ Z(ﬂ?n_ﬁ )X, P <)\0f0,+z -5 wl”l)
m;Kl -
m=K1 m=K1
1 al
2WIMRH[()‘OfO,"'rZ Bl —B8) wl”z) (AOfOIWLZ - B5) wz”z)
=1
! K
(AO fO/ + Z — 8w Ul) P(/\O,w) Z (6971 = Bn) Xm
P m=K1
+ Z(B?n_ﬁ )X, P <)\0f0,+z —B) wl”l)]
m=K1

1
> NT P+l <)\0 ¥+ Z — Bw Uz) (AO 7+ Z — B))w Uz)
— as Hﬁhigh . ﬁ(),hith —ay Hﬁhigh . 60,hith Hﬁlow . BO,IOW” ’ Wpal,

where a3 > 0 and a4 > 0 are appropriate constants. For the last step we used part (xii) of

14



Lemma S.4.1 and the fact that

1 K Kq
7 | 22 (B = B X0 P (AO £+ 3B - B vz) H
m=K1 =1
. ) X MO for wv,
< K high _ 50,high m K low _ 0,low l ) )
< [ = o | S| (|2 o |

Our assumptions guarantee the operator norms of A’ f”/v/NT and X,,/v/NT are bounded
from above as N,T — oo, which results in finite constants a3 and ay.

We write the above result as §§3)T(ﬁ, f) > pipe (A’A)/(NT) + terms containing A™&"| where
we defined A = 0 f¥ + S (B) — B))wyv). We also write A = Ay + Ay + Ag, with A, =
My AP = My A f¥, Ay = Py AMpo = S (B — B) wiv) Myo, Ay = Py A Ppo = Py X0 f¥ +

KB — B) wy vy Pr. We then find A’/A = A} Ay + (A, + A)(Ay + Ag) and

AA > AA— (a?A + a Y2 AL) (a'?Ag + a2 Ay)
= [AllAl — (a — 1) AéAg] + (1 — ail)A/QAQ y

where > for matrices refers to the difference being positive definite, and a is a positive number.
We choose a = 1+ (A} A1)/ (2]]A3]]?). The reason for this choice becomes clear below.

Note [A]A; — (a — 1) A A3] has at most rank R (asymptotically it has exactly rank R).
The non-zero eigenvalues of A’A are therefore given by the (at most) R non-zero eigenvalues
of [A1A; — (a — 1) A3 A3] and the non-zero eigenvalues of (1 — a~1) A, Ay, the largest one of the
latter being given given by the operator norm (1 — a™!)||As||>. We therefore find

1 1 _
7 M (AA) = o i [(A1A; — (a — 1) AjA3) + (1 —a ") AQA]

1 : . / /
2 N7 min {(1 —a™")|[Aa]*, g [A1AL— (a — 1) A3As]}

Using Lemma S.4.1(xii) and our particular choice of a we find
fr [A1Ar — (0 — 1) A3As] > pp(A1Ar) — [l(a — 1) A54;
1
= §NR(A,1A1) :

Therefore

1 1 . 2 || Az |?
— A'A) > Al A 1
NT fopp( ) > ONT (A1 A1) mln{ T2 As |2 + pp(ALA)
1 [ Ao|? pp(A1A)
T NT 2||A]? + pp(A1Ar) |

15



where we used ||A]| > ||As]| and [|A]| > || A2]|.

Our assumptions guarantee there exist positive constants cg, ¢1, co, and c3 such that

A )\0 fO, us wq v ow ow
H || < || || +Z‘6?_5I|H IH §Co+C1H51 _ﬁO,l || ) Wp&l )

VNT = VNT VNT
A A 0 )\0/ Mw )\0 o7
pr(AL 1>:MR(f f)ZCQ, wpal
NT NT
[ O ES S ,
NT T~ M > (B = Biy)wi, vf, Mpo > (B, = B,) v, w,
=1 lo=1

ow ow 2
Z C3 ||Bl - 5071 H 9 Wpa‘l )
were for the last inequality we used Lemma S.5.2.

We thus have

1 C3 Hﬁlow o BO,IOWH2
— AA) > :
NT ’uRH( ) 2 1+ % (Co+01 Hﬁlow _50,1OWH)2

wpal .

c2c3 — 2¢9 _ 2 ;
By 1= 7 and ag = 20 We thus obtain

Defining ay =

1 ao Hﬁlow - 50’10WH2
iy (AVA) >
NT R+1( ) Hﬁlow . ﬁo,me? T Hﬁlow o ﬁO,lowH + ay

, wpal,

i.e., we have shown the desired bound on §](\?)T(ﬁ, £

S.6 Regarding the Proof of Corollary 4.2

As discussed in the main text, the proof of Corollary 4.2 is provided in Moon and Weidner (2015).
All that is left to show here is the matrix Wyr = WNT()\O, 1%, X3) does not become singular

as N, T"— oo under our assumptions.

Proof. Remember

1
WNT = ﬁTI’(MfO )(]/€1 M)\O sz) .

16



The smallest eigenvalue of the symmetric matrix W()\O, 19, X3) is given by

. CL/ WNTCL
W = min _
e (Wavr) {acRX, a0} ||alf?
K K
= min @ ———Tr [ Mo ap, X, Mo gy Xi
{acR¥, az0} NT [|a)? / <,€Zl ' ’“) ’ (; S
_ min Tr [Mfo (Xllow,cp +X}lljgh,a) MAO (Xlow,ga +Xhigh,o<)}
{a €RK1, o € RK? NT (flefl® + [lell?) ’
a#0, ¢ #0}

where we decomposed a = (¢, /), with ¢ and a being vectors of length K; and K&, respectively,

and we defined linear combinations of high- and low-rank regressors?

K K
Xlow,go = § '] Xl ) Xhigh,a = E Qm Xm .
=1 m=Ki;+1

We have Myo = Mo,y + P(i,ow), Where w is the N x K matrix defined in assumption 4, i.e.,

(A%, w) is an N x (R + K;) matrix, whereas Myow is also an N x K; matrix. Using this we

obtain
i (W)
1
= min Tr Mo (X, + Xp M0 0y (Xiow.o + Xnigh.a
(veritaers NT ([pl? + [alP) { e Ko + Xigr) Mooy Kiowi + Ko
» #0, a#0}
+ TI‘ [Mfo (Xllow,go + Xllligh,oz) P(M/\Ow) (XIOW#P + Xhigh,oz):| }
1
= min Tr (Mo X|... M Xtich.a
e, KT T P M Mot Yoo
0 #0, a#0}
+Tr [Mfo (Xllow,go + Xllligh,a) P(MAow) (Xlow,cp + Xhigh,a)}
(S.6.1)
2As in assumption 4 the components of a are denoted ag, 41, ..., ax to simplify notation.

17



We note there exists finite positive constants ¢q, ¢, and c3 such that

1
WTr [ Mo Xigh oo M(30 .y Xnigh,a

cl||oz||2 wpal,

1

WTI‘ |:Mf0 (Xlowtp + Xhlgh a) P(M ow) (Xlow<p + Xhlgha
1

=
]
7 T [Mpo Xio o Patyomw) Xiow )
)
=

| \/

v

— 2 ||90||2 wpal,

1
WTI‘ [Mfo Xllow#p PM Ow Xhlgha Z Y HQOHHOZH Wpal’

1
WTI' [Mfo X}/ﬁgh,a P M,ow) Xhlgh a

0, (S.6.2)
and we want to justify these inequalities now. The second and the last equation in (S.6.2) are
P( M,ow) Xhlgh a] = Tr [Mfo Xhlgh «a P(M,\Ow) Xhlgh «a Mfo] ) and
the trace of a symmetric positive semi-definite matrix is non-negative. The first inequality in

(S.6.2) is true because rank(f°) +rank(\°, w) = 2R+ K, and using Lemma A.1 and assumption

true because, e.g., Tr [Mfo Xhigh.a

4 we have
! Tr [M o Xpign 0 M0 1) X }>—1 [ Xnigh.a Xiigha) >0 1
NTHOLH2 fO “high,a 1 (A%,w) “high,a | = NT”O[||2/L2R+K1+1 high,a “*high, o , wpal,
i.e., we can set ¢; = b. The third inequality in (S.6.2) is true because according Lemma S.4.1(v)
we have
1 Kl
WTr [Mfo Xllow,go P(M)\()w) Xhigh,a} > - — ||X10w,<p | ||Xhigh,a||
K1
2 — NT HXlOW ‘PHF HXhlghaHF
Xk Xk
> —-Ki K K ! 2
L e e e v
>

—5 el el

where we used that assumption 4 implies HXk /VN TH < C holds wpal for some constant C'
F

as, and we set c3 = K; K; Ky C%. Finally, we have to argue that the third inequality in (S.6.2)

holds. Note X, , Pu,ow) Xiowe = X

Tow,o M0 Xiow,p, 1.€., we need to show

1
WTI [Mfo Xl,ow,tp MAO XlOW:‘P} Z €2 ”SOHQ

Using part (vi) of Lemma S.4.1 we find

1 1
7T (Mo Xy Moo Xiow,] = NTT t [Myo Xigw Mo Xi,.,., Myo]
= NT HM>\0 Xlow RZ) Mfo Xlow P MAO H

18



and according to Lemma S.5.2 this expression is bounded by some positive constant times ||p]|?
(in the lemma we have ||| = 1, but all expressions are homogeneous in ||¢||).

Using the inequalities (S.6.2) in equation (S.6.1) we obtain
1

4% > min — ¢ ||a)]* + max [0, ¢ Z_¢ Q
K( NT) = (o RN o € RE? ”90“2_"”0[”2{ 1|| || |: 2”90” 3”@”” ”]}
@ #0, a#0}
2
> min 2 a9 ,  wpal.
2’ 3+ c3

Thus, the smallest eigenvalue of Wy is bounded from below by a positive constant as N, T —

00, i.e., Wyt is non-degenerate and invertible. 1

S.7 Proof of Examples for Assumption 5

Proof of Example 1. We want to show the conditions of Assumption 5 are satisfied. Condi-
tions (i)-(iii) are satisfied by the assumptions of the example.
For condition (iv), notice Cov (X, Xis|C) = E (UyUss). Because |3°| < 1 and sup;, E(e?) <

00, it follows

1 N T 1 N T
N7 2 2 Cov (X XulO) = 55 - D |E(Uali)

i=1 t,s=1 =1 t,s=1

oo

N T
= Z Z Z p+qE ezt_peis_q)| < OQ.

For condition (v), notice by the independence between the sigma field C and the error terms

19



{e;ir} that we have for some finite constant M,

1
T2

Mz

‘COV <eit)zis, em)?w|c) ‘

=1

I
—

% t,s,

1
T2

1

=
-
= 214

|C0V (eitUi57 eiuUiv)|

1 t,s,u,v=1

e

2 —
M=
Mﬂ

Z ‘ P+q E ezteis—peiueiv—q> - (60>p ]E (6it€is—p) (BO)‘] E (eiueiv—q)

T2

i=1 t,s,u,v=1p

@

1B I {t=ull{s—p=v—q} +I{t=v—q}I{s —p=u}]

A
IS
] =
Mg

1 0

3

t7s7u7v q

- Z Z Z»ﬁOSk*”lﬂ{tu}ﬂ{kz}+M( ZW! )(%ZW”)

A=

s— uZO
T min{s,v}

_ M Z Z 18] S+v 2 (% i ﬂo|su) (% i |BOvt)'

s,v=1 k=—oc0 s,u=1 v,t=1
s—u>0 v—t>0

Notice
T min{s,v} R
Tsvzl k—zoo |B ‘
2 G - 0|s—v+2(v—Fk) 2 a . 0]2(s—k)
HEEE it Ry
. 9 T oo
_ TZZ‘B‘ Z‘ﬁ‘m ?Z ‘BO‘Zl
s=2 v=1 s=1 1=0
B 1 T s 05 ) 2
- T R
T
2
= 4+ —
( ) B 0 8)
= 0(1),
and

S

1 T - 1 T
72 1T =52
s=1 u=

s,u=1
s—u>0

1|BO\S ' ZW (1——) =0(1).
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Therefore, we have the desired result

1 N T - ~
7 Z Z ‘COV <eitXi5, €iuXw|C>‘ =0, (1).

=1 t,s,u,v=1

PRELIMINARIES FOR PROOF OF EXAMPLE 2

e Although we observe X;; for 1 <t < T, here we treat Z;; = (e, X;;) as having an infinite

past and future. Define

Gr(i)=CVo({Xys:7<s<t}) and H. (i) =CVo({Zy:T<s<t}).

Then, by definition, we have G (¢) , 1L (i) C FL (4) for all 7,¢,i. By Assumption (iv) of Ex-
ample 2, the time series of {X;; : —oo <t < 0o} and {Z;; : —00 < t < 0o} are conditional

a-mixing conditioning on C uniformly in :.

Mixing inequality: The following inequality is a conditional version of the a-mixing in-
equality of Hall and Heyde (1980), p. 278. Suppose X;; is a Fj-measurable random
variable with [E <|Xit!max{p’q} \C) < 00, where p,g > 1 with 1/p + 1/¢ < 1. Denote

1 Xitlle,, = (B (| X" IC))"/? . Then, for each i, we have

11

1-1-1
|Cov (Xit, Xir+m|C)| < 8 HXitHc,p ||Xit+m||c,q am ” " (). (8.7.1)

Proof of Example 2. Again, we want to show the conditions of Assumption 5 are satisfied.

Conditions (i)-(iii) are satisfied by the assumptions of the example.

For condition (iv), we apply the mixing inequality (S.7.1) with p = ¢ > 4. Then, we have

N T
1
—= > > |Cov (Xu, Xii[0)]
NT i=1 t,s=1
2 o 5 N T-1T-m
< WZZZICOV (X Xl O = 577 2 D2 D 100V (X, Xitinl )
=1 =1 m=0 i=1 m=0 t=1
g NTT B
- WZ ||Xit||c,p ”Xit-l-mHC’pam (i) P
=1 m=0 (=1
< 16 <sup Hth”cp) Z am
m=0
< 0O,(1)
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where the last line holds because sup, 4 HXZ-tHép = O, (1) for some p > 4 as assumed in the
p—=2

example (2), and > Oam =3, m=<"F =0 (1) because of ¢ > 3% and p > 4.

For condition (v), we need to show

N T

NITQZ > |Cov (eafis enXalc)| = 0, (1),

=1 t,s,u,v=1

Notice
1 X T _ _
D) Z Z Cov (eitXisa eiuXiv‘C>’
NT i=1 t,s,u,v=1
1 X T B B B B
= NT2 Z Z E (eitXiseiuXiv|C) —E (eitXis|C> E <€me|C>‘
=1 t,s,u,v=1
;NI N N L N1 T N 2
c LSS B (eRuefule) [+ LY (— » (eﬁmc))
NT2 i=1 t,s,u,v=1 N i=1 T t,s=1
= [+ 11, say

First, for term I, there are a finite number of different orderings among the indices ¢, s, u, v. We
consider the case t < s < u < v and establish the desired result. The other cases can be shown

analogously. Note

N T
1
NT? Z Z Z ’E (etizt+kezt+k+let+k+l+m|C> ’

=0 m=
Z ‘E <eit (Xit—i-keit-l-k—i-l)?it-&-k-i-l-&-m) |C>‘

i=1 t=1  0<l,m<k
0<k+l4+m<T—t

N
1 1 ~ ~
+N Z T2 Z Z ‘E |:<€itXit+k> <€z‘t+k+lXit+k:+l+m> |C}

i=1 t=1  0<k,m<lI
0<k+I+m<T—t

IA
=
WE
3|~
M)~

-E <€it)?it+k‘c> E <€z’t+k+ljzit+k+l+m|c> ‘

N T
1 1 o X
+N E — E § E <€itXit+k|C> E <€it+k+lXit+k+l+m|C>

i=1 t=1  0<k,m<l
0<k+l4+m<T—t

N T
1 1 ~ ~
+N ; ﬁ Z Z ‘E |:<€itXit+k€it+k+l> Xit+k+l+m|c} ‘

t=1 0<p,l<m
0<k+l+m<T-t

= Il +IQ—|—]3+I4, say.
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By applying the mixing inequality (S.7.1) to ‘E (61'1& (Xit+keit+k+l)~(it+k+l+m) |C)’ with e; and
Xit+h€it+ k1 Xtk rirm, We have

‘E (eit <Xit+k€it+k:+lXit+k+l+m> |C>’
1-1

1_1
a, " (i)
7q

< 8llealle,

Xit+keit+k+lXit+k+l+m‘ c

< 8leallc,

Xz’t+k+l+m Hc Q. (@) )

Xz’t+kHC y l€it+r+ille3q 3q

)

where the last inequality follows by the generalized Holder’s inequality. Choose p = 3¢ > 4.
Then,

1—-L

8L 1 &
gy, > e,

L < )?z‘tJrkH Hez‘HkHHC,p )?it+k+l+m‘ o7 i (Z)
i=1 t=1  0<l,;m<k Cp Cp
0<k+H+m<T—t
< 8 |2 X, 1=
< 8(swleallc, | {sup [ X, ) 72 Z >, m

t=1 0<I,m<k
0<k+l+m<T t

o0
2 g 1-4
P
. > E ko
P =0

< 8 (SUP ||€z‘t||<2:,p) (Sup “)N(z‘t+k‘
' it

2,t

< 6, (1),

Xz’t—‘—k‘

2
C,p

W = O (1) because of ¢ > 3.2 4p and

where the last line holds because we assume in example (2) that (SUPi,t el p> <supi7t

a1
O, (1) for some p >4,, and >~ *_, m2am ¥ = S m’T %
p > 4.

By applying similar arguments, we can also show

IQ, Ig, [4 - Op (1) .

S.8 Supplement to the Proof of Theorem 4.3

Notation E; and Vare and Cove: In the remainder of this supplementary file we write E¢,

Vare and Cove for the expectation, variance and covariance operators conditional on C, i.e.,
Ec(A) = E(A|C), Varc(A) = Var(A|C) and Cove(A, B) = Cov(A, B|C).

What is left to show to complete the proof of Theorem 4.3 is that Lemma B.1 and Lemma B.2
in the main text appendix hold. Before showing this, we first present two further intermediate

lemmas.
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Lemma S.8.1. Under the assumptions of Theorem 4.3 we have for k=1,...
) 1Py Xyl| = 0,(VNT) ,
) | Xk Ppoll = 0p(VNT)
c) 1PyoeXil = 0p(N*2),
) [ PyoePpoll = Op(1) -
Proof of Lemma S.8.1. # Part (a): We have
1Py Xl = [X°(AA%) A X |
< IAPTA) THIIAY X
< [POIIIAYA) T HIAY Xl = Op(NTY2) A" X1

where we used part (i) and (ii) of Lemma S.4.1 and Assumption 1. We have

E{Ec |IX"Xell3] } = E i iEC (ﬁj A")@)
_x {z >3 00 (X n)}
- i i i E [(A))*Vare (Xp )]
= Op(NT),

where we used )?k,it is mean zero and independent across i, conditional on C, and our bounds
on the moments of A and X;. We therefore have |[A\”Xy||r = O,(v/NT) and the above
inequality thus gives || PyoXp| = O0,(VT) = 0,(V/NT).

# The proof for part (b) is similar. As above we first obtain ||)2ka0|| = ||Pfo)?,’€|| <
O, (T~2)|| f¥ X, || #. Next, we have

Ee [ I/ %12

2
Ec (Z £ Xk )

T
ftr ;)TEC <Xk’,ith,is)

M= 1M
1 it7-

,3
I
—
Il
—

7 t,s

R 2
>~ (max| 1)

r=1

N T
Z Z |Cove (Xk,its Xis)|

i=1 t,s=1

p(TQ/(4+€)> Op(NT) = 0p<NT2)a

IA

S
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where we used that uniformly bounded E|f2||**¢ implies max; |f).| = O,(T/(+9)). We thus
have || f”X}||% = 0,(TV/N) and therefore \|)?ka0|| = 0,(VNT).
# Next, we show part (c). First, we have

E{EC [(HAO’eX,;HF)z”:E Ee )

where we used that Ec (e;e;s Xy jt Xk js) is only non-zero if i = [ (because of cross-sectional
independence conditional on C) and ¢t = s (because regressors are pre-determined). We can thus
conclude |\’eX}||r = O,(NVT). Using this we find
[ProeXi] = A (AYA") AV e Xy
< A AAY) TN e X
< NN HIIA eXE ]l = Op(N~Y2)Op(NVT) = Op(VNT) .

This is what we wanted to show.

# For part (d), we first find \/#7 Hfo’e)\OHF = 0, (1), because
2
Hf0,€>‘0”F>2 1 (N . or 0)
E{E |12k — E{-E ean fUN
(o vr |\

]

M=

™

M=
&
Cb

kS
0.7

?“9
25
o
o)

——

= 0(),
where we used e;; is independent across ¢ and over ¢, conditional on C. Thus we obtain
[PyoeProll = [IX(A"A") =" NYe fO (£ £O) 71 ¥l
< IO THHIN eI
< O (N2)OL(NTH N e 2l pO,(T O, (T?) = O,(1)

where we used part (i) and (ii) of Lemma S.4.1. §
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Lemma S.8.2. Suppose A and B are T x T and N x N matrices that are independent of
e, conditional on C, such that Ec (HAH%) = O, (NT) and E¢ (HBH;) = O, (NT), and let

Assumption 5 be satisfied. Then there exists a finite non-random constant cq such that

(a) Ee ({Tr[(c'e — Ee (¢)) Al}*) < co N Ee (JAII}) .
(b) Ee <{Tr (e’ — Ec (e€')) B]}2> < TEc (|B]%) .

Proof. # Part (a): Denote Ay, to be the (¢,5)" element of A. We have

T T
Tr{(e'e —Ee(€e) A} = 3D (e —Be (), A
t;l s;l N
555 (z - >>) "
t=1 s=1 =1

Therefore,
Ee (Tr{(¢'e — B¢ (¢'e)) A})®

Ec (AtsApg) -

(Z (eireis — Ec (eitez’s))> (Z (ejpeiq — Ec (%’p‘%‘q)))

Let ¥; = Ec(e?). Then we find

Ec { <Z; (eireis — Ec (€ieis) ) (; €jp€iq — ejpejq))> }

= Z Z {Ec (eicisejpejq) — Ee (eneis) Ee (€jpe)q)}

i=1 j=1
YitDis if (t=p)#(s=gq) and (i =j)
_ Yit2is if (t=q)# (s=p) and (i =7)
Ec(el) — %2 if t=s=p=¢q) and (i = j)
0 otherwise.
Therefore,
Ec (Tr{(e'e — B¢ (¢e)) A})?
T T N T N
< Z Z Z YitXis (EC (A?s) + Ec (AtsAst)) + Z Z (EC (G?t) - E?t) ECAtQt'
t=1 s=1 i=1 t=1 i=1
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Define X! = diag (2;1, ..., Zi7) . Then, we have

T T N N
Z Z it 2is (EcAfs) = [E¢ (Z Tr (A/EiAEi)>
=1 i—1

=1 s=1 =1

N N
< DBl Al < SIS Ee AN
=1 =1
< N <sup E?t) Ec || All5 . (S5.8.1)
it
Also,
T T N N
>3 SuNiEe (AuAy) = Ee [ Tr(S'AAY)
t=1 s=1 i=1 f
< DB [ZA Az < 3018 Ee AT
=1 i=1
< N (supE?t> Ee || Al3 . (S.8.2)
it
Finally,
T N
oY (Be ch) - S Bes < N (supe (el) ) Be LAl (55

t=1 i=1
and sup;, Ec (e},) is assumed bounded by Assumption 5(vi).
# Part (b): The proof is analogous to the proof of part (a). B

Proof of Lemma B.1. # For part (a) we have

Te (Ppo e’ P X 'Hﬂw%&&%)

< ——||PyoeP
—\/WH A0 1o

=
1| o % | 1501

1
= INT 0,(1) 0,(VNT) O,(1)
- Op(l)v

where the second-last equality follows by Lemma S.8.1 (a) and (d).
# To show statement (b) we define ¢ ,;, = eit)?kyjt. We then have

1 Tr <P 6)’5/) i [(AO/AO)ll )\OC
20 L] = T ir k,ijt *
v NT N rq t 1 4,5=1 "

r,g=1

J/

—Ak ,rq
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We only have E¢ (C k,ijtC k,lms) # 0 if t = s (because regressors are pre-determined) and i = [

and j = m (because of cross-sectional independence). Therefore

1 T N
E {EC (Ai,rq)} =K {W Z Z >\i7")\jq)\l7")‘mq EC (gk,ithkJms)}

ts—lijlm—l

S S A Ee (¢2,)] - OL/N) — 01
t=1 4,5=1
We thus have Ay ,, = 0,(1) and therefore also ﬁTr <P/\0 e)?é) = 0,(1).
# The proof for statement (c) is similar to the proof of statement (b). Define &, ;,, =
eit)?k,is —Ec (eit)? ms) We then have

R -1
1 > > I'f
—Tr{ P [¢ K~ e (¢ X )|} = >0 (—) Z FirFarins -
NT r,g=1 T =1 t,s=1
EB?;,rq
Therefore
1 N T
EC (BI% rq) = T3N Z Z foSquvaqEC (gk ztsék juv)
i,7=1t,s,u,v=1
4

S
w2
O (T )0, (1/T)
op(1),

‘COVC (eith,is> equk,jv>

-

‘COVC <etik iS9 equk w)

where we used uniformly bounded E|| f2]|**¢ implies max; | f.| = O, (TY/4+9).
# Part (d) and (e): We have [A° (A%20) 1 (/1)1 O] = O,(NT)"2), [l = Op(N'2),
| Xkl = Op(VNT) and ||PyoePyo|| = O,(1), which was shown in Lemma S.8.1. Therefore:

Tr (GPfo e M/\o X5 fO (fO/fO)—l ()\0/)\0)—1 )\0/)

I (PyoePpoe Myo Xy, fO(f7f0)(AYA%) 71 AY)

\/NT

1
VNT

el Xl £ (P22 WYX TEAY|| = O, (NT2) = 0,(1) .
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which shows statement (d). The proof for part (e) is analogous.
# To prove statement (f) we need to use in addition || Py e X || = 0,(N3/2), which was also

shown in Lemma S.8.1. We find

1
Tr (6/]\4>\0 Xk MfO 6/ )\0 (}\0//\0)—1 (fO/fO)—l fO/)
VNT

= LT (¢ My X P X0 (AYAY) (£ f0) 1 0

VNT

\/%Tr (¢/ Myo Xy Pro € Pyo A (A" X)L (£ £0)~1 )

R _ _
< el XU I OO (7))
R _ _
- \/Wl‘e”HXkHHPAOepfOHH/\O()‘O/)‘O) OAS
=0p(1) .

# Now we want to prove part (g) and (h) of the present lemma. For part (g) we have

1

VNT

B leTTr {lee’ = Be (ee)] Mo X f* ()7 (AN A”)

1
_l’_
VNT

Tr {[66/ . EC (66,)] M)\O Xk fD (fO/fO)—l ()\0/)\0)—1 )\O/}

Tr {[ee/ — Ee (e€))] Myo X Pjo f0 (7 £0)~1 (A”A%)~ AO’}

- jl\fTTr {[ee’ — Be (ee)] Myo X f° (£ £0) "1 (AVA%) 1 A7)
1 / / v / - / — /
e lee! = e (e || K| [1£° (7707 (6020) 7

= \/%Tr {lee’ — Ec (ee")] Myo Xk fO (f”f0)" (AN~ )\0’} + 0,(1).

Thus, what is left to prove is ﬁTr {[ee’ — Ec (e€)] Myo Xy fO (ffO)7 (AYA%)71AY} = 0,(1).

For this we define
Bk _ M)\O yk’ fO (fO/fO)—l ()\0/)\0)—1 )\0/ )
Using part (i) and (ii) of Lemma S.4.1 we find

1Bl < RY?|| Byl
< R1/2||7k” Hfo (fOIfO)—l (/\0/)\0)—1 )\O/H
< R1/2H7kHF HfO (fO/fO)fl ()\O/A())fl )\0/” )
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and therefore

Ee (I1Bel}) < R (7107 A X Ee (I1X4l17)
=0(1),

where we used E¢ (|| Xx||3) = O(NT), which is true because we assumed uniformly bounded

moments of Ykﬁ. Applying Lemma S.8.2 we therefore find

1 / / ? T 2\ _
Ec (\/WTr{[ee — Ec (e€)] Bk}> < COWEC (IIBxllz7) = o(1),

and thus

1
VNT

which is what we wanted to show. The proof for part (h) is analogous.

Tr {[ee’ — E¢ (e€")] Br} = 0,(1) ,

# Part (i): Conditional on C the expression e%X; X!, — Ec (% X;; X!,) is mean zero, and it

is also uncorrelated across 7. This together with the bounded moments that we assume implies

1 S - 2 /
Vare {NT Zl Z X Xy — Ec (eit Xit %zt)]} = Op(1/N) = 0p(1),

which shows the required result.
# Part (j): Define the K x K matrix A = 1 ZZ 1 Zt L3 (X + Xi) (X — Xi)'. Then

we have

T
1
> ek (X Xy — X Xp) = 5 (A+ 4).

1 t=1

Mz

NT

A

Let By, be the N x T matrix with elements By ; = €2, (X4t + Xii). We have || Bg|| < || Billr =
O,(VNT), because the moments of By ;; are uniformly bounded. The components of A can be
written as Ay, = ﬁTr[Bl(%k — X)']. We therefore have

1
| A < Wrank(%k — )| Bl | Xx — Xl| -

We have X, — &), = )Z'k Pro + Pyo )A(:k Mpo. Therefore rank(X, — &) < 2R and

)

420 &) = 20, (VT Yoy (VRT) = 0,(1),

2R =
Ay < —||Bz|| (|| Pr

| /\

218 ([ % P

where we used Lemma S.8.1. This shows the desired result. g
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Proof of Lemma B.2. Let ¢ be a K-vector such that ||c|| = 1. The required result follows by

the Cramer-Wold device, if we show

N T
1
ﬁ Z Z eit%;tc = N(O, CIQC) .

i=1 t=1

For this, define §;, = e;Xj;,c. Furthermore define §,, = &/, = {yra, With M = NT and
m=TG—1)+te€{l,..., M}. We then have the following:

(i) Under Assumption 5(i), (iz), (iz7) the sequence {§,,, m = 1,..., M} is a martingale dif-
ference sequence under the filtration F,,, = C V o({&,, : n < m}).

(ii) E(&},) is uniformly bounded, because by Assumption 5(vi) Ecel and Ee (|| Xi]|®t€) are
uniformly bounded by a non-random constant (applying Cauchy-Schwarz and the law of

iterated expectations).

(iif) & S0 &2 = Qe+ o,(1).
2
This is true, because firstly under our assumptions we have E¢ { [% M (&, — Ec(éfn))] } =

Be { i T, (€~ Bel(€)’) = Op(1/M) = op(1), implying we have ; SN, €2, =
LS Ee(€2) +0,(1). We furthermore have - S0 Ee(&2,) = Vare(M 12N ¢ ),
and using the result in equation (14) of the main text we find Vare(M /2 Z%zl ) =
Vare(NT) 72 301 3oy &) = ¢Qe+ 0,(1).

These three properties of {£,,, m = 1,..., M} allow us to apply Corollary 5.26 in White (2001),
which is based on Theorem 2.3 in Mcleish (1974), to obtain \/LM SM €, —a N(0,¢9c). This

concludes the proof, because \/LM M e = \/% SN S enXen

S.9 Expansions of Projectors and Residuals

The incidental parameter estimators ]?and \ as well as the residuals € enter into the asymptotic
bias and variance estimators for the LS estimator B To describe the properties of f, X and e, it
is convenient to have asymptotic expansions of the projectors M5(3) and M f(ﬁ) that correspond
to the minimizing parameters A(5) and f(f) in equation (4). Note the minimizing A(5) and
fA(ﬁ) can be defined for all values of 3, not only for the optimal value g = B The corresponding
residuals are e(8) =Y — - X — X(ﬁ) f’(ﬁ)
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Theorem S.9.1. Under Assumptions 1, 3, and 4(i) we have the following expansions

K

M;(8) = My + Mi” + M£2> =7 (B — B MY + M ()

k=1

- B)) ML) + M (5)

Mx

MHB) = Mo + M(” + M

:1

K
e(B) = My e Mo +A(1 Z +A(rem)(5) ,
=1

where the spectral norms of the remainders satisfy for any series nyp — 0:

(rem)
Sup 0 ‘ e (B)H 0 =0,(1) ,
(6|95 <mry 18 = B2+ (NT) 2 [le][ 118 = B°l + (NT)=3/2 e}
(rem)
Sup 0 HMJ? (5)H 0 =0,(1),
(8|88 | <nyry 1B = BN+ (NT)T2 el |8 = 87 + (NT)=3/ |le]|?
up Jee=m )] o

i zrry (VIPRIG — R+ el 1 — A1 + (NT) [l
and we have rank(e™™(B3)) < TR, and the expansion coefficients are given by

M) = = Myoe fO(f7F) 7 OX) TN = AT (0N (FF0) T Ve My
M) = = Mo X 7 (£ £9)7H 0N TIAY = X0 (X7 ()7 X My
M = Myoe £ (1) (VX)TIA e £ (F7f0) 7T (VA% TN

AT TN TS TS AT (NN TSSO T ¢ My

= Myo e Myo e/ X (XVA%) 7 (f7F9)7H (A7A0) 710

— AT QYN) )TN TN e Mo €f Miyo

= Myoe fO (O£ NSO T My

+ AT TN (PO TR My fO (S F0) T TN TN,
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analogously
M]%le) - _ MfO 6/ )\0 (}\0/)\0)—1 (fO/fO)—lfO/ . fO (fO/fO)—l ()\Ol)\O)—l /\OlerO 7

M}(?lli — — My X! \ ()\0/)\0)—1 (fO/fO)—lfO/ _ fO (fO’fO)_l ()\o/)\o)—1 AY X, Mjo |
M]Eci) _ Mfo ¢/ \O ()\0/)\0)71 (fO/fO)flfO/ ¢/ \0 ()\0/)\0)71 (fO/fO)flfO/

+ fO (fO/fO)—l ()\0/)\0)—1 /\O/ Gfo (fO/fO)—l ()\0//\0)—1 )\0/ e Mfo

. Mfo 6/ M}\O €f0 (fO/fO)fl ()\0/)\0)71 (fO/fO)fl fO/

_ fO (fO/fO)fl ()\0/)\0)—1 (fO/fO)fl fO/ 6/ M)\o e Mfo

. Mfo 6/ )\0 ()\0//\0)—1 (fO/fO)—l ()\0/)\0)—1 )\Olero

+ fO (fO/f())—l ()\0/)\0)—1 /\0/ e Mfo 6, /\0 ()\0//\0)—1 (fO/fO)—lfO/ 7

and finally

&) = My X, Mo ,

el = —Myoe Mpo ' X (A"AN) 7 (f7f0) " 1
= X0 (AYA) T (PO Myo e Myo
— Myoe fO(f7F) 7 A"A) A e Myo .

Proof. The general expansion of M;(8) is given in Moon and Weidner (2015), and in the
theorem we just make this expansion explicit up to a particular order. The result for M f(ﬂ) is

just obtained by symmetry (N <> T, A ¢ f, e <> ¢/, X;, <> X]). For the residuals € we have
€=M (Y—Z 5ka> =My [e— (B ") - X+
k=1

and plugging in the expansion of M5 gives the expansion of €. We have e(3) = Ay + PN -
X(B)F(8), where Ag = e — 3", (8, — B2)Xi. Therefore 2™ (3) = A, + Ay + As with A = Ay —
Mo Ag Mo, Ay = N f — X(ﬁ)f’(ﬁ), and Az = —¢t"). We find rank(A;) < 2R, rank(A;) < 2R,
rank(Asz) < 3R, and thus rank(e®™(3)) < 7R, as stated in the theorem. §

Having expansions for M5(8) and M#(3), we also have expansions for P5(3) = Iy — Mz(83)
and Pf(ﬂ) =1Ir—M f(ﬁ) The reason why we give expansions of the projectors and not
expansions of A() and f(5) directly is for the latter we would need to specify a normalization,
whereas the projectors are independent of any normalization choice. An expansion for X(b’) can,
for example, be defined by X(ﬁ) = PX(B))\O, in which case the normalization of X(b’) is implicitly
defined by the normalization of \°.
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S.10 Consistency Proof for Bias and Variance Estimators

(Proof of Theorem 4.4)

It is convenient to introduce some alternative notation for Definition 1 in section 4.3 of the main

text.

Definition Let I' : R — R be the truncation kernel defined by I'(x) = 1 for |z| < 1, and
['(x) = 0 otherwise. Let M be a bandwidth parameter that depends on N and T'. For an N x N

matriz A with elements A;; and a T X T matriz B with elements Bys we define

(i) the diagonal truncations AT = diag[(Ay)iz1

..........

(ii) the right-sided Kernel truncation of B, which is a T x T matriz B™R with elements

BireR =T (521) By, for t < s, and BE™® = 0 otherwise.

Here, we suppress the dependence of B™"R on the bandwidth parameter M. Using this

notation we can represent the estimators for the bias in Definition 1 as follows:
D 1 runc
Bl,k = NTI‘ |:PJ?(/€\/X]€>t R] 5
5 o 1 ~~\ truncD T RA=1 N1 Y
Boo= 2T [@@)™ P My X (PR ONTR]
oy 1 ~ truncD NI TN —1 77
By = T [(@0)™° Mp X AON (D F) -
Before proving Theorem 4.4 we establish some preliminary results.
Corollary S.10.1. Under the Assumptions of Theorem 4.3 we have v NT (B — BO> = 0,(1).
This corollary directly follows from Theorem 4.3.
Corollary S.10.2. Under the Assumptions of Theorem 4.4 we have
1P5 = Pyl = [[Mz = M| = O(N72) ,

pr— Pro = 0,(T7?).

— HM]?—Mfo

Proof. Using |le|| = O,(N'?) and || X}|| = O,(N) we find the expansion terms in Theorem S.9.1
satisfy

)
HMx,e

= OP(N_1/2) ) HMX(QE)

= OP<N_1) ) HM’A(\’I;

‘ —0,(1).

Together with corollary S.10.1 the result for HMX — Mo H immediately follows. In addition we
have P; — Pyo = —M;5 + Mjo. The proof for M7 and P is analogous. 1
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Lemma S.10.3. Under the Assumptions of Theorem 4.4 we have

@
I
-
o~
Il
—_

Lemma S.10.4. Let f and f° be normalized as J?’J?/T =1 and f¥f°/T = 1. Then, under

the assumptions of Theorem 4.4, there exists an R x R matriz H = Hyr such that®
|F-ru|| =0, R=x =0,

Furthermore

H/\ ~IA~ o~ o~ -~

AONT(FHTF =0T (0 | = 0, (NTH2)

Lemma S.10.5. Under the Assumptions of Theorem 4.4 we have

(i) N~ \Ee(e'Xg) — (@ X) ™ || = 0,(1)
(ii) N1 ||Be(e'e) — (@ 0)™P|| = 0,(1) ,
(iii) 71 ‘Ec@e')—(ag)““@ = 0,(1).

Lemma S.10.6. Under the Assumptions of Theorem 4.4 we have

(i) N7 @ x| = oy
(i) N @) = 0,0,
(iii) T ||(@e)™ P = 0,(1) .

The proof of the above lemmas is given section S.11 below. Using these lemmas we can now

prove Theorem 4.4.

Proof of Theorem 4.4, Part I: show W=Ww-+ 0p(1).

3We consider a limit N,7 — oo and for different N, T different H-matrices can be chosen, but we write H

instead of Hy7 to keep notation simple.
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Using |Tr (C)| < ||C]| rank (C') and corollary S.10.2 we find:

‘ka ~WNT ks |

_ (NT)_lTr [(MX — My) X, MAX,’@] +(NT) " Tr [MAO X, <Mf— Mfo) X;Q]

< 2105 — Mol 1 M X s 7 = Mo | 1 11X
2R _ 2R _
= WOP(N )OP<NT) + WOP(T )Op(NT)

= 0p(1) .
Thus we have W = Wy + 0p(1) =W +0,(1). 1

Proof of Theorem 4.4, Part II: show Q = Q + 0p(1).

Let Qny = 5 S, S, €2 Xy X, We have Q = Qur + op(1) = Q + A + Ay + 0,(1) =
O+ op(1), where A; and A, are defined in Lemma S.10.3, and the lemma states A; and Ay are
op(1). 1

Proof of Theorem 4.4, Part III: show B, = B; + op(1).
Let By vt = N7 Tr[Pjo Ec (¢/ Xj)]. According to Assumption 6 we have By, = By nr+0,(1).
What is left to show is By nyr = ]§17k + 0,(1). Using |Tr (C)| < ||C|| rank (C) we find

1 1 runc.
Ee [NTF(Pfo ¢ Xk,)} Ty [Pf(é’Xk)t R}

BNt — §1‘ = N

1
< ‘—Tr Ppo = Pf) (@X,)"™"]

Tr Pro [EC (¢ Xp) — (¢ X,c)“““CR}}’

|

R runc
+ 5 1Pl ||Be (¢ Xi) = @X0)™"

\N
<2y -1 i

We have ||Pjo|| = 1. We now apply Lemmas S.10.5, S.10.2 and S.10.6 to find
Bujr = Bi| = N1 (O,(N V) O,(MNT'S) + 0,(N)) = 0,(1)
This is what we wanted to show. 1

Proof of Theorem 4.4, final part: show B, = B, + 0p(1) and By = Bs + 0p(1).
Define
1

By gy nT = ?Tr [Ec (ee') Mo X, fo (fO’fO)—l (/\0/)\0)—1 )\o/] .
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According to Assumption 6 we have By = By nr + 0,(1). What is left to show is By vy =
§2,k + 0,(1). We have

1 PR

By, — Bay, :%Tr [Ec (e€') Myo X5 £ (f7 ) (A"A%) 71 AY]
_?T [(Ad)truncD M ka<.]/c\ ) ( ) 1}:/}
1

:fTr [( )trunCD M; X, (fo (fO0) =1 (AUA0)"L N — ]?(]?/]?)71 (’):’”):)71 ’X’)}

1
+ TTT |: /\/\[ truncD MAO . MA> X fO (fO/fO) (/\O/)\O)—l )\0/i|

n %Tr{[EC _ AN)truncD] Mo X, £0 (7 £0)=1 (AVA0) L )\0/} .

Using |Tr (C)| < ||C]| rank (C') (which is true for every square matrix C') we find

~ R
‘BQ,k — By ST

(gg/)‘cruncD

X £ ) 0N A = PP AR R

AA/ truncD

42 @@y e — A Il £ 7 £0) (A A

(é\/é/)truncD

b2 e (e - I 170 ) (X0 A

Here we used || M| = HM]?) = 1. Using || Xy|| = O,(VNT), and applying Lemmas S.10.2,
S.10.4, S.10.5 and S.10.6, we now find

Bas = Bus| =T 0,(1) 0,(VT)) 0,8 )
FO,T) O,(N 1) 0,(NT)2) O,(NT) )

+0,(T) Op((NT)2) O (NT)™H2) | = 0,(1) -

This is what we wanted to show. The proof of Bs = Bs + 0p(1) is analogous.

S.11 Proof of Intermediate Lemma

Here we provide the proof of some intermediate lemmas that were stated and used in section S.10.

The following lemma gives a useful bound on the maximum of (correlated) random variables

Lemma S.11.1. Let Z;, i = 1,2,...,n, be n real valued random variables, and let v > 1 and
B > 0 be finite constants (independent of n). Assume max; E¢|Z;|Y < B, i.e., the v ’th moment

of the Z; are finite and uniformly bounded. For n — oo we then have

max | Z;| = O, (nl/'y) . (S.11.1)
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Proof. Using Jensen’s inequality one obtains Ee max; | Z;| < (Ee max; | Z;)"7 < (B¢ Yo Z,) <
(n max; E¢|Z;|")"" < n¥/7 BY7. Markov’s inequality then gives equation (S.11.1). g

Lemma S.11.2. Let

N
Zlfz,lt)T =N~/ Z leiXk,ir — Ec (enXy,ir)] |
i=1
N
Zt@) =NI/2 Z [e?t — Ec¢ (ezzt)} )
i=1
T
Z® =112 Z ez, — Ec (e7)] -
t=1
Under assumption 5 we have
_qy |4
Ee |20 | < B,
o |4
]EC Zt(z) <B )
o [
E.|Z®| < B,

for some B > 0, 1.e., the conditional expectations Z,St)T, Zt(f), and Zi(g) are uniformly bounded

over t, T, ort, respectively.

Proof. # We start with the proof for Z,St)T. Define Z,glt)” = € Xk,ir — Ec (€4 Xk ir). By assump-
tion we have finite 8th moments for e; and Xy, uniformly across k,i,t, 7, and thus (using
Cauchy Schwarz inequality) we have finite 4th moment of Z,g}lt)m uniformly across k,i,t,7.
For ease of notation we now fix k,t,7 and write Z; = Z,St)m. We have E¢(Z;) = 0 and
Ec(Z:Z;Z12) = 0 if @ ¢ {j,k,1} (and the same holds for permutations of ¢,7j,k,l). Using

this we compute

N 4 N
Ec (Z ZZ-) = Y Be(ZiZiZ7)
=1

1,9,k =1

=3> Ec(2727)+> Ec(Z})

1#£]
s z e (72) Ee (2) +z {Be (21) -3 [Ec (22))°) .

Because we argued E¢ (Z}) is bounded uniformly, the last equation shows Z ,St)T = N~1/2 Zf\il Z ,Elt)”
is bounded uniformly across k,t, 7. This is what we wanted to show.

# The proofs for Zt@) and Zi(?’) are analogous. 1
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Lemma S.11.3. For a T x T matriz A we have*

HAtruncRH S M HAtrunCRH = M II]&X max |At7'|7
max t<r<t+M

Proof. For the 1-norm of A™"R we find

t+M

HAAtruncRH1 = tglla}% Z |At’r’

T=t+1
<M max_ |A;|=MI[A™|

t<r<t+M max

and analogously we find the same bound for the co-norm HA“”“CR”OO. Applying part (vii) of

Lemma S.4.1 we therefore also get this bound for the operator norm || A" g

Proof of Lemma S.10.3. # We first show A, = (NT)"' Y, S0 €2 (Xz'tX{t — PEt)a’t) =
0p(1). Let By = Xy — Xy, Bogy = €4X, and By = €2X;,. Note By, By, and B can either be
viewed as K-vectors for each pair (7,t), or equivalently as N x T matrices By y, Bay, and Bsy,
for each k =1,..., K. We have A, = (NT)™'>_.>", (Bl,itBéJ't + Bgﬂ-tB{?it), or equivalently

1
—Tr <B17k1B§)7k2 + BQ,]ﬂBi,kz) :

Al,klk‘z = NT

Using [|M5 — Mol = Op(N7Y2), [|Mp — Mypo|| = Op(N7'2), [ Xill = Op(VNT) = Oy(N), we
find for By = (Myo — M3)XypMpo + M5 Xy, (Mpo — M) that || By || = O,(N*/2). In addition we
have rank(B; ) < 4R. We also have

1Boll* < [|Boell

N T

(L ydan)
i=1 t=1
N T

< (L 3a) (T a) oo,
i=1 t=1 i=1 t=1

which implies || Bkl = O,(VNT'), and analogously we find ||Bs k|| = O,(VNT'). Therefore
4R
[Avkike] < 57 (B [1Bs ol + | B [ B )
B 4R

= 7 (O (N2)O,(VNT) + O,(VNT)OH(N')) = 0,(1) .

4For the boundaries of 7 we could write max(1,t— M) instead of t — M, and min(7, ¢+ M) instead of t + M,

to guarantee 1 < 7 < T'. Since this would complicate notation, we prefer the convention A, = 0 for ¢t < 1 or

T<loft>Tort>T.
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This is what we wanted to show.

# Finally, we want to show Ay = (NT)2 SN ST (€2 — €2) XX, = 0,(1). According
to theorem S.9.1 we have e — ¢ = (7 + (5, where we defined C = — Zk—1 (6k — 0) X}, and
=YK (Bk - ) (Pyo Xt Mo + Xy Ppo) + Pyo e Myo + e Po — 69 — 80em) which satisfies
|Cy]| = O,(NY?), and rank(Cy) < 11R (actually, one can easily prove < 5R, but this does not

follow from theorem S.9.1). Using this notation we have

N T
1 ~ o~
2ZWZZ eit + €it) Cl,z’t—i‘OQ,it)Xit)QIt,
=1 t=1
which can also be written as
K
Ao bk I—Z(gk —52>(C5kkk + C6 kykoks) + ! (CQCskk)+LTr<C2C4kk)
JR1R2 — 3 3 yR1R2R3 yR1R2R3 NT 1R2 NT yWR1R2 )
e

where we defined

C3,k1k2,it = eithl,ithg,it )

O4,l~c1k:2,it = eithl,ithg,it )

1 N T
C5,k1k2k3:_NTE E €ith1,ith2,ith3,it,

i=1 t=1
| NI
CGkkk:—E g Cir Xo: i1 X0 i1 X b s
JR1R2K3 NT it VEky it Vko it<N k3 it -
i=1 t=1

Again, because we have uniformly bounded 8th moments for e;; and X} ;;, we find

||C3,k1k2 H4 < HC?) kiko H%’

2
= (Z Z etikl zt‘)(kg zt)

i=1 t=1

N T N T R N
< (zzez) (zzx;,ﬁxg,ﬁ)
3 t=1
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i.e., [|Cs ks || = Op(VNT). Furthermore

1Crkall? < N Csppria |7

N T
_ E E Y2 2
- ezt Xkl it sz it

=1 t=1
~2 2 52
E g - max max (X7 . X )
”>z 1N t=1.. T( kit Tk, it

r2 P2
Jmax max (Xkl,it‘)(kg,it>

[\
VoY
Il >
) S

A
S —
Mﬂ
\i/

bS]
—~
=
~
~—
S
—~
—~
=
=
~—
&
)
+
a2
N2
|
QS
—~
—~
=
~
~—
z
Ny
—

Here we used the assumption that X, has uniformly bounded moments of order 8 + € for some

€>0. Wealso used 50, 37, @ <300 3 e
For C'5 we find

N T
1 1
Cg Jk1koks — <W Z Z e?t) (NTXkl Zth2 lthg lt)
= O,(

.., Cs ks = Op(1), and analogously C g x,ks = Op(1), because S8 2T 22 <N ST 2.

Using these results we obtain

Az uis] < = ZH@@, 80| 1Cosatats + Co] + T IO ot |+ S NCol [
k3=1
_ 0,(NT)""2)0,(1) + 220, (v2)0,(VNT) + 2L 0 (N12)0,(NT)) = 0,1
= O,((NT) )0,(1) + NT o )Op( ) + NT o( )op((NT)*") = 0,(1) .

This is what we wanted to show. §

Remember, the truncation Kernel I'(.) is defined by I'(z) = 1 for |z| < 1 and I'(z) = 0
otherwise. Without loss of generality we assume in the following the bandwidth parameter M
is a positive integer (without this assumption, one needs to replace M everywhere below by the

largest integer contained in M, but nothing else changes).

Proof of Lemma S.10.4. By Lemma S.10.2 we know asymptotically Pf is close to P and
therefore rank(PpPpo) = rank(PpPp) = R, ie., rank(P;f°) = R asymptotically. We can

therefore write f: PffOH , where H = Hyr is a non-singular R x R matrix.
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We now want to show ||H|| = O,(1) and ||[H!|| = O,(1). Because of our normalization of 7
and 0 we have H = (f'P;f°/T)~" = (f'f°/T)~", and therefore || H=|| < ||f][|lf°/T = O,(1).
We also have f = f°H + (P; — Pjo)f°H, and thus H = f"f/T — f*(P; — Pp)f°H/T, i.e.,
|H| < Opy(1) + |H||O, (T~'/?) which shows ||H|| = O,(1). Note all the following results only
require ||H|| = O,(1) and ||H!|| = Op(1), but apart from that are independent of the choice of

normalization.

The advantage of expressing f in terms of P; as above is that the result HPf— Pro
O, (Tﬁl/ 2) of Lemma S.10.2 immediately implies

|7-rm| =00
The FOC wrt A in the minimization of the first line in equation (4) reads
AN AN AN K ~ ~
N f = (Y — Zﬁka> f. (S.11.2)
which yields

B 8) x| F(7F)”

>)
I
>/ 1
o
&H
<
|
gk
VS

Pef* () )

B K
DY (ﬁi—@k) Xy +e
k=1

_ )0 (H’)_l A0 (Pf_ Pf0> 0 <f0lpff0> -1 (H,)—l

4 A0 f0r g0 [(fO/Pff0> -t (fo/f())—l} (H/)ﬂ

S (- 5) %t e

k=1

+ PR (5ppg?) ™

We have (fOIP]?fO/T)_l — (fof/T)! = O,(T~/?), because P;— Pp|| = O, (T~"/?) and

fYf%/T by assumption is converging to a positive definite matrix (or given our particular

choice of normalization is just the identity matrix Ig). In addition, we have |e|| = O,(VT),
| Xk|| = Op(VNT') and by corollary S.10.1 also 1B — 8% = O,(1/V'NT). Therefore

[f-x | =00, s113)

which is what we wanted to prove.
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Next, we want to show

N (e @y
(W) ( E ) _ 0, (N
(BI) (o) o,omy . s

Let A=N-"'XXand B=N-! (H)™* A” \° (H")~". Using (S.11.3) we find

1A - B[ = [X’ 4 (H)! AO’} [X 0 (H')*I] + [X’ —(H)! )\0’] [X + A\ (H’)*l}

1
x|
= NO,(N'2)0,(1) = 0, (N2 .

)\0/ )\0 -1
(%)
and thus also || B7!|| = O,(1), and therefore || A~!|| = O,(1) (using | A—B|| = 0,(1) and applying

Weyl’s inequality to the smallest eigenvalue of B). Because A™! — B™' = A™Y(B — A)B~! we
find

By assumption 1 we know

= Op(l) )

A =B < [[A7H] [[B7Y] A - B]
=0, (N_l/Q) :

Thus, we have shown the first statement of (S.11.4), and analogously one can show the second
one. Combining (S.11.3), (S.11.2) and (S.11.4) we obtain

i Q -1 E -1 ]/c\/ - 20 ()\0/)\0)_1 (fO/fO)l fO/
e v) v oww\ v ) 1) 7

N
[ (XX>1 (f’f)l fooaw? ((HM“’AO(H’V)I (H’fo’fOH)l H'f©
- (32) (£ _
@)

N T VT

~

which is equivalent to the statement in the lemma. Note also A ()\/X)_l (J?’ )t " is independent

of H, i.e., independent of the choice of normalization. g
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Proof of Lemma S.10.5. # Part A of the proof: We start by showing

N*l

Ec [e’Xk - (e'X,C)“““R} H = 0,(1). (S.11.5)

Let A = €¢X;, and B = A — A"™=R_ By definition of the left-sided truncation (using the
truncation kernel I'(.) defined above) we have B,, = 0 for t < 7 < t+M and By, = A;, otherwise.
By assumption 5 we have E¢(A;;) = 0 for ¢t > 7. For t < 7 we have E¢(A;,) = Zf\il Ec(eitXk,ir)-
We thus have E¢(By,;) = 0 for 7 < t+M, and E¢B;, = Zfil Ec(eit Xk, ir) for 7 > t+M. Therefore

T
[Ee(B)l, = max S [Be(Bir)

T=1
T N T
) ) = (+e)
< max Z ZEC(etik,w) < Ntr:nl%.)j?cT Z c(r—1t) =0,(N) ,
r=t+M+1 | i=1 T=t+M+1

where we used M — oo. Analogously we can show ||E¢(B)||,, = 0,(N). Using part (vii) of
Lemma S.4.1 we therefore also find ||Ec(B)| = 0,(NN), which is equivalent to equation (S.11.5)
we wanted to show in this part of the proof. Analogously we can show

N—l HEC [6/6 o (ele)truncD} H _ Op(l) :

T*l

Ec [ee’ - (ee’)trunCD} H =0,(1) .
# Part B of the proof: Next, we want to show

Nfl [ele . EC (e/Xk)]truncR

‘ — 0,(1). (S.11.6)
Using Lemma S.11.3 we have

N[ X, — B (€ Xp)]"™™ | < M max max N7 |e) X, — Ee (¢,X.,)]

t t<T<t+M

< M max max N !
t  t<r<t+M

N
Z leitXy.ir — Ec (€1t Xk ir)]
i1

< M N-Y2 max max
t t<T<t+M

(1)
kT

4
According to Lemma S.11.2 we know E; ‘Z ,2127’ is bounded uniformly across t and 7. Applying

Lemma S.11.1 we therefore find max; max;< <¢ 4 Zt(Tl) = O0,((MT)*). Thus we have

Z(l)

M N7Y? max max o

t  t<r<t+M

=0, (M N2 (MT)"*) = 0,(1) .
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Here we used M®/T — 0. Analogously we can show

N—l H[ele o EC (6/6)]truncD ‘ _ 0p(1) :
T ||[ee’ — Ee (ee')]™ P ‘ =0,(1) .
# Part C of the proof: Finally, we want to show
N7 H[G’Xk — & X)) = 0,(1) (S.11.7)

According to theorem S.9.1 we have € = Myoe M jo+€yem, Where €rem, = @gl)—szzl (Bk — 52) @;1)—1—
elrem)  We then have

’ + N—l H [PfOGIM)\oXk}tmnCR

N—l [ele . /éer]truncR

S N_1 H[G/ Xk]truncR

rem

‘ + N_1 H [6/P)\0Xk]trunCR

Using corollary S.10.1 we find the remainder term satisfies ||eyem|| = O,(1). Using Lemma S.11.3
we find

<

1 truncR ~
Nl il Cremt X

!/
erem

max
t,T

max || exem | | Xl
t,T

<

?
[¢]
g
+E
el
>
ol
3

zlg=lg =5

M

S Nop
where we used the fact that the norm of each column eéyep ¢ is smaller than the operator norm
of the whole matrix €. In addition we used Lemma S.11.1 and the fact that N=Y2||X, || =
\/N—1 Zfil X3 ;> has finite 8'th moment to show max, || X .|| = O,(NY/2T'8). Using again
Lemma S.11.3 we find

(1)OP(N1/2T1/8) = 0,(1) ,

N—l H [Pfo GIM)\OXk]trunCR

[SNTIM max (£ (P )1 € M X |

< NTEMlel NG 07 max (A1) max || Xl

= N1 M O,(NY?) O,(TV?) O,(T™") O,(NV*T8) = 0,(1) |
and

H [Q/P)\O Xk]truncR

J

~1/2 ~1/2 10 —1407 {0y—1 -1 oy
’ <N MtlglﬁT (N Ze,t/\i> (NTIAT AT max, (N Z/\j X]t>

T=1...
)

= Nﬁl/QMOp(Tl/g)Op(l)Op(Tl/8> = 0p(1).
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Thus, we proved equation (S.11.7). Analogously we obtain

N*l

[6/6 _ /é/é\]truncD

[66/ . A/e\/] truncD

T*l

# Combining (S.11.5), (S.11.6), and (S.11.7), we obtain N~! ||Ec(€/X},) — (€ Xk)t“mCR

0p(1). The proof of the other two statements of the lemma is analogous. 1

) _

Proof of Lemma S.10.6. Using theorem S.9.1 and S.10.1 we find ||¢]| = O,(N'/?). Applying
Lemma S.11.3 we therefore find

el max [[.X, -]

< O, (NV2)0,(N'TV/5) = 0,(MT").

runc M
N7 @ x| < 5 max [E Xl

N t,T ’
M .

< o max [[e] [ X
M

< -

=N
M
N

where we used the result max, | Xy .|| = O,(N/2T1/#) that was already obtained in the proof
of the last theorem.

The proof for the statement (ii) and (iii) is analogous. B

S.12 Proofs for Section 5 (Testing)

Proof of Theorem 5.1. Using the expansion for Lyr(f) in Lemma S.1 in the supplementary
material of Moon and Weidner (2015) we find for the derivative (the sign convention ¢, = 8% —f,

results in the minus sign below)

OLnT — KoK K .
= —%T Zg Z Z Z €ry €ny - - - eﬁgilL(g) (/\ 10 X, X,{l,...,Xﬁgﬂ)

861‘3 g=2 k1=0 k2=0 Kg—1=0
. 2 1 1
= [2Wnr(B - B )]k - \/WONTJ@ + WVRLNT,IC + WVRQ,NT,k: ;
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where

Wit kb, = 5 L& (0 7 Xy, X))
G
1 .
Cnrp = 7L L@ (X O Xy, Xo, .. X
NIk = Do 2. g (€0) (A%, £, Xk, Xo 0)
Ge
_ g (9) (0 ¢0
= LY (A X
g; QW ( 7f7 ky €, 76) )
and
VBNt = — Z g(e0)? " LW (X 0, Xy, Xo, ..., Xo) ,
g=Ge+1
- _ Z g LY (X, f° Xy, e, ve)
g=Ge+1
co  g-1 g—1 K K
V Ry Nt = Z g Z ( ) Z Z R ()
g=3 r=1 1=1 =1

L9 (X 0 Xp, Xy oo Xy Xos -, Xo)

> g—1 X - 0
. ( )z_ 0 =) (= )

L9 (N £ Xpy Xiyy ooy Xiyeyeeve)
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The above expressions for Wy and Cyp are equivalent to their definitions given in theorem
4.1. Using the bound on L9 we find®

5 5, ()

g=Ge+1

5200<1+Ge)2NT’\‘/)% (%)G [1_ (%)]_3:()},(\/%),

X 00 g—1 . 1 X
|\VRonT k| < coNT Xl 292 (g > Z‘ﬁk Bl ——— X

NT g=3 r=1 \/_
o1l e\
Zlﬁk N
EARSY gyl gl el

9=3

||X || 0 \X H ||6||

where ¢y = 8 Rdpax (A%, f°)/2 and ¢; = 16dpyax (A’ fo)/dmm()\o, f°) both converge to a constants
as N,T — oo, and the very last inequality is only true if 4¢; (Zé{:l |67 — \”X il el > <

RVNT T UNT
1, and ¢ > 0 is an appropriate positive constant. To show VRy n7x = 0,(NT) we used

gcmf i Zwk 8

Assumption 3*. From the above inequalities we find for 7y, — oo

sup VBN (O] _ 1)
— 0, (1),
(8]|8-8 | <nwey  VNT

sup M —0,(1).
{51H5—50||§77NT} NT HB B 5 H

Thus Ry (8) = Ry nr(B) + Ront(B) satisfies the bound in the theorem. 1

Proof of Theorem 5.2. Using Theorem 4.3 it is straightforward to show W D}, has limiting
distribution x?2.

For the LR test we have to show the estimator ¢ = (N T)_lTr(/e\(E) Q(B)) is consistent for
¢ = Ece?. As already noted in the main text we have ¢ = Lyr (E), and using our expansion
and v/ NT-consistency of B we immediately obtain

1

c= NT Tr(MyeMoe') + o0p(1) .

"Here we use (}) < 4™
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Alternatively, one could use the expansion of € in Theorem S.9.1 to show this. From the above

result we find

- 1
¢ — —=Tr(ee)

1
T =7 | Tr(PyoeMpoe’) + Tr(ePpoe’)| + 0p(1)

2R
< NT H€||2 + Op(l) = Op(l) .

By the weak law of large numbers we thus have

N T
.1 9
CZWZZeit—i—op(l):c—i-op(l),

i=1 t=1
i.e., ¢ is indeed consistent for ¢. Having this one immediately obtains the result for the limiting
distribution of LR} .

For the LM test we first want to show equation (9) holds. Using the expansion of € in

Theorem S.9.1 one obtains
VNT(VLyr)e = — \/% Tr (X.€)
= 2VNTWyr (B—5")] + %C(”(AO, £ Xpe) + %0@)(»’, £, Xy e)
2
VNT

Tr (X0

= [T W (5-5) + s Caa] o)

= VNT [VLur(B)] +0,(1).

which is what we wanted to show. Here we used |Tr (X;e0™) | < 7R[| X, [[et™ || = O,(N?/?).
Note that || Xx|| = O,(N), and Theorem S.9.1, and v/ NT-consistency of 3, together imply
[etem)|| = O,(v/N). We also used the expression for V Ly7(B) given in Theorem 5.1, and the
bound on VRy7(3) given there.

We now use equation (10) and W= W +o0,(1), 0= Q+o0,(1), and B= B+ 0,(1) to obtain

LMy — (C—BYW'HHW QW H ) ' HW (C - B) .

Under Hy we thus find LM —4 X2 8

S.13 Additional Monte Carlo Results

We consider an AR(1) model with R factors

R
Yi = p"Yiiq + Z)‘?r fo + €.

r=1
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We draw the e;; independently and identically distributed from a t-distribution with five degrees
of freedom. The A} are independently distributed as A(1,1), and we generate the factors
from an AR(1) specification, namely f;. = p; f{_|, + s, for each r = 1,..., R, where u, ~
1dMN (0, (1 — pff)az). For all simulations we generate 1,000 initial time periods for f? and Yj
that are not used for estimation. This guarantees the simulated data used for estimation are
distributed according to the stationary distribution of the model.

For R =1 this is exactly the simulation design used in the main text Monte Carlo section,
but DGPs with R > 1 were not considered in the main text. Table S.1 reports results for which
R =1 is used both in the DGP and for the LS estimation. Table S.2 reports results for which
R =1 is used in the DGP, but R = 2 is used for the LS estimation. Table S.3 reports results
for which R = 2 is used both in the DGP and for the LS estimation. The results in Table S.1
and S.2 are identical to those reported in the main text Table 1 and 2, except we also report
results for the CCE estimator. The results in Table S.3 are not contained in the main text.

The CCE estimator is obtained by using ]/”;pmxy = N'>" . (Yi, Yiio1)" as a proxy for the
factors and then estimating the parameters p, A1, A2, ¢ = 1,..., N, via OLS in the linear
regression model Yy = pY; ;1 + )\ﬂﬁpfoxy + /\Z-Qﬁg“”‘y + e

The performance of the CCE estimator in Table S.1 and S.2 are identical (up to random
MC noise), because the number of factors need not be specified for the CCE estimator, and the
DGPs in Table S.1 and S.2 are identical. These tables show for R = 1 in the DGP, the CCE
estimator performs very well. From Chudik and Pesaran (2015) we expect the CCE estimator
to have a bias of order 1/7" in a dynamic model, which is confirmed in the simulations: the bias
of the CCE estimator shrinks roughly in inverse proportion to 7', as T' becomes larger. The 1/T
bias of the CCE estimator could be corrected for, and we would expect the bias-corrected CCE
estimator to perform similarly to the bias-corrected LS estimator.

However, if there are R = 2 factors in the true DGP, then it turns out the proxies ftp Y do
not pick those up correctly. Table S.3 shows for some parameter values and sample sizes (e.g.,
P’ =03 and T = 10, or p° = 0.9 and T = 40) the CCE estimator is almost unbiased, but for
other values, including T" = 80, the CCE estimator is heavily biased if R = 2. In particular,
the bias of the CCE estimator does not seem to converge to zero as T' becomes large in this
case. By contrast, the correctly specified LS estimators (i.e., correctly using R = 2 factors in
the estimation) performs very well according to Table S.3. However, an incorrectly specified
LS estimator, which would underestimate the number of factors (e.g., using R = 1 factors in
estimation instead of the correct number R = 2) would probably perform similarly to the CCE

estimator, because not all factors would be corrected for. Overestimating the number of factors
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(i.e., using R = 3 factors in estimation instead of the correct number R = 2) should, however,

not pose a problem for the LS estimator, according to Moon and Weidner (2015).
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Tables with Simulation Results

Table S.1: Same as Table 1

saran (2006).

in main paper, but also reporting pooled CCE estimator of Pe-

P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T =5 bias 0.1232 -0.1419 -0.0713 -0.1755 0.0200 -0.3686 -0.2330 -0.3298
(M =2) std 0.1444 0.1480 0.0982 0.1681 0.0723 0.1718 0.1301  0.2203
rmse 0.1898 0.2050 0.1213  0.2430 0.0750 0.4067 0.2669  0.3966
T =10 bias 0.1339 -0.0542 -0.0201 -0.0819 0.0218 -0.1019 -0.0623 -0.1436
(M =3) std 0.1148 0.0596 0.0423 0.0593 0.0513 0.1094 0.0747  0.0972
rmse 0.1764 0.0806 0.0469 0.1011 0.0557 0.1495 0.0973 0.1734
T =20 bias 0.1441 -0.0264 -0.0070 -0.0405 0.0254 -0.0173 -0.0085 -0.0617
(M =4) std  0.0879 0.0284 0.0240 0.0277 0.0353 0.0299 0.0219 0.0406
rmse 0.1687 0.0388 0.0250 0.0491 0.0434 0.0345 0.0235 0.0739
T =40 bias 0.1517 -0.0130 -0.0021 -0.0200 0.0294 -0.0057 -0.0019 -0.0281
(M =5) std  0.0657 0.0170 0.0160 0.0166 0.0250 0.0105 0.0089 0.0162
rmse 0.16564 0.0214 0.0161  0.0260 0.0386 0.0119 0.0091 0.0324
T =80 bias 0.1552 -0.0066 -0.0007 -0.0100 0.0326 -0.0026 -0.0006 -0.0136
(M =6) std  0.0487 0.0112 0.0109 0.0111 0.0179 0.0056 0.0053  0.0073
rmse 0.1627 0.0130 0.0109 0.0149 0.0372 0.0062 0.0053 0.0154
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Table S.2: Same as Table 2 in main paper, but also reporting pooled CCE estimator of Pe-
saran (2006).

P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T =5 bias 0.1239 -0.5467 -0.3721 -0.1767 0.0218 -0.9716 -0.7490 -0.3289
(M =2) std 0.1454 0.1528 0.1299 0.1678 0.0731 0.1216 0.1341 0.2203
rmse 0.1910 0.5676 0.3942  0.2437 0.0763 0.9792 0.7609 0.3958

T =10 bias 0.1343 -0.1874 -0.1001 -0.0816 0.0210 -0.4923 -0.3271 -0.1414
(M =3)std 0.1145 0.1159 0.0758 0.0592 0.0518 0.1159 0.0970 0.0971
rmse 0.1765 0.2203 0.1256  0.1008  0.0559 0.5058 0.3412 0.1715

T =20 bias 0.1451 -0.0448 -0.0168 -0.0407 0.0255 -0.1822 -0.1085 -0.0618
(M =4) std  0.0879 0.0469 0.0320 0.0277 0.0354 0.0820 0.0528  0.0404
rmse 0.1696 0.0648 0.0362 0.0492 0.0436 0.1999 0.1207 0.0739

T =40 bias 0.1511 -0.0161 -0.0038 -0.0199 0.0300 -0.0227 -0.0128 -0.0282
(M =5) std  0.0663 0.0209 0.0177 0.0167 0.0250 0.0342 0.0225 0.0164
rmse 0.1650 0.0264 0.0181  0.0260 0.0390 0.0410 0.0258 0.0326

T =80 bias 0.1550 -0.0072 -0.0011 -0.0100 0.0325 -0.0030 -0.0010 -0.0136
(M =6) std  0.0488 0.0123 0.0115 0.0111 0.0182 0.0064 0.0057 0.0074
rmse 0.1625 0.0143 0.0116 0.0149 0.0372 0.0071 0.0058 0.0155
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Table S.3: Analogous to Table 2 in main paper, but with R = 2 correctly specified, and also
reporting pooled CCE estimator of Pesaran (2006).

P’ =0.3 P’ =0.9
OLS FLS BC-FLS CCE OLS FLS BC-FLS CCE
T =5 bias 0.1861 -0.4968 -0.3323 -0.1002 0.0309 -0.9305 -0.7057 -0.2750
(M =2) std 0.1562 0.1910 0.1580 0.2063 0.0801 0.1644 0.1754 0.2302
rmse 0.2429 0.5322 0.3680 0.2294  0.0859 0.9449 0.7272 0.3586

T'=10 bias 0.1989 -0.1569 -0.0758 0.0036 0.0326 -0.4209 -0.2732 -0.1040
(M =3)std 0.1185 0.1018 0.0700 0.1074 0.0543 0.1607 0.1235 0.1070
rmse 0.2315 0.1870 0.1031  0.1074 0.0633 0.4505 0.2998  0.1492

T =20 bias 0.2096 -0.0592 -0.0185 0.0520 0.0366 -0.0741 -0.0406 -0.0310
(M =4) std  0.0884 0.0377 0.0287 0.0711 0.0356 0.0859 0.0552  0.0512
rmse 0.2274 0.0702 0.0341 0.0881 0.0511 0.1134 0.0686  0.0599

T =40 bias 0.2174 -0.0275 -0.0054 0.0759 0.0404 -0.0134 -0.0047 -0.0012
(M =5)std 0.0649 0.0192 0.0170 0.0500 0.0239 0.0166 0.0122 0.0281
rmse 0.2269 0.0335 0.0179  0.0908 0.0469 0.0214 0.0131 0.0281

T'=80 bias 0.2232 -0.0134 -0.0016 0.0873 0.0433 -0.0052 -0.0012 0.0125
(M =6) std 0.0472 0.0118 0.0113 0.0364 0.0164 0.0066 0.0058 0.0176
rmse 0.2281 0.0179 0.0114 0.0946 0.0463 0.0084 0.0059  0.0216
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