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Abstract

Recent work, particularly by Cederbaum and co-workers, has identified the phe-
nomenon of charge migration, whereby charge flow occurs over a static molecular
framework after the creation of an electronic wavepacket. In a real molecule,
this charge migration competes with charge transfer, whereby the nuclear mo-
tion also results in the re-distribution of charge. To study this competition,
quantum dynamics simulations need to be performed. To break the exponential
scaling of standard grid-based algorithms, approximate methods need to be de-
veloped that are efficient yet able to follow the coupled electron-nuclear motion
of these systems. Using a simple model Hamiltonian based on the ionisation of
the allene molecule, the performance of different methods based on Gaussian
Wavepackets is demonstrated.

Keywords: Charge Migration, Charge Transfer, Quantum Dynamics
Simulation, MCTDH, GWP Method, Ehrenfest Dynamics

1. Introduction

The movement of electronic density in molecules is fundamental to chem-
istry. Charge transfer in which an electron (or hole) moves from one part of
the molecule to another due to the change in molecular geometry, i.e. due to
nuclear motion, is well-known. More recently, charge migration has been found
to occur in which the electron density moves, typically after ionisation, over a
static nuclear framework [1, 2]. It is due to the fact that a number of eigen-
states of the ion contain contributions from the molecular orbital from which
the electron is removed. This coupling between the non-stationary electronic
wavepacket created by the ionisation leads to motion of the charge. It has been
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demonstrated, e.g. in the outer shell ionisation of peptides [3, 4]. A Scheme has
also been devised to control the migration using ultrashort (attosecond) laser
pulses [5].

Charge migration happens on the few femto-second timescale, faster than
nuclear motion. As a result, much of the work on charge migration to date
has been performed using static nuclei and questions remain on the competition
between it and the charge transfer caused by the nuclear motion, e.g. the nature
and timescale of the transition between the two regimes. This transition and
subsequent time-evolution is important in understanding processes such as the
fragmentation of peptides after ionisation [6, 7, 8].

To study the motion of coupled nuclear and electronic wavepackets it is
necessary to solve the time-dependent Schrödinger equation (TDSE). The usual
procedure is to first solve the electronic Schrödinger equation at fixed nuclear
geometries and set up global potential energy surfaces over which the nuclei
move. The TDSE can then be solved (numerically) exactly using a basis set
expansion that effectively discretise the evolving nuclear wavefunction on a grid
[9, 10].

It is well known that solving the TDSE scales exponentially with the num-
ber of degrees of freedom. Efficient algorithms are required for molecules with
more than a few degrees of freedom. The multi-configurational time-dependent
Hartree (MCTDH) method, developed by Meyer, Manthe and Cederbaum [11]
has established itself as the most powerful and general scheme for accurate so-
lutions of the TDSE for polyatomic molecules [11, 12, 13]. Using this method,
and recent developments such as multi-layer MCTDH [14, 15], accurate quan-
tum dynamics simulations of highly quantum mechanical phenomena such as
vibronic coupling [16] and charge transfer [17] have been performed for systems
with up to 100 degrees of freedom.

The main bottleneck for quantum dynamics simulations is now providing
accurate and flexible molecular potential energy surfaces. This is impossible for
grid-based methods as it would require the calculation of many thousands of
energies and non-adiabatic couplings at geometries covering configuration space
using high level quantum chemistry methods followed by a multi-dimensional
fit of appropriate functions to the points. For this reason there is presently
much interest in what are termed direct dynamics methods in which the po-
tential surfaces are calculated on-the-fly only where needed by the evolving
wavepacket [18]. Ideal for such calculations are methods based on Gaussian
wavepackets. These functions are localised in coordinate space and thus can
take advantage of the information from quantum chemistry calculations. Many
algorithms have been developed over the last few years for such calculations,
including the Ab-Initio Multiple Spawning (AIMS) method of Ben-Nun and
Martinez [19], the ab initio Multi-Configurational Ehrenfest method (AI-MCE)
of Shalashilin [20], and the Direct Dynamics variational Multi-Configurational
Gaussian (DD-vMCG) of Worth, Robb and Burghardt [21].

The vMCG method is a fully variational solution of the TDSE using a ba-
sis set of Gaussian functions and is based on a variant of MCTDH [22, 23].
It belongs to a class of methods referred to as Gaussian WavePacket (GWP)
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propagation, but unlike the majority of GWP methods it does not use classical
trajectories for the evolution of the basis functions. It has been shown to have
good convergence properties and is able to treat non-adiabatic dynamics [24].
This makes it ideal as a direct dynamics method.

The study of charge migration often starts with a short (attosecond) pulse
that ionises a molecule. The band-width of such pulses is wide - of the order
of a few eV. This is a challenge for methods that explicitely calculate all states
and couplings as the number of states to be included may be large. Ehrenfest
methods provide an alternative approach that calculates all the non-adiabatic
couplings along a nuclear trajectory and provides only a single mean-field po-
tential surface for the nuclear motion. Recently Ehrenfest trajectories have been
used to study the charge migration in benzene [25], glycine [26] and toluene [27].

Ehrenfest trajectories run over a potential surface which is an average of
the manifold of surfaces, weighted by the electronic population of the states.
They, however, ignore coupling between trajectories loosing the coherence of
the nuclear wavepacket. The Multi-Configurational Ehrenfest (MCE) method
of Shalashilin uses coupled coherent states, which are related to GWPs, to
include the lost coupling [28, 29].

In this paper, a family of GWP-based quantum dynamics methods related
to vMCG will be presented. Starting from vMCG, a Multi-Configurational
Ehrenfest method is then derived that connects the methods, and shows the
approximations being made in this approach.

To test the different levels of theory set up, a simple model with compet-
ing charge migration and charge transfer is set up and the population dynamics
obtained using the different approaches compared to benchmark MCTDH calcu-
lations. The model is based on the ionisation of allene, a small organic molecule
(C3H4) that has been used in previous studies of charge transfer [30, 31]. With
15 degrees of freedom and strong non-adiabatic coupling, it provides a suitable
challenge for quantum dynamics methods.

The paper is organised as follows. The MCTDH method is briefly introduced
in Sec. 2.1. In Sec. 2.2 the vMCG method is introduced and variants are
derived, showing the relationship between the different levels of theory. There
are 3 variants in addition to the full variational solution. The first uses classical
Gaussians in place of the full variational basis functions and is termed clMCG.
The second completely ignores coupling between the basis functions, leading to
a swarm of classical trajectories and is called iMCG. The final uses stationary
basis functions that form a grid and is called gMCG.

A number of GWP based approaches to quantum dynamics are in the lit-
erature. The clGWP formulation is similar in approach to a number of GWP
based methods which use basis functions driven by classical trajectories. These
include the spawning method of Martinez [32], the coupled-coherent states of
Shalashilin [33] and the periodic projection method of Habershon [34]. The
matching pursuit of Wu and Batista [35] and basis expansion leaping of Koch
and Frankcombe [36] lie between clMCG and gMCG, using a time-independent
basis that is periodically moved to expand the evolving wavepacket. The GBFs
of the vMCG method itself move along non-classical trajectories, reminiscent
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of the quantum trajectories of Bohmian mechanics exemplified by the work of
Garaschuk [37] and Curchod and Tavernelli [38].

In Sec. 2.3 the MCG ansatz is transformed into an MCE ansatz and new
approximate equations of motion derived, called eMCG, with classical basis
functions that each follow an Ehrenfest potential. It is then shown that re-
moving the coupling to provide a swarm of Ehrenfest trajectories is equivalent
to the iMCG method. The eMCG method is similar to Shalashilin’s multi-
configurational Ehrenfest method [29], but derived from a variational approach
so clearly showing the approximations being made. The Ehrenfest schemes with
mutual coupling between nuclear and electronic functions have the same spirit
as the exact factorisation methods of Gross [39] and Cederbaum [40].

The allene model is then described in Sec. 2.4. The results of simulations
are divided into two parts. In the first, Sec. 3.1 the state populations of the
model from MCTDH calculations are examined to show the damping of the
charge migration signal by the nuclear motion. In Sec. 3.2 the results from the
different levels of theory are presented to show how the different approximations
perform in reproducing the coupled electronic-nuclear dynamics.

2. Theory and Computational Methods

In the following, units are used in which ~ = 1 and the time-dependent
Schrödinger Equation is written

i
∂

∂t
Ψ(x, r) = ĤΨ(x, r) , (1)

where x, r are the nuclear and electronic coordinates respectively.

2.1. Quantum Dynamics: the MCTDH method

The multi-configurational time-dependent Hartree method (MCTDH) [11] is
an established algorithm for solving the TDSE, Eq. (1), for multi-dimensional
problems. A particular advantage is good convergence with basis set size, due
to its variational foundation. Details of the method are given in the review [12]
and monograph [41]. In the following, the single-set version is used in which the
wavefunction ansatz uses one set of time-dependent basis functions, ϕ, known
as single-particle functions (SPFs), for all electronic states:

Ψ(x, t) =
∑

j1...jp,s

Aj1...jps(t)ϕ
(1)
j1

(x1, t) . . . ϕ
(p)
jp

(xp, t)|s〉 . (2)

There are p sets of functions ϕ(κ), with coordinates xκ, which may be more
than one physical coordinate. The electronic states are described by time-
independent state vectors, |s〉. Aj1...jp,s are the expansion coefficients. Note
that the final index s runs over the electronic states.
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Equations of motion (EOM) for the SPFs and the expansion coefficients are
derived by solving the TDSE using the Dirac-Frenkel variational principle with
the ansatz Eq. (2). These are

iȦKt =
∑
J,s

〈ΦKt|H|ΦJs〉AJ,s (3)

iϕ̇
(κ)
j =

∑
ik

ρ−1ji (1− P )H(κ)
ik ϕ

(κ)
k (4)

where a multi-index J = j1 . . . jp and a configuration function ΦJ = ϕ
(1)
j1
. . . ϕ

(p)
jp

have been used for compactness; ρij is the reduced density matrix for DOF κ;

H(κ)
ij the mean-field matrix operator that couples the motion of the sets of SPFs;

and P is the projector on to the space spanned by the SPFs. By construction,
the SPFs are orthonormal at all times.

2.2. Quantum Dynamics using Gaussian Basis Functions

In the standard MCTDH method, the SPFs are described by time-independent
grid-based functions, such as DVRs,

ϕj(t) =
∑
a

caj(t)χa . (5)

It is possible to replace the grid-based SPFs by parametrised Gaussian basis
functions (GBFs) and obtain variational EOM for the GBF parameters. This is
the G-MCTDH method [22]. GBFs may be more efficient than grid-based func-
tions as they can describe more DOFs in a single particle [42]. In the limit that a
single-set of multi-dimensional GBFs are used for the nuclear wavefunction, the
method is called the variational multi-configurational Gaussian (vMCG) [23].

The single-set vMCG ansatz is

Ψ(x, t) =
∑
j,s

Aj,s(t)gj(x, t)|s〉 (6)

where the second index, s, is related to the electronic state, |s〉, and with the
GBFs,

gj(x, t) = exp

(∑
α

ζjαx
2
α + ξjα(t)xα + ηj(t)

)
, (7)

defined by 3 sets of complex parameters: quadratic, ζ, linear, ξ, and scalar,
η. Note that the quadratic parameters, which define the width of the GBF,
are kept time-independent. This is not strictly necessary, but simplifies the
numerics of the problem. A GBF thus corresponds to what is often called a
frozen Gaussian wavepacket (GWP).

GWPs were introduced by Heller [43] and have the form:

Gj(x, t) = exp

(∑
α

−σjα(xα − qjα(t))2 + ipjα(t)(xα − qjα(t)) + iγj(t)

)
(8)
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which is defined by the real parameters q and p that are the coordinates and
momenta of the centre of the GWP, and the real parameter γ that defines the
phase. The linear GBF parameters, which are directly related to the variational
determination of the system time-evolution, are related to the centre coordinates
and momenta of the related GWP by

ξjα = −2ζjαqjα + ipjα (9)

EOM for the expansion coefficients and GBF linear parameters are again
obtained using the Dirac-Frenkel variational principle

iȦk,t =
∑
js

S−1k,i (〈git|H|gjs〉 − iτij)Aj,s (10)

iξ̇kβ =
∑
i

C−1kβjαYjα (11)

The tensors C and Y are:

Ciα,jβ = ρij

(
S
(αβ)
ij −

∑
kl

S
(β0)
ik S−1kl S

(0α)
kj

)
(12)

Yiα =
∑
j

(
〈H(α0)

ij 〉ij −
∑
kl

S
(α0)
ik S−1kl 〈Hlj〉ij

)
, (13)

where following matrices have been defined as

Sij = 〈gi|gj〉 ; τij = 〈gi|ġj〉 (14)

ρij =
∑
s

A∗isAjs ; 〈Hik〉jk =
∑
st

A∗is〈gjs|H|gkt〉Akt .

along with matrix elements involving derivatives of a GBF with respect to one
of its linear parameters:

S
(αβ)
ij = 〈 ∂gi

∂ξiα
| ∂gj
∂ξjβ

〉 ; S
(α0)
ij = 〈 ∂gi

∂ξjα
|gj〉 ;

〈H(α0)
ij 〉ij =

∑
st

A∗is〈
∂gi
∂ξjα

s|H|gjt〉Ajt . (15)

Use is also made of the time-derivative of a GBF in terms of its time-dependent
parameters, ξ and η:

|ġj〉 =
∑
β

| ∂gj
∂ξjβ

〉ξ̇jβ + |gj〉η̇j ⇒ 〈gi|ġj〉 =
∑
β

S
(0β)
ij ξ̇jβ + Sij η̇j (16)

The scalar parameters are undefined by the variational principle. A sensible
choice is to keep the related GWP normalised and phaseless (i.e. γ = 0) using
the equation

η̇k =
∑
α

−2σjαqjαq̇jα − ipjαq̇jα − iqjαṗjα . (17)
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In principle, however, a different choice can be made and the GBFs will remain
normalised as long as the diagonal elements of the right time-derivative overlap
matrix, τkk, are purely imaginary, i.e.

iτkk = εk (18)

with εk a real number.
The vMCG method is fully variational, with coupling between the GBFs.

This leads to fast convergence and the ability to capture quantum properties
such as curve crossing and tunneling in a straightforward manner. For details
see the recent review [24]. However, the coupling between the GBFs is expensive
on computational resources due to the need to invert the large C tensor that
has dimensions (n × f)2, where n is the number of GBFs and f the number
of DOFs. The method can also be numerically unstable as, like all GBF based
methods linear dependencies in the basis functions can occur which result in
singularities of the inverse of the overlap matrix. In practice these instabilities
can be controlled by numerical techniques such as regularisation.

Other more approximate schemes, referred to as levels of theory, can now
be defined that may be computationally more efficient. In the first, it has been
noted that the Y tensor can be expanded in moments of the GBFs [22, 24] i.e.

〈xn〉ij = 〈gi|xn|gj〉 (19)

and Eq. (11) rewritten as

ξ̇kα = −2ζkαq̇kα + iṗkα =

(
−2ζkα

pkα
mα
− i ∂V

∂xα
|x=q

)
+ C−1kβjαYR,jα (20)

= Xkα + C−1kβjαYR,jα (21)

where YR,jα contains all terms with GBF moments of second order and higher
and the second line defines the complex vector X that contains the classical
parts. In the classical multi-configurational Gaussian (clMCG) method these
higher order terms are ignored and the GBFs follow classical trajectories

ξ̇kα = Xkα = −2ζkα
pkα
mα
− i ∂V

∂xα
|x=q . (22)

The coefficients retain the full variational character of Eq. (10). Thus the
wavefunction is fully quantum mechanical but due to the classical character
of the basis set the convergence may be slow and certain phenomena, such as
tunelling, may be hard to describe.

A more severe approximation, that loses the full quantum character of the
wavepacket, is to use classical GBFs and also ignore the overlap between GBFs.
This decouples the GBFs, resulting in the independent multi-configurational
Gaussian (iMCG) method. The EOM are

iȦk,t =
∑
s

(〈gkt|H|gks〉 − iτkk)Aks (23)

ξ̇kα = −2ζkα
pkα
mα
− i ∂V

∂xα
|x=q (24)
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i.e. the GBFs follow classical trajectory and the “expansion coefficients” are
a phase due to the energy along the trajectory. This is a swarm of classical
trajectories with Gaussian widths, and the widths only play a role determining
the initial weights of the trajectories and the representation of the wavepacket
for analysis.

The final level uses time-independent GBFs so that the basis functions form
a static grid. This is referred to as gMCG. It has the full quantum dynamical
EOM for the expansion coefficients, Eq. (10) and for the GBFs

ξ̇ = 0 (25)

The various levels of theory are summarised in Table 1. It should be noted that
the vMCG method is only fully quantum mechanical if the Hamiltonian matrix
elements are evaluated completely. In practice, a local harmonic approximation
(LHA) of the PES is made at the centre of each GBF which allows the matrix
elements to be evaluated analytically.

2.3. Multi-Configurational Ehrenfest Dynamics

To separate out the electronic and nuclear motion further, it is possible to
reconfigure the vMCG ansatz into an Ehrenfest-like approach. Introducing the
electronic functions

|ψj(xel, t)〉 =
∑
s

cjs(t)|s〉 (26)

the vMCG ansatz can be re-written

Ψ(x, t) =
∑
j

Bj(t)gj(x, t)|ψj(xel, t)〉 (27)

with
Ajs = Bjcjs . (28)

The Dirac-Frenkel variational principle

〈δΨ|i ∂
∂t
−H|Ψ〉 = 0 (29)

is then applied to the ansatz Eq. (27) to obtain∑
j

iSijḂj =
∑
j

(
Hij − iSelijτ

g
ij − iS

g
ijτ

el
ij

)
Bj (30)

∑
jβ

iρijS
el
ijS

(αβ)
ij ξ̇jβ =

∑
j

(
ρijH

(α0)
ij − iρijτelij S

(α0)
ij − iB∗i SelijS

(α0)
ij Ḃj

)
(31)

∑
j

iρijS
g
ij |ψ̇j〉 =

∑
j

(
ρijH

g
ij − iρijτ

g
ij − iB

∗
i S

g
ijḂj

)
|ψj〉 (32)
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by making variations of a coefficient, δBi, a linear parameter of a GBF, δξiα, and
an electronic function, δψi, respectively. The notation for the matrix elements:

Selij = 〈ψi|ψj〉 ; Sgij = 〈gi|gj〉 ; Sij = 〈ψigi|ψjgj〉 (33)

τelij = 〈ψi|ψ̇j〉 ; τgij = 〈gi|ġj〉 ; ρij = B∗jBj

Hel
ij = 〈ψi|H|ψj〉 ; Hg

ij = 〈gi|H|gj〉 ; Hij = 〈ψigi|H|ψjgj〉

has been used in an extension of the matrices defined above in Eqs. (15) - (16).
Note that both the electronic functions and GBFs are taken to be normalised

but not orthogonal, i.e.

Selij = 〈ψi|ψj〉 = 1 i = j (34)

=
∑
s

c∗iscjs i 6= j (35)

The Eqs. (30) - (32) are coupled. Following the spirit of vMCG, Eq (30)
gives immediately an equation of motion for the coefficients

iḂk =
∑
ij

S−1ki
(
Hij − iSelijτ

g
ij − iS

g
ijτ

el
ij

)
Bj (36)

which, after multiplying by B∗l , can be substituted back into Eq. (31) to give
an equation of motion for the linear GBF parameters

iξ̇kβ =
∑
ijα

C−1kβ,iα

(
Yiα − iS(α0)

ij τelij − i
∑
lm

Selil S
(α0)
il S−1lmS

g
mjτ

el
mj

)
(37)

with the C and Y tensors altered from vMCG

Ciα,jβ = ρij

(
SelijS

(αβ)
ij −

∑
kl

SelikS
(β0)
ik S−1kl S

(0α)
kj Selkj

)
(38)

Yiα =
∑
j

ρij

(
H

(α0)
ij −

∑
kl

SelikS
(α0)
ik S−1kl Hlj

)
. (39)

In order to form an equation of motion for the electronic functions, Ḃj in Eq.
(32) must first be substituted:∑

j

iρijS
g
ij |ψ̇j〉 =

∑
j

(
ρijH

g
ij − iρijτ

g
ij

−
∑
kl

ρilS
g
ijS
−1
jk

(
Hkl − iSelklτ

g
kl − iS

g
klτ

el
kl

))
|ψj〉 (40)

and then re-arranged to give

i|ψ̇k〉 =
∑
ij

(ρkiS
g
ki)
−1
[
ρij

((
Hg
ij − iτ

g
ij

)
−
∑
lm

Sgil|ψl〉S
−1
lm 〈ψm|

(
Hg
mj − iτ

g
mj

))

+
∑
lm

iρimS
g
ijS
−1
jl S

g
lmτ

el
lm

]
|ψj〉 . (41)
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As they are simply reformulations of the single-set vMCG EOMS, Eqs.
(36),(37) and (41) are exact solutions of the TDSE that can connect full quan-
tum dynamics to Ehrenfest dynamics. In this context these equations have been
presented in a recent feature article [44].

To solve (36),(37) and (41) would require substituting τg in Eq. (41) using
the EOM for the GBF parameters in from Eq. (37), then choosing an appro-
priate expression for the (non-Hermitian) matrix τel. Rather than doing this,
we note that if we ignore the off-diagonal overlap elements of Sgij , τ

g
ij and Hg

ij in
Eq. (41), the electronic functions de-couple from each other and lead to

i|ψ̇k〉 =
(
Hg
kk −Hkk + iτelkk

)
|ψk〉 . (42)

The rationale for ignoring these off-diagonal terms is that if the GBFs are suffi-
ciently narrow they will be small. By introducing this approximation the EOM
are no longer variational but still a full solution of the TDSE, if the basis set is
large enough.

If the centre of GBF gk is qk, then

Hg
kk = 〈gk|H|gk〉 = 〈TN 〉kk +Hel(qk) (43)

where 〈TN 〉kk is the kinetic energy of the GBF and Hel(qk) is the electronic
Hamiltonian at qk. The energy for the configuration k can now be written as
two parts

〈gkψk|H|gkψk〉 = 〈TN 〉kk + 〈ψk|Hel(qk)|ψk〉 . (44)

Remembering that the on-diagonal elements of τ can be defined by any real
number we choose

iτelkk = 〈ψk|Hel(qk)|ψk〉 (45)

leading to the simple EOM for the electronic functions:

i|ψ̇k〉 = Hel(qk)|ψk〉 . (46)

This is Ehrenfest dynamics. The electronic function evolves under the Hamilto-
nian that follows the centre of the GBF. However, due to the variational EOM
for the GBFs of Eq. (37) the nuclear trajectories are not classical. We will refer
to this as the variational Ehrenfest multi-configurational Gaussian (veMCG)
method as, although the electronic functions are not variational, the nuclear
functions and expansion coefficients are.

To decouple the electronic and nuclear part fully to provide a practical com-
putational scheme, we will follow the clMCG level and retain only the classical
terms in the GBF EOM. We then obtain the Ehrenfest multi-configurational
Gaussian (eMCG) method.

iḂk =
∑
ij

S−1ki
(
Hij − iSelijτ

g
ij − iS

g
ijτ

el
ij

)
Bj (47)

ξ̇kα = −2ζkα
pkα
m
− i ∂V

∂xα
|x=q (48)

i|ψ̇k〉 = Hel(qk)|ψk〉 . (49)
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These are equivalent to the multi-configuration Ehrenfest (MCE) equations of
motion of Shalashilin and co-workers [47], which were obtained from a different
approach. The implementation details also differ.

Finally, if we also ignore the off-diagonal matrix elements in Eq. (36) this
leads to

iḂk =
(
Hkk − iτgkk − iτ

el
kk

)
Bk (50)

As the configurations are now independent this is a phase that is associated
with each classical trajectory. The matrix elements Hkk and τelkk are given but
τgkk can now be chosen. Different values merely move as to where this phase is
propagated, as part of the expansion coefficient or as the phase of the GBF. In
Vacher et al [44] the choice

iτgkk = Hkk (51)

was made. Alternatively, using the usual vMCG choice

iτgkk = 0 (52)

results in
iḂk = 〈gk|TN |qk〉 . (53)

The iMCG level of theory is thus equivalent to a multi-configurational Ehrenfest
ansatz. The iMCG expansion coefficients, Aks, are then the electronic function
coefficients, cks, with a (time-dependent) normalisation factor, Bk, for each
trajectory.

2.4. Model Hamiltonian

The allene radical cation has five low lying states. Of interest here is the
Ã(2E)/B̃(2B2) manifold. A vibronic-coupling model Hamiltonian has been set
up for this molecule previously, incorporating the coupling between these states,
to simulate the photo-electron spectrum [48]. Neutral allene at the ground-state
equilibrium geometry has D2d symmetry. As a result the doubly degenerate Ã
state is subject to the rare e⊗B Jahn-Teller distortion, whereby the degeneracy
is lifted by vibrations with B1 and B2 symmetry. This state is further pseudo-
Jahn-Teller coupled to the B̃ state via doubly-degenerate E vibrations.

The vibronic coupling model uses a diabatic electronic basis, i.e. the ki-
netic energy operator is diagonal and coupling between the states appears as
off-diagonal functions in the potential operator matrix. The nuclear coordinates
used for allene are the ground-state mass-frequency scaled normal mode vibra-
tions. A low-order Taylor series is then used to express the potential functions.
From symmetry considerations, in the Ã state the three B2 modes provide the
linear on-diagonal coupling terms, and the one B2 vibration the off-diagonal.
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To first-order, the Hamiltonian matrix can thus be written

H =

15∑
i=1

ωi
2

(
− ∂2

∂Q2
i

+Q2
i

)
1 +

 EE 0 0
0 EE 0
0 0 EB2


+

 ∑3
i=1 κiQi 0 0

0
∑3
i=1 κiQi 0

0 0
∑3
i=1 κ

′
iQi


+

 ∑7
i=5 λiQi λ4Q4

∑11
i=8 λ

′
iQix

λ4Q4

∑7
i=5−λiQi

∑11
i=8 λ

′
iQiy∑11

i=8 λ
′
iQix

∑11
i=8 λ

′
iQix 0

 (54)

The modes are defined in Table 2, with Qi the normal mode for vibration νi.
The full model is expanded to second order. See Ref. [48] for details and the
values of the parameters.

At the Franck-Condon point, Q = 0 (termed Q0), the doubly-degenerate
Ã state forms a Jahn-Teller conical intersection, with the degeneracy lifted on
the diagonal elements of the Hamiltonian matrix by the three B2 modes. The
degeneracy is lifted in the off-diagonal, coupling, Hamiltonian element by the B1

mode. This is the torsional mode with the end H–C–H units rotating towards
each other. The diabatic surfaces along the Q7(B2) vibration are shown in Fig.
1 (a) with the torsion at 45◦. Along this mode the diabatic curves for the Ã state
cross and the degenerate point in the can be seen at Q = 0, with the Jahn-Teller
splitting resulting in the two wells labeled ÃL and ÃR. The adiabatic surfaces,
the eigenvalues of the Hamiltonian taking the coupling into account, are shown
in Fig. 1(b). These doublet states are labeled D2 - D4 as D0 and D1 are in the
lower energy X̃ band.

The X̃ state of the radical cation is due to ionisation from the degenerate
highest occupied molecular orbitals (HOMO). The Ã state of the radical cation
is from ionisation out of the degenerate HOMO-1 pair, and the B̃ state the
HOMO-2. The HOMO-1 and HOMO-2 orbitals at the Franck-Condon point
are shown in Fig. 1(c)(i)-(iii). The HOMO-1 pair are each localised on one
H–C–H group. Ionisation of allene thus creates an electron “hole” in one end of
the molecule. The character of the molecular orbital (MO) is retained moving
along the Jahn-Teller active B2 modes and these orbitals thus define the diabatic
basis. Movement along the B1 mode couples the two states. The HOMO-1 pair
at a torsion angle of 45◦ are shown in Fig. 1(c)(iv),(v). The conjugation along
the chain due to the coupling leads to population transfer between the states,
that corresponds to charge being transferred between the ends of the molecule.

Charge migration takes place when the charge moves without nuclear motion.
If the molecule remains at Q0, this does not occur as the coupling is zero.
However if the molecule is twisted away from the equilibrium geometry along
the B1 torsion mode, the diabatic coupling means that the eigenfunctions of the
ion are a superposition of the states populated by ionisation from the neutral.
Consequently, if the neutral degenerate states are labeled ψL and ψR, the ion
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Figure 1: The (a) diabatic and (b) adiabatic potential energy surfaces for the allene radical
cation model Hamiltonian along the Q7(B2) vibrational coordinate with the torsion angle
kept at 45◦. (c) Molecular orbitals (MOs) for the neutral allene molecule. (i) the HOMO-2
(ii), (iii) the degenerate HOMO-1 pair at the equilibrium geometry with D2d symmetry. (iv),
(v) the HOMO-1 pair at a geometry twisted by 45◦ away from the equilibrium geometry.
Ionisation from (i), (ii), (iii) define the B̃, ÃL and ÃR diabatic states respectively. (iv), (v)
show the conjugation obtained at 45◦ due to the non-adiabatic coupling.
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Table 2: Definitions and descriptions of the 15 vibrational modes in the allene molecule.
Frequencies are for the ground-state calculated at the MP2/cc-pVTZ level. N are the number
of harmonic oscillator DVR functions used in the MCTDH calculations, and n the number
of multi-dimensional single particle functions with the combination of modes included by the
bracket.

Label Frequency Description MCTDH basis set
(cm−1) N n

ν1(A1) 3015 HCH sym str 24
}

13
ν2(A1) 1443 HCH in-phase bend 32
ν3(A1) 1072 CCC sym str 32

}
14

ν4(B1) 865 HCCH torsion 32
ν5(B2) 3407 HCH oo-phase str 10

}
17ν6(B2) 1957 CCC anti-sym str 10

ν7(B2) 1398 HCH oo-phase bend 30
ν8(E) 3486 HCH anti-sym str 10

 1
ν9(E) 999 HCH rock 18
ν10(E) 841 HCH wag 12
ν11(E) 355 CCC bend 8

state can be written
ψ+ = cL(t)ψL + cR(t)ψR . (55)

If the ionisation removes the electron from ψL then at t = 0 the coefficients
are cL(0) = 1 and cR(0) = 0. The coefficients evolve according to Rabi-like
oscillations due to the coupling, and charge migration occurs. The MOs of the
cation at a torsion angle of 45◦ are shown in the lower panel of Fig. 1 along with
the adiabatic surfaces showing how the coupling leads to conjugation along the
chain allowing the charge migration.

The model has the useful property that the strength of the coupling govern-
ing the charge migration is controlled by changing the torsion angle - the wider
the angle the stronger the coupling. By comparison of the dynamics of static
nuclei to that of moving nuclei after photo-ionisation starting at a particular
angle, the diabatic state populations of this simple model can thus be used to
observe the signature of charge migration in charge transfer.

The need for an initial controlled twisting of the neutral molecule is not
an easily realizable situation for allene ionisation, but the ubiquitous nature of
the vibronic coupling model means that similar behaviour can be found in other
systems in which the twist is not required to provide the coupling. For example,
in studies using Ehrenfest trajectories on the ionisation in aromatic molecules, a
distortion from the equilibrium geometry was required to see charge migration
in benzene, but it happens spontaneously in toluene and para-xylene [45], as it
does in the non-aromatic bismethylene-adamantane [46].”
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3. Results of Simulations

3.1. Charge Migration v Charge Transfer

Using the model Hamiltonian of allene described above, two different sets
of calculations were performed using full grid-based quantum dynamics and
the MCTDH method. At the equilibrium geometry the torsion angle between
the H–C–H groups is 90◦. By altering the torsion angle the initial wavepacket
experiences coupling between the degenerate orbitals allowing charge migra-
tion to occur. The first calculations were started with a torsion angle of 75◦,
giving a small coupling between the degenerate orbitals. The second calcula-
tions were started with a torsion angle of 45◦, giving a larger coupling. As
the model is set up in normal mode coordinates, a change in torsion angle
requires changing not only the coupling mode but also the totally symmetric
modes to keep the bond lengths correct. In the mass-frequency scaled normal
mode coordinates of the model, an angle of 75◦ corresponds to a coordinate of
(Q1, Q2, Q3, Q4) = (−0.1308,−0.0556, 0.0100, 1.2543) and an angle of 45◦ corre-
sponds to a coordinate of (Q1, Q2, Q3, Q4) = (−1.1635,−0.4945, 0.0892, 3.6774)
with all other coordinates having a value of 0.

The initial wavepacket is centred at the starting geometry for each model,
i.e. displaced from the Franck-Condon point, Q0, with the width appropriate
for the neutral ground-state vibrational frequencies. The simulation is initiated
by placing this packet in the second diabatic state, corresponding to making a
hole at the right-hand end of the twisted molecule on ionisation. The population
dynamics following this ionisation for both initial torsion angles are shown in
Fig. 2. Coupling to the B-state was ignored as this plays no role in the charge
migration.

Fig. 2 (a) and (e) show the charge migration dynamics for the two angles.
This was calculated using the gMCG method with a single time-independent
GBF, i.e. static nuclei. The state populations show a simple oscillation between
the two ends of the molecule, with a period related to the coupling strength. The
populations obtained from full quantum dynamics calculated using the MCTDH
method allowing the nuclei to move are shown in Fig. 2 (b) and (f). The charge
migration oscillations are damped, but the signal is still visible in the first 10
fs, particularly in the Θ = 45◦ model.

Fig. 2 (c) and (g) show the result calculated using the vMCG method with
50 GBFs. The MCTDH result is shown as a dotted line. The vMCG method
is clearly able to describe the coupled nuclear and electronic dynamics of this
system with a very small number of functions. The widths of the GBFs were
taken as 1/

√
2 in each direction. In the mass-frequency scaled coordinate system

of the Hamiltonian, this corresponds to the width of the neutral ground-state
wavepacket.

The final plots, Fig. 2 (d) and (h), show the result with a single GBF.
This follows the Ehrenfest classical trajectory from the starting geometry. It is
clearly unable to describe the nuclear dynamics correctly: the charge migration
signal dominates and charge localisation occurs, with the dynamics ending at
one end of the molecule rather than spread over the whole molecule as seen in
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the quantum dynamics. Interestingly the charge is at different ends depending
on the initial torsion angle.

To show the dynamics of the nuclei as the charge migration is damped in
the model starting with a torsion angle of Θ = 45◦, the expectation values of
the three most active vibrational modes are plotted in Fig. 3. These are the
B1 coupling torsional vibration, Q4, and the lowest frequency modes in the A1

and B2 symmetries, Q3 and Q7 respectively. Results from the full quantum
dynamics simulations and the classical Ehrenfest trajectory are shown. The
motion followed by the wavepacket along the symmetric mode Q3 is classical,
while that along the B2 Jahn-Teller active mode is clearly very non-classical.
The reduced density along Q7 is shown in Fig. 3 (d) shows the bifurcated
waveform motion along this mode, something that a single classical trajectory
cannot follow.

This model thus provides a hard test for a method in the description of
coupled electronic-nuclear motion in a charge-transfer problem. The dynamics
can be divided into the short-time (< 10 fs) when charge migration dominates
and long-time (> 10 fs) when the nuclear motion leads to a permanent charge
transfer.

3.2. Different Dynamics Model: Initial Conditions and Convergence

In the following, the different levels of theory laid out above will be used
to see how well they can follow the coupled electronic-nuclear dynamics of the
allene ionisation. When using the non-variational GBFs of the clMCG, iMCG
and eMCG methods, the initial positions of the functions play a role in the
dynamics, and for good results it is important to cover phase space. To make the
results easier to converge, in the following only the three most important modes,
Q3, Q4 and Q7 will be included in the dynamics with the initial wavepacket kept
stationary along the other modes. The initial wavepacket in all cases is that
with Θ = 45◦.

The state populations as a function of time, calculated with different levels
of theory, are shown in Fig. 4. In Fig. 4(a) the vMCG result with 30 GBFs
is compared to the full quantum dynamics result (dotted line). The charge-
migration and charge-transfer dynamics are very similar to those seen in the
15-dimensional calculations above, showing the dominance of the three selected
modes on the nuclear dynamics. There is still a clear charge migration at short
times with a full oscillation in under 10 fs before the long-time damping and
accompanying charge transfer. Again, the accuracy of the vMCG method is very
good, and fewer functions are needed than in the 15-dimensional calculation,
indicating the smaller phase space that must be covered.

The best result obtained using classical GBFs in the clMCG level is shown,
in Fig. 4(b), using 150 functions. With more functions the result did not
noticeably improve while with fewer the populations contained stronger oscilla-
tions across the whole time range. The short-time charge migration dynamics
was reproduced well in every case. In these calculations the initial positions of
the GBFs were taken from a Wigner distribution of the ground-state neutral
wavepacket. This should lead to faster convergence than simply taking random
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Figure 2: Population dynamics of allene after ionization on the right hand end of the molecule.
In (a) - (d) the molecule had a torsional twist of Θ = 75◦ and in (e) - (h) the angle was
Θ = 45◦. (a), (e) Charge migration with static nuclei. (b), (f) full quantum dynamics
of charge migration and charge transfer using the MCTDH method. (c), (g) Full quantum
dynamics using the vMCG method with 50 GBFs. The MCTDH result is the dotted line.
(d), (h) Population dynamics with a single GBF, i.e. classical nuclei.
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Figure 3: Expectation Values of the main vibrational coordinates (a) 〈Q3〉 (b) 〈Q4〉 (c) 〈Q7〉
from simulations starting with a torsion angle of Θ = 45◦. In green are the results from the
MCTDH calculation, in red the classical Ehrenfest trajectory from the Franck-Condon point.
(d) The reduced density along Q7 is shown as a function of time.

positions in configuration space, and indeed it produced better results with fewer
functions.

While more functions were required for convergence, a question is whether
the simplicity of the clMCG equations makes the method preferable to vMCG. In
this case, the computational cost is similar. On a single processor of a standard
workstation, the 30 GBF vMCG calculation required 2535 s while the 150 GBF
clMCG calculation slightly more at 3259 s. The majority of effort in the latter
goes in to calculating the matrix elements and inverting the overlap matrix. For
the 15-mode calculation of Sec. 3.1, the 50 GBF vMCG calculation required 13
hr 37 min on the same machine. A 100 GBF clMCG calculation of the same
system require 11 hr 58 min, but was not close to convergence.

In the vMCG and previous clMCG calculation, the widths of the GBFs were
taken as 1/

√
2 in each direction. It may be advantageous to take narrower GBFs

to, e.g. minimise the error due to using a local harmonic approximation in the
calculation of the integrals. When using narrower GBFs a fit must be made of
the initial wavepacket in the basis set. This was done by projecting the initial
wavepacket on to the basis set, i.e. the initial coefficients were chosen by

Ajs =
∑
b

|gj〉S−1jb 〈gb|ψ(0)〉 (56)

with the index s set to be the initial state. When this is done more GBFs are
required to cover phase space and the quality of the result drops. A calculation
using the clMCG level with 200 GBFs with a width of 0.4 is shown in Fig. 4(c).
It is not as close to the full result as the 150 wider GBFs. It should be noted
that even with 200 GBFs the initial wavepacket is not exactly represented: the
expectation values of the 3 modes are only approximately correct and the widths
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along all modes are less than 1/
√

2 in coordinate space and greater than 1/
√

2
in momentum space.

In Fig. 4(d) the result from an iMCG calculation also with 200 GBFs is
shown. Given the simple representation of the evolving wavepacket the re-
sult is remarkably good. The shape of the population transfer is correct, with
the short-time dynamics well-reproduced, though the oscillations are slightly
damped compared to the full result. The long-time dynamics are not exactly
reproduced due to the lack of nuclear coherence. This allows crossings of popula-
tion not seen in the full quantum result. The magnitude is, however, reasonable.

The iMCG method with narrow GBFs is close in spirit to a swarm of tra-
jectory description of the wavepacket. In such calculations, trajectories do not
have different weights but simply sample the Wigner distribution to provide the
initial wavepacket. Fig. 4(e) shows the result from an iMCG calculation with
200 GBFs starting with equal weights. This means that the initial wavepacket
is defined by the Wigner distribution rather than by fitting, and the wavepacket
is described effectively by a swarm of tractories. The choice makes surprisingly
little difference and shows that representing a wavepacket by many Ehrenfest
trajectories selected from the Wigner function is a reasonable way to treat the
system if the details of the later time propagation are not required.

The final calculation shown in Fig. 4(f) is the result from an eMCG simu-
lation with 150 GBFs with widths of 1/

√
2. For this simulation, 200 classical

trajectories sampled from a Wigner distribution were initially run and the coor-
dinates and momenta along with the Ehrenfest potentials and state populations
for each stored. The eMCG basis functions were then run along these trajecto-
ries using spline fits of the data and the evolution of the expansion coefficients
calculated. This is the procedure that could be used to run an eMCG simulation
along Ehrenfest trajectories calculated by a quantum chemistry program, such
as Gaussian, which have been generated and used in a number of studies on
charge migration [25, 26, 27].

It was hoped that this method would give a quality similar to the clMCG,
but while the initial decay and the period of the charge migration oscillations in
the short-time dynamics is reproduced the oscillations are not correctly damped.
This is probably due to the implementation. For example, the integrals only
used the value of the potential at the centre rather than the full LHA.

4. Conclusions

We have presented a model Hamiltonian based on the ionisation of allene
that displays the transition from charge migration to charge transfer. The charge
migration is due to the contribution of the molecular orbital from which the
electron is removed contributing to two different eigenstates of the ion. Two
models were set up, with the molecule twisted by different amounts leading to
strong and weak coupling between the electronic states. Charge transfer is then
due to the motion of the nuclei resulting ultimately in an equilibrated charge
distribution.

20



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

P
op

ul
at

io
n

 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

P
op

ul
at

io
n

 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

P
op

ul
at

io
n

Time [fs]

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

 

 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

 

 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

 

Time [fs]

 

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Population dynamics of allene with a torsion angle of Θ = 45◦ after ionization on
the right hand end of the molecule calculated using different levels of theory and including
only the main modes, Q3, Q4 and Q7 in the dynamics. (a) The vMCG method with 30
variational GBFs with a width 1/

√
2. (b) The clMCG method with 150 classical GBFs with a

width 1/
√

2 (c) The clMCG method with 200 classical GBFs with a width 0.4. (d) The iMCG
method with 200 independent classical GBFs with a width 0.4 (e) The iMCG method with 200
independent classical GBFs with a width 0.4 and initial equal weights (f) The eMCG method
with 150 classical GBFs with a width 1/

√
2 In the iMCG, clMCG and eMCG calculations the

initial GBFs were taken from a Wigner distribution. The full quantum result is shown in all
plots as a dotted line.
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It both case the charge migration is seen as a fast oscillation of population
between the orbitals located on either end of the molecule, moving over the
static nuclear framework. The oscillation period is proportional to the cou-
pling strength. The migration is damped by the nuclear motion, and in the
weaker coupling model is barely visible in the population dynamics of the cou-
pled electronic-nuclear dynamical system. In the strong coupling model, with
an initial torsion angle of 45◦, the migration is fast enough to still be visible in
the populations before the nuclear motion starts to dominate.

In this model, an analysis of the the nuclear dynamics shows a bifurcation
of the nuclear wavepacket along one mode due to the non-adiabatic coupling
between the states. A single classical Ehrenfest trajectory is unable to follow
this motion and cannot reproduce the state populations. This makes the model
suitable as a benchmark system for quantum dynamics methods as the nuclear
coherence plays an important role in the dynamics. It is also accessible to full
quantum dynamics methods using the MCTDH method which can be used to
provide an exact comparison.

Different levels of theory based on Gaussian Wavepacket methods have been
presented as a hierarchy that may prove useful in quantum dynamics studies
as they have different levels of computational effort, along with different con-
vergence behaviours. The vMCG method is a full solution of the TDSE with a
variational basis set. It reproduces the full result with a small number of func-
tion. The clMCG method uses a non-variational basis set of Gaussian functions
that follow classical trajectories, but still can provide the full solution of the
TDSE with enough functions. It is seen, however, that many more functions
are needed to follow the dynamics than vMCG, and this may outweigh the ease
of propagating the functions. The converged 3-mode clMCG calculation took
more time than the corresponding vMCG result, while a converged 15-mode
result was not obtained using clMCG due to the effort required.

A second point to be noted is that the convergence performance of vMCG is
independent of the choice of GBF initial positions. This is due to the variational
nature of the GBF evolution which means that they adjust to produce the same
result (within numerical error) for a given number of functions irrespective of
starting positions. This is not the case for classical GBFs whose trajectories are
determined by the initial positions (and momenta) so adding functions may or
may not improve a result depending on how they are placed at the start. This
gives vMCG a practical advantage.

Removing the coupling between the basis functions results in the iMCG
method, which is effectively a swarm of weighted classical trajectories with a
Gaussian function. This is not a full solution of the TDSE, and it is seen that
the method can only approximately follow the system dynamics. It does, how-
ever, provide the main features such as the time-scale for the charge migration
damping.

In this study pre-computed potentials and couplings are used. If the integrals
required are made using the LHA, methods based on GBFs can also be used in
direct dynamics studies in which the potentials are calculated on-the-fly using
quantum chemistry calculations as the wavepacket evolves in time [19, 20, 21].

22



These, however, become less tractable if a large number of states need to be in-
cluded due to the number of couplings that must be calculated. An alternative
to this is provided by a multi-configurational Ehrenfest approach, in which a
time-dependent electronic basis set provides a single time-dependent potential
surface for the nuclei. This may provide a new route to efficient direct dynam-
ics simulations as they can be coupled with Ehrenfest trajectories provided by
quantum chemistry calculations.

To connect the vMCG method and the MCE approach, variational EOMs
were set up for the full problem with time-dependent electronic functions. If the
overlaps between the nuclear basis functions are ignored in the time-evolution
of the electronic functions, these are propagated by the electronic Hamiltonian
defined at the centre of the associated nuclear function. These functions then
provide the Ehrenfest potentials for the nuclear motion, which may either follow
variational (evMCG) or classical (eMCG) trajectories. In both of these meth-
ods a full solution of the TDSE is in principle possible. In simulations using
the eMCG method, however, approximations introduced in the implementation
meant that it was found to overdamp the charge migration oscillations. Finally,
a set of classical Ehrenfest trajectories ignoring the coupling between the nuclear
functions was shown to be equivalent to the iMCG method.

In summary, the work presented here provides a basis for testing methods
aiming at calculating the coupled electronic-nuclear motion in charge migration
problems. It shows that direct dynamics at the vMCG level are capable of
reproducing the full quantum dynamics result with a small basis set, while even
the cheaper Ehrenfest-trajectory based iMCG, is capable of capturing the main
physics involved. Further development will try to improve on the efficiency and
accuracy that can be obtained by the Ehrenfest methods by, e.g. improving on
the calculation of the integrals.
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[12] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer, The multiconfiguration
time-dependent Hartree method: A highly efficient algorithm for propagat-
ing wavepackets., Phys. Rep. 324 (2000) 1–105.

[13] H.-D. Meyer, F. Gatti, G. A. Worth (Eds.), High dimensional quantum
dynamics: Basic Theory, Extensions, and Applications of the MCTDH
method, VCH, Weinheim, Germany, 2008.

24



[14] H. Wang, M. Thoss, Multilayer formulation of the multiconfiguration time-
dependent Hartree theory, J. Chem. Phys. 119 (2003) 1289–1299.

[15] O. Vendrell, H.-D. Meyer, Multilayer multiconfiguration time-dependent
Hartree method: implementation and applications to a Henon-Heiles
hamiltonian and to pyrazine., J. Chem. Phys. 134 (2011) 044135–15.
doi:10.1063/1.3535541.

[16] G. A. Worth, H.-D. Meyer, H. Köppel, L. S. Cederbaum, I. Burghardt,
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