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Abstract   

INTRODUCTION: We aimed to assess diagnostic accuracy of cerebrospinal fluid (CSF) YKL-40 

in discriminating: (i) Alzheimer’s disease (AD), cognitively healthy controls (HC), and 

frontotemporal dementia (FTD) in a purely clinical analysis (Level I), (ii) patients showing different 

AD pathologies from HC and FTD in an analysis independent of cognitive impairment severity, 

following an unbiased descriptive categorization based on CSF core biomarkers (Level II). 

METHODS: In a cross-sectional multi-center study, YKL-40 was compared among HC (n=21), 

mild cognitive impairment (MCI) (n=41), AD (n=35), FTD (n=9) (Level I); among HC (n=21), AD 

pathology (tau and amyloid-β) negative (n=15), tau-positive (n=15), amyloid-β-positive (n=13), AD 

pathology-positive (n=33), and FTD (n=9) (Level II). 

RESULTS: Level I: YKL-40 discriminated AD from HC and FTD with AUROCs=0.69, 0.71, 

respectively. Level II: YKL-40 discriminated tau-positive and AD pathology-positive patients from 

HC, and AD pathology-positive patients from FTD (AUROCs=0.76, 0.72, 0.73, respectively). 

DISCUSSION: YKL-40 provides fair performance in distinguishing tau-positive patients from HC. 

 

Key words: Alzheimer’s disease, Alzheimer’s disease pathophysiology, biomarkers, biomarker-

based diagnosis, cerebrospinal fluid, clinical diagnosis, dementia, diagnostic biomarkers, 

Frontotemporal dementia, mild cognitive impairment, neurodegeneration, neuroinflammation, 

YKL-40  
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Abbreviations: Alzheimer’s disease (AD); amyloid-β 1 to 42 (Aβ1-42); area under the receiver 

operating characteristic curve (AUROC); A/T/N system: A= Aβ, T= phospho-tau, N= total-tau; 

cerebrospinal fluid (CSF); cognitively healthy controls (HC); 18F-fluorodeoxyglucose-PET (18F-

FDG-PET); False Discovery Rate (FDR); fronto-temporal dementia (FTD); hyperphosphorylated 

tau (p-tau); Institute of Memory and Alzheimer’s Disease (IM2A); International working group-2 

(IWG-2); Kruskal-Wallis (KW); leave-one out cross validation (LOO-CV); mild cognitive 

impairment (MCI); Mental-State Examination (MMSE); National Institute on Aging–Alzheimer's 

Association (NIA-AA); National Institute of Neurological and Communicative Disorders and 

Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA); pairwise 

multiple comparison of mean ranks (PMCMR); total tau (t-tau)  

 

1.1 INTRODUCTION  

Alzheimer’s disease (AD) is a clinically and neuropathologically heterogeneous and 

multifactorial disorder [1–3] whose primary pathophysiological hallmarks are amyloid plaques 

and neurofibrillary tangles depositions. However, in a majority of patients AD is combined with 

other types of pathology [4,5]. Currently, three cerebrospinal fluid (CSF) biomarkers have shown 

to be able to track the in vivo pathophysiological mechanisms of AD both in the prodromal and 

preclinical phases [6,7]. In particular, (I) the amyloid-β 1 to 42 (Aβ1-42) peptide is considered a 

marker of amyloid brain deposition, (II) total tau (t-tau) protein is thought to be a marker of 

neuronal injury (not exclusively due to AD) and (III) hyperphosphorylated tau (p-tau) protein is 

a marker reflecting deposition of neurofibrillary tangles [8]. Although neuroinflammation has 

been suggested to be a relevant pathophysiological mechanism in AD [1,9], a validated CSF 

biomarker to monitor neuroinflammation in AD is not available. So far, YKL-40, a glycoprotein 

belonging to the chitinase-like proteins group, represents a promising inflammatory marker for 

AD, although its exact pathophysiological role is unclear [10]. YKL-40 is a differentiation 

marker of macrophages [11–13] and is expressed in microglia and astroglia within the central 

nervous system [14]. Recently, elevated CSF concentrations of YKL-40 have been reported in 

AD compared with cognitively healthy controls (HC), also in its prodromal and preclinical 

phases [15–28].  
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The aim of this study was to assess the diagnostic accuracy of CSF YKL-40 in distinguishing 

among groups of cognitively impaired patients. In a first step (Level I), we tested the ability of 

YKL-40 in discriminating AD dementia patients from HC subjects and frontotemporal dementia  

cases (FTD), identified according to a purely clinical diagnostic approach. Successively, in a 

second level of analysis (Level II)  [4], we adopted an unbiased descriptive categorization system 

based on core biomarkers (A/T/N system: A= Aβ pathology, T= tau pathology, N= 

neurodegeneration) for characterizing AD pathology which was independent of the severity of 

cognitive impairment. In this context, we determined the diagnostic accuracy of YKL-40 in 

discriminating patients within the AD pathology spectrum (patients showing both decreased Aβ1-

42 and increased T-tau or P-tau CSF levels [7], patients which were only tau positive, patients 

which were only Aβ positive, patients negative to both biomarkers) from HC and FTD cases 

(Level II).  

 

2.1 METHODS 

 

2.1.1 Population 

Clinical and biological data from a convenience sample of 108 individuals (AD= 35, FTD= 9, 

MCI= 41, and cognitively HC= 23) were retrospectively collected in a multi-centre cross-

sectional study involving three independent academic AD research centres and memory clinics. 

Thirty-five subjects were recruited at the Institute of Memory and Alzheimer’s Disease (IM2A) 

at Pitié-Salpêtrière University Hospital in Paris (France); 57 at the German Centre for 

Neurodegenerative Diseases (DZNE) in Rostock (Germany); 16 at the Institute of Neuroscience 

and Physiology at Sahlgrenska University Hospital in Göteborg (Sweden).  

The study was conducted according to the provisions of the Declaration of Helsinki. All 

participants or their representatives gave written informed consent for the use of their clinical 
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data for research purposes and the local Ethical Committees at the respective universities 

approved the study.  

 

2.1.2 Patient stratification 

2.1.2.1 Level I (purely clinical diagnostic approach) 

The first group was composed of 23 cognitively HC. Two individuals from the Göteborg 

cohort resulted asymptomatic-at-risk of AD [7] or preclinical AD [29] because of high CSF t-tau 

concentrations and were thus excluded from further analyses. The second group included 41 

MCI patients [6]. The third group included 35 AD dementia patients [30]. Finally, the fourth 

group included 9 FTD patients [31] (Figure 1). The clinical diagnosis of AD dementia was 

performed according to the National Institute of Neurological and Communicative Disorders and 

Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) consensus 

criteria [30]. The clinical diagnosis of MCI was made according to the MCI core clinical criteria 

[6]. The clinical diagnosis of FTD was made following the consensus on clinical diagnostic 

criteria of 1998 [31]. Cognitively HC were individuals who volunteered for a lumbar puncture; 

the inclusion criteria were the absence of history of neurological or psychiatric diseases and 

Mental-State Examination (MMSE) score between 27 and 30.  

 

2.1.2.2 Level II (unbiased categorization based on CSF core AD biomarker profiles)  

AD dementia and MCI patient categorization followed an unbiased biomarker-based 

descriptive classification system recently proposed by Jack and colleagues: the “A/T/N” system 

[4]. This classification considers 3 binary (i.e. positive or negative) categories: “A” referring to 

an amyloid biomarker (CSF Aβ1-42 or amyloid-PET), “T” to a tau pathology biomarker (CSF p-

tau or tau-PET), and “N” to a quantitative or topographic biomarker of neurodegeneration or 

neuronal injury (CSF t-tau, 18F-fluorodeoxyglucose-PET (18F-FDG-PET), or structural MRI). 

Since each individual score is displayed as an “A±/T±/N±” arrangement, eight different 



6 
  

categories are possible [4]. The A/T/N classification system is linked to the biomarker 

classification frameworks i.e. the International working group-2 (IWG-2) criteria [7] and the 

National Institute on Aging–Alzheimer's Association (NIA-AA) guidelines [5,29,30], and is able 

to chart both diagnostic classifications. The A/T/N system was utilized in a simplified version 

which employed only CSF markers and excluded the imaging-related ones (amyloid PET, tau 

PET, FDG-PET, or structural MR) to define 5 categories (groups) which were independent from 

severity of cognitive impairment:  

 Group 1 consisted of cognitively HCs (n= 21), a priori defined as both Aβ and tau negative 

[A-/T-/N-]; group 2 [A-/T-/N-] (n= 15), included 2 AD dementia and 13 MCI patients which 

were both Aβ and tau negative; group 3 [A-/T±/N+ or A-/T+/N±] (n= 15), encompassed 6 AD 

dementia and 9 MCI patients which were tau positive but Aβ negative; group 4 [A+/T-/N-] 

(n=13), contained 5 AD dementia and 8 MCI patients which were Aβ positive only; group 5 

[A+/T±/N+ or A+/T+/N±] (n=33) included 22 AD dementia patients in line with the IWG-2 

criteria [7] and the NIA-AA guidelines [32], and 11 prodromal AD [33] or MCI due to AD [6] 

cases, all of which were both Aβ and tau positive; group 6 comprised all FTD cases (n=9) 

including seven patients which were both Aβ1-42 and tau negative, one patient which was Aβ1-42 

negative and tau positive, and one which was patient Aβ1-42 positive and tau negative. According 

to the IWG-2 criteria this last participant should be defined as a case of FTD and not as a patient 

with a frontal variant of AD [7]. Of note, since the A/T/N system is not directly applicable to 

FTD, this last group was analysed exclusively in terms of clinical diagnosis (Figure 1).  

 

2.1.3 CSF sampling 

All CSF samples were collected in polypropylene tubes, centrifuged (1000 g, 10 minutes, 

+4°C (sample collected at IM2A laboratory for the Paris cohort), 1500 g, 10 minutes, +4°C 

(sample collected at DZNE laboratory for the Rostock cohort), 1800 g, 10 minutes, +4°C 
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(sample collected at Mölndal Clinical Neurochemistry Laboratory for the Göteborg cohort)), and 

the collected supernatant was stored at –80°C pending biochemical analysis.   

 

2.1.4 Immunoassays for core biomarkers 

All the core biomarkers (Aβ1-42, t-tau, and p-tau) were measured in the CSF of each subject. 

For the Paris cohort, CSF analyses were performed at the Laboratory of Biochemistry, Unit of 

Biochemistry of Neurometabolic diseases, Pitié-Salpêtrière University Hospital of Paris.  

For the Rostock cohort, CSF analyses were executed in two different units: the Institute of 

Clinical Chemistry and Laboratory Medicine, Rostock University Medical Centre, after 06/2012, 

and the Laboratory of Neurochemistry, Department of Neurology, Göttingen University Medical 

Centre, before 06/2012. 

For the Göteborg cohort, CSF analyses were executed at the Clinical Neurochemistry 

Laboratory at the Sahlgrenska University Hospital, Mölndal. 

T-tau was measured using a sandwich ELISA (INNOTEST hTAU-Ag, Fujirebio Europe, 

Gent, Belgium) specifically constructed to measure all tau isoforms irrespective of the 

phosphorylation status [34]. Tau phosphorylated at threonine 181 (p-tau181) was measured using 

a sandwich ELISA (INNOTEST Phospho-Tau[181P], Fujirebio Europe, Gent, Belgium) 

constructed to specifically measure tau protein phosphorylated at the amino acid threonine 181 

[35]. Aβ1-42 was measured using a sandwich ELISA (INNOTEST β-AMYLOID(1-42), Fujirebio 

Europe, Gent, Belgium), specifically constructed for the quantitative determination of Aβ1-42 

[36]. All analysis were performed by board-certified laboratory technicians blinded to clinical 

information. 

CSF biomarkers abnormalities were defined based on reference values currently used in each 

memory clinic: at IM2A in Paris, Aβ1-42 < 500 pg/mL, T-tau > 450 pg/mL, p-tau181 > 60 pg/mL; 

at DZNE in Rostock, Aβ1-42 < 567 pg/mL, T-tau > 512 pg/mL, p-tau181 > 66 pg/mL for the CSF 

samples measured before 06/2012 and Aβ1-42 < 450 pg/mL, T-tau > 450 pg/mL, p-tau181 > 62 
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pg/mL for the CSF sampels measured after 06/2012; at Mölndal Clinical Neurochemistry 

Laboratory, Aβ1-42 < 550 pg/mL, T-tau > 400 pg/mL, p-tau181 > 80 pg/mL.  

 

2.1.5 Immunoassay for YKL-40 

All CSF YKL-40 analyses were performed at the Clinical Neurochemistry Laboratory at the 

Sahlgrenska University Hospital, Mölndal, Sweden, using a commercial available ELISA kit 

(R&D Systems, Minneapolis, MN, US), according to manufacturer instructions. The 

measurements were performed in one round of experiments using one batch of reagents by 

board-certified laboratory technicians who were blinded to clinical data. Intra-assay coefficients 

of variation were below 10%. All samples were well within the linear range of the assay.  

 

2.1.6 Statistical Analysis  

Associations between sex and diagnostic group were assessed by Fisher's exact test, and the 

associations between age and diagnostic group was assessed through a nonparametric Kruskal-

Wallis (KW) test. Subsequently, as a preprocessing step, all YKL-40 values were adjusted for 

age, sex and site employing nonparametric regression to enable age-,sex- and site- independent 

assessment of the diagnostic potential of YKL-40 while foregoing assumptions of normality. We 

conducted group-wise comparisons of YKL-40 values through nonparametric KW tests followed 

by pairwise post-hoc comparison (Conover's-test for multiple comparisons) whenever the result 

of the KW test was statistically significant (p<0.05). Results of post-hoc testing were corrected 

for multiple comparisons using a False Discovery Rate (FDR) procedure (α=0.05).  

We then evaluated the diagnostic potential of YKL-40 using logistic regression within a leave-

one out cross validation (LOO-CV) approach in the following a priori comparisons: HC vs. AD 

and AD vs. FTD (Level I), HC vs. group 3 [A-/T±/N+ or A-/T+/N±], HC vs. group 4 [A+/T-/N-

], HC vs. group 5 [A+/T±/N+ or A+/T+/N±] (Level II). In this analysis, the age-, sex-, and site 

adjusted YKL-40 values were entered as predictors and the diagnostic group was entered as the 
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dependent variable. After model fitting, we calculated the area under the receiver operating 

characteristic curve (AUROC) and its associated confidence intervals using a bootstrap 

procedure (100000 bootstraps) [37] by pooling predictions computed on the test sets from each 

train-test split in the LOO-CV procedure. The discriminatory ability of YKL-40 to correctly 

allocate participants to diagnostic groups was classified as follows: excellent (AUROC 0.90-

1.00), good (AUROC 0.80-0.89), fair (AUROC 0.70-0.79), poor (AUROC 0.60-0.69), or fail/no 

discriminatory capacity (AUROC 0.50-0.59) [38]. 

All statistical analyses were performed in the R statistical environment version 3.2.3 

(available at https://www.R-project.org/) under a Linux environment using the nonparametric 

kernel smoothing methods for mixed data types package (np package) [39], partial ROC (pROC) 

package [37], and the pairwise multiple comparison of mean ranks (PMCMR) package [38]. 

Two-tailed P values < 0.05 were considered statistically significant. 

 

3.1 RESULTS 

 

3.1.2 CSF YKL-40 levels in the population categorized according to Level I 

Table 1 summarizes the levels of all analytes, combined with the demographic and clinical 

data of the population classified in line with Level I classification. Cognitively HC were slightly 

but significantly younger than MCI, AD, and FTD patients. MMSE scores were significantly 

lower in AD compared with cognitively HC and MCI. Compared with HCs group, CSF YKL-40 

levels were significantly increased in AD (P=0.032) and FTD (P=0.049) (Figure 2A).  

 

3.1.3 CSF YKL-40 levels in the population categorized according to Level II 

Table 2 summarizes the levels of all analytes, combined with the demographic and clinical 

data of the population classified in line with Level II criteria. Cognitively HC (group 1) and 

patients belonging to group 2 [A-T-N-] were significantly younger than all the other groups 

https://www.r-project.org/
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(Table 1). Compared with group 1 (HC), CSF YKL-40 levels were significantly increased in 

group 3 [A-/T±/N+ or A-/T+/N±] (P= 0.002), and group 5 [A+/T±/N+ or A+/T+/N±] (P= 0.002). 

Group 3 [A-/T±/N+ or A-/T+/N±], and group 5 [A+/T±/N+ or A+/T+/N±] patients presented 

substantially higher CSF YKL-40 concentrations compared with group 4 [A+/T-/N-] (P< 0.001 

for both) patients, and compared with cases belonging to the FTD group (P=0.006 and P=0.007, 

respectively); group 3 [A-/T±/N+ or A-/T+/N±] patients presented higher CSF YKL-40 

concentrations compared to group 2 [A-/T-/N-] patients (P=0.033), (Figure 2B). 

 

3.1.4 Diagnostic value of CSF YKL-40 in the population at Level I  

We found that YKL-40 differentiated HC from AD patients with an AUROC of 0.69 (95% 

CI, 0.55-0.84) (Figure 3A). CSF YKL-40 discriminated AD from FTD patients with an AUROC 

of 0.71 (95% CI, 0.51-0.91) (Figure 3B) . 

 

3.1.5 Discriminative value of CSF YKL-40 in the population at Level II  

CSF YKL-40 discriminated cognitively HC from the group 3 [A-/T±/N+ or A-/T+/N±], group 

4 [A-/T±/N+ or A-/T+/N±], group 5 [A+/T±/N+ or A+/T+/N±] with AUROCs=0.76, (95% CI, 

0.58-0.94), 0.52 (95% CI, 0.29-0.74), and 0.72 (95% CI, 0.58-0.87) (Figure 4A-C), respectively. 

CSF YKL-40 differentiated group 5 [A+/T±/N+ or A+/T+/N±] from the FTD with AUROC= 

0.73 (95% CI, 0.54-0.92) (Figure 4D).  

 

 

4.1 DISCUSSION 

 

In Level I, CSF YKL-40 concentrations were significantly increased in clinically 

diagnosed AD patients compared with HC (Figure 2A). Moreover, the corresponding AUROC 

was poor/borderline fair in discriminating the two groups (Figure 3A). These findings partly 
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confirmed previous studies [16,18,20,25,26,28] and also the data from a recent meta-analysis 

[14]; in contrast, one study showed no differences between AD and HC [22]. Importantly, AD 

patients showed higher levels of CSF YKL-40 when compared to FTD; indeed, CSF YKL-40 

gives a fair performance in distinguishing between the two groups (Figure 3B). In the literature, 

very few studies evaluated the diagnostic accuracy of CSF YKL-40 in discriminating between 

AD and FTD patients, and these studies reported conflicting results. In particular, Craig-Shapiro 

and colleagues reported higher levels of CSF YKL-40 in FTD compared to mild AD [18]; 

conversely, two other studies found no significant differences between AD and FTD [15,19].  

Level II analysis showed that CSF YKL-40 concentrations were significantly increased in 

patients which were tau-positive only and those with AD pathology compared to HC (group 1) 

(Figure 2B). We found that YKL-40 delivered fair performance in discriminating tau-positive 

and AD pathology patients from HC (Figure 4A and 4C), but not in discriminating Aβ-positive 

only patients from HC (Figure 4B). These results generally agree with currently available 

studies which point toward the idea that CSF YKL-40 concentrations are more related to tau 

protein pathology as opposed to Aβ pathology [15,17,19,20,23,24]. Tau-positive patients 

revealed higher CSF concentrations of YKL-40 compared to patients with non-AD pathology, 

patients which were Aβ-positive only, and FTD patients. Similarly, AD pathology patients 

showed higher CSF levels of YKL-40 compared with patients which were Aβ-positive only, 

FTD patients, and a trend towards higher levels of YKL-40 in comparison to non-AD pathology 

patients. In particular, the AUROCs related to discriminating between AD pathology patients 

and FTD was fair (Figure 4D), i.e. comparable to what we found in Level I analysis. Several 

explanations support the fact that FTD patients can display lower CSF YKL-40 levels when 

compared to AD patients. In particular, FTD patients may have an underlying neurodegenerative 

process not related to tau protein [40]. This pathological variability possibly reflects the common 

clinical finding that FTD is a heterogeneous syndrome with different and overlapping 

phenotypes.  
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CSF YKL-40 can be considered as a biomarker of a specific pathogenic mechanism, 

allowing for in vivo measurement of neuroinflammatory processes that may be complementary 

to the core AD CSF biomarkers Aβ1-42, T-tau and p-tau. The importance of having an early 

biomarker of neuroinflammation in AD is intriguing not only for diagnostic purposes 

(neuroinflammation is probably involved in other, additional neurodegenerative diseases [41]) 

but also because it can be predictive of response to novel anti-inflammatory drugs. In fact, 

epidemiological studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may 

lower the risk of AD [42,43], although a number of trials reported negative results [9]. However, 

anti-inflammatory treatments may not be efficacious when administered during the dementia 

stage of AD. Notably, the naproxen trial in AD initially reported negative results; conversely, 

longer-term follow-up results suggested that naproxen may exert a protective role in 

asymptomatic subjects at baseline, thus reducing the conversion rate to AD [44,45]. The 

discovery and validation of a reliable inflammatory biomarker in prodromal AD as well as in 

preclinical phases, with the aim of tracking the response to an anti-inflammatory drug, might 

therefore represent an innovative step in developing novel therapeutic strategies for AD. 

Our study represents the first attempt to apply YKL-40 as a diagnostic CSF biomarker for 

AD following a new unbiased biomarker-based classification [4]. Some limitations needs to be 

mentioned. First, in Level II, the categorization of our patients was based on CSF biomarkers 

only - i.e. the A/T/N system was used without considering neuroimaging markers. Also, this is a 

cross-sectional study and longitudinal data are not available. In particular, we are not able to 

differentiate potentially stable MCI patients from MCI patients converting to dementia, or to 

provide data about the possible different prognosis and rate of cognitive impairment progression. 

Furthermore, the diagnosis of MCI was made in a clinical setting and extensive and/or 

homogeneous psychometric data were not available. Additionally, given the relatively low 

number of patients, we did not test the CSF YKL-40 levels in all possible (eight) categories 

reported in the classification by Jack and colleagues [4]; we merged MCI patients with those in 
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the dementia stage of AD on the basis of core biomarkers assessment, without considering the 

degree of severity of cognitive impairment. However, the clinical distinction between MCI and 

dementia is not clear and time dependent; in this regard, the IWG-2 criteria consider MCI 

patients with AD pathology as AD in its prodromal phase [7]. Finally, with the exception of 

YKL-40, the measurements of the CSF core AD biomarkers, were performed in different 

laboratories and, while we controlled for center effects in our statistical analysis, additional inter-

laboratory variability cannot be completely ruled out.  

In conclusion, our study indicated that YKL-40 is poor/borderline fair and, therefore, it 

might not be able to satisfactorily differentiate AD from cognitively HC based only a purely 

clinical level of categorization. CSF YKL-40 deliveres a fair performance in discriminating 

between clinical AD and FTD. Based on core biomarker classification, CSF YKL-40 levels 

fairly distinguished HC individuals from cognitive impaired patients with both Aβ and tau 

pathology and cognitively impaired patients with tau pathology only, and both Aβ and tau 

pathology patients from FTD. In contrast, CSF YKL-40 levels were not useful in distinguishing 

between HC and cognitively impaired patients who were Aβ-positive only. Overall, CSF YKL-

40 does not seem to play a major role in distinguishing clinical AD and AD pathology patients 

from HC subjects or from  FTD cases. However, our results confirm that CSF YKL-40 levels 

should be considered a biomarker of neuroinflammation potentially related to neurodegenerative 

processes associated with tau protein. 

We believe that, in the future, large longitudinal studies will be able to investigate the AD 

spectrum by applying the unbiased A/T/N classification system which can be considered an 

adaptive and flexible “open source” approach, based on a pattern of established biomarkers 

which however, can be potentially expanded to integrate novel biological biomarkers, genetic 

and epigenetic factors [46] as well as, possibly, indicators spanning different dimensions of 

pathology such as MRI-derived grey matter atrophy or functionally relevant burden of white 

matter damage [47].  
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