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Abstract  

Ischaemic heart disease and the heart failure that often results, remain the leading causes of 

death and disability in Europe and worldwide. As such, in order to prevent heart failure and 

improve clinical outcomes in patients presenting with an acute ST-segment elevation 

myocardial infarction and patients undergoing coronary artery bypass graft surgery, novel 

therapies are required to protect the heart against the detrimental effects of acute 

ischaemia/reperfusion injury. During the last three decades, a wide variety of ischaemic 

conditioning strategies and pharmacological treatments have been tested in the clinic – 

however, their translation from experimental to clinical studies for improving patient outcomes 

has been both challenging and disappointing. Therefore, in this Position Paper of the 

European Society of Cardiology Working Group on Cellular Biology of the Heart, we critically 

analyse the current state of ischaemic conditioning in both the experimental and clinical 

settings, provide recommendations for improving its translation into the clinical setting, and 

highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial 

ischaemia/reperfusion injury. 

 

Keywords: Cardioprotection, Ischaemia, Reperfusion, Myocardial Infarction, Ischaemic 
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1. The need for novel cardioprotective therapies 

Although recent advances in treatment have improved survival in patients presenting with an 

acute myocardial infarction (AMI)1, the number of patients going on to develop heart failure, a 

medical condition which exerts a huge global burden on healthcare and economic resources, 

has increased2, 3. Despite timely reperfusion with primary percutaneous coronary intervention 

(PPCI), mortality and morbidity following ST-segment elevation myocardial infarction (STEMI) 

remain significant, with 7% death and 22% heart failure hospitalisation at one year in patients 

presenting with an anterior STEMI4. For STEMI patients presenting with cardiogenic shock 

(about 10%), in-hospital mortality has been reported to be as high as 34%5. Furthermore, in 

developing countries, where ischaemic heart disease (IHD) is on the rise and treatment of AMI 

patients is not optimal, both mortality and morbidity rates also remain high. 

Changes in patient demographics have meant that older and sicker patients with 

increasing co-morbidities (diabetes, LV hypertrophy, renal failure) are undergoing coronary 

artery bypass graft (CABG) surgery, often with concomitant valve and/or aortic surgery, 

increasing the risk of peri-operative myocardial injury (PMI) and CABG-related myocardial 

infarction and worsening clinical outcomes6. A recent study from the UK reported a 28% rate 

of major adverse cardiac and cerebral events at one year following CABG plus or minus valve 

surgery (cardiovascular death, non-fatal myocardial infarction, coronary revascularization, and 

stroke at 12 months)7.  

 As such, novel cardioprotective strategies are still required to attenuate the detrimental 

effects of acute myocardial ischaemia/reperfusion injury (IRI), so as to prevent adverse left 

ventricular (LV) remodelling8, and reduce heart failure in patients with IHD. Interestingly, a 

recent UK cost-effectiveness analysis has demonstrated that a hypothetical cardioprotective 

agent capable of reducing myocardial infarct (MI) size, preventing heart failure and reducing 

mortality in anterior STEMI patients treated by PPCI, would be very cost-effective9.  

In this regard, the discovery, in 1986, that subjecting the heart to brief non-lethal cycles 

of ischaemia and reperfusion prior to a lethal episode of acute IRI dramatically reduced MI 

size, a phenomenon termed ‘ischaemic preconditioning’ (IPC)10, has provided a powerful 
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endogenous strategy for cardioprotection. It has evolved from ischaemic preconditioning 

(classical and delayed, both of which are limited in their clinical application as they are invasive 

and need to be applied prior to ischaemia)10-12, to ischaemic postconditioning (IPost)13, 14 

(which allows the intervention to be applied at the time of reperfusion, but is still invasive), to 

remote ischaemic conditioning (RIC)15 (which has allowed the intervention to be applied non-

invasively to the arm or leg, even during ongoing myocardial ischaemia and at reperfusion), 

making it more clinically applicable.      

Although 30 years of research on ischaemic conditioning have provided important 

insights into the complex intracellular signalling pathways underlying cytoprotection at the 

level of the cardiomyocyte, the translation of ischaemic conditioning into the clinical setting for 

patient benefit has been largely disappointing. A vast number of cardioprotective therapies for 

reducing MI size in the laboratory setting have failed to demonstrate any benefit in the clinical 

setting; and even for the therapies which have been shown to reduce MI size in STEMI patients 

or reduce PMI in CABG patients, successful demonstration of improved clinical outcomes has 

been elusive16-21. At this juncture, it is important to assess what we have learned after 30 years 

of research on ischaemic conditioning and what we can do to improve its translation into the 

clinical setting for patient benefit. 

Therefore, in this Position Paper of the European Society of Cardiology Working Group 

on Cellular Biology of the Heart, we critically analyse the current state of ischaemic 

conditioning in both the experimental and clinical settings, provide recommendations for 

improving the translation of novel cardioprotective therapies into the clinical setting, and 

highlight novel therapeutic targets and new treatment strategies for reducing acute myocardial 

IRI and improving clinical outcomes in patients with IHD. In this Position Paper, the focus will 

be on acute cardioprotective strategies targeting myocardial IRI, rather than primary 

prevention strategies, and those therapies directed to preventing adverse post-MI remodelling.  

The current Position Paper will focus on a number of important recent developments 

in the field of cardioprotection, which have taken place in the last 2 to 3 years, since the 

publication of our previous two Position Papers providing recommendations on optimising pre-
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clinical and clinical cardioprotecton studies 18, 19. Several neutral large scale clinical outcomes 

studies in cardioprotection4, 7, 22, 23 and a number of neutral proof-of-concept clinical 

cardioprotection studies in STEMI patients have been recently published and will be discussed 

in the current Position Paper. In addition, several novel targets and new strategies for 

cardioprotection have emerged over the last 2 to 3 years and are highlighted in this Position 

Paper.  

 

2. Why have there been so many recent neutral clinical cardioprotection studies? 

In the last few years, there has been an increasing number of neutral clinical cardioprotection 

studies in both STEMI (Table 1) and CABG patients. The reasons for the neutral outcomes 

are varied and have been extensively reviewed and discussed in the recent literature17, 18, 20, 

21, 24, and only an overview is provided here 

 

2.1. Endogenous cardioprotection strategies 

Adenosine 

Both experimental and clinical studies of AMI with adenosine administered at the time of 

reperfusion have had mixed results in terms of reducing MI size, with post-hoc analyses 

suggesting beneficial effects in STEMI patients presenting within 3 hours of symptom onset25-

29. Interestingly, a meta-analysis of clinical studies undertaken in the PPCI era has 

demonstrated a beneficial effect of intracoronary adenosine in terms of less heart failure 

following STEMI30.  

In summary, the results with adenosine have had mixed results in proof-of-concept 

clinical cardioprotection studies, but it appears that STEMI patients presenting with short 

ischaemic times or those receiving intracoronary adenosine, may be more likely to benefit. 

 

Atrial natriuretic peptide 

Experimental studies have reported cardioprotection with atrial natriuretic peptide (ANP) 

administered at the time of reperfusion31, and a clinical study has demonstrated a modest 
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(15%) reduction in MI size (measured by total serum creatine kinase) with an infusion of 

carperitide (an ANP agonist) initiated prior to PPCI in STEMI patients32.   

Therefore, ANP has shown promise as a therapy for reducing MI size, but whether it 

can improve clinical outcomes is not known and needs to be determined. 

 

Exenatide- a GLP-1 analogue 

Exenatide is a synthetic version of the glucagon-like-peptide-1 (GLP-1) analogue, exendin-4, 

a peptide derived from a lizard venom, which has been reported to reduce MI size when 

administered prior to reperfusion in small and large animal MI models33-35. Two small proof-of-

concept clinical studies in STEMI patients have reported beneficial effects with either 

intravenous or subcutaneous exenatide initiated prior to PPCI36, 37. Most benefit was observed 

in those STEMI patients presenting within 132 minutes of symptom onset38, although 

exenatide was found to not improve long-term clinical outcomes in this group of patients39. A 

recent study by Roos et al40 failed to find any beneficial effect of IV exenatide on MI size 

normalised for area-at-risk (AAR). The ongoing Exenatide for Myocardial Protection During 

Reperfusion Study (EMPRES) is also testing the effect of IV exenatide on final MI size at 3 

months over AAR at 72 hours post-randomization (assessed by CMR). 

In summary, the results with exenatide have had mixed results in proof-of-concept 

clinical cardioprotection studies, in part due to the variable doses tested in each trial. As such, 

further studies are required to determine the optimum cardioprotective dose prior to 

undertaking clinical outcome studies. 

 

Ischaemic postconditioning 

Following the first positive clinical study showing a reduction in MI size with IPost (4x1 min 

cycles of alternate angioplasty balloon inflation/deflation)41, the results of subsequent clinical 

studies have been mixed42-45. The reasons for this are unclear, but probably relate to patient 

selection and the IPost protocol itself (durations of inflations/deflations, site of IPost in stent or 

upstream of stent)21. The DANAMI-3 IPost study46, which tested the effect of IPost (3x30 
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second cycles of alternate angioplasty balloon inflation/deflation) on long-term clinical 

outcomes, found a non-significant reduction in major adverse cardiac events (all cause death 

and heart failure hospitalisation at 38 months), but this study was probably underpowered to 

detect this endpoint, given the low event rate in this STEMI population.  

In summary, the results with IPost have had mixed results in proof-of-concept clinical 

cardioprotection studies. Whether IPost can improve clinical outcomes remains unclear and 

needs to be tested in a suitably powered large multi-centre randomised clinical trial.  

 

Remote ischaemic conditioning 

RIC, using one or more cycles of brief limb ischaemia and reperfusion, has been found in both 

small and large animal MI models to reduce MI size47-53. At least 7 clinical studies have shown 

RIC to reduce acute MI size or increase myocardial salvage in STEMI patients treated by 

PPCI, when assessed by serum cardiac enzymes, SPECT, and CMR54-60. However, there has 

been one recently published neutral clinical study by Verouhis et al 2016 (RECOND trial)61, in 

which limb RIC (up to 7 cycles of lower limb RIC) with at least one cycle initiated prior to 

reperfusion failed to reduce MI size as a percentage of the AAR (assessed by CMR at 4-7 

days) in 93 anterior STEMI patients. Why this study was neutral is not clear but it may relate 

to the variable and high number of RIC cycles used, and the prior treatment with ticagrelor 

and clopidogrel in a large number of patients61.  

Whether RIC can improve clinical outcomes is currently unknown, although it has been 

shown that STEMI patients undergoing RIC in the ambulance during transportation to PPCI 

had reduced major adverse cardiac and cerebral events (MACCE) and all-cause mortality 

within 4 years after the index event62, and lowered economical expense of medical resources 

of hospitalisation for post-infarction heart failure63. However, these studies were not powered 

for clinical outcome analyses64. The results of the ongoing CONDI-2/ERIC-PPCI, which will 

investigate the effect of RIC on cardiac death and hospitalisation for heart failure at one year 

in reperfused STEMI patients, are eagerly awaited65.  
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In summary, limb RIC is the only therapy which has shown largely positive data in 

proof-of-concept clinical cardioprotection studies, and the CONDI-2/ERIC-PPCI trial will 

determine whether this non-invasive, low-cost intervention, can improve clinical outcomes in 

reperfused STEMI patients. 

 

2.2. Beta-blocker therapy  

Metoprolol 

Data from a large-animal MI model found that intravenous administration of the β1-selective 

blocker, metoprolol, prior to reperfusion, reduced MI size66. In the 270 anterior STEMI patient 

METOCARD-CNIC trial, intravenous metoprolol (3x5mg) administered in the ambulance prior 

to PPCI reduced MI size, prevented LV adverse remodelling, preserved LV systolic function, 

and lowered hospital re-admissions for heart failure67, 68. Unfortunately, the EARLY BAMI trial 

failed to report a reduction in MI size at 1 month (assessed by CMR) with IV metoprolol 

(2x5mg) administered prior to PPCI in STEMI patients presenting within 12 hours of symptom 

onset69. The reasons for the neutral results of the EARLY BAMI trial versus the METOCARD-

CNIC trial include: dosing (10mg versus 15 mg), timing (most benefit observed with metoprolol 

given soon after STEMI onset), patient population (all-comers versus anterior STEMI), and 

endpoint assessment (1 month versus first week – CMR performed in the first week following 

PPCI may over-estimate MI size unless long intervals between gadolinium salt injection and 

image acquisition are used70). Therefore, this therapeutic approach may not be suitable for all 

STEMI patients, and those with heart failure, hypotension or presenting with AV-block will not 

qualify for this therapy. Whether this therapeutic approach can improve clinical outcomes in 

reperfused STEMI patients will be addressed by the MOVE ON! randomised clinical trial, 

which will investigate the effect of metoprolol on cardiac death and heart failure hospitalisation.  

In summary, the results with metoprolol have had mixed results in proof-of-concept 

clinical cardioprotection studies, in part due to the patient selection and the timing and dose 

used. As such, further studies are required to determine the optimum cardioprotective dose 

prior to undertaking clinical outcome studies. 
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2.3. Mitochondria-targeted cardioprotection strategies 

Cyclosporine-A  

A proof-of-concept clinical study demonstrated a reduction in MI size and less adverse LV 

remodelling with an IV bolus of Cyclosporine-A (CsA, 2.5 mg/kg Sandiummune), administered 

prior to reperfusion, in 58 reperfused STEMI patients (<12 hours of symptoms and pre-PPCI 

TIMI flow<1)71, 72. However, one small clinical study in thrombolysed STEMI patients73, and 2 

subsequent large multicentre randomised clinical trials have failed to demonstrate a reduction 

in MI size or improved clinical outcomes with CsA administered prior to PPCI in STEMI 

patients4, 23. In the CIRCUS trial, an IV bolus of CsA (2.5 mg/kg Ciclomulsion) administered 

prior to reperfusion failed to reduce MI size and improve one year clinical outcomes (death, 

heart failure hospitalisation and adverse LV remodelling) in 791 STEMI patients, when 

compared to placebo. Furthermore, in the CYCLE trial, an IV bolus of CsA (2.5 mg/kg 

Sandimmune) administered prior to reperfusion, failed to improve ST-segment resolution and 

reduce MI size in 410 STEMI patients23. Why these large clinical studies were neutral is not 

clear, but it may have been due to an inadequate dose and a changing patient population 

(increased use of P2Y12 platelets inhibitors)74, 75. The fact that studies in large animal hearts 

by Jennings' group76, 77 have shown that few cardiomyocytes can be salvaged by reperfusion 

in the canine heart after 3 hours and none after 6 hours of ischaemia have passed suggests 

that patients receiving 6-12 hours of ischaemia may not respond to therapies applied at the 

time of reperfusion.  

In summary, the results with CsA have been largely neutral, and this may have been 

due to patient selection and the dose of CsA. As such, mitochondrial permeability transition 

pore (PTP) inhibition with more potent and selective agents is required to investigate whether 

this therapeutic strategy is effective in reperfused STEMI patients.  

 

2.4. Clinical cardioprotection studies in CABG patients 
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In this section, we review the major factors which may have contributed to the neutral results 

of recent clinical cardioprotection studies in CABG patients and propose strategies for 

optimising the design of future clinical studies, in order to improve the translation of 

cardioprotection into the clinical setting. Many of the factors relevant to STEMI patients also 

apply to clinical studies in CABG patients and may have contributed to the neutral results in 

these studies. 

In CABG surgery the magnitude of acute myocardial IRI and infarction is much less 

than that which occurs in reperfused STEMI patients, which may make it more difficult to 

demonstrate a beneficial effect with a novel cardioprotective strategy. In addition, the aetiology 

of PMI following CABG not only includes acute IRI, but also other factors such as directly 

handling of the heart, inflammation, and coronary microembolisation, and these may not have 

been amenable to ischaemic conditioning6.  Furthermore, the majority of clinical studies have 

investigated novel therapies, which were tested in animal models of AMI and which are closer 

in design to the STEMI than the CABG setting. Therefore, therapies which are intended to be 

investigated in the CABG setting should ideally be tested using animal models of 

cardiopulmonary bypass surgery19. 

Confounding effects of co-medication given to CABG patients, such as propofol and 

opioids, may have contributed to the neutral results of the ERICCA and RIPHeart studies, 

which failed to demonstrate any beneficial effects of RIC on clinical outcomes in patients 

undergoing CABG surgery7, 22, 78. Other drugs given to patients undergoing CABG surgery, 

which may interfere with cardioprotection include nitrates, beta blockers, inhaled anaesthetics 

(such as isoflurane) and so on79-81. Therefore, experimental studies should investigate whether 

future therapies can protect against acute myocardial IRI in the presence of co-medication 

used during CABG surgery.  

 

3. Novel therapeutic targets for cardioprotection 

Targeting standard signalling pathways underlying ischaemic conditioning has not been 

successful. As such there is a need to discover and investigate novel therapeutic targets for 
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cardioprotection. Over the past 30 years of research in this area, enthusiasm for some 

particular cardioprotective strategies such as cariporide, erythropoietin, oxygen free radical 

scavengers or calcium entry blockers has waned, even if trial design may have accounted for 

some of the disappointing outcomes16-21, 52. In the case of GIK, the situation may be changing 

as the only clinical study in which it was administered systematically before PPCI (in the 

ambulance) was positive in STEMI patients82. However, other targets have undergone a 

renaissance as new aspects are discovered. For example, despite disappointing clinical trials 

of ROS scavengers, there is renewed optimism for a more targeted approach directed to 

preventing mitochondrial ROS production at the time of reperfusion83-85. Nitric oxide (NO) is 

fundamental to many protective strategies, and although NO donors and nitrites have 

produced disappointing results in the clinical setting, optimism remains for approaches that 

manipulate tetrahydrobiopterin and particulate or soluble guanylate cyclase86.  

Initial trials of broad anti-inflammatory agents have been disappointing, perhaps 

unsurprisingly, given what we now know about its Jekyll-and-Hyde nature87. New evidence 

suggests potential roles for neutrophils and platelets87, 88. The discovery of novel regulatory 

mechanisms such as lncRNA and miRNA has presented new opportunities89, although a 

causal role for miRNA in cardioprotection is still controversial90, 91. 

To date, most cardioprotective strategies have either been designed to target and 

inhibit a crucial cell death pathway, or to activate a specific endogenous cardioprotective 

pathway. The major mechanism of cell death occurring rapidly after reperfusion is necrosis, 

as demonstrated by tetrazolium staining of animal hearts or cardiac biomarker release in 

clinical studies. The role of apoptosis is less clear. Although it may be involved in infarct 

expansion, the evidence for its involvement in early reperfusion injury is controversial92-95. A 

recent experimental study has shown that cardiac-specific deletion of caspase 3 and 7 had no 

impact on MI size and subsequent LV remodelling, indicating no role of apoptosis in IRI95. MI 

size can also be significantly reduced by inhibitors of necroptosis96, 97 or pyroptosis51, 

implicating these forms of cell death and their underlying mechanisms as potential targets. 

Autophagy is also involved, although it may play opposing roles during ischaemia and 
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reperfusion98. Matrix metalloproteinase-2 (MMP2) inhibition by ischaemic conditioning or MMP 

inhibitors has been demonstrated to reduce MI size in experimental studies, even in the 

presence of hypercholesterolaemia, and MMP seems to be a promising biomarker for the 

development of IHD99-101.  

In terms of activating cardioprotective pathways, there is an abundance of literature 

demonstrating cardioprotection in cell or animal models by receptor ligands that activate the 

RISK or SAFE pathways102-104. However, novel pathways or combinations of pathways should 

also be considered. For example, PKG has been validated as a target for cardioprotection in 

humans, in studies using exenatide36 or ANP32, although cGMP-PKG signalling has been 

shown to be blocked in the presence of hypercholesterolaemia in rats105. It is becoming clear 

that in addition to cardiomyocytes, cardioprotection should also target other cardiac or 

circulating cell types including endothelium, pericytes, smooth muscle, nerves, platelets, 

neutrophils, mast cells, fibroblasts and resident stem cells106-108(Figure 1). These may provide 

direct or paracrine benefits, for example via production of exosomes. Similarly, other 

physiological aspects of acute IRI are emerging as potential targets, including oedema109 and 

microvascular dysfunction and obstruction108. 

A crucial issue is timing. Ischaemic time is a critical determinant of cardiomyocyte 

death and the latter is exacerbated by reperfusion injury. Most evidence suggests that 

cardioprotective pathways must be targeted during the first minutes of reperfusion110-112. 

Similar to the wave-front of injury occurring during ischaemia, there is believed to be a wave-

front of injury during reperfusion. Indeed, several early studies in dogs and rabbits suggested 

that MI size increases during the early hours of reperfusion up until 48 hours, suggesting that 

reperfusion injury may remain a therapeutic target during this time113-115. Although several 

successful examples of this approach have been published116-119, the concept remains 

somewhat controversial. Whether or not late reperfusion injury can be targeted is an important 

but unresolved question, as are the targets of such late reperfusion injury.  

In identifying a new target for cardioprotection, crucial, but frequently overlooked steps 

are to prove the presence of the target in the heart and its activation (or downregulation) at or 
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before early reperfusion (Table 2). When considering a therapeutic target, its presence in 

humans must be kept in focus. For example, cardiac expression of some receptors can differ 

between rodents and humans, as for GLP-1R120, 121. In addition, rodents may differ from 

humans regarding the relative importance of intracellular pathways such as RISK and SAFE 

pathways122. Validation of a target in the myocardium of the target patient population can be 

challenging, but ex vivo organ-bath models such as the human atrial-appendage model can 

be informative in this regard123, 124. A therapeutic target must remain valid in the setting of 

current clinical practice, specifically in the complex settings of PCI and cardiac surgery, the 

latter of which already incorporates cardioprotective strategies such as cardioplegia and 

hypothermia.  

In addition to targets mentioned above, novel therapeutic targets currently under 

investigation include the immune system (particularly monocytes, macrophages, extracellular 

DNA and RNA, inflammasomes), platelet – inflammatory cell interactions, exosomes and 

microvesicles, GPCRs, Toll-like receptors (TLRs) and proteases such as matrix 

metalloproteinases and calpains107, 125. It may be time to look beyond the mitochondrial PTP 

to other mitochondrial targets such as the mitochondrial calcium uniporter (MCU), 

mitochondrial fission and fusion proteins, Connexin 43/20, mitochondrial metabolism and 

mitophagy, and to understand the crosstalk between the mitochondria and the SR. The 

pathways of caloric restriction including sirtuins and mammalian target of rapamycin (mTOR) 

present interesting potential targets. Thinking towards the future, other therapeutic pathways 

that would be likely to be of enormous benefit include the prophylactic stimulation of new 

collateral vessels, drugs that can simulate the benefits of exercise, or - perhaps even more 

optimistically - treatments that stimulate cardiac regeneration or reverse the age-related 

phenotype126, as was recently, and controversially, suggested for GDF11127, 128. 

A checklist of important criteria when considering target development is included in 

Table 2. An overriding consideration is whether a single target is likely to be effective in 

isolation, or whether multi-targeted approaches are more consistent with the multiple 

mechanisms of IRI51, 129, a question which will be discussed in the following section. 
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Multi-omics strategies to identify novel therapeutic targets and signalling pathways in 

an unbiased way 

Since the pathophysiology of IHD and cardioprotection is extremely complex, it is conceivable 

that large scale, unbiased, global approaches capable of detecting multiple branches of the 

signalling networks activated in the ischaemic heart with the presence of several co-

morbidities and co-medications might be more successful in the search for novel therapeutic 

targets. High-throughput techniques now allow high-resolution, genome-wide investigation of 

genetic variants, epigenetic modifications and associated gene expression profiles, as well as 

proteomics and metabolomics (although the latter techniques need further technological 

development). These techniques offer simultaneous readouts of hundreds of proteins and 

metabolites in an unbiased, non-hypothesis driven way. “Omics” analyses usually provide a 

huge amount of information requiring large data storage, advanced computational resources 

and complex bioinformatics tools. The possibility of integrating different “omics” approaches 

into “multi-omics” gives new hope to better understand the signalling network responsible for 

IHD and cardioprotection130, 131.  

As an example, metabolomic profiling of biological samples from patients during 

myocardial IRI132-134  has highlighted specific metabolic “profiles” that might be used to identify 

novel biomarkers or therapeutic targets135-138. Using a comparative metabolomic approach, 

Chouchani and colleagues discovered an evolutionarily conserved biochemical “fingerprint” of 

ischaemia characterized by elevated intracellular levels of succinate, an intermediate of the 

citric acid cycle83. Selective accumulation of succinate is a universal metabolic signature of 

ischaemia in several tissues and cell types, enhancing mitochondrial ROS production during 

reperfusion83, 84 and promoting tissue inflammation139. Preventing succinate accumulation 

and/or oxidation might represent a novel and more effective target for cardioprotection84, 85.  

 

4. New treatment strategies for cardioprotection 
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4.1. Combination therapy - multi-targeted approach directed to different intracellular 

signalling pathways within the cardiomyocyte  

Many of the cardioprotective strategies which have failed in the clinical setting have relied 

upon using a single-targeted approach, directed to one specific molecule or intracellular 

signalling pathway. However, a multi-targeted approach directed to more than one intracellular 

signalling pathways may be a more effective cardioprotective strategy, especially if one of the 

signalling cascades is impaired due to the presence of a co-morbidity such as diabetes140. A 

number of experimental studies have investigated the cardioprotective effect of combining one 

or more ischaemic conditioning strategies. Some studies have demonstrated a synergistic 

effect between RIC and IPost141, 142, a finding which has been replicated in the clinical setting 

with a reduction in MI size with RIC and IPost combined but no cardioprotective effect with 

IPost alone59. This may suggest that although some of the signalling cascades are shared 

between RIC and IPost, there are sufficient differences to mediate a synergistic 

cardioprotective effect.   

It may also be possible to combine the use of ‘old’ drugs to repurpose them for 

cardioprotection, such that the combination may have new or greater efficacy than the 

component drugs alone. The combination of adenosine and lidocaine may be an example. 

Each component alone has equivocal or controversial efficacy, but has greater efficacy with 

some new actions when combined in caridoplegic solution143. However, MI size reduction by 

combined adenosine and lidocaine has always remained controversial144, 145. Most recently, it 

has been shown that combining limb RIC with insulin or insulin mimetics (such as exenatide) 

has a synergistic effect in terms of reducing MI size in the porcine model of acute MI, and this 

was demonstrated to be mediated by targeting 2 different pro-survival intracellular signalling 

pathways146. This therapeutic approach will be tested in the COMBAT-MI trial (NCT02404376) 

which will investigate whether combining RIC with exenatide is more effective that either 

treatment alone in terms of reducing MI size in reperfused STEMI patients. 

 

4.2. Combination therapy - multi-targeted approach directed to other players in IRI 
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Since cell death caused by acute myocardial IRI occurs as a result of the combined action of 

multiple cellular players in cardiac tissue (i.e cardiomyocytes, microvasculature, fibroblasts, 

inflammatory cells, and platelets), additive protection might be achieved from a multi-targeted 

approach directed to different cell types. This may be achieved using either one agent known 

to have two different unrelated targets or two or more agents in combination directed to two 

or more different unrelated targets.  

 

Coronary microvasculature- endothelial cells, vascular smooth muscle cells, and pericytes 

Microvascular injury due to microembolic obstruction of the coronary microcirculation may 

amplify the damage caused by the obstruction of the epicardial arteries and nullify the result 

of reperfusion therapies in STEMI patients147-150. The contractile phenotype of vascular smooth 

muscle cell (VSMC) secretes adiponectin, a compound also shown to be cardioprotective151. 

However, VSCMCs as well as fibroblasts might transform under stress to the synthetic 

phenotype and to myofibroblasts, respectively152. Preliminary experimental data have 

implicated a potential role of pericytes as mediators of microvascular obstruction following 

AMI153. In addition, the pericardium has been also suspected to be involved in acute 

myocardial IRI154. 

 

Platelets 

Anti-thrombotic therapy is a cornerstone in post-reperfusion therapy. Platelet activation is a 

consequence of endothelial injury, and activation of platelet adhesion and aggregation 

increase cell death independently of any effect on myocardial flow and microvascular 

obstruction155, 156. Thromboxane A2, for example, has been reported to activate cardiac 

afferent nerves and promote a sympathetic cardiac response157. Moreover, platelets are the 

source of multiple bioactive components including extracellular vesicles released into the 

bloodstream with the potential to affect cells and tissue at a distance158. Recent experimental 

data have demonstrated that the platelet P2Y12 inhibitors are able to reduce MI size when 

administered at the onset of reperfusion via ‘conditioning’ signalling pathways159-161. While 
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IPost provided no added protection over that achieved with a P2Y12 inhibitor alone, 

hypothermia or a sodium-hydrogen exchanger did induce additional protection161. 

 

Fibroblasts 

Cardiac fibroblasts are an essential component of cardiac tissue and constitute about 11% of 

total cell numbers in the adult heart162. Cardiac fibroblasts can originate from primary 

mesenchymal cells, from circulating cells such as mesenchymal stem cells or through 

endothelial-mesenchymal transition163. Thus, cardiac fibroblasts represent a heterogeneous 

cell population with distinct developmental origin, which may also determine their basal 

functions as well as their responses to stress such as IRI. Cardiac fibroblasts produce the 

extracellular matrix and secrete cytokines, chemokines and growth factors, and thereby 

interact with cardiomyocytes. For example: hypoxic fibroblast-conditioned medium enhanced 

the susceptibility of cardiomyocytes to ROS-induced mitochondrial permeability transition 

opening and reduced cardiomyocyte viability164. The ATP release by cardiomyocytes through 

the large conductance channel pannexin 1 is involved in the early phase of fibroblast activation 

during ischaemia165. The low molecular weight isoform of fibroblast growth factor (FGF) 2 is 

released from the adult mouse heart during IR and mediates cardioprotective effects during 

IRI independent from its pro-angiogenic effects even when delivered only during 

reperfusion166, 167. In response to myocardial IRI in the mouse, FGF21, another member of the 

FGF family of growth factors, is upregulated and released from adipocytes (and from 

hepatocytes) into the circulation and induces cardioprotective effects168. Fibroblasts and their 

involvement in post-infarct inflammation can serve a cardioprotective function169. Thus, there 

is a close interplay between cardiomyocytes and fibroblasts in IRI and protection from it.  

  

Inflammation 

Acute IRI in the setting of an AMI induces an initial inflammatory response (the purpose of 

which is to remove necrotic debris from the MI zone), followed by an anti-inflammatory phase 

which permits wound healing to occur. The transition between these two phases is 
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orchestrated by a finely regulated but complex interaction between multiple players within the 

heart itself (including cardiomyocytes, endothelial cells, fibroblasts) and components of the 

immune response (including neutrophils, platelets, monocytes, macrophages, dendritic cells 

and lymphocytes)170-172. Treatment addressing inflammation has been disappointing overall, 

and as such, newer treatments or the use of combination therapy are needed to target novel 

inflammatory mediators of acute IRI such as inflammasomes173, extracellular nucleic acids 

(RNA, DNA)174, 175, and neutrophil extracellular traps176, in order to attenuate the initial 

inflammatory response and/or upregulate the anti-inflammatory response to acute IRI.  

 

Nerves 

Local sensory innervation of the heart was shown in the 1990s to play a crucial role in 

ischaemic preconditioning177, myocardial function, and the transcriptomic profile of the 

heart178. Autonomic reflexes and the autonomic nerve terminals introduce variability in 

response to IRI in the human heart. The sympathetic nerve terminals also participate in 

paracrine signalling in the heart as well. Norepinephrine (NE), neuropeptide-y (NPY), 

calcitonin gene-related peptide and adenosine triphosphate (ATP) have all been proposed to 

have a direct cardioprotective potential179. Presynaptic beta-receptors might facilitate release 

of these mediators180. The widespread use of beta blockade in the clinical setting and the 

proposed role of the vagal nerve181 in RIC182 reflect our lack of complete understanding of the 

details of innervation in the human heart and the impact of innervation on acute IRI.  

 

Extracellular vesicles  

Unfortunately, so far the knowledge on the interaction between the different cell types within 

the cardiac tissue as well as on inter-organ communication is very limited. Extracellular 

vesicles (exosomes and microvesicles) are potential players in intercellular and inter-organ 

communication183. Accordingly, exosomes have been shown as potential players of 

cardioprotection by remote ischaemic conditioning158. However, it needs to be established if 

therapy by extracellular vesicles may confer cardioprotection184. 
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5. Optimising the design of experimental studies to improve the translation of 

cardioprotection into the clinical setting  

Most proof-of-concept and confirmatory experimental studies were performed in healthy and 

young animals, and demonstrated a reduction of irreversible myocardial injury by ischaemic 

conditioning interventions185. In addition, the AMI model most often relies upon external 

occlusion of a healthy coronary artery, whereas in patients, AMI is an inflammatory condition 

heralded by the rupture of an atherosclerotic plaque. However the extent of protection varied 

depending on the animal species, the experimental set-up (including the algorithm of the 

conditioning stimulus186, the extent and duration of the sustained (index) ischaemia, the mode 

of reperfusion, anesthesia etc.)103. Subsequently, many investigators realised that many of the 

signalling pathways involved in the protection by ischaemic conditioning interventions19, 130, 185, 

187 are also affected by sex, age, the presence of pre-existing coronary artery disease, co-

morbidities and co-medications (again depending on the severity and duration of the disease 

and/or co-medication)52, 187. Furthermore, some co-medications per se can reduce the extent 

of irreversible myocardial injury, thereby making the delineation of any additional 

cardioprotective effect by ischaemic conditioning strategies difficult188. Table 3 provides a 

summary of the co-morbidities (such as hypertension, LV hypertrophy, hypercholesterolemia, 

diabetes etc.) and co-medications used to treat co-morbidties which can confound 

cardioprotection and illustrates how these have been taken into account in experimental and 

clinical studies of cardioprotection. While most animal experiments on IRI and protection from 

it were performed in young and otherwise healthy (therefore un-treated) animals, patients 

recruited into clinical cardioprotection trials are usually of advanced age and have numerous 

co-morbidities and related co-medications as well as acute treatments related to AMI. 

Therfore, more studies in adequate animal models, more closely mimicking the clinical 

situation, are required. 

Indeed, aging189 and many co-morbidities (mostly of short duration, such as LV 

hypertrophy, hyperlipidaemia or diabetes) attenuated or completely abrogated the 
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cardioprotective effect of interventions when compared to healthy animals187; however, it 

should be noted that most of the (single, individual) co-morbidities were again induced in 

young animals, thereby not mimicking what does normally occur in humans (except for type 1 

diabetes or homozygous familiar hypercholesterolemia). Furthermore, in animal experiments 

co-morbidities usually remained untreated, again not reflecting what is normally observed in 

clinical practice where patients will receive at least some medication (although many of them 

are not treated according to guidelines and to target values).  

When comparing animal studies to patients undergoing CABG surgery, anesthesia per 

se might be a confounding factor for the results obtained by cardioprotective interventions. In 

fact,  propofol  in contrast to isoflurane specifically abrogated the protection by remote 

ischaemic conditioning interventions190-193. Also, patients undergoing CABG surgery in 

contrast to animals will receive cardioplegia, which impacts on the extent of irreversible injury 

per se and might affect signal transduction pathways. On the other hand, patients suffering an 

AMI undergoing PCI will not receive anaesthetics but instead will receive anti-platelet therapy 

(some of which acts directly as a cardioprotectant194-196), which is not normally applied in 

animal experiments.  

Another major shortcoming of animal studies is the lack of long-term follow-up of the 

benefits of conditioning interventions. Most animal studies determine MI size, extent of 

arrhythmias or contractile dysfunction between 2 and 24 hours after the onset of reperfusion 

and the beneficial effect of conditioning on left LV remodelling and subsequent mortality is 

largely unknown, although of utmost clinical relevance8, 19. 

There is significant inter-species variability53 in signalling events leading to 

cardioprotection by ischaemic conditioning in healthy or diseased animals, and it remains to 

be established whether signalling events demonstrated to be involved in most animal species 

can easily be transferred to cardioprotection obtained by conditioning interventions in humans.   

Where do we stand? – Conditioning interventions protect young and healthy hearts 

from subsequent IRI of almost all animal species. Age and more or less acutely induced 

(single) co-morbidities or administered co-medications attenuate the observed beneficial 
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effect of conditioning interventions. Of note, however, in patient studies, post-hoc analyses 

reveal that apart from age, none of the co-morbidities and co-medications found to be of 

importance in animal experiments significantly attenuate the cardioprotection obtained by 

conditioning interventions197-199; whether these discrepant findings are related to the fact that 

medical treatment of co-morbidities normally occuring in patients blunts their otherwise 

detrimental effect or whether the involved signalling pathways differ between animals and 

humans remains unanswered at present. Finally, the neutral result of clinical trials may be 

explained in many cases by the insufficient, inconsistent pre-clinical data on the investigated 

interventions. 

 

6. Optimising the design of clinical studies to improve the translation of 

cardioprotection  

In this section, we review the major factors which may have contributed to the neutral results 

of recent clinical cardioprotection studies in STEMI patients (Table 1) and propose strategies 

for optimising the design of future clinical studies, in order to improve the translation of 

cardioprotection. 

 

Only investigate those therapies which have shown robust and consistent 

cardioprotection in experimental studies 

In many cases, the clinical study may have been neutral because it tested a therapy which 

had shown inconsistent cardioprotection in experimental studies. Furthermore, the 

experimental data may have been limited to small animal models of acute myocardial IRI (such 

as mice, rats and rabbits), and lacked testing in clinically relevant large animal MI models of 

acute myocardial IRI (such as pig and dog)200. 

As such, future clinical studies should only test those therapies which have clearly 

demonstrated robust and consistent cardioprotection in both small and large animal models 

of acute myocardial IRI including at least one or more major comorbidities and co-medications 

(see later)187. 
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Adoption of a multi-targeted approach to cardioprotection 

In many cases, the clinical study may have been neutral because it was based on a 

pharmacological strategy directed to a single target, an approach which may be ineffective 

given that acute myocardial IRI is a complex process with different signalling cascades and 

multiple cellular players (cardiomyocytes, endothelial cells, fibroblasts, inflammatory cells, 

platelets).  

As such, a multi-targeted approach using a combination of therapies may be a more 

effective approach to cardioprotection in the clinical setting.  

 

Inclusion of STEMI patients most likely to benefit from a cardioprotective therapy  

In many cases, the clinical study may have been neutral because it included an unselected 

cohort of patients. This may have included STEMI patients less likely to benefit from a novel 

cardioprotective therapy administered prior to PPCI, such as those with pre-PPCI TIMI flow 

≥2 (patients who have spontaneously reperfused prior to PPCI)112, and a small AAR (right and 

circumflex coronary artery STEMI)201 or longer ischaemic times (up to 12 hours)202.  

As such, future clinical studies should select those STEMI patients presenting with: a 

completely occluded coronary artery (pre-PPCI TIMI flow ≤1), a large AAR (≥30% of the LV, 

usually proximal or mid LAD STEMI), and shorter ischaemic times (≤4 hours). However, this 

will clearly impact on study feasibility in terms of reducing the number of eligible patients for 

inclusion in the study. 

 

Optimise the timing of the cardioprotective therapy. 

In some cases, the clinical study may have been neutral because of the incorrect timing of the 

intervention. For example, although experimental data had suggested that therapeutic 

hypothermia was only effective when applied prior to the index ischaemia and not at the onset 

of reperfusion203, clinical studies tested therapeutic hypothermia as a cardioprotective strategy 

at the time of reperfusion. In order to prevent myocardial reperfusion injury, which occurs in 
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the first few minutes of reperfusion, it is essential to apply the cardioprotective intervention 

prior to PPCI; most clinical studies have taken heed of this but it is unclear whether or not the 

dose achieved is optimal at the time of reperfusion. 

As such, future clinical studies should take into account the results of experimental studies 

with respect to timing of the cardioprotective therapy.  

 

Optimise the dose of the cardioprotective therapy. 

In many cases, the clinical study may have been neutral because of an incorrect dose of the 

cardioprotective therapy. It is clear from experimental studies that the dose of the novel 

therapy can impact on its cardioprotective efficacy186, 204. In most cases the most effective dose 

of the novel cardioprotective therapy has not been optimised in either experimental or clinical 

studies – crucially there is an obvious lack of phase II studies in the field of cardioprotection. 

The optimum dose for cardioprotection in experimental studies must be determined and 

adequate phase 2 dosing clinical studies be undertaken in order to increase the likelihood of 

translating cardioprotection into the clinical setting.  

 

Take into account the confounding effects of co-morbidities and co-medications given 

to STEMI patients 

In many cases, the clinical study may have been neutral because of multiple comorbidities, 

and co-medications that are commonly given to STEMI patients treated by PPCI the presence 

of which may have either attenuated the beneficial effects of the cardioprotective therapy or 

might have induced cardioprotection themselves. These include drugs such as nitrates, 

P2Y12 platelet inhibitors, statins, opioids and so on, all of which have been shown to exert 

cardioprotection by themselves and thereby mask any additional beneficial effects of 

endogenous cardioprotective strategies such as ischaemic conditioning159-161, 187. However, in 

future clinical cardioprotection studies, it will not be possible to omit co-medications such as 

platelet inhibitors, given that they are essential for the management of STEMI patients treated 
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by PPCI. What can be done is to test the proposed cardioprotective therapy in animals treated 

with these co-medications to ensure an additive effect can be achieved161. 

As such, experimental studies should take into account comorbidities and co-

medications when testing novel cardioprotective therapies (also see section 6). 

 

Use relevant endpoints for cardioprotection  

In some cases, the clinical study may have been neutral because of the wrong choice of 

endpoint used to assess the cardioprotective efficacy of the novel therapy. In proof-of-concept 

clinical studies of cardioprotection in STEMI patients, acute MI size measured by serum 

cardiac biomarkers, myocardial SPECT or more recently CMR, has been used to assess the 

cardioprotective efficacy of novel therapies. For assessing long-term effects of 

cardioprotection, echocardiography and CMR have been used to assess final MI size and 

adverse LV remodelling (LV volumes and ejection fraction). Although myocardial salvage 

(AAR subtract MI size) is a more sensitive measure than absolute reduction in MI size for 

assessing cardioprotection, there is currently no generally accepted and available in vivo 

measure of the AAR in reperfused STEMI patients. Myocardial SPECT is the only validated 

measure of myocardial salvage, and it has been utilized in multiple randomized clinical trials. 

However, SPECT is logistically challenging, expensive, and includes radiation exposure. 

Limitations include: No distinction between new and old perfusion defects; lack of resolution 

to detect subendocardial infarcts; and requirement for two examinations. T2-weighted CMR 

has been more recently proposed to retrospectively delineate the AAR in reperfused STEMI 

patients although there is controversy over the use of oedema-based AAR by T2-weighted 

CMR205. As such, the most robust measurement for acute MI size is mass of new late 

gadolinium contrast enhancement (LGE) on CMR as a percentage of LV mass. After 

establishing efficacy with a particular intervention, it is necessary to demonstrate improved 

clinical outcomes before changing clinical practise. In clinical outcome studies of 

cardioprotection in STEMI patients, it is essential to focus on endpoints such as cardiac death 

and hospitalisation for heart failure which are more relevant to cardioprotection, although one 
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may consider also potential vascular effects of ischaemic conditioning on other MACCE such 

as repeat MI and coronary revascularisation. Furthermore, how concomitant microvascular 

disease (hypertension, diabetes, rheumatoid arthritis) affects the techniques that are used for 

endpoint evaluation in humans is not known and requires further investigation.      

 

Although in this section we list those factors which should be taken into consideration when 

designing clinical cardioprotection studies, this may not always be possible or feasible in the 

clinical setting, highlighting the challenges in trying to balance optimising study design and 

clinical reality.  

 

7. Recommendations for improving future experimental cardioprotection studies 

As discussed in the above chapters, most patients suffering from acute  myocardial IRI are of 

advanced age and have multiple co-morbidities, including hypertension, LV hypertrophy, 

hypercholesterolemia, diabetes, have had a previous MI with subsequent LV remodelling, 

have developed heart failure, or all of the above. Given their multiple co-morbidities, patients 

also receive extensive chronic medication (β-blockers, ACE [angiotensin converting enzyme] 

inhibitors, AT1 [angiotensin II type 1]-receptor antagonists, L-type calcium channel 

antagonists, statins, sulfonylureas, metformin, GLP (glucagon-like petide1)-antagonists, 

aspirin etc). In addition, during the acute ischaemic event they will probably receive nitrates, 

P2Y12-receptor antagonists, and opioids18, 187.  

These patients may or may not benefit from cardioprotective interventions, but the 

prediction of protection derived from experimental research is difficult since adequate animal 

models mimicking the clinical scenario do not exist and are difficult to develop19. As such, the 

translation from bench to bedside could be improved if experimental studies were more 

appropriately designed206; e.g. by the selection of an adequate animal species: there is no 

doubt that a large animal model of MI that better mimics the clinical situation (taking into 

account sex, age, co-morbidities, co-medications and long term reperfusion models) 200. 

Furthermore, selection bias and publication of only positive results should be avoided which 



CVR-2016-984 

27 
 

could be achieved by pre-registration of experimental studies (like done in clinical trials).  Also 

in experimental trials the use of appropriate statistical tests needs to be assured207. Below is 

a list of recommendations for studies to be performed in the experimental work-up of a novel 

cardioprotective therapy after target validation using in vitro/ex vivo models but prior to testing 

in the clinical setting. 

 

Recommendations: 

1. In vivo small animal (acute and chronic MI size, heart failure development, mortality) 

2. In vivo large animal model of acute myocardial IRI (acute and chronic MI size, heart 

failure development, mortality) 

3. Investigate whether age or treated major co-morbidities such as diabetes mellitus, 

hypercholesterolemia, or obesity confound cardioprotection  

4. Consider human heart tissue models of acute IRI (such as e.g. human atrial tissue, 

cell-based human heart tissue models or include human stem cell-derived 

cardiomyocytes)126, 208, 209  

5. Multicentre experimental testing of novel cardioprotective therapy using standardised 

protocols in small and large animal MI models with one or more co-morbidities (such 

as age and/or diabetes)(see below). 

 

Adopting a multicentre approach to cardioprotection 
 
Due to the competitive nature of innovation at early pre-clinical stages, collaborative pre-

clinical development is challenging. Nevertheless, using a multi-centre blinded placebo-

controlled approach, the NIH Consortium for Preclinical Assessment of Cardioprotective 

Therapies (CAESAR) consortium16 failed to find a reduction in MI size by sildenafil or sodium 

nitrite when administered at reperfusion in either mice, rabbit, or porcine MI models210, 211, 

despite several single centre studies in small animal MI models reporting cardioprotection with 

these agents, suggesting inadequate blinding in the latter studies and that the therapies did 

not confer robust cardioprotection. This may explain, in part, why the corresponding clinical 
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studies in STEMI patients failed to find a positive cardioprotective effect with sodium nitrite212, 

213. So, why have we not moved forward with such an investigative team model yet? The need 

for extensive funding and facilities to develop such models could only be made feasible if 

researchers in the field join forces together and apply for a specific large funding scheme such 

as HORIZON 2020. The neuroprotection field has come to the same conclusion, with the 

Multicentre Preclinical Animal Research Team (Multi-PART), which is an international 

collaborative approach to overcome the translational roadblock in neuroprotection and 

neuroregeneration research, and whose overall objective was to discuss how to develop the 

capacity to undertake international multicentre animal studies. Thus, although pre-clinical 

studies may demonstrate the therapeutic potential of an intervention, clinical trials should not 

be initiated before their cardioprotective effects are confirmed in multi-centre pre-clinical 

studies. 

 

8. Recommendations for improving future clinical cardioprotection studies 

The design of the clinical cardioprotection study is crucial to the success of the study. In this 

section, we provide a list of recommendations for improving the translation of cardioprotection 

in the clinical setting for patient benefit.   

 

Proof-of-concept efficacy Phase 2 studies in STEMI patients 

 Only investigate those treatment strategies, which show robust and consistent 

cardioprotection in the experimental settings detailed above. 

 Consider the influence of major co-morbidities and co-medications on the cardioprotective 

efficacy in patient selection. Pre-specified, adequately powered, subgroup analyses may 

determine the effects of these confounding factors on cardioprotection. 

 Where possible use multicentre randomised placebo-controlled double blind trial design. 

 Only include STEMI patients with the following inclusion criteria: 

<4 hours of ischaemic symptom onset 
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Large AAR (for example proximal to mid-LAD STEMI) 

Completely occluded coronary artery (pre-PPCI TIMI flow ≤1) with post-PPCI TIMI  

flow>2  

Consider excluding patients with significant coronary collateralisation to the AAR as 

this may attenuate the cardioprotective effects of the therapy 

Consider including high-risk STEMI patients with cardiogenic shock, if technically 

possible, given that they benefit most from a cardioprotective therapy 

 Consider phase 2 studies to optimise the most effective dose before testing for clinical 

efficacy  

 Ensure that the therapy is administered prior to reperfusion and that it achieves therapeutic 

concentrations at the time of PPCI 

 Use clinical endpoints which are relevant to cardioprotection for acute studies (i.e. acute 

and chronic MI size, adverse LV remodelling (LV size and ejection fraction) 

 

Clinical outcome Phase 3 studies in STEMI patients 

As above plus  

 Use clinical endpoints which are relevant to cardioprotection for clinical outcome studies 

i.e. cardiac death and hospitalisation for heart failure 

 

9. Conclusions 

The translation of cardioprotection into the clinical setting for patient benefit has been both 

challenging and disappointing. However, the failure to find a cardioprotective therapy despite 

30 years of research should not put into doubt the existence of myocardial IRI as a viable 

target for cardioprotection, but should rather highlight the difficulties in translating novel 

cardioprotective therapies from the over-simplified animal MI models we all use into the 

complex clinical reality of a reperfused STEMI patient. Therefore, in order to improve the 

translation of cardioprotection into the clinical setting, we need to improve the design of the 
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experimental and clinical studies, and in this Position Paper we have proposed some 

recommendations for working towards this. However, the feasibility of achieving this has to be 

counterbalanced by the reality of undertaking experimental and clinical MI studies. 
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Figure 1 

Myocardial ischemia/reperfusion injury affects many cell types which then signal to 

cardiomyocytes. Cardiomyocyte injury occurs at the level of the sarcolemma, myofibrils, 

sarcoplasmic reticulum (SR), mitochondria and the nucleus. EC: endothelial cells, VSMC: 

vascular smooth muscle cells. 
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Table 1 Major recent cardioprotection studies in STEMI patients which have had neutral results 

Study Treatment 
strategy 

Main findings Experimental  and 
clinical data 

Patient 
population 

Timing of 
treatment 

 

Why the clinical study may have failed to show 
cardioprotection 

Lincoff et al 
2014 
PROTECT-MI214 

Delcasertib 
 

PKC-δ inhibitor which 
prevents apoptotic cell 

death 

1010 patient study 
with no effect of IV 

infusion of Delcasertib 
at 3 different doses on 

acute MI size  
(AUC CK-MB)  

Positive small and large animal 
data.  

Inconsistent cardioprotection in 
experimental studies215 

One positive small proof-of-
concept clinical study216 

Ischaemic time ≤6 hrs 
Large AAR 

Included TIMI>1 
 

2.5 hr infusion 
initiated prior to 

PPCI 

Single targeted approach 
Inconsistent cardioprotection in experimental studies 
Drug given IV although initial POC study used IC route 
Patient population not optimised 
 

Erlinge et al 
2014 CHILL-
MI217 

Therapeutic hypothermia 120 patient study with 
no effect of 
therapeutic 

hypothermia on acute 
MI size  

(by CMR 2-6 days) 

Positive small and large animal 
data but not protective at 

reperfusion203  
One positive small proof-of-

concept clinical study218  

Ischaemic time ≤6 hrs 
Small and large AAR 

Included TIMI>1 
 

Therapeutic 
hypothermia for 
1  hour initiated 

prior to PPCI 
(delay in PPCI 

by 9 min) 

Experimental data showed not protective at reperfusion 
Patient population not optimised 

Siddiqi et al 
2014 NIAMI212  

Nitrite 
 

Nitric oxide donor 
targeting cGMP/PKG 

cardioprotective pathway 

229 patient study with 
no effect of IV nitrite 

(70μmol) on acute MI 
size  

(by CMR 6-8 days) 
 

Positive small and large animal 
data, but neutral in NIH CESAR 

multicentre testing211 

Ischaemic time <12 hrs 
Small and large AAR 

TIMI≤1 
 

5 min bolus  
prior to PPCI 

Single targeted approach 
Inconsistent cardioprotection in experimental studies 
Patient population not optimised 
Dose not optimised 
>90% of patients received GTN prior to IV nitrites 
 

Jones et al 
2015213 

Nitrite 
 

Nitric oxide donor 
targeting cGMP/PKG 

cardioprotective pathway 

80 patient study with 
no effect of IC nitrite 

(1.8μmol) on acute MI 
size (by total CK) 

 
In patients with 

TIMI≤1 there was a 
reduction in MI size 

Positive small and large animal 
data, but neutral in NIH CESAR 

multicentre testing211 

Ischaemic time ≤6 hrs 
Small and large AAR 

Included TIMI>1 
 

Nitrite bolus  
given after 

crossing lesion 
with guidewire 

Single targeted approach 
Inconsistent cardioprotection in experimental studies 
Patient population not optimised 
Dose not optimised 
 
 

Atar et al 2015 
MITOCARE219 

TRO40303 
 

Mitochondrial agent 
targeting translocator 

protein 

163 patient study with 
no effect of IV 

TRO40303 on acute 
MI size (by 72 hr AUC 

CK and TnI) 

Positive small animal studies 
only220 

 

Ischaemic time ≤6 hrs 
Small and large AAR 

TIMI≤1 
 

TRO40303 bolus 
Prior to PPCI 

Single targeted approach 
Dose in clinical study lower than experimental studies 
Patient population not optimised 
Dose not optimised 
Higher rate of cardiac events in the TRO40303 group. 

Gibson et al 
2015 EMBRACE 
STEMI221 

MTP-131 
 

Mitochondrial peptide 
targeting cardiolipin 

 

118 patient study with 
no effect of IV MTP-

131 infusion on acute 
MI size (by 72 hr AUC 

CK-MB) 

Positive small and large animal 
studies222  

 

Ischaemic time ≤4 hrs 
Large AAR 

TIMI≤1 
 

MTP-131 
infusion initiated 

Prior to PPCI 

Single targeted approach 
Dose not optimised 
 

Cung et al 2015 
CIRCUS4 

Cyclosporin-A 
 

Mitochondrial 
permeability transition 

pore inhibitor 
 

970 patients study 
with no effect of IV 

cyclosporine-A on one 
year clinical endpoints 
(death , heart failure, 

and adverse LV 
remodelling) 

Positive small and large  animal 
studies 

Inconsistent cardioprotection in 
experimental studies223-225 

One positive small proof-of-
concept clinical study71 

Ischaemic time<12 hrs 
Large AAR 

TIMI≤1 
No collaterals 

CsA bolus prior 
to PPCI 

Single targeted approach 
Inconsistent cardioprotection in experimental studies223, 225 
Not effective in co-morbidity animal model 
Dose not optimised 
Patient population partially optimised 
Greater use of P2Y12 platelet inhibitors (prasugrel, ticagrelor) which are known 
to reduce MI size per se159 

Latini et al 2016 
CYCLE226  

Cyclosporin-A 
 

Mitochondrial 
permeability transition 

pore inhibitor 

410 patients study 
with no effect of IV 

cyclosporine-A on ST-
segment resolution  

 

Positive small and large  animal 
studies 

Inconsistent cardioprotection in 
experimental studies223-225 

One positive small proof-of-
concept clinical study71 

Ischaemic time ≤6 hrs 
Small and large AAR 

TIMI≤1 
 

CsA bolus 5 min 
prior to PPCI 

Single targeted approach 
Inconsistent cardioprotection in experimental studies 
Dose not optimised 
Patient population not optimised 
Greater use of P2Y12 platelet inhibitors (prasugrel, ticagrelor) which are known 
to reduce MI size per se159 

Janssen et al 
2015 NOMI 
(NCT01398384) 
 

Inhaled nitric oxide 
(vasoKINOX 450) 

 
Targets cGMP/PKG 

cardioprotective pathway 

250 patients study 
with no effect of 

inhaled nitric oxide on 
acute MI size (by 

CMR day 3)  
 

No animal data with inhaled nitric 
oxide 

 Ischaemic time <12hrs 
Small and large AAR 

Included TIMI>1 
Collaterals not excluded  

Inhaled nitric 
oxide for 4 hours 
initiated prior to 

PPCI 

Single targeted approach 
Lack of experimental data 
Dose not optimised 
Patient population not optimised 
Prior use of GTN may have interfered with cardioprotection as reduction in MI 
size observed in those patients who had not received GTN in the ambulance 
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Engstrom et al 
2016 DANAMI-3 
IPOST46 

Ischaemic 
postconditioning 

 

617 patients study 
with no effect of IPost 

(4x30 sec) on 38 
month clinical 

endpoints (death, 
heart failure) 

Positive small and large  animal 
studies14, 227, 228 

Inconsistent cardioprotection in 
clinical studies44, 45 

Ischaemic time <12 hrs 
Small and large AAR 

Included TIMI>1 
 

At time of 
reperfusion 

Patient population not optimised 
Inconsistent cardioprotection in previous clinical studies 
IPost protocol not optimised  
Study underpowered to detect improvement in clinical outcomes. 

Roolvink et al 
2016 Early 
BAMI69 

Metoprolol 
 

Reduces myocardial 
oxygen consumption 

342 patients study 
with no effect of IV 

metoprolol (2x5mg) on 
MI size on CMR at 30 

days 

One positive large animal study66 
One positive proof-of-concept 

clinical study67 

Ischaemic time <12 hrs 
Small and large AAR 

Included TIMI>1 
 

At time of 
reperfusion 

Patient population not optimised 
Therapy more effective when given in ambulance 
Dose used less than that used in prior positive study67  
 

Roos et al 2016 
EXAMI40 

Exenatide 
 

GLP-1 analogue which 
activates pro-survival 
signalling pathways 

91 patients study with 
no effect of IV 

exenatide on MI size 
on CMR at 1 month 

over AAR acutely (T2 
CMR)  

Positive small and large  animal 
studies33, 34 

2 previous positive clinical 
studies36, 37 

TIMI≤1 
 

Prior to 
reperfusion 

Patient population not optimised 
Dose used different from prior positive studies36, 37  
 

Verouhis et al 
2016 RECOND61 

Remote ischaemic 
conditioning 

 
 

93 patient study with 
no effect of lower limb 
RIC (variable cycles 

up to 7 until PPCI 
completed) on 

myocardial salvage 
index (day 4-7 CMR) 

Positive small and large  animal 
studies229 

6 previous positive clinical 
studies54-59 

Ischaemic time <6 hrs 
Large AAR 

Included TIMI>1 
 

At least one RIC 
cycle prior to 
reperfusion 

Patient population not optimised 
Variable number of RIC cycles used whereas most positive clinical studies only 
gave 4 cycles  
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Table 2. Checklist of criteria to consider when identifying a functionally important 

therapeutic target for clinical translation. 

 Is the target present and functional at or before reperfusion? 

 Has the target been validated in large animal models that simulate the clinical setting? 

 Has the target been validated in human myocardium? 

 Is the target affected by age or gender? 

 Is the target functional in the presence of co-morbidities and co-medications (including 

anaesthetics)? 

 Is the target amenable to drug-based or physical manipulation? 

 Is the appropriate drug concentration achieved within limits of toxicity?  

 Is the target appropriate in isolation or should it be combined with another target (i.e. 

broad spectrum approach)? 
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Table 3: Summary of major counfounders reported to influence the cardioprotective 

effiacy of ischaemic conditioning 

Confounders Animal studies on 
conditioning 

Human trials on 
conditioning 

Age Young  Middle aged, old 

Co-morbidities 
0 
1 
>1 

 
Most 
Some 
None 

 
Rare 
Some 
Most 

Duration of disease and  
co-morbidities 

Short Long 

Co-medications for 
co-morbidities 
0 
1 
>1 

 
 
Most 
Some 
None 

 
 
Rare 
Some 
Most 

Acute treatments 
related to  intervention 

None Most 
(except CABG) 

Anesthesia Most Some (CABG) 

Endpoints 
Function 
Infarct size 
Prognosis 

 
Many 
Most 
Rare 

 
Many 
Many 
Rare, mostly retrospective 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


