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ABSTRACT 

Biomaterial science is a very active area of research, which has allowed the successful use of implants in the 

orthopaedic field for over a century. However, implant infection remains a clinical concern as it is associated 

with extensive patient morbidity and a high economic burden, which is predicted to increase due to an ageing 

population. Bacteria are able to adhere, colonise and develop into biofilms on the surface of biomaterials 

making associated infections physiologically different to other post-surgical infections. Unfortunately, biofilms 

exert increased protection from the host immune defence system and an increased resistance to antibiotic 

therapy in comparison to their planktonic counterparts. The aim of this review paper is to assess the current 

knowledge on treatments, pathogenesis and the prevention of infections associated with orthopaedic implants, 

with a focus on total hip arthroplasty.  
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1. Introduction  

Biomaterials have been extensively used as orthopaedic implants for over a century. The early 1900s saw the 

first successful application through use of metallic bone plates for fixation of long bone fractures1. Since then, 

prosthetic implants or catheters for example, have become commonplace in medical practice. Biomaterial 

science has made dramatic improvements in the structural design, functionality and biocompatibility of implants 

however, infection continues to be a significant clinical complication.  

 

When Sir John Charnley developed the low-friction hip arthroplasty in the UK during the early 1960s he was 

aware of the risk of infection and recognised its importance by introducing antibiotics such as gentamycin into 

the bone cement; developed an enclosure that isolated the operating theatre from the rest of the room into which 

filtered air could be passed the so called “Charnley tent” and developed a full-body gown that incorporated an 

exhaust system2. In 1969, John Charnley reported an infection rate of 9.5% following total hip arthroplasty 

(THA)3.  In comparison, contemporary reports of infection in THA vary between 1 to 2%4. This large fall in the 

rate of infection is due to a number of factors: improved patient selection, laminar airflow operating rooms, 

protocols of perioperative antibiotic prophylaxis and an improved generic understanding of the importance of 

sterilisation5. Despite the fall in the rate of infection in the last decades, acquisition of infection is still a clinical 

concern associated with extensive patient morbidity and a high economic burden. Infection has been identified 

as the most common cause of failure of revision THA, which have steadily increased in recent years and are 

forecast to substantially grown over the next decades as the number of primary THA increases due to an ageing 

population6.  

 

Infections associated with orthopaedic implants are physiologically different to other post-surgical infections 

due to the physical presence of the biomaterial itself. Bacterial cells are able to adhere, colonise and develop 

into biofilms on the implant surface. A biofilm consists of a cluster of bacterial cells embedded and surrounded 

within their own extracellular matrix (ECM)7-9. Biofilms protect bacteria from the host immune defence (HID) 

system and also increase bacterial resistance to antibiotic therapy when compared to their planktonic 

counterparts8-10. The aim of this review paper is to assess current knowledge on treatments, pathogenesis and 

prevention of infections associated with implants used in total hip arthroplasty.  
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2. Classification of infection and treatment 

Infection may be classified as early, delayed or late. Early infections, which appear within 3 months of surgery, 

are predominantly a result of perioperative inoculation of highly virulent microorganisms during the surgical 

procedure or following 2 to 4 days prior to complete wound healing. Delayed infections appear between 3 and 

24 months post-surgery. They are also primarily associated with perioperative bacterial inoculation although 

they are generally caused by less virulent microorganisms, thus the longer latency time prior to establishment of 

the infection. Late infections, after 24 months post-surgery, are more commonly associated with contiguous and 

haematogenous acquisition from remote foci of infection. The most frequent foci for late infections are skin, 

respiratory, dental and urinary infections11,12. However, as perioperative antibiotics have been shown to reduce 

the rate of acquisition of late infections, surgical inoculation must contribute in part13.  

 

The long-term use of antibiotics for periprosthetic joint infections (PJI) as a suppressive therapy was advocated 

for approximately 2 decades14. The landmark study by Goulet et al. in 1988 yielded the most successful results 

to date: at a mean of 4 years post-surgical intervention for THA, the prostheses were reported as having 

remained in place with good functionality in 63% of the patients selected for the study15. Patients selected for 

the suppressive therapy were those who refused operative treatment, were unfit for surgical intervention, had 

bacterial infections sensitive to multiple antibiotics, had a deep wound infection within 2 months of the primary 

THA or any combination of these factors15. Suppressive therapy has clear benefits namely low patient morbidity 

and economic burden associated with treatment. However, bacterial evolution is surpassing that of antibiotic 

development and consequently the armoury of antibiotics at the disposal of clinicians is becoming limited 

against increasingly resistant bacterial strains. The emergence of resistant microorganisms, coupled with the 

innate ability of biofilms to evade the HID system, means that antibiotic suppressive therapy alone is no longer 

effective as a suppressive treatment for PJIs16. Therefore, surgical intervention is currently the only definitive 

treatment for PJIs.  

 

Regardless of the chosen surgical intervention, operative debridement and perioperative antibiotic therapy are 

mainstays of treatment protocol. The extent of parenteral antibiotic therapy varies within the literature but 

generally spans between 4 and 6 weeks17-19. A paper by McDonald and colleagues reported on a retrospective 

cohort study of revision patients at the Mayo Clinic compared the reinfection rates of patients receiving less than 

4 weeks of parenteral antibiotic therapy with those receiving equal to or greater than 4 weeks17. 43% patients in 
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the former group compared to only 8% patients in the latter group developed a recurrent infection17. A report by 

Garvin et al. investigated 40 patients who underwent unilateral revision surgery each administered with 6 weeks 

of intravenous antibiotics.  Results showed that only 2 of the 40 hips (5%) developed recurrent infection at an 

average follow-up of 5 years19. Apart from antibiotic therapy and operative debridement, the most appropriate 

surgical intervention must be selected based on strict patient criteria: retention of the prosthesis, re-implantation 

either by a one or two-staged process, permanent resection arthroplasty or amputation (Table 1)20-23. For the 

majority of patients re-implantation is the intervention performed as either a one-stage, direct, or two-stage 

exchange procedure22, which is considered the “gold standard” as it is thought to yield the lowest re-infection 

rates24. 

 

 

 

Table 1: Patient criteria for retention, permanent resection arthroplasty and amputation interventions for total 

hip arthroplasty complicated by infection21-23. 

 

Intervention Patient Criteria 

Retention 1. Well fixed prosthesis without a sinus tract 

2. Infection occurred within 30 days of primary implantation or within 3 weeks 

of onset of infectious symptoms  

3. Absence of excessive scar tissue from previous operative procedures 

4. Culture showing gram-positive organisms that are sensitive to antibiotics 

Permanent resection 

arthroplasty 

1. Non-ambulatory patients 

2. Limited bone stock or poor soft tissue coverage 

3. Infections of highly resistant organisms for which there is no appropriate 

medical therapy 

4. Poor surgical candidate for multiple alternative therapies 

5. Patients that have failed a previous 2-stage exchange in whom the risk of re-

infection after an addition exchange is deemed too high 

Amputation 1. Patients unfit for any alternative treatment in whom emergency elective 

surgery is crucial 
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However, assessment of results identified from the literature revealed one core problem with the current 

treatment: it is based on an abundance of poorly constructed, small sample sized studies, the majority of which 

represent short- or mid-term Level IV evidence (case series). Dramatic variation in case series inclusion criteria, 

such as extent of antibiotic treatment, and underlying patient demographics, make any comparison between 

series futile. No randomised controlled trials have yet been performed comparing the 2 interventions. Two 

systematic published reviews, which compiled the longitudinal studies and case series, each according to 

different inclusion criteria, found no significant difference in reinfection rates, reported at approximately 10%, 

between one- and two-stage procedures25,26. Although eradication of infection does represent an important end-

point, success of treatment must incorporate a balance between overall risk and achieved outcome. A Markov 

expected-utility decision analysis, taking into account factors other than the pure outcome of reinfection rates, 

found the direct exchange procedure to be superior to the two-stage procedure in terms of overall Quality 

Adjusted Life Years delivered to patients27. Nevertheless, there is an urgent need for a well designed, 

multicentre, randomised controlled trial comparing the two interventional treatments.   

 

3. Economic analysis of total hip arthroplasty complicated by infection 

Although several small-scale analyses have contributed to this research area, to date, no formal comprehensive 

economic analysis exists for THA complicated by infection in the UK. According to the National Joint Registry 

620,400 primary THA procedures have been performed between 2003 and 201328. Of the reported cases, 14,903 

(2.4%) implants have been revised, with 2,072 (13.9%) of these revisions accountable to infection. It is 

important to take into account that the reported infection rates are likely under-estimates, as many cases of 

presumed aseptic failure are in fact accountable to misdiagnosed infection29. The revision rate varies depending 

on the type of total hip replacement: a retrospective cohort study Kandala et al. recently analysed 239,000 

patient records from April 2003 to March 2012 held by the National Joint Registry for England and Wales and 

found that 10 year revision rate estimates were highest for uncemented prostheses with ceramic-on-ceramic 

bearing surfaces (3.93-4.33%, depending on the analytical method used) while cemented prostheses with 

ceramic-on-polyethylene bearing surfaces had the lowest revision rates (1.88-2.11% depending on the analytical 

method used)30. 
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The acquisition of a PJI incurs a number of additional costs to health service providers including preoperative 

evaluation, revision procedure, increased length of post-operative stay (LPS), and any required additional 

physiotherapy. It has been estimated that the increase in the LPS for patients receiving treatment for THA 

complicated by infection compared to those receiving a primary THA is 11.5 days, costing £3,34231. When 

extrapolated to all cases of revision in the UK recorded in the National Joint Registry, this adds up to 23,828 

days of hospitalisation and an economic burden of almost £7,000,000.  

 

Klouche and colleagues assessed the economic implication of infected THA in France32. Whilst direct costs are 

not comparable to those in other countries, relative increases in costs between primary THA and revision 

procedures are relevant. The group reported an increased LPS, 24 versus 6 days, and an increased rate of 

transfer to hospital for post-operative care and physiotherapy, 65% versus 55%, for revision versus primary 

THA procedures respectively. The relative increase in total cost of the revision procedure and associated 

treatment was found to be 3.3 times higher than that of a primary THA32.  

 

Ultimately, there is a clear inadequacy of current treatment with regards to the degree of patient morbidity, the 

economic burden it imposes on the National Health System (NHS), the high re-infection rates associated with 

revision procedures and the poor quality evidence that current treatment is based upon. A rapid rise in PJI rates 

is expected in the foreseeable future. This is due to better diagnostic techniques, a growing number of implanted 

prostheses in an aging population and an increased prosthetic residency time33. It is expected that by 2035 23% 

of the total UK population will be over 65, a 6% increase from 201034. In the US, it was estimated that total hip 

replacements would grow by 174% from currently over 300,000 annually to 572,000 by 2030, with total hip 

revision projected to grow by 137%35,36. Similar percentages could be expected for the UK. 

 

While current management of infected THA has been effective, its application is finite, and focus must be put 

on prevention rather than treatment before the expected exponential rise in PJIs surpasses NHS resources and 

becomes an unaffordable economic burden for the UK.  

 

4. Pathogenesis of infections associated with implants 

The space between the biomaterial and the surrounding local tissues, the interstitial milieu, is characterised as a 

locus minus resistentiae, which literally means “place of less resistance”, and is often referred to as an immuno-
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incompetent fibro-inflammatory zone. This phenomenon has been demonstrated by several experimental models 

where the presence of foreign material within a surgical site allows the establishment of infection at 

significantly lower microbial critical doses37. The impaired HID allows for surface colonisation by microbes of 

lower virulence potential, giving rise to an environment for opportunistic infection38. Thus, the higher infection 

rates associated with biomaterials when compared to common surgical site infections is explained by the 

increased susceptibility to infection in the presence of a biomaterial39. In addition to the impaired HID, certain 

biomaterials and/or superficial coatings can physically, chemically and biologically support and enhance 

microbial growth40-44. Coatings and biomaterial surfaces often incorporate superficial pores in order to 

encourage ingrowth of host tissue into the implant thus mediating successful integration45,46. Unfortunately, 

these pores constitute superficial niches that physically protect microbes from phagocytic cells. Bio-resorbable 

biomaterials can locally dissipate nutrients over time that may be used by bacteria to support their own growth 

and proliferation40-43. Moreover, metallic ions released from certain metals, comprised within biomaterials and 

coatings, have been shown to chemically enhance microbial function by altering internal metabolic processes for 

several microbial species44.  The incidence of infection in patients who are immunocompromised  rises.  For 

example patients receiving chemotherapy after removal of a bone tumour show increased levels of infection, 

which may be as high as 11%47.  This may also be associated with the longer operative time and poor soft tissue 

coverage but nevertheless the immunological health of the patient is important. Recent reports on the incidence 

of infection in metal on metal hip replacements suggest that infection may be higher than with more 

conventional hip replacements and this has been attributed to a combination of particulate debris, molecular 

effects of Co and Cr ions on soft tissues, and/or products of corrosion that may change the local environment 

predisposing to infection48,49. 

 

As mentioned earlier, the presence of the biomaterial itself, which provides a surface that serves as anchorage 

for microbes and subsequent biofilm formation, constitutes the problem with regards to establishment of 

infection50. Bacteria involved in biofilm formation show increased protection from the HID system as well as an 

enhanced therapeutic resistance10. Therefore, adherent bacteria in biofilms are significantly harder to eradicate 

through the use of antibiotics in comparison to their planktonic counterparts, thus the need for surgical removal 

of a substantial proportion of infected implants16. 
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4.1 Biofilm formation 

Understanding biofilm development is mandatory for a critical analysis of strategies aimed at eradicating or 

preventing biofilm formation. Distinct stages in the biofilm formation process can be identified (Table 2). 

 

Stage Mechanisms Function 

-Host ECM proteins (i.e. collagen 

fibrinogen, fibronectin, elastin) 

colonise the biomaterial surface. 

-Vroman effect: serum proteins with the 

highest motility arrive first at the 

biomaterial surface and subsequently 

absorb onto it, but are later replaced by 

proteins with less motility and higher 

affinity for the biomaterial surface. 

-Attachment of host cells from local tissue 

and secretion of ECM. 

-Pre-conditioning of the 

biomaterial surface. 

-Attachment of bacteria to the host 

ECM proteins. 

-Expression of adhesins which mediate cell 

anchorage and fixation. 

-Formation of bacterial 

micro-colonies on the 

biomaterial surface. 

-Production of an extracellular 

polymeric biofilm matrix that 

encapsulates the cells. 

-Bacterial cells secrete eDNA, lipids, 

exopolysaccharides and extracellular 

proteins with amyloid (insoluble fibrous 

protein aggregates) properties able to 

polymerise into higher-order structures. 

-Different biofilm components have 

different functions: bacteria-host cells 

interaction, protection, adhesion. 

-Provide protection and a 

means of evading the host 

immune response. 

-The biofilm reaches its critical 

capacity and is disrupted, releasing 

excess bacteria from the matrix that 

either pass to adjacent areas of un-

colonised biomaterial surface or into 

the bulk fluid as planktonic bacterial 

cells. 

-Not understood yet. 

-In staphylococci, Quorum sensing (control 

of gene expression in a cell-density 

dependent manner) and surfactant peptides 

structure biofilms both in vitro and in vivo 

and lead to biofilm detachment. 

-Propagation of infection. 

 

 Table 2: Summary of mechanisms and functions of the different stages involved in biofilm formation51-80. 
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Before biofilm formation, host ECM proteins colonise the biomaterial surface, a phenomenon that is principally 

governed by the Vroman effect, where the highest motility serum proteins arrive first and adsorb onto the 

biomaterial surface, being later replaced by less motile serum proteins with higher affinity for the biomaterial 

surface51,52. In addition to the Vroman effect, host cells from the local tissue attach to the biomaterial surface 

and start depositing an ECM. The host ECM contains proteins such as collagen, fibrinogen, fibronectin or 

elastin, to which bacterial cells adhere through the expression of adhesins, which mediate cell anchorage and 

fixation53. Several of these active adhesive mechanisms are regarded as critical virulence factors and are 

frequently considered for characterisation of clinical isolates in studies of molecular pathogenesis. Bacterial 

strains that do not produce an ECM are comparatively less adhesive. Therefore, they are less likely to cause a 

chronic implant infection54. A study by Davies and Geesey showed that bacterial transcription factors associated 

with ECM production, such as those coding for alginate biosynthesis, are activated and up-regulated in response 

to attachment to a solid surface55. Thus, it can be concluded that is the bacterial attachment itself that initiates 

the subsequent stages in the biofilm formation and maturation process. 

 

Attached bacteria proliferate and form micro-colonies. Initial attachment to the surface of an implant is 

important and can differ between different bacteria. A surface colonised by Staphylococcus aureus  is 

“decorated” with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional 

analysis has identified four distinct classes of surface proteins, of which microbial surface component 

recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have 

numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses 

and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. 

aureus in the commensal state56.  Pseudomonas aeruginosa expresses a mucoid exopolysaccharide matrix with 

alginate as a major component, lipopolysaccharide (LPS)57,58 and the filamentous surface appendages flagella 

and pili59,60. Several of these surface-associated structures are known to function as adherence factors or 

adhesins. 

 

The hallmark of biofilm formation is the production of an extracellular polymeric biofilm matrix that 

encapsulates the bacterial cells providing protection and a means of evading the host immune response8,9,61. The 

fact that bacterial cells can secrete extracellular material that helps with attachment was reported by Claude 

Zobell and Esther Allen as early as in 1935: “The film of bacteria may promote the attachment of macroscopic 
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organisms in different ways. They may form a mucilaginous surface to which the fouling organisms in the 

planktonic or free-swimming stage readily adhere until they can prepare their own holdfast”62. Today we know 

that the extracellular biofilm matrix produced by the majority of microorganisms is not just a slime surrounding 

the cells but a highly ordered structure where protein localization is extensively observed across the matrix as 

well as interactions between components. The biofilm matrix is composed of extracellular DNA (eDNA), lipids, 

exopolysaccharides and extracellular proteins of which many have amyloid-like properties and can polymerize 

into higher–order structures63-65.  

 

The production of the extracellular biofilm matrix establishes the success of biofilm communities by protecting 

the bacterial cells against phagocytosis, antibiotics and high fluid flow conditions66. Several strategies are 

adopted by different microbial species and therefore various compositions are encountered. Some bacteria 

synthesize protein fibres to form a scaffold with structural integrity and rigidity so cells and other matrix 

components like exopolysaccharides can attach to it67-69. The function of some matrix components is to facilitate 

the interaction between bacterial and host cells, such as the curli fibres produced by E. coli cells. Apart from its 

structural function, curli fibres are needed by E. coli cells to attach to various protein components of the host 

cells at the onset of infection70-72. A protective function is seen for other matrix components: the cellulose 

present in E. coli biofilms increases the resistance of the bacterial community to desiccation while the self-

assembling bacterial hydrophobin BslA forms a highly hydrophobic coat over the Bacillus subtilis biofilm 

shielding it from aqueous environments73-75. An adhesive function is seen for the polysaccharide intercellular 

adhesin (PIA) secreted by staphylococci during biofilm maturation76. 

 

Eventually, an established biofilm matrix will reach its critical capacity and get disrupted. At this point excess 

bacteria are released from the biofilm matrix to pass either to adjacent areas of un-colonised biomaterial surface, 

thus propagating the biofilm, or into the bulk fluid as planktonic bacterial cells65,77. Although in recent years 

investigation of biofilm disruptive processes has been intensified, so far we lack understanding of the forces and 

molecular determinants behind the detachment of cells when critical capacity is reached. Understanding these 

mechanisms is of key importance.  

 

It has been shown that bacteria concentrated in a biofilm release small auto-inducer molecules that lead to 

quorum sensing that is able to regulate gene expression. Quorum sensing bacteria produce and release chemical 
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signal molecules that increase in concentration as a function of cell density76. The detection of a minimal 

stimulatory concentration of an auto-inducer above a threshold leads to an alteration in gene expression. Recent 

studies indicate that quorum sensing may play a key role in biofilm structuring and detachment, like the phenol-

soluble modulins, which are surfactant peptides secreted by staphylococci (S. aureus and S. epidermidis are the 

most frequent pathogenic species among orthopaedic clinical isolates of implant associated infections) in a 

quorum-sensing controlled fashion, which have been found to structure biofilms both in vitro and in vivo and 

lead to biofilm detachment76,78,79. However, more research in this exciting area is needed to prevent propagation 

of the biofilm as well as systemic infection. 

 

Finally, it is important to mention that some bacterial species like Pseudomonas aeruginosa display multiple 

phenotypes during development of the biofilm with five stages of biofilm development that includes: (i) 

reversible attachment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and (v) dispersion. The 

maturation-1 stage is characterised by layered cells in clusters, with a cluster thickness of less than 10 µm. The 

maturation-2 stage is characterized as a point where there is maximum cell cluster development, with cluster 

thickness up to 100 µm and where the majority of cells are displaced from the substratum. When planktonic 

cells were compared with maturation-2 stage biofilm cells, more than 800 proteins were shown to have a six-

fold or greater change in expression level80.    

 

4.2 Resistive mechanisms of biofilms 

Bacteria within biofilms show higher levels of resistance to antibiotics than their planktonic counterparts81. One 

investigated mechanism is the incomplete penetration of antibiotics through the full depth of the multi-layered 

biofilm matrix, which prevents full eradication of the microbes82-87. Mathematical models have shown that, for 

the majority of antibiotic compounds, no generic barrier to penetration should exist within a biofilm88. However, 

numerous in vitro studies have demonstrated the failure of antibiotics to fully penetrate the biofilm. In 1994 Suci 

and colleagues used attenuated total reflection Fourier transform infrared spectroscopy to monitor transport of 

the fluoroquinolone antibiotic ciprofloxacin to the Pseudomonas aeruginosa biofilm-germanium substratum 

interface, which was significantly impeded by the biofilm82. Earlier in 1992 Hoyle and co-workers demonstrated 

similar results with the antibiotic piperacillin and its diffusion through a dialysis membrane colonised by 

Pseudomonas aeruginosa83. Several studies have shown that polymeric compounds such as the anionic 

polysaccharide alginate exist within the biofilm matrix and that such compounds impede the diffusion of 
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antibiotics through the matrix84-87. A proposed explanation is ionic trapping, whereby the anionic polymeric 

compounds such as alginate attract and stagnate cationic antibiotics such as aminoglycosides. It is also well 

established that the viscoelastic properties of the biofilm, determined by its matrix composition, influence 

antimicrobial penetration89. In contrast to these findings, the successful diffusion of rifampicin and vancomycin 

through a Staphylococcus epidermidis biofilm produced via a comparable method was shown by Dunne and 

colleagues in 1993. However, sterilisation of the biofilm was not accomplished after 72h of antibiotic 

treatment87.  

 

Studies like the ones discussed in the previous paragraph have undoubtedly shown that the biofilm matrix 

retards antibiotic penetration through the biofilm. However, the extent of impedance varies significantly 

between studies and is dependent on both the antibiotic, bacterial type and matrix constituents83,87,90. 

Consequently inadequate penetration cannot fully account for the resistive phenomenon, and it may be 

presumed that other mechanisms are concurrently involved.  

 

Heterogeneity exists within biofilms in three forms: spatial heterogeneity, heterogeneity of response, and 

heterogeneity of cells. Several studies have shown that these concepts of heterogeneity within a biofilm 

constitute an important survival strategy, allowing evasion of antibiotic therapy and persistence of infection91-98. 

Spatial heterogeneity is the distribution of regions of high and low cell growth rate within a biofilm, and was 

identified by Wentland and colleagues in 199691. Depletion of bacterial nutritive compounds or the 

accumulation of inhibitory metabolites within these regions may explain the quiescent or non-growing state of 

the bacterial cells92. Since the mechanism of action of many antimicrobial agents such as penicillin, which 

targets cell wall synthesis, is dependent on bacteria existing in a growing state, these regions of slow-growth 

may explain the inefficiency of many antibiotics to fully eradicate biofilms93. Other studies have also observed 

gradients of physiological activity in response to antibiotic treatment, indicating that the response to antibiotics 

within a biofilm is non-uniform thus contributing to the likelihood of survival of portions of the biofilm. Huang 

et al. grew biofilms of Klebsiella pneumonia and Pseudomonas aeruginosa on stainless steel surfaces in 

continuous-flow annular reactors and treated them with 2mg/ml of the biocide monochloramine for 2h94. Results 

revealed gradients of respiratory activity within biofilms in response to monochloramine treatment: cells near 

the biofilm-bulk fluid interface lost respiratory activity first while greater respiratory activity persisted deep in 

the biofilm. Korber and co-workers also showed that cells located in closest proximity to the biofilm-bulk fluid 
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interface within an established Pseudomonas fluorescens biofilm experienced cell elongation when subjected to 

the fluoroquinolone fleroxacin95. The last phenomenon of heterogeneity refers to the polymicrobial community 

of biofilms. The coexistence of bacterial kingdoms has been shown to provide a competitive advantage, with 

altered sensitivities to antimicrobial agents observed as a result of mutually beneficial relationships established 

within biofilms96-98. Among orthopaedic clinical isolates of implant-associated infections staphylococci (S. 

aureus and S. epidermidis) account for approximately 65% of the pathogenic species found, others being from 

the genus Pseudomonas (8%), Enterococcus (5%), Escherichia (2%) or Sptreptococcus (2%)99. 

 

Several other theories underlying the resistive phenomenon have been put forward, including numerous other 

environmental impacts on antibiotic efficacy100-103, formation of a dormant, protected, spore-like phenotype in 

response to growth on a surface104,105, and amplification of transcription factors coding for antibiotic resistive 

traits106. 

 

Regarding environmental features of biofilms that contribute to the inefficacy of antibiotics, de Beer and 

colleagues demonstrated through the use of miniature electrodes that oxygen can be completely consumed at 

superficial zones of biofilms and therefore, deep zones will consequently contain anaerobic niches100. Several 

antibiotics, including aminoglycosides, have been to shown to be significantly less active and subsequently less 

effective in anaerobic than in aerobic states against the same bacterium102. A study by Zhang et al. demonstrated 

that a difference in local pH>1 between the bulk fluid and biofilm interior as a result of acidic waste product 

accumulation can directly antagonise antibiotic action101. Finally, Prigent-Combaret and co-workers showed that 

bacteria within biofilms encounter higher-osmolarity conditions, greater oxygen limitation, and higher cell 

density than in the liquid phase103. It has been theorised that the stress response due to these environmental 

features may induce a change in the relative concentration of porins in the cell envelope thereby reducing the 

bacterial cells antibiotic permeability and thus the effectiveness of the antibiotic treatment.  

 

A more speculative theory proposes that the resistance observed within biofilms is due to a small subpopulation 

of cells from a dormant, protected, spore-like phenotype in response to growth on a surface, as opposed to 

nutrient limitation104. The fact that planktonic cells that are derived from biofilms are in most cases fully 

susceptible to antibiotics104 seems to support this theory. Moreover, newly formed biofilms are too thin to form 
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physical barriers to antibiotic penetration or metabolite accumulation and consequently the resistance still 

observed must be accountable elsewhere, possibly supporting this alternative hypothesis105.  

 

The final resistive mechanism associated with biofilms is the rapid transfer of genetic transcription factors. 

Generically, gene transfer through plasmid conjugation is an important mechanism of genetic trait transfer. 

However, diverse complex environments such as those observed in biofilms represent an ideal niche for 

augmentation of this phenomenon. Quantitative in situ analysis has shown higher conjugation frequencies for 

sessile bacteria, such as those within biofilms, than their planktonic counterparts106. Microbial biofilms therefore 

epitomise an idyllic environment for amplification of both naturally occurring and induced antibiotic resistive 

traits.   

 

Understanding the various mechanisms discussed in this review paper by which bacteria in biofilms have 

increased resistance to antibiotics, summarised in Table 3, is critical to develop new strategies to prevent biofilm 

formation on the surface of orthopaedic implants.  
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Resistive mechanism Evidence References 

-Incomplete penetration of 

antibiotics through the full 

depth of the multi-layered 

biofilm matrix. 

-Numerous in vitro studies have demonstrated the failure of 

antibiotics to fully penetrate the biofilm. 

-Several studies have shown that polymeric compounds exist 

within the biofilm matrix, i.e. alginate, which impede the 

diffusion of antibiotics through the matrix (perhaps through 

ionic trapping). 

-Viscoelastic properties of the biofilm, determined by its 

matrix composition, influence antimicrobial penetration. 

-82-89 

 

-Heterogeneity: spatial, 

response and cellular. 

-Spatial heterogeneity: regions of high and low cell growth 

rate within a biofilm have been identified. 

-Heterogeneity of response: gradients of physiological activity 

in response to antibiotic treatment identified. 

-Cellular heterogeneity: coexistence of different bacterial 

species provides competitive advantage, with altered 

sensitivities to antimicrobial agents observed as a result of 

mutually beneficial relationships established within biofilms. 

-91-98 

-Environmental features of 

biofilms. 

-Deep zones of the biofilm contain anaerobic niches as oxygen 

can be completely consumed at superficial zones. 

-Difference in local pH>1 between the bulk fluid and biofilm 

interior as a result of acidic waste product accumulation 

demonstrated. 

-Altered internal osmotic environment due to metabolite 

accumulation. 

-100-103 

-Presence of a small sub-

population of cells from a 

dormant, protected, spore-

like phenotype. 

-Planktonic cells derived from biofilms are, in most cases, 

fully susceptible to antibiotics. 

-Newly formed biofilms are too thin to form a physical barrier 

to antibiotic penetration or metabolite accumulation. 

-104,105 

 

-Rapid transfer of genetic 

transcription factors. 

-Diverse complex environments, such as biofilms, augment 

the phenomenon of gene transfer through plasmid 

conjugation. 

-Quantitative in situ analysis has shown higher conjugation 

frequencies for sessile bacteria than for their planktonic 

counterparts. 

-106 

 

  Table 3: Summary of resistive mechanisms of biofilms to antibiotics. 
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5. Preventing biofilm formation: principles and methods 

Due to the multiple mechanisms underlying biofilm resistance discussed in the previous section (4.2) preventing 

or treating PJI is not a simple task. In order to be clinically effective any single method must overcome multiple 

resistive mechanisms. The interstitial milieu represents the forefront of the battle between host and bacterial 

cells99. The aim of prevention is to deter adhesion and subsequent colonisation of the implant surface by 

bacteria, instead allowing osseointegration of host tissue with the implant. This competitive phenomenon is 

known as the ‘race for colonisation’107. Colonisation of the implant surface by local host cells mediates the 

establishment of a tissue seal, preventing bacterial adhesion and subsequent establishment of infection108.  

 

Bactericidal activity of a preventative therapy must reach a therapeutic threshold whereby adjacent bacterial 

cells are eradicated. However, excessive bactericidal activity may have cytotoxic effects on local host tissue 

cells and prevent successful implant-tissue integration. Host tissue-implant integration is imperative to achieve 

implant stability and reduce the risk of aseptic loosening 46. Pin tract infection for external fixation of frames is 

very often associated with relative movement of the pin in the bone and it is believed that this increases bacterial 

colonisation of the implant surface. A required balance is evident: prevention must exert sufficient bactericidal 

toxicity as to prevent implant failure as a result of septic loosening, but not be excessively cytotoxic as to 

prevent osseointegration and aseptic loosening.  

 

Conventional systemic antibiotics administered perioperatively still represent the main prophylactic strategy 

against infection. However, due to the phenomenon of multi-drug resistance associated with biofilms, this 

strategy fails to completely eradicate PJIs109. Additionally, perioperative antibiotics serve no prophylactic 

function against late infection acquired via the haematogenous route109. The majority of new methods are 

designed to complement systemic antibiotic therapy and focus on 1) local delivery of antimicrobial substrates 

from the implant or cavity filling material; 2) preventing the attachment of bacterial onto the implant surface; 

and 3) methods to remove the bacteria from the implant surface making then susceptible to antibiotic therapy in 

their planktonic state. With local delivery, the critical concentration of the bactericidal agent resides directly at 

the implant-soft tissue interface, allowing higher antimicrobial doses to be achieved with lesser risk of systemic 

toxicity and subsequent renal or hepatic complications110.  
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5.1 Internal methods 

Internal methods are those directly associated with the implant surface or bulk material65,111. The use of a 

bioactive bulk material that is intrinsically antimicrobial for implant production would be ideal. Unfortunately, 

few materials that express such antimicrobial properties are sufficiently biocompatible. Additionally, this is 

further complicated by the need for the material to ideally match the mechanical properties of natural bone in 

order to minimise stress shielding or risk of implant fracture. Therefore, modification of the implant surface 

seems the obvious path to follow. Several strategies are under research for implant surface modification: 

alteration of surface nano-topography, generation of an anti-adhesive surface, and superficial surface coatings. 

Although the three strategies will be discussed, in this review we will mainly focus on superficial surface 

coatings due to the abundance of research exploring this strategy. 

 

5.1.1 Alteration of surface nano-topography 

Alteration of surface nano-topography has been shown to affect the degree of bacterial adhesion, with irregular 

surfaces shown to permit a greater level of bacterial adhesion than smooth, regular ones112. In a recent 

comparative study, Koseki et al. evaluated the ability of the main pathogen present in implant-related infections, 

Staphylococcus epidermis, to form biofilms on materials with surfaces with a similar degree of smoothness: 

oxidised zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo), titanium alloy (TiAl6V4), 

commercially available pure titanium and stainless steel.  After culturing the pathogen on the different surfaces 

for 2-4 h the biofilm coverage rate was similar for all the materials. However, after 6 h the biofilm coverage rate 

for Co-Cr-Mo was significantly lower (p<0.05) than for TiAl6V4, pure titanium and stainless steel. The authors 

concluded that surface properties like the hydrophobicity or low surface free energy of Co-Cr-Mo may influence 

the two-dimensional expansion of Staphylococcus epidermis biofilms on surfaces with similar nano-

topographies113.  

 

The fundamental flaw with nano-topographical manipulation is that bacterial adhesion to smooth surfaces still 

transpires, albeit to a lesser extent than irregular counterparts, and consequently it is unlikely that alteration of 

surface topography alone will prove sufficient as a preventative method. 
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5.1.2 Generation of an anti-adhesive surface 

Conditioning implant surfaces with antifouling agents, creating adhesion resistant surfaces is another proposed 

strategy. Hyaluronic acid, an anionic non-sulfated glycosaminoglycan widely found in connective, epithelial and 

neural ECM, has been shown to greatly reduce bacterial cell surface fractional coverage when coupled with 

biomaterial surfaces both in vitro and in vivo114. Since the underlying mechanism is mediated through water 

molecule interaction, rather than directly with bacterial cells, the same anti-adhesive effects are exerted on local 

host tissue cells. If osseointegration is not achieved then risk of aseptic loosening is increased, limiting the use 

of hydrophilic surfactants and compounds. Other studies have investigated surfaces which have a high 

hydrophobicity. For example diamond-like carbon surfaces doped with nitrogen or silicon show reduced 

Pseudomonas aeruginosa adhesion115.   

 

5.1.3 Superficial surface coatings 

Currently the most successful strategy primarily focuses on superficial surface coatings116. Generally coatings 

are made of either an intrinsically antimicrobial bulk material or a material infused with antimicrobial 

compounds. Chitosan, a natural polysaccharide, is an example of the former. Investigated as a biomaterial due to 

its biocompatibility, biodegradability, bioactivity, osteoconductivity, enhanced wound healing and innate 

antimicrobial properties, chitosan appears ideal for mediating tissue-implant integration and preventing biofilm 

formation117-119. However, studies have demonstrated inadequate bonding strength of chitosan with the implant 

surface120, increasing the risk of coating delamination and thus limiting its use. Nevertheless, the good 

biomaterial properties of chitosan may be exploited using a different approach: Li and colleagues chemically 

functionalised titanium-based bone implants with nano-particle-stabilised chitosan and methotrexate, a synthetic 

compound that interferes with cell growth and is used to treat certain types of cancer and auto-immune 

conditions, for inhibiting both osteoclastoma formation and biofilm formation121. 

 

The majority of antimicrobial compounds investigated for use in orthopaedic coatings have proven bactericidal 

activity, such as common topical disinfectants or systemic antibiotics. Examples of topical disinfectants include 

silver sulfadiazine and chlorhexidine, and especially certain metals such as copper (Cu), zinc (Zn), magnesium 

(Mg) or particularly silver (Ag).  
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A randomised controlled trial compared the efficacy of silver sulfadiazine and chlorhexidine in swine models 

for infection rate reduction122. Bacterial cell adhesion was significantly lower on biomaterials coated with the 

antimicrobial compounds when compared to controls. Additionally, no biofilm formation, or local or systemic 

toxicity, was noted in intervention groups122.  

 

Cu has demonstrated bactericidal properties whilst human cells demonstrate relatively low sensitivities to Cu123. 

Nevertheless, the mechanism of "contact killing" of bacteria by Cu surfaces is still poorly understood. 

Particularly, the influences of bacteria-metal interaction, media composition, and Cu surface chemistry on 

contact killing require further investigation. In a study by Hans and colleagues, copper oxide formation on Cu 

during standard antimicrobial testing was measured in situ using spectroscopic ellipsometry. The authors found 

that CuO significantly inhibited contact killing compared to pure Cu. Conversely, thermally generated Cu2O 

was essentially as effective in contact killing as pure copper. The authors concluded that since it is Cu2O that 

primarily forms on Cu under ambient conditions, antimicrobial objects would retain their antimicrobial 

properties even after oxide (Cu2O) formation124. Cu presents disadvantages though, as studies have shown that 

Cu incorporation within hydroxyapatite coatings does not deter biofilm formation, whilst other metals such as 

silver (Ag) have shown to exert bactericidal activity125. Cu has also been shown to form large fibrous capsules in 

vivo after 28 and 56 days of sub-cutaneous implantation in rats126, which could potentially contribute to an 

increased risk of aseptic loosening. However, Hoene and co-workers carried out a study aimed at evaluating a 

Cu coating produced by galvanic deposition on TiAl6V4 plates in terms of in vivo Cu release and local 

inflammatory reactions for 72 h after intramuscular implantation in rats. Results showed that Cu coated 

TiAl6V4 implants had antibacterial effectiveness in vitro, measurable Cu amounts were released in vivo and 

caused a moderate local inflammatory response127, thus suggesting that fine-tuning of Cu coatings on 

orthopaedic materials could be effective in fighting biofilm formation. 

 

Very recently Grenho and colleagues reported the antibacterial activity and biocompatibility of three-

dimensional and interconnected porous granules of nano-structured hydroxyapatite incorporated with different 

amounts of zinc oxide (ZnO) nano-particles produced using a simple polymer sponge replication method128. The 

composite granules were especially effective at reducing bacterial activity in vitro and in vivo when containing a 

weight percentage of 2% ZnO, with low cell growth inhibition in vitro and no differences in the connective 

tissue growth and inflammatory response after subcutaneous implantation in rats128. These results suggest a 
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promising potential for this composite material for prevention of biofilm formation in vivo. Similarly, the 

antibacterial properties of pure (99.9%) Mg in vitro and in an in vivo rat model of implant-associated 

methicillin-resistant Staphylococcus aureus infection was recently shown129. 

 

The concept of exploiting metals against microorganisms is not novel. In fact, Ag was commonly used in 

ancient history to prevent water contamination. It is the most extensively studied metal for the purpose of 

fighting infection and food preservation. Unlike Cu, the mechanism of action of Ag is well known and it is 

mediated through Ag+ ions, which strongly inhibit growth through suppression of respiratory enzymes, electron 

transport components, and through interference with DNA functions130. The success of silver is well 

documented in applications such as wound dressings, burn creams, sutures and catheters131-136.  

 

Several studies have assessed the antimicrobial efficacy of silver ions (Ag+) and Ag nano-particles against 

biofilm formation and advocate its use in prevention of biofilm-related infections137-141. The antibacterial effect 

of Ag nano-particles has been reported to be both size and shape dependent. However, a study by Actis and 

colleagues aimed at evaluating the effect of three different shapes (spherical, triangular and cuboidal) of Ag 

nano-particles on microbial susceptibility (S. aureus and methicillin-resistant S. aureus) and bone cell viability 

revealed that the shape of Ag nano-particles did not affect microbiota susceptibility or human fetal osteoblasts 

viability141. High concentrations of Ag nano-particles (0.5 nM) granted significant bacterial susceptibility and 

significantly reduced human fetal osteoblasts viability141. In fact, human fetal osteoblasts had increasingly 

reduced viability to lower Ag nano-particle concentrations with an increase in exposure time141. Ag has also 

been used to dope hybrid coatings as reported by Tran and colleagues: hybrid coatings of titanium dioxide and 

polydimethylsiloxane (PDMS) were synthesised to regulate the release of Ag. The coatings, with different 

titanium dioxide:PDMS ratios, were deposited on discs of polyether ether ketone (PEEK) and selected ratios 

were shown to control Ag release and completely inhibit biofilm formation142.   

 

One approach which is currently used in clinical practice is to coat the implant surface with Ag. It has long been 

known that silver is a powerful antibacterial agent: Ag-coated materials have been shown to influence bacterial 

adhesion, and Ag-coated prostheses have been fabricated for clinical testing where they have achieved some 

good results143,144. The antibacterial effects of Ag result from the release of its ions from the implant surface and 

the subsequent thiol bonding to the active site of many metabolic enzymes. Silver has been used in combination 
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with calcium phosphate/hydroxyapatite coatings and ceramics145. Although effective, there is concern that the 

Ag layer may influence the metabolic status of adherent cells as well as the metallurgical properties of the 

implant in vivo. There is also concern that when the Ag release is complete, the implant surface will no longer 

function as a microbicidal agent. However, as most of the infections are associated with the operation then a 

limited release over a matter of weeks is warranted. Although rare, there is also the problem of Ag resistance 

and hypersensitivity to Ag+146. A new approach where Ag is incorporated into the anodised surface of titanium 

has shown to reduce implant related infections by around 50%. In a case-control Wafa et al. showed the overall 

post-operative infection rate of the Ag-coated group of massive implants used to treat bone tumour implants was 

11.8% compared with 22.4% for the control147.    

 

In addition to its proven efficacy against biofilms, Ag overcomes many of the shortcomings of previously 

discussed prevention methods. Silver is non-toxic to human cells at small concentrations whilst highly toxic to 

bacterial cells, allowing the exertion of bactericidal activity with minimal cytotoxic effects148. Furthermore, 

development of microbial resistance against Ag+ is significantly less likely, compared to commonly used 

antibiotics, due to the broad range of mechanisms through which it acts, unlike antibiotics which commonly act 

through a single mode only130. Finally, many of the production methods of silver infusion are cost-effective, i.e. 

immersion in silver nitrate (AgNO3). Regardless, it is the long-term potential to prevent exposure of patients to 

such debilitating revision procedures and the NHS to such economic burden that is the most desirable trait that 

this preventative method has to offer. 

 

Finally, antibiotics infused within coatings have been extensively researched. An approach has been to 

covalently  attach antibiotics such as vancomycin onto the surface of titanium, which has been shown to provide 

a long-lived anti-bacterial layer that should be active over the lifetime of the implant. Once tethered, the 

antibiotic provides a constant level of protection, which might discourage colonization. Because the total 

amount of the agent is small compared to the quantities used for controlled release, it may be less likely to foster 

resistance149. Once formed, these surfaces exhibit antibacterial activity and specificity without development of 

resistance. When implanted into infected femoral medullary canals in rats, it blocks bacterial proliferation and 

osteolysis150. The antimicrobial efficacy of antibiotic infused HA coatings has been demonstrated with multiple 

antibiotics, such as gentamicin, vancomycin, tobramycin and more recently rifampicin151-153. Certain antibiotics 

have been shown to bind poorly to calcium within calcium-phosphate coatings; consequently antibiotic release 
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is too rapid and fails to provide prophylactic protection151. This limits the variety of antibiotics that can be used, 

potentially problematic against multi-resistant strains. Therefore, other antibiotic-infused coatings are being 

investigated, such as lipid-based (purified phosphatidylcholine) materials on titanium and stainless steel154 or 

titania nanotubes loaded inside with poly(lactide-co-glycolide) and chitosan on titanium155. The appropriateness 

of using antibiotics during an era of developing resistance is controversial. Several authors have raised concern 

that prolonged low-level antibiotic release may contribute to selection of antibiotic resistant bacterial strains, 

exacerbating the resistance phenomenon discussed in previous sections. Incorporation of “last resort 

antibiotics”, used to treat severe multi-resistant bacterial strains, has been advised against.  

 

5.2 External methods 

External methods refer to those that are not related directly to the implant. Antibiotic impregnated cement is 

becoming increasingly used, especially in revision cases associated with higher re-infection rates. It has been 

shown to express a biphasic release pattern: an initial high concentration burst release followed by a prolonged, 

sub-therapeutic level of release. Success of antibiotic impregnated cement has been shown156. However, several 

concerns exist with its use. Firstly, conflicting evidence regarding the effect of antibiotic impregnation on 

mechanical properties of cement exists157,158. Secondly, there is concern regarding the sub-therapeutic level of 

antibiotic release and its contribution to the phenomenon of antibiotic resistance. Finally, its use is limited in 

uncemented procedures. An alternative could be using Ag instead of antibiotics. A recently published paper by 

Slane et al. studied the mechanical, material and antimicrobial properties of acrylic bone cement impregnated 

with Ag nano-particles showing that cements modified with Ag nano-particles significantly reduced S. aureus 

and S. epidermis biofilm formation on the surface of the cement while demonstrating mechanical and material 

properties similar to those of the non-impregnated cement159.  

 

For uncemented procedures local delivery of gentamicin from resorbable viscous hydrogels of poly(N-

isopropylacrylamide-co-dimethyl-γ-butyrolactone acrylate-co-Jeffamine® M-1000 acrylamide), which delivered 

the antibiotic with low systemic exposure, has been proposed160. Along this line, polymeric carriers have been 

developed to optimise the release and targeting of antibiotics161. A different approach has been reported by 

Bezuidenhout and co-workers: the release of vancomycin through polyethersulfone membranes from channels 

in cementless TiAl6V4 cubes, thus proposing the novel approach of refillable implants to control biofilm 
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formation162. Of course, one may argue whether this approach should be considered an external or internal 

method, or perhaps a hybrid between the two. 

 

In addition to innovative device technologies, another approach to preventing PJI is through immunization. 

Although a decade ago a universal group B Sreptococcus vaccine was identified by multiple genome screen163, 

an effective vaccine against S. aureus remains elusive, and several clinical trials have failed164.  The limited 

success in these studies may have been the result of not accounting for the temporal variability in antigen 

expression and bacterial growth within a biofilm which may have hidden antigenic sites. However, given the 

remarkable heterogeneity of the single-species and polymicrobial infections evident in an approach that 

concentrates on single antigens, targeting multiple antigens may be required. A vaccine composed of four 

biofilm-upregulated antigens plus antibiotic administration (used to clear planktonic populations) was able to 

prevent biofilm infection where vaccination or antibiotic therapy alone failed. Subsequently, the protective 

efficacy of the S. aureus vaccine has been developed to include gene products with upregulated production in 

biofilms as well as those upregulated in the planktonic mode of growth165. Immunization strategies to prevent 

and treat PJI remains an important area of investigation. 

 

Finally, the transfer of electrical current onto implanted prostheses has also been considered as a minimally 

invasive treatment166. However, this is also in the developing stages. 

 

As a summary, Figure 1 depicts the different strategies discussed in this review to deter biofilm formation on the 

surface of implants.  
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Figure1: Summary of methods discussed in this review to deter formation of biofilms on the surface of 

orthopaedic implants. 

 

  

6. Discussion 

Biomaterial science is a very active and creative area of research which has allowed the successful use of 

biomaterials in the orthopaedic field for over a century. However, infectability of biomaterials remains a clinical 

concern as it is associated with extensive patient morbidity and high economic burden. As discussed in section 2 

of this review paper, the current treatment for THA complicated by infection, operative debridement and 

perioperative antibiotic therapy, is based on a distinct lack of evidence. Consequently, infections associated with 

biomaterials remain a clinically relevant issue. In our economic analysis we calculated an economic burden of 

£7,000,000 for the NHS, forecast to increase due to an ageing population. 

 

As mentioned throughout this review, bacteria are able to adhere, colonise and develop into biofilms on the 

surface of biomaterials making infections associated with biomaterials physiologically different to other post-
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surgical infections. Unfortunately, biofilms express increased protection from the HID system and an increased 

resistance to antibiotic therapy in comparison to their planktonic counterparts8-10. Various resistive mechanisms 

of biofilms to antibiotics (Table 3) have been proposed. Understanding these mechanisms as well as biofilm 

formation and disruption is key to develop new preventive methods to complement classical antibiotic therapy. 

These methods focus on local delivery of antimicrobial compounds from the implant or cavity filling material 

and can be internal, if the implant surface or bulk material are concerned, or external if they are not directly 

related to the implant. Regarding internal methods, several strategies are under investigation, although 

superficial surface coatings are being the focus of extensive research112-155. A variety of antimicrobial 

compounds are used in coatings, from antibiotics to metals, and some studies show encouraging results. Some 

external methods also look promising156-166. However, the use of antibiotics is controversial due to developing 

resistance.  

 

We believe that future research in this area should involve the creativity and diversity of biomaterials science to 

develop “smart” implant surfaces that selectively bind host cells, necessary for implant fixation, while 

discourage bacterial attachment. Perhaps this is not possible by only using implant surface modification and thus 

some external help from injectable biomaterials, i.e. hydrogels or cements, loaded with antimicrobial agents, 

preferably not antibiotics to avoid developing bacterial resistance, is the final piece to the puzzle of preventing 

infections associated with biomaterials. Therefore, research into alternative antimicrobial agents to antibiotics 

should go parallel to the research of new biomaterials as “smart” implants. This will only be possible by 

unravelling and understanding the molecular and cellular mechanisms behind formation and disruption of 

biofilms. 
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