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Cardiovascular disease (CVD) is the leading cause of 
death worldwide.1 Serum concentrations of total cho-

lesterol (TC) and subcomponents of low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), and triglycerides are established risk factors for 
coronary heart disease (CHD).1 Recent studies have pro-
vided evidence of causal roles for LDL-C and triglycerides 
in CHD.2,3 Further understanding of the genomic regulatory 
mechanisms linking lipids to CHD may enhance our ability 
to predict CHD risk, tailor current CHD treatments, or dis-
cover new treatments for CHD.

See Clinical Perspective

Genome-wide association studies (GWAS) have been suc-
cessful in identifying numerous single-nucleotide polymor-
phisms (SNPs) associated with lipid levels and CHD.4,5 Because 
many of the SNPs are located in noncoding regions, epigenetic 
mechanisms can be suspected to mediate many of the genetic dis-
coveries. Integrative analyses of methylation of cytosine nucleo-
tides at cytosine–guanine dinucleotide (CpG) sites with genetic 
sequence variants and gene expression may elucidate previously 
unknown genes and pathways underlying GWAS discoveries. In 

Background—Genome-wide association studies have identified loci influencing circulating lipid concentrations in humans; further 
information on novel contributing genes, pathways, and biology may be gained through studies of epigenetic modifications.

Methods and Results—To identify epigenetic changes associated with lipid concentrations, we assayed genome-wide DNA 
methylation at cytosine–guanine dinucleotides (CpGs) in whole blood from 2306 individuals from 2 population-based cohorts, 
with replication of findings in 2025 additional individuals. We identified 193 CpGs associated with lipid levels in the discovery 
stage (P<1.08E-07) and replicated 33 (at Bonferroni-corrected P<0.05), including 25 novel CpGs not previously associated with 
lipids. Genes at lipid-associated CpGs were enriched in lipid and amino acid metabolism processes. A differentially methylated 
locus associated with triglycerides and high-density lipoprotein cholesterol (HDL-C; cg27243685; P=8.1E-26 and 9.3E-19) 
was associated with cis-expression of a reverse cholesterol transporter (ABCG1; P=7.2E-28) and incident cardiovascular 
disease events (hazard ratio per SD increment, 1.38; 95% confidence interval, 1.15–1.66; P=0.0007). We found significant 
cis-methylation quantitative trait loci at 64% of the 193 CpGs with an enrichment of signals from genome-wide association 
studies of lipid levels (P

TC
=0.004, P

HDL-C
=0.008 and P

triglycerides
=0.00003) and coronary heart disease (P=0.0007). For example, 

genome-wide significant variants associated with low-density lipoprotein cholesterol and coronary heart disease at APOB were 
cis-methylation quantitative trait loci for a low-density lipoprotein cholesterol–related differentially methylated locus.

Conclusions—We report novel associations of DNA methylation with lipid levels, describe epigenetic mechanisms related 
to previous genome-wide association studies discoveries, and provide evidence implicating epigenetic regulation of 
reverse cholesterol transport in blood in relation to occurrence of cardiovascular disease events.  (Circ Cardiovasc Genet. 
2017;10:e001487. DOI: 10.1161/CIRCGENETICS.116.001487.)
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addition to variation in DNA methylation that is determined by 
the surrounding genetic sequence,6 methylation is also affected 
by early exposures in utero7,8 and later life environmental fac-
tors.9,10 Environmentally induced alterations in DNA methyla-
tion may mediate environmental contributions to disease11 and 
reveal novel genes and pathways involved in disease that cannot 
be discovered in GWAS alone. Regulation of gene expression 
via DNA methylation may explain an additional component of 
interindividual variation in lipid levels beyond genetic sequence 
variants. Because much of the population burden of dyslipidemia 
and CHD is not explained by GWAS loci, relating differential 
DNA methylation to gene expression, intermediate metabolites, 
and disease end points may be useful in identifying additional 
candidate genes and mechanisms for which directed perturbation 
may help prevent morbidity and mortality from CHD.

In this study, we aimed to identify epigenetic variation in 
relation to lipid levels through epigenome-wide association 
analyses of whole blood–derived DNA in ≤2306 individuals 
with independent external replication of findings in ≤2025 
individuals. Methylation differences in blood-derived DNA 
have been shown to reflect transtissue differential methyla-
tion in various tissues,12–14 including liver15 and adipose.16 In 
addition to the discovery of lipid-related differential DNA 
methylation, we assessed the association of lipid-related epi-
genetic changes to the risk of incident CHD events. Finally, 
we combined lipid-associated DNA methylation with genetic 
sequence variants, gene expression, and intermediate metabo-
lites in an attempt to unravel the underlying genomic regula-
tory mechanisms linking serum lipid measures to CHD risk.

Methods
Study Participants and Design
We conducted an epigenome-wide association study of serum lipid 
concentrations (TC, HDL-C, LDL-C, and triglycerides) in over 4000 
adult participants from large community-based cohorts in the United 
States and Europe (Figure 1). Ethical approvals for the project were 
granted by the local Ethics Committee for each of the participating 
cohorts, and all samples were collected after obtaining written and 
signed informed consent. Participants from the FHS (Framingham 
Heart Study) offspring cohort (n=1494; mean [SD] age=66.4 [8.9] 
years)17 and the PIVUS (Prospective Investigation of the Vasculature 
in Uppsala Seniors Study; n≤812; 70.2 [0.2] years)18 were included 
in the discovery analysis. Loci identified as significant in the discov-
ery (P<1.08E-07; Bonferroni-adjusted P value for multiple testing) 
were then examined for external replication in participants from the 
LBC1921 (Lothian Birth Cohorts of 1921; n≤380; 79.1 [0.6] years) 
and LBC1936 (LBC of 1936; n≤654; 69.5 [0.8] years)19–21 and the 
GOLDN (Genetics of Lipid Lowering Drugs and Diet Network; 
n=991; 48.8 [16] years).22 Characteristics of the cohorts are avail-
able in Table I in the Data Supplement. Further details about cohort-
specific study design and sample collection are available in Methods 
in the Data Supplement. Primary analyses examined the association 
of each lipid component with methylation levels in blood at 459 433 
CpGs and were adjusted for age, sex, white cell counts (if applicable), 
and batch effects; secondary models additionally adjusted for body 
mass index (BMI). We excluded individuals taking lipid medications 
(statins, fibrates, etc.) because the cross-sectional design would not 
allow us to determine if DNA methylation changes contributed to 
elevated lipids necessitating lipid medications or were secondary to 
medication use. The identified differentially methylation loci were 
assessed for associations with nearby genetic sequence variants in cis 
(defined as ±100 kb), intermediate phenotypes (gene expression and 
metabolites in blood), and incident CHD events.

Phenotype Measurements and Disease Outcomes
Lipids traits were measured in blood samples collected after fasting 
with the exception of LBC (LBC1921 and LBC1936) for which non-
fasting blood was drawn. Lipid measurements were performed using 
standard methods as described in Methods in the Data Supplement 
for each study. In FHS, PIVUS, and LBC1936, LDL-C levels were 
calculated by the Friedewald equation, whereas levels were directly 
measured in GOLDN. In LBC1921, HDL-C and LDL-C were not 
available. Characteristics of the lipid traits for each cohort are avail-
able in Table I in the Data Supplement. Weight and height were 
measured in each study using standardized protocols. BMI was cal-
culated as weight in kg divided by height in m2. In FHS and PIVUS, 
cardiovascular events during ≤10 years of follow-up (adjudicated by 
physicians) were used to define a composite CHD end point, which 
included fatal or nonfatal myocardial infarction and revascularization 
procedure (percutaneous transluminal coronary angioplasty or coro-
nary artery bypass graft). In FHS, data on coronary death and coro-
nary insufficiency (unstable angina) were also included.

Genome-Wide DNA Methylation Profiling
Genome-wide DNA methylation profiling was performed on ge-
nomic DNA isolated from whole blood (FHS, PIVUS, LBC1921, 
and LBC1936) or CD4+ T cells (GOLDN). DNA samples were bi-
sulphite converted and analyzed on Illumina HumanMethylation450 
BeadChip (Illumina Inc, San Diego, CA) following the manufactures’ 
protocol. After quality control procedures, methylation data were 
available for analyses in 2377 FHS, 967 PIVUS, 446 LBC1921, 920 
LBC1936, and 995 GOLDN participants. Further cohort-specific de-
tails and quality control procedures are available in Methods in the 
Data Supplement. In all studies, blood used in extraction of DNA for 
methylation analysis was collected at the same time point as pheno-
type and covariate measurements.

Additional Molecular Genomics Data
In FHS, SNP data were obtained from the Affymetrix 550K Array 
(Affymetrix, Santa Clara, CA) and imputed to 1000 Genomes SNPs 
(phase 1 release), as previously reported.23 The FHS genotype data 
are available at Database of Genotypes and Phenotypes under the ac-
cession number phs000342.v13.p9. In PIVUS, individuals were gen-
otyped using the Illumina OmniExpress and Illumina Metabochip 
microarrays. Data were imputed to 1000G (version: March 2012) using 
Impute v.2.2.2.24 Gene expression profiles in blood, obtained using the 
Affymetrix Human Exon 1.0 ST GeneChip platform, were available for 
2246 participants in the FHS. Untargeted metabolomic profiles in serum 
were available for 785 PIVUS participants also included in the lipid-as-
sociation analyses. Acquity Ultra Performance Liquid Chromatography 
coupled to a Xevo G2 Q-TOFMS (Waters Corporation, Milford, MA) 
was used in metabolomic profiling. Only annotated metabolites (n=229) 
were used in analysis in relation to DNA methylation. Further details are 
available in Methods in the Data Supplement.

Annotation of DNA Methylation Probes
Mapping and annotation of the 485 764 probes on the 
HumanMethylation450K BeadChip have previously been de-
scribed.25 Only autosomal probes were included in analyses. Briefly, 
probes mapping to multiple locations (with at least 2 mismatches) in 
the human reference genome (GRCh37) were excluded. Furthermore, 
probes were filtered based on SNPs as follows: those with a common 
SNP (minor allele frequency>5%) within 10 bp of the methylation 
site and those overlapping copy number variants were excluded from 
analysis. This resulted in a final set of probes which were assigned 
to CpG islands and RefSeq transcripts downloaded from the UCSC 
Genome Browser. Probes within 2 kb away from borders of a CpG 
island were defined as shores and those within 2 kb of shores as fall-
ing within shelves. The rest were assigned to others/open sea. Probes 
were mapped in relation to transcripts as follows: TSS1500 (1500–
200 bp upstream of transcription start site), TSS200 (200 bp upstream 
of transcription start site), the 5′-UTR (untranslated region), the first 
exon, the gene body, or the 3′-UTR.26
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Statistical Analysis

Association of Methylation of Blood Cell–Derived DNA 
With Lipids
Multivariable linear regression models were conducted (using cohort-
specific approaches described in Methods in the Data Supplement) 
with DNA methylation β value specified as the dependent variable 
and the lipid component as the independent variable of interest. 
The primary model was adjusted for age, sex, white cell count (if 
applicable), technical covariates, and, if applicable, family structure 
(included as random effects using the R packages pedigreemm27 
[FHS] or kinship28 [GOLDN], see further details in Methods in the 
Data Supplement). Secondary models additionally adjusted for BMI. 
Individuals on lipid-lowering medications were excluded from all 
analyses. Lipid levels (in mg/dL) were analyzed on the raw scale, 
except levels of triglyceride that were natural log-transformed before 
analyses. Probes with a common SNP (minor allele frequency>5%) 
within 10 bp of the methylation site were excluded from analysis. 
Fixed-effect meta-analyses were performed using the inverse vari-
ance–weighted method implemented in METAL29 of genome-wide 
association results in the discovery cohorts (FHS and PIVUS). CpGs 
significant at Bonferroni-corrected α threshold <0.05 (taking the num-
ber of CpGs into account; corresponding to a nominal P<1.08E-7) in 
discovery were analyzed in the replication cohorts. Meta-analyses of 
the results in the individual replication cohorts (LBC1921, LBC1936, 
and GOLDN) were performed using the same method as above.

Cross-Tissue Validation of Lipid Associations
Lipid-associated CpGs in blood were validated in DNA methyla-
tion data from subcutaneous abdominal adipose tissue (SAT) from 
the MuTHER (Multiple Tissue Human Expression Resource) study.30 
This study and data set is described in detail in Grundberg et al.25 
The study contains genome-wide DNA methylation data using the 
Illumina HumanMethylation450 array collected from 648 female 
twins and singletons (97 monozygotic pairs, 162 dizygotic pairs, and 
130 singletons) of European ancestry. The participants had a mean 

age of ≈60 years and a mean BMI of 26.6 kg/m2. After removing in-
dividuals on lipid-lowering medication and with missing phenotype, 
a total of 588, 588, 589, and 639 participants were considered in the 
analyses of TC, LDL-C, HDL-C, and triglycerides, respectively. For 
association with phenotype, a linear mixed effects model was fitted 
which was adjusted for age, bisulphite conversion concentration, 
bisulphite conversion efficiency, and BeadChip as fixed effects and 
family relationship (twin pairing) and zygosity as random effects. 
One-hundred sixty-four out of 193 lipid-associated CpGs could be 
tested in SAT.

Gene Set Enrichment Analysis
To place our data in the context of biological processes or pathways, 
we subjected genes annotated to CpG sites (from 1500 bp upstream 
of transcription start site to 3′-UTR)26 associated with phenotypes 
to pathway analysis using Database for Annotation, Visualization 
and Integrated Discovery (DAVID).31,32 We used annotations from 
the Kyoto Encyclopedia of Genes and Genomes, Protein Analysis 
Through Evolutionary Relationships, Gene Ontology, REACTOME, 
and Clusters of Orthologous Groups of proteins.

Methylation Quantitative Trait Locus Analysis
Methylation quantitative trait locus (meQTL) analysis for lipid-
associated methylation probes was performed in the FHS cohort 
(n=2246), and significant lead meQTL SNPs (P<1E-04) were tested 
for replication in the PIVUS cohort (n=775). MeQTL analysis was 
limited to SNPs located within 100 kb either side of the probe loca-
tion (cis) and SNPs with a minor allele frequency >5% and imputa-
tion quality Rsq >0.8. In FHS, the residual of the DNA methylation 
β value was extracted after the removal of the fixed (age, sex, and 
imputed white cell counts using the Houseman method33) and ran-
dom covariates (chip, row, and column), along with the kinship cor-
relation structure. The DNA methylation residual was regressed on 
the SNP genotype additionally adjusting for 25 methylation principal 
components to account for unmeasured technical variation. Imputed 
SNPs were entered into the model as allele dosages. In PIVUS, the 

Figure 1. Overview of the study. CpG indicates cytosine–guanine dinucleotide; FDR, false discovery rate; FHS, Framingham Heart Study; 
GOLDN, Genetics of Lipid Lowering Drugs and Diet Network; HDL-C, high-density lipoprotein cholesterol; LBC, Lothian Birth Cohorts; 
LDL-C, low-density lipoprotein cholesterol; meQTL, methylation quantitative trait locus; PIVUS, Prospective Investigation of the Vascula-
ture in Uppsala Seniors Study; TC, total cholesterol; and TG, triglyceride.
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association between normalized methylation β values and posterior 
mean genotypes (MACH format) was modeled by a linear mixed ef-
fect model, using R34 and the lmer function (lme4 package), fitted 
by maximum likelihood assuming a normally distributed error term. 
Models were adjusted for age, sex, and predicted white cell counts 
(estimated from the DNA methylation data using the Houseman algo-
rithm33 as implemented in R package minfi35) as fixed effects and chip, 
chip row, and chip column as random effects.

Association With Gene Expression Data
In FHS, the association between DNA methylation and gene expres-
sion (available in 2246 participants with DNA methylation) was per-
formed on the gene expression residuals after the removal of the fixed 
and random covariates, along with the kinship correlation structure 
using a linear model, primarily to avoid potential confounding by 
blood count. Only CpGs that were methylome-wide significant were 
tested, and individual CpGs were tested against a single gene expres-
sion transcript in the regression model. All gene transcripts within 
±500 kb (cis) of the CpG were assessed.

Association With Targeted Metabolites
In PIVUS, the associations between normalized methylation β values 
at lipid-associated CpGs and 229 serum metabolites were modeled 
by a linear mixed effect model, using R34 and the lmer function (lme4 
package), fitted by maximum likelihood assuming a normally dis-
tributed error term. Models were adjusted for age, sex, and predicted 
white cell counts (using the Houseman algorithm33 in R package min-
fi35) as fixed effects and chip, chip row, and chip column as random ef-
fects. False discovery rate (FDR) were estimated based on Q values.36

Association With Disease Outcome
In FHS, Cox models were fitted in R using the coxme package to 
model the association of baseline DNA methylation with incident 
CHD events adjusted for age, sex (fixed effects), and family struc-
ture (mixed effect) for the 33 replicated lipid-associated CpGs. As 
using measured technical covariates (chip, row, and column) with a 
binary outcome resulted in too many overall levels, surrogate variable 
analysis (that capture sources of heterogeneity in the methylation data 
and can be used to control for the influence of these latent variables 
on inference)37 was used to capture the measured and unmeasured 
technical variation in the methylation data, and 5 surrogate variables 
(associated with incident CHD at P value <0.05) were included as 
covariates in the model.

In PIVUS, Cox models were fitted in R using the coxph func-
tion in the survival package, to model the association between case/
control status and standardized methylation levels at the 33 replicated 
lipid-associated CpGs. Models were adjusted for age, sex, chip, and 
predicted white cell counts (using the Houseman algorithm33 in the R 
package minfi35).

Results
Associations of DNA Methylation With Lipid Levels 
in Blood
We sought to examine whether differences in DNA meth-
ylation were associated with circulating lipid levels (study 
design and main results outlined in Figure 1). After meta-
analysis of 459 433 CpGs in the FHS (n=1494) and PIVUS 
(n=812) studies, we found methylation at 40, 23, 110, and 28 
CpG sites associated with TC, LDL-C, HDL-C, and triglyc-
erides, respectively, at methylome-wide significant threshold 
(P<1.08E-7; Volcano plots in Figures I through IV in the Data 
Supplement; Manhattan plots in Figures V through VIII in 
the Data Supplement). In total, there were 184 unique CpG 
sites (annotated to 138 unique genes) associated with any lipid 
level (some were associated with several); 174 of these have 
not previously been reported to be associated with lipid lev-
els. Complete results are available in Tables II through V in 

the Data Supplement, and the level of overlap between CpGs 
associated with the 4 lipid fractions is depicted in Figure IXa 
in the Data Supplement.

In secondary analyses additionally adjusted for BMI, 80% 
(32/40), 87% (20/23), 13% (14/110), and 61% (17/28) of the 
CpG sites associated in the primary model with TC, LDL-C, 
HDL-C, and triglycerides, respectively, were significantly 
associated in the corresponding BMI-adjusted lipid model at 
a methylome-wide significant threshold (P<1.08E-7; Volcano 
plots in Figures I through IV in the Data Supplement). 
Associations of methylation with lipid levels after adjustment 
for BMI occurred at 80 unique CpGs (annotated to 60 unique 
genes). In these BMI-adjusted analyses, we found 9 CpG sites 
associated with lipid levels that were not significantly asso-
ciated in the primary analyses (complete results available in 
Tables VI through IX in the Data Supplement; Figure IXb in 
the Data Supplement).

We then attempted to replicate the associations at the 
193 CpG sites significantly associated with at least 1 lipid 
trait (in models without or with BMI adjustment) in 3 inde-
pendent cohorts (≤2025 individuals) with DNA methylation 
from whole blood (LBC1936 and LBC1921) or CD4+ T cells 
(GOLDN). At a Bonferroni-corrected α threshold of 0.05 (tak-
ing the number of tests per lipid trait into account) and taking 
direction of effect into account, 5 (13%), 1 (4%), 11 (10%), 
and 19 (68%) of the CpG sites associated with TC, LDL-C, 
HDL-C and triglycerides, respectively, in the primary analysis 
replicated in a meta-analysis of these 3 independent cohorts 
(Table 1). When only considering the 10 most associated 
CpGs in the discovery for each lipid trait, the replication rate 
was considerable higher (30%, 10%, 40%, and 90% for TC, 
LDL-C, HDL-C, and triglycerides, respectively). Comparison 
of effect sizes between discovery and replication for all CpGs 
significant in the discovery stage revealed a high degree of 
overall concordance between the β coefficients (Pearson 
correlation coefficients 0.78, 0.67, 0.71, and 0.88, for TC, 
LDL-C, HDL-C, and triglycerides, respectively), indicating a 
high level of agreement even for CpGs that did not replicate 
at the P value threshold (Figure X in the Data Supplement). 
Comparison of effect sizes between discovery and each of 
the individual replication cohorts for all CpGs significant in 
the discovery is included in Figures XI through XIV in the 
Data Supplement. In secondary analyses adjusted for BMI in 
the external cohorts, we replicated 4 (13%), 1 (5%), 2 (14%), 
and 12 (71%) of the CpG sites associated with TC, LDL-C, 
HDL-C, and triglycerides, respectively (Table 1). In total, 33 
CpGs replicated in the primary or secondary model (repre-
senting 55 associations as some CpGs were associated with 
several lipid traits). Twenty-five of these have not previously 
been reported to be associated with lipids in DNA methylation 
studies (Table 1; Table X in the Data Supplement). Ten of the 
lipid-associated CpGs (including 5 of the novel CpGs) have 
previously been associated with adiposity (BMI and waist cir-
cumference), glycemic traits (fasting insulin and insulin resis-
tance by homeostasis model assessment), or type 2 diabetes 
mellitus in blood cell–derived DNA methylation data (Table 
X in the Data Supplement). We tested whether associations 
in blood could also be detected in another tissue using DNA 
methylation data from abdominal SAT from the MuTHER 
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Table 1.  Lipid-Associated CpG Sites Replicated in Independent Cohorts With Whole Blood or CD4+ T Cells DNA Methylation

Lipid 
Trait

Type of 
Loci CpG Chr Position

Gene 
Property Gene Direction*

Discovery  
β (SE) P Value Direction†

Replication 
β (SE) P Value

Primary model

  TC Novel cg17901584 1 55353706 TSS1500 DHCR24 ++ 0.000149 
(0.000027)

4.73E-08 +++ 0.000114 
(0.000032)

3.80E-04

  TC Novel cg23759710 2 42990957 First exon OXER1 −− −0.000082 
(0.000014)

2.45E-09 −−+ −0.000074 
(0.000022)

8.32E-04

  TC Novel cg00285394 8 126011954 Body SQLE ++ 0.000213 
(0.000034)

5.98E-10 +++ 0.000161 
(0.000039)

3.16E-05

  TC Novel cg07839457 16 57023022 TSS1500 NLRC5 ++ 0.000273 
(0.000051)

8.74E-08 +++ 0.000231 
(0.000049)

2.32E-06

  TC Novel cg09978077 22 42229983 Body SREBF2 ++ 0.000057 
(0.000010)

1.79E-09 +++ 0.000047 
(0.000014)

4.82E-04

  LDL-C Novel cg00285394 8 126011954 Body SQLE ++ 0.000230 
(0.000039)

4.12E-09 ++ 0.000200 
(0.000045)

1.04E-05

  HDL-C Novel cg17901584 1 55353706 TSS1500 DHCR24 ++ 0.000717 
(0.000052)

5.47E-43 ++ 0.000321 
(0.000090)

3.55E-04

  HDL-C Novel cg07567724 1 153777721 3′UTR GATAD2B −− −0.000248 
(0.000045)

3.81E-08 −− −0.000311 
(0.000087)

3.53E-04

  HDL-C Novel cg19351166 2 209133632 5′UTR PIKFYVE −− −0.000207 
(0.000038)

4.16E-08 −− −0.000279 
(0.000065)

1.96E-05

  HDL-C Novel cg06560379 6 44231305 Body NFKBIE ++ 0.000114 
(0.000017)

6.05E-11 ++ 0.000083 
(0.000023)

2.76E-04

  HDL-C Novel cg16407699 10 74020428 … … −− −0.000280 
(0.000048)

7.30E-09 −− −0.000265 
(0.000069)

1.09E-04

  HDL-C Novel cg19750657 13 38935967 3′UTR UFM1 −− −0.000308 
(0.000049)

2.24E-10 −− −0.000329 
(0.000063)

2.20E-07

  HDL-C Novel cg07814318 15 31624584 Body KLF13 −− −0.000322 
(0.000049)

6.38E-11 −− −0.000455 
(0.000121)

1.69E-04

  HDL-C Novel cg06192883 15 52554171 Body MYO5C −− −0.000258 
(0.000043)

2.04E-09 −− −0.000283 
(0.000053)

8.95E-08

  HDL-C Novel cg11024682 17 17730094 Body SREBF1 −− −0.000213 
(0.000036)

4.19E-09 −− −0.000229 
(0.000058)

8.72E-05

  HDL-C Previous cg06500161 21 43656587 Body ABCG1 −− −0.000459 
(0.000037)

1.20E-34 −− −0.000322 
(0.000072)

7.43E-06

  HDL-C Novel cg06397161 22 39760059 5′UTR/Body SPRY4 −− −0.000259 
(0.000048)

7.25E-08 −− −0.000327 
(0.000075)

1.27E-05

  TG Novel cg03725309 1 109757585 Body SARS −− −0.009052 
(0.001209)

7.11E-14 −−− −0.011098 
(0.001746)

2.09E-10

  TG Novel cg16246545 1 120255941 Body PHGDH −− −0.012602 
(0.002184)

7.94E-09 −−− −0.007394 
(0.002158)

6.11E-04

  TG Novel cg14476101 1 120255992 Body PHGDH −− −0.021504 
(0.002789)

1.25E-14 −−− −0.012696 
(0.002473)

2.82E-07

  TG Previous cg19693031 1 145441552 3′UTR TXNIP −− −0.017424 
(0.002249)

9.40E-15 −−− −0.010932 
(0.002263)

1.35E-06

  TG Novel cg06690548 4 139162808 Body SLC7A11 −− −0.021855 
(0.002394)

6.98E-20 −−− −0.007707 
(0.001666)

3.70E-06

  TG Novel cg21429551 7 30635762 Body GARS −− −0.026953 
(0.003214)

4.97E-17 −−− −0.012744 
(0.002780)

4.57E-06

  TG Novel cg03068497 7 30635838 Body GARS −− −0.025125 
(0.003427)

2.27E-13 −−− −0.012680 
(0.002935)

1.55E-05

(Continued )
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  TG Novel cg19390658 7 30636176 Body GARS −− −0.020977 
(0.002685)

5.61E-15 −−− −0.012653 
(0.002450)

2.40E-07

  TG Previous cg07504977 10 102131012 … … ++ 0.012564 
(0.002025)

5.45E-10 +++ 0.011962 
(0.001901)

3.10E-10

  TG Previous cg00574958 11 68607622 5′UTR CPT1A −− −0.008999 
(0.000724)

1.65E-35 −+− −0.011979 
(0.001126)

2.01E-26

  TG Previous cg09737197 11 68607675 5′UTR CPT1A −− −0.007154 
(0.001104)

9.13E-11 −+− −0.010376 
(0.001785)

6.18E-09

  TG Previous cg17058475 11 68607737 5′UTR CPT1A −− −0.009858 
(0.001003)

8.33E-23 −−− −0.013425 
(0.001665)

7.55E-16

  TG Novel cg08129017 17 17728660 Body SREBF1 ++ 0.009755 
(0.001627)

2.02E-09 +++ 0.011616 
(0.002263)

2.84E-07

  TG Previous cg11024682 17 17730094 Body SREBF1 ++ 0.010107 
(0.001327)

2.59E-14 +++ 0.010284 
(0.001345)

2.07E-14

  TG Novel cg08857797 17 40927699 Body VPS25 ++ 0.009577 
(0.001708)

2.06E-08 +++ 0.007994 
(0.001849)

1.53E-05

  TG Novel cg02711608 19 47287964 5′UTR/Body SLC1A5 −− −0.008321 
(0.001310)

2.14E-10 −−− −0.004606 
(0.001200)

1.24E-04

  TG Previous cg27243685 21 43642366 5′UTR/Body ABCG1 ++ 0.012223 
(0.001164)

8.12E-26 +++ 0.004508 
(0.001093)

3.72E-05

  TG Novel cg01176028 21 43653234 Body ABCG1 ++ 0.006953 
(0.001189)

5.00E-09 +++ 0.011307 
(0.002056)

3.82E-08

  TG Previous cg06500161 21 43656587 Body ABCG1 ++ 0.019854 
(0.001359)

2.29E-48 +++ 0.012731 
(0.001637)

7.55E-15

Secondary BMI-adjusted model

  TC Novel cg23759710 2 42990957 First exon OXER1 −− −0.000081 
(0.000014)

3.60E-09 −−− −0.000075 
(0.000022)

7.75E-04

  TC Novel cg00285394 8 126011954 Body SQLE ++ 0.000215 
(0.000035)

4.83E-10 +++ 0.000155 
(0.000039)

6.08E-05

  TC Novel cg07839457 16 57023022 TSS1500 NLRC5 ++ 0.000272 
(0.000051)

9.62E-08 +++ 0.000223 
(0.000049)

5.54E-06

  TC Novel cg09978077 22 42229983 Body SREBF2 ++ 0.000057 
(0.000010)

3.03E-09 +++ 0.000047 
(0.000014)

6.52E-04

  LDL-C Novel cg00285394 8 126011954 Body SQLE ++ 0.000234 
(0.000039)

2.32E-09 ++ 0.000197 
(0.000046)

1.82E-05

  HDL-C Novel cg19273683 1 21656047 Body ECE1 −− −0.000289 
(0.000051)

1.50E-08 −− −0.000244 
(0.000078)

1.71E-03

  HDL-C Previous cg06500161 21 43656587 Body ABCG1 −− −0.000363 
(0.000039)

2.48E-20 −− −0.000219 
(0.000075)

3.41E-03

  TG Novel cg03725309 1 109757585 Body SARS −− −0.007844 
(0.001258)

4.56E-10 −−− −0.009679 
(0.001832)

1.27E-07

  TG Novel cg14476101 1 120255992 Body PHGDH −− −0.018779 
(0.002897)

8.96E-11 −−− −0.009380 
(0.002574)

2.68E-04

  TG Previous cg19693031 1 145441552 3′UTR TXNIP −− −0.016514 
(0.002340)

1.70E-12 −−− −0.010270 
(0.002376)

1.54E-05

  TG Novel cg06690548 4 139162808 Body SLC7A11 −− −0.019833 
(0.002487)

1.54E-15 −−− −0.006180 
(0.001744)

3.95E-04

  TG Novel cg21429551 7 30635762 Body GARS −− −0.023803 
(0.003349)

1.18E-12 −−− −0.009124 
(0.002903)

1.67E-03

Table 1.  Continued

Lipid 
Trait

Type of 
Loci CpG Chr Position

Gene 
Property Gene Direction*

Discovery  
β (SE) P Value Direction†

Replication 
β (SE) P Value

(Continued )
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study25 (Tables II through IX in the Data Supplement). Less 
than half of HDL-C (40%) and triglyceride-associated (46%) 
sites were associated in SAT, and more than half of HDL-C 
sites were in opposite directions in blood and adipose tissue, 
indicating that there may be independent regulatory effects 
across tissue types.

In addition, fixed effects meta-analyses across all 5 cohorts 
were performed for each lipid trait, identifying additional dif-
ferentially methylated candidate regions that may play a role 
in lipid levels (Tables XI and XII in the Data Supplement), but 
that carry lesser weight given the lack of independent replica-
tion. Using the results of these meta-analyses, we investigated 
whether methylation at 15 CpGs associated with lipids in 2 
recent publications38,39 also was associated with the same lipid 
traits in our study. We found 12 (80%) CpGs reported in previ-
ous studies to be associated with the same lipid traits in our 
study (Table 2), highlighting the high degree of between-study 
replicability of lipid–methylation associations. Interestingly, 
the intergenic CpG cg07504977 associated with triglycerides 
in both our study and the previous study lies in an active regu-
latory region (DNAse I hypersensitivity site and H3K27Ac 
mark) <10 kb distal to stearoyl-CoA desaturase (delta-9-de-
saturase). This gene plays an important role in the metabolism 
of dietary saturated fatty acids, a function that is critical for 
triglycerides synthesis and that has been shown to be disturbed 
in metabolic disease.40 However, in our study, methylation at 
cg07504977 was not associated with expression of stearoyl-
CoA desaturase in whole blood.

Many lipid-associated CpGs in our study were annotated 
to genes in loci highlighted in GWAS of cardiovascular traits, 
including lipids (AMPD3, APOB, FADS2, GALNT2, LDLR, 
MYLIP, and TRIB1), waist:hip ratio (CBX3, KLF13, and 
LY86), BMI (ADCY3), adiponectin (TRIB1), type 2 diabetes 
mellitus (PTPRD), and CHD (APOB and LDLR; Table XIII in 
the Data Supplement).

Functional Annotation of Lipid-Associated CpGs
We explored the functional roles of the 193 CpGs associated 
with lipid traits by investigating their genomic locations with 
respect to genes, CpG islands, and functional regulatory ele-
ments. Lipid-associated CpGs were less commonly located 
in CpG islands (P=1.01E-15) and promoters (P=5.82E-04), 
when compared with all CpGs on the array (Figure XV 
in the Data Supplement). The observation that differential 
DNA methylation in relation to chronic human disease traits 
(as opposed to cancer) is less likely to be seen at promoters 
and CpG islands has been previously reported.25 To further 
explore the regulatory activity of identified loci, we examined 
the overlap of the 193 lipid-associated CpGs with functional 
regulatory elements across cell types using RegulomeDB.41 
About 14% of sites showed strong evidence of being located 
in a functional regulatory region (RegulomeDB score 1a-2c; 
Tables II through IX in the Data Supplement); this was not 
more than expected by chance (P=0.83).

To further the in silico identification of relevant affected 
tissues, we used the eFORGE tool (http://eforge.cs.ucl.ac.uk/), 
which determines whether the identified CpGs are enriched in 
DNAse I hypersensitivity site hotspots in specific tissue types 
(Figure XVI in the Data Supplement). Our identified CpGs 
were in active DNAse I hypersensitivity site hotspots across a 
range of tissue types in ENCODE and Epigenome Roadmap 
Consortium tissue sets (FDR Q value <0.01), specifically 
blood, liver, muscle, heart, and epithelium (adipose tissue 
is not represented in this tool). Notably, the identified CpGs 
were not in DNAse I hypersensitivity site hotspots in nervous 
tissue (brain, cerebellum, hippocampus, and nervous), gas-
trointestinal tissue (colon, kidney, pancreas, and pancreatic 
duct), bone tissue, and eye tissue.

To place our findings in a broader biological context, we 
performed gene set enrichment analysis31,32 for genes anno-
tated to the 193 CpGs associated with lipid levels. For TC, 

  TG Novel cg19390658 7 30636176 Body GARS −− −0.020864 
(0.002797)

8.73E-14 −−− −0.010873 
(0.002568)

2.30E-05

  TG Previous cg00574958 11 68607622 5′UTR CPT1A −− −0.007903 
(0.000750)

5.81E-26 −+− −0.010401 
(0.001177)

9.59E-19

  TG Previous cg09737197 11 68607675 5′UTR CPT1A −− −0.007034 
(0.001152)

1.01E-09 −+− −0.010243 
(0.001874)

4.58E-08

  TG Previous cg17058475 11 68607737 5′UTR CPT1A −− −0.009144 
(0.001046)

2.24E-18 −−− −0.012478 
(0.001746)

8.93E-13

  TG Novel cg08129017 17 17728660 Body SREBF1 ++ 0.009346 
(0.001693)

3.36E-08 +++ 0.010037 
(0.002373)

2.85E-05

  TG Previous cg27243685 21 43642366 5′UTR/Body ABCG1 ++ 0.010416 
(0.001204)

5.08E-18 +++ 0.004038 
(0.001146)

4.26E-04

  TG Previous cg06500161 21 43656587 Body ABCG1 ++ 0.016873 
(0.001396)

1.29E-33 +++ 0.010841 
(0.001712)

1.10E-06

BMI indicates body mass index; Chr, chromosome; CpG, cytosine–guanine dinucleotide; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; TC, total cholesterol; and TG, triglyceride.

*Direction of effect in Framingham Heart Study and Prospective Investigation of the Vasculature in Uppsala Seniors Study.
†Direction of effect in LBC1936 (Lothian Birth Cohorts of 1936), LBC1921, and GOLDN (Genetics of Lipid Lowering Drugs and Diet Network) for TC and TG, and 

direction of effect in LBC1936 and GOLDN for LDL-C and HDL-C.

Table 1.  Continued

Lipid 
Trait

Type of 
Loci CpG Chr Position

Gene 
Property Gene Direction*

Discovery  
β (SE) P Value Direction†

Replication 
β (SE) P Value

 by guest on M
ay 23, 2017

http://circgenetics.ahajournals.org/
D

ow
nloaded from

 

http://circgenetics.ahajournals.org/


8  Hedman et al  Epigenetic Patterns Associated With Lipid Traits 

the pathway analyses revealed enrichment in processes relat-
ing to sterol, lipid, and cholesterol metabolism and biosyn-
thesis (FDR=0.0029–0.037), indicating that DNA methylation 
sites associated with cholesterol primarily affect processes 
directly relating to lipid production and metabolism (Tables 
XIV through XVI in the Data Supplement). For triglycerides, 
the pattern was different because metabolism of amino acids 
was highlighted in the pathway analyses (FDR=0.034). No 
significant enrichment in pathways was observed in analysis 
of genes annotated to CpG sites associated with LDL-C or 
HDL-C. When restricting the enrichment analyses to genes 
annotated to replicating CpGs or to those where methylation 
levels were associated with gene expression of their respec-
tive genes, we observed similar results (Tables XIV through 
XVI in the Data Supplement), with the exception of HDL-C, 
which now showed significant enrichment in lipid metabolism 
(FDR=0.0056–0.04).

Genetic Regulation of Lipid-Associated DNA 
Methylation
To assess the role of genetic variation in controlling lipid-
related DNA methylation changes, we studied the association 
of sequence variants in cis with methylation levels at lipid-
associated CpGs (cis-meQTLs). Mapping of cis-meQTLs 
(SNPs in a 100 kb window around CpG sites) was performed 
in the FHS cohort (n=2246) with subsequent replication of 
lead meQTLs in the PIVUS cohort (n=775). In agreement 
with previous studies,6,25 we found a large proportion of CpG 
sites to associate with common SNPs in cis. We found 123 out 
of 193 (64%) lipid-associated CpG sites to be at least partly 

regulated by genetic sequence variation in cis (P<1E-04); 60 
of these replicated in PIVUS (at P<4.071E-04; Table XVII in 
the Data Supplement).

We investigated whether the 123 significant lead meQTL 
SNPs or their proxies (r2>0.8) were over-represented among 
SNPs with nominally significant associations (P<0.05) in 
GWAS meta-analyses from the CARDIoGRAM consortium 
for CHD42 and the Global Lipids Genetics consortium for lipid 
levels.4 We found evidence of enrichment (applying a 1-sided 
Fisher exact test) of nominally significant associations for 
CHD (P=7.04E-4), TC (P=4.36E-3), HDL-C (P=8.3E-3), and 
triglycerides (P=2.9E-5) among the cis-meQTL lead SNPs 
(or proxies). Furthermore, we found the lead cis-meQTL SNP 
(rs563290) of cg05337441 (associated with LDL-C in discov-
ery, P=4.5E-8 but not surviving Bonferroni cutoff threshold 
in replication, P=1.7E-2), located in an intron of APOB, to 
be associated with LDL-C in GWAS43 and to be a highly cor-
related proxy (r2=1) of genome-wide significant GWAS index 
SNPs (rs515135 and rs562338; located ≈20 kb upstream 
of the APOB transcription start site) in LDL-C meta-analy-
ses.44,45 This cis-meQTL proxy for APOB locus methylation 
(rs515135) is also associated with CHD at a genome-wide 
level of significance (P=1.8E-10) from the CardiogramC4D 
consortium data.42

The Impact of Lipid-Associated CpGs on Gene 
Expression
Examining gene expression in relation to DNA methyla-
tion in blood from participants in the FHS, we investigated 
whether methylation levels at lipid-associated CpGs were 

Table 2.  Associations of Lipid Levels With Methylation at CpGs Previously Reported to be Associated with Lipids

Trait References CpG Gene β (replicating)

Meta-Analysis Across All 5 
Cohorts in Our Study

Direction P Value*

LDL-C Pfeiffer et al39 cg22178392 TNIP1 0.040 (yes) + 1.33E-04

HDL-C Pfeiffer et al39 cg06500161 ABCG1 −0.049 (yes) −* 2.09E-38*

TG Pfeiffer et al39 cg06500161 ABCG1 0.070 (yes) +* 4.20E-59*

TG Irvin et al38; Pfeiffer et al39 cg00574958 CPT1A −0.118 (yes), −0.032 −* 7.22E-09*

TG Irvin et al38 cg17058475 CPT1A −0.035 −* 2.72E-36*

TG Irvin et al38 cg09737197 CPT1A −0.027 −* 1.05E-17*

TG Irvin et al38 cg01082498 CPT1A −0.011 −* 2.07E-13*

TG Pfeiffer et al39 cg27243685 ABCG1 0.064 (yes) +* 2.00E-24*

TG Pfeiffer et al39 cg19693031 TXNIP −0.030 (yes) −* 5.54E-19*

TG Pfeiffer et al39 cg11024682 SREBF1 0.059 (yes) +* 3.74E-27*

TG Pfeiffer et al39 cg07504977 … 0.026 (yes) +* 9.91E-19*

TG Pfeiffer et al39 cg20544516 MIR33B/SREBF1 0.043 (yes) +* 3.57E-08*

TG Pfeiffer et al39 cg07397296 ABCG1 0.027 (yes) +* 1.08E-10*

TG Pfeiffer et al39 cg07815238 … 0.048 (no) + 0.037

TG Pfeiffer et al39 cg12556569† APOA5 0.005 (no) N/A N/A

CpG indicates cytosine–guanine dinucleotide; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total 
cholesterol; and TG, triglyceride.

*CpGs associate with the same lipid trait in combined meta-analysis (P<1.08E-7) in our study.
†CpG excluded in our analysis because of common genetic variant 1 base away from CpG site.
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associated with mRNA expression levels of nearby genes 
(±500 kb). We found 29 CpGs (out of 193 tested; 15%) to 
be associated with expression in blood of at least 1 adja-
cent gene (FDR<0.05; 36 CpG–expression pairs in total; 
Table XVIII in the Data Supplement). For the major-
ity (86%) of these associations, levels of methylation and 
expression were inversely correlated. For 17 of these 29 
CpGs (59%), there was also a significant cis-meQTL. The 
lead meQTL SNP was significantly associated with both 
methylation and gene expression (FDR<0.05) for 12 of 36 
CpG–expression pairs (29 unique CpGs), suggesting that the 
genotype may affect both methylation and expression. This 
was the case for the following genes: CHSY1 (cg24002003), 
DHCR24 (cg17901584), ECE1 (cg19273683), IL18R1 
(cg05295703), IL1RL1 (cg05295703), KANK2 (cg01751802), 
LDLR (cg26313301), PHGDH (cg14476101, cg16246545), 
PRKD2 (cg22304262), SREBF1 (cg08129017), and SREBF2 
(cg09978077). For the remaining 6 CpG–expression pairs, the 
meQTL SNP was associated with methylation (FDR<0.05) 
but not with expression (FDR >0.05) as presented in Table 
XVIII in the Data Supplement.

Detailed Characterization of Lipid CpG Sites Using 
Metabolomics
To further characterize functional relevance of lipid-asso-
ciated CpG sites, we tested levels of methylation at the 193 
CpGs for association with 229 serum metabolites in the 
PIVUS cohort.46 We found 29 of the lipid-associated CpGs 
to be associated with at least 1 metabolite (FDR<0.01; Table 
XIX in the Data Supplement). As expected, the majority of the 
associations were between a lipid-related CpG site and vari-
ous lipid-derived metabolites (Figure XVII in the Data Sup-
plement). Most associations were observed with cg17901584 
in the promoter of DHCR24 (associated with TC, HDL-C, and 
triglycerides) and with sites in the promoter of ABCG1 (asso-
ciated with HDL-C and triglycerides), highlighting the central 
role for these genes in lipid metabolism. Metabolites associ-
ated with methylation of the DHCR24 promoter included a 
derivate of cinnamic acid, recently shown to be associated 
with a lower risk of incident CHD events.46 Methylation at 
the ABCG1 locus was associated with specific ceramides and 
sphingomyelins, which have been implicated in the develop-
ment of atherosclerosis and CHD.47,48

Association of Lipid-Associated CpGs With Disease 
Outcomes
We investigated whether the 33 replicating lipid-associated 
CpG sites were also associated with incident CHD events 
during an 8-year follow-up in the FHS (number of CHD 
events=115) and a 10-year follow-up in PIVUS (number of 
CHD events =78) using multivariable Cox proportional haz-
ard models. Methylation levels at ABCG1 (cg27243685) 
were significantly associated (Bonferroni-corrected α<0.05, 
nominal P<1.52E-03) with CHD in a meta-analysis of FHS 
and PIVUS (hazard ratio per SD increment=1.38; 95% con-
fidence interval, 1.15–1.66; P=6.86E-04; Table XX in the 
Data Supplement). We found the relationship of methyla-
tion at cg27243685 with triglycerides and risk of CHD to be 
directionally consistent with the expected based on previous 

studies of lipid levels and CHD risk.1–3 Hypermethylation at 
cg27243685 in the 5′-UTR of ABCG1—that was associated 
with decreased expression of ABCG1 (Table XVIII in the 
Data Supplement)—was associated with higher triglycerides 
and lower HDL-C, as well as increased risk for CHD (Figure 
2). This ABCG1 locus (cg27243685) was also highlighted in 
the previous sections as containing a cis-meQTL and being 
associated with metabolites. This illustrates an example of a 
pathway linking genetic variant to perturbed DNA methyla-
tion, altered expression levels, circulating metabolites, lipid 
levels (triglycerides and HDL-C), and risk of CHD (Figure 2).

Discussion
In this study, we aimed to identify epigenetic variation asso-
ciated with serum lipid concentrations, which are among the 
most established risk factors for CVD. We report findings of 
a genome-wide scan of blood DNA methylation in relation to 
circulating lipid levels from ≤2306 individuals with indepen-
dent external replication in ≤2025 additional individuals. We 
extend the findings of published literature on the association 
of differential DNA methylation with circulating lipids38,39,49,50 
by examining larger discovery and replication samples and 
by examining the association of methylation at the associ-
ated CpGs with gene expression, intermediate metabolites, 
and incident CHD. We have made several novel observations 
about the role of DNA methylation in the regulation of lipids 
and risk of CVD and highlight 3 important contributions. First, 
we identified novel replicated loci of differential methylation 
in blood associated with circulating lipid levels that may rep-
resent potential therapeutic targets. Second, we describe the 
overlap of methylation and GWAS SNPs and identify a poten-
tial mechanism of a known LDL-C–related GWAS variant at 
the APOB locus acting as a cis-meQTL on LDL-C–related dif-
ferential methylation at cg05337441, intronic to APOB. Third, 
we identify HDL-C–related and triglyceride-related differ-
ential methylation at the ABCG1 locus (cg27243685) to be 
associated with expression of a gene involved in reverse cho-
lesterol transport (ABCG1), metabolites that influence reverse 
cholesterol transport (sphingomyelins), and subsequently to 
be associated with a 38% higher risk of incident CHD per SD 
increase in methylation.

We found methylation at 193 CpG sites to be associated 
with lipid levels and replicated 33 of these in 3 indepen-
dent cohorts with data on DNA methylation in blood and T 
cells. Many of the differentially methylated loci associated 
with LDL-C, triglycerides, and to a lesser degree HDL-C, 
were independent of adjustment for BMI. Twenty-five of the 
33 replicated CpGs have not been previously reported to be 
associated with lipid levels.38,39 Novel sites included those 
near genes with a known function in cholesterol metabolism 
(DHCR24, SREBF2, and SQLE) and with a possible role in 
atherosclerosis (endothelin-converting enzyme-1).51,52 The 
novel genes identified warrant further research as potential 
targets for perturbation to reduce dyslipidemia.

When exploring whether methylation at lipid-associated 
CpGs has also been associated with related cardiometabolic 
traits, we found overlap with associations for adiposity (near 
genes ABCG1, CPT1A, DHCR24, KLF13, MYO5C, PHGDH, 
SREBF1, and VPS25),53–55 glycemic traits (near ABCG1,)56 
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and type 2 diabetes mellitus (near genes SREBF1, ABCG1, 
and TXNIP).57 In addition, we observed associations of circu-
lating lipids with DNA methylation levels at CpGs near genes 
previously reported to be associated with lipids, other cardio-
vascular traits, and CVD events in GWAS.

Further, pathway analyses, including genes annotated 
to lipid-associated CpGs, showed enrichment in pathways 
involved in lipid, sterol, and cholesterol metabolic and biosyn-
thesis processes for cholesterol-related CpGs, whereas amino 
acid metabolism pathways were enriched for triglyceride-
associated CpGs. These observations highlight the different 
biological mechanisms underlying changes in genomic regu-
lation observed in association with TC and TGs.

We identified genetic drivers of lipid-associated CpGs in 
blood through integration with SNPs in cis-meQTLs analy-
ses. At 64% of the lipid-associated CpGs, the effect is deter-
mined in part by genotype. GWAS SNPs for lipids and CHD 
were enriched among the cis-meQTL SNPs of lipid-associated 
CpGs. Further, we observed association with expression levels 
of adjacent genes for 15% of the CpGs, which indicates pos-
sible mechanisms of effect through changes in transcription. 
For 17 of the lipid-related CpGs where there was an associa-
tion with expression levels of an adjacent gene, there was also 
a significant cis-meQTL. For the majority of these, the geno-
type affected both methylation and gene expression. In these 
instances, our data provide evidence linking multiple steps 
from genetic variants affecting DNA methylation, to modula-
tion of gene expression to effects on circulating lipid levels. For 
example, at the ABCG1 locus, we observed that the minor allele 
at intronic variant rs4148086 was associated with increased 
methylation at cg27243685. This methylation marker, which is 
located at the south shelf of a CpG island in the 5′-UTR region 

of ABCG1, was associated with decreased expression of ABCG1 
in blood, increased triglyceride levels (even after adjustment of 
BMI and regulated both by blood and SAT methylation), and 
increased risk of new-onset CHD. Methylation in this locus 
(at cg06500161) has previously been associated with prevalent 
myocardial infarction.39 The ABCG1 gene product functions 
in the efflux of cholesterol from lipid-loaded macrophages to 
HDL-C.58 However, the functional basis for association to lev-
els of triglycerides in blood circulation is unclear. Although cir-
culating HDL-C levels has been largely disproven as a causal 
factor for CHD,2 the importance of cholesterol efflux function 
in CHD risk is an emerging topic of discussion.59 In addition to 
cholesterol, ABCG1 mediates the efflux of sphingomyelin and 
phosphatidylcholine, and the cholesterol efflux by ABCG1 has 
been demonstrated to have some dependence on sphingomyelin 
concentrations.60,61 Sphingomyelins have been implicated in 
the development of atherosclerosis and CHD.48,62 In our study, 
methylation in the ABCG1 locus was also associated with spe-
cific sphingomyelins and ceramides (also implicated in CHD47). 
Methylation at CpG sites in the ABCG1, as well as the DHCR24 
loci, was also associated with a large number of other lipid-
related metabolites in blood, further highlighting the central 
role for these genes in processes relating to lipid metabolism 
and development of CVD.

The main strengths of this study include the large sample 
size of the genome-wide DNA methylation and ≤10 years of 
follow-up allowing analyses of incident CHD end points. In 
addition, inclusion of several other types of functional genom-
ics data (gene expression and metabolites) helped us to draw 
more precise conclusions on the links between methylation and 
circulating lipid levels. We replicated a large fraction of pre-
viously reported associations of methylation and lipid levels, 

Figure 2. Associations at the ABCG1 locus. CHD indicates coronary heart disease; HDL-C, high-density lipoprotein cholesterol; meQTL, 
methylation quantitative trait locus; SNP, single-nucleotide polymorphism; and TG, triglyceride.
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providing assurance that associations of methylation with lipid 
levels are reliable across different studies and indicate that also 
the novel findings reported may indeed represent true findings.

The study also has limitations. Blood-derived cells, 
although easily accessible and good for biomarker discovery, 
may not be the most relevant tissue for drawing biological con-
clusions. Our validation in adipose tissue reveals that at least a 
proportion of the observed associations are shared across tis-
sues. The cross-sectional design does not allow us to determine 
the causal relationship between lipid and DNA methylation. 
Our analysis of lipid-associated CpGs with incident disease 
indicates the relevance of methylation in at least one of these 
CpGs for disease pathophysiology. Further, a relatively low 
proportion of our findings could be robustly validated in the 
replication stage. However, it should be noted that we observed 
a high level of agreement of β coefficients even for CpGs that 
did not formally replicate at the P value threshold. This indi-
cates that the low replication rate may be because of smaller 
sample size in the replication stage, particularly for LDL-C and 
HDL-C, giving reduced power, especially in the light of our 
strict criteria for replication (which was chosen to minimize 
false-positive findings). In addition, if the differentially meth-
ylated CpGs identified in discovery from whole blood did not 
also occur in CD4+ T cells, we would not expect to see replica-
tion in the GOLDN replication cohort that assayed DNA from 
cell-sorted CD4+ T cells. Furthermore, cholesterol panels from 
the LBC cohort were obtained in a nonfasting state and may 
have reduced our ability to replicate findings. Finally, tran-
scriptomic and metabolomic data were not available in every 
cohort, and, therefore, we were not able to demonstrate similar 
findings in each participating study.

In conclusion, we report novel associations of DNA methyl-
ation with lipid levels. We identify links between genetic varia-
tion underlying lipids and CHD to differential DNA methylation. 
We also highlight HDL-C–related and triglyceride-related dif-
ferential methylation and expression of a reverse cholesterol 
transporter, ABCG1, and the association with an increased risk 
of incident CHD. Our findings highlight established and novel 
targets and mechanisms that can be used as a starting point for 
potential new treatments for dyslipidemia and CVD.
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CLINICAL PERSPECTIVE
Serum lipid levels are among the most established risk factors for cardiovascular disease, the leading cause of death globally. 
In this study, we report on the relations of circulating serum lipids with epigenetic marks and also provide evidence of a role 
for epigenetics in cardiovascular disease development. We present findings from a genome-wide scan of blood DNA meth-
ylation in relation to circulating lipid levels from 2306 individuals with independent external replication in 2025 individuals. 
We have made several novel observations about the role of DNA methylation in the regulation of lipids and risk of cardio-
vascular disease and highlight 3 important contributions: (1) we identify novel replicated loci of differential methylation in 
blood associated with circulating lipid levels that may represent potential therapeutic targets, (2) we describe the overlap 
of methylation and genome-wide association studies single-nucleotide polymorphisms and identify a potential mechanism 
of a known low-density lipoprotein cholesterol–related and coronary heart disease–related single-nucleotide polymorphism 
from genome-wide association studies at the APOB locus acting as a cis-methylation quantitative trait locus on low-density 
lipoprotein cholesterol–related differential methylation at a site intronic to APOB, and (3) we identify triglyceride- and 
high-density lipoprotein cholesterol–related differential methylation at the ABCG1 locus to be associated with expression of 
a gene involved in reverse cholesterol transport (ABCG1), metabolites that influence reverse cholesterol transport (sphingo-
myelins), and subsequently to be associated with a 38% higher risk in incident coronary heart disease events. We think that 
our findings provide important insights into the contributions of epigenetics in circulating lipids and cardiovascular disease 
and may provide insights to novel therapeutic targets.
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A. 

 
B. 

 
Supplementary Fig. 1. Volcano plots of TC models 1 and 2 in the discovery.  
A. Results of meta-analysis of FHS and PIVUS (discovery) TC model 1. B. Results of meta-
analysis of FHS and PIVUS (discovery) BMI-adjusted TC model 2. Significant associations 
are coloured in red. Replicating associations are labelled by CpG marker name in the plot. 
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A. 

 
B. 

 
Supplementary Fig. 2. Volcano plots of LDL-C models 1 and 2 in the discovery.  
A. Results of meta-analysis of FHS and PIVUS (discovery) LDL-C model 1. B. Results of 
meta-analysis of FHS and PIVUS (discovery) BMI-adjusted LDL-C model 2. Significant 
associations are coloured in red. Replicating associations are labelled by CpG marker name in 
the plot. 
  



	 5

A. 

 
B. 

 
Supplementary Fig. 3. Volcano plots of HDL-C models 1 and 2 in the discovery.  
A. Results of meta-analysis of FHS and PIVUS (discovery) HDL-C model 1. B. Results of 
meta-analysis of FHS and PIVUS (discovery) BMI-adjusted HDL-C model 2. Significant 
associations are coloured in red. Replicating associations are labelled by CpG marker name in 
the plot. 
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A. 

 
B. 

 
Supplementary Fig. 4. Volcano plots of TG models 1 and 2 in the discovery.  
A. Results of meta-analysis of FHS and PIVUS (discovery) TG model 1. B. Results of meta-
analysis of FHS and PIVUS (discovery) BMI-adjusted TG model 2. Significant associations 
are coloured in red. Replicating associations are labelled by CpG marker name in the plot. 
  



	 7

 

 
Supplementary Fig. 5. Manhattan plot of genome-wide analysis of TC (model 1) in the 
discovery. The red line indicates the methylome-wide significance level (P<108E-07). 
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Supplementary Fig. 6. Manhattan plot of genome-wide analysis of LDL-C (model 1) in 
the discovery. The red line indicates the methylome-wide significance level (P<108E-07).  
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Supplementary Fig. 7. Manhattan plot of genome-wide analysis of HDL-C (model 1) in 
the discovery. The blue line indicates the methylome-wide significance level (P<108E-07).  
  



	 10	

 

 
Supplementary Fig. 8. Manhattan plot of genome-wide analysis of TG (model 1) in the 
discovery. The red line indicates the methylome-wide significance level (P<108E-07).  
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Supplementary Fig. 9. Overlap of DNA methylation sites associated with the blood lipid 
levels in genome-wide analyses in the discovery. A: Primary model, B: Secondary BMI-
adjusted model.  
  

A B 
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Supplementary Fig. 10. Comparison of effect size estimates between the discovery and 
replication. Plot of discovery stage coefficients versus replication stage coefficients for all 
CpGs significantly associated (per trait) in models 1 in the discovery. A. TC, Pearson 
correlation coefficient (r) = 0.78 (r = 0.81 following removal of replicating sites), B. LDL-C, 
r = 0.67 (r = 0.77 following removal of replicating sites), C. HDL-C, r = 0.71 (r = 0.70 
following removal of replicating sites), and D. TG, r = 0.88 (r = 0.79 following removal of 
replicating sites). CpG sites significant also in the replication are indicated in red. 
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Supplementary Figure 11. Comparison of effect size estimates for TC model 1 between discovery and each of the individual replication cohorts. Beta 
coefficients in figure from lipid EWAS results in Discovery vs. LBC1936 (left panel), Discovery vs. LBC1921 (middle) and Discovery vs. GOLDN (right). 
CpG sites significant also in the replication are indicated in red. The black line represents the identity line.
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Supplementary Figure 12. Comparison of effect size estimates for LDL-C model 1 between discovery and each of the individual replication cohorts. 
Beta coefficients in figure from lipid EWAS results in Discovery vs. LBC1936 (left panel) and Discovery vs. GOLDN (right). CpG sites significant also in 
the replication are indicated in red. The black line represents the identity line.  
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Supplementary Figure 13. Comparison of effect size estimates for HDL-C model 1 between discovery and each of the individual replication cohorts. 
Beta coefficients in figure from lipid EWAS results in Discovery vs. LBC1936 (left panel) and Discovery vs. GOLDN (right). CpG sites significant also in 
the replication are indicated in red. The black line represents the identity line.  
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Supplementary Figure 14. Comparison of effect size estimates for TG model 1 between discovery and each of the individual replication cohorts. Beta 
coefficients in figure from lipid EWAS results in Discovery vs. LBC1936 (left panel), Discovery vs. LBC1921 (middle) and Discovery vs. GOLDN (right). 
CpG sites significant also in the replication are indicated in red. The black line represents the identity line. 
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Supplementary Fig. 15. Location of lipid-associated CpGs in relation to CpG islands and 
genes. A. CpGs were classified into: CpG island, Shore, Shelf and Others/Open sea, and 
lipid-associated CpGs (striped bars) were compared with all CpGs on the array (black bars). 
B. CpGs were classified into: promoter (TSS1500, TSS200, 5'-UTR, First exon), Body, 3'-
UTR and intergenic and lipid-associated CpGs (striped bars) were compared with all CpGs on 
the array (black bars). Y-axis shows the proportion in each category. P-values in figure are 
from a one-sided Fisher exact tests.  
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A 

 
B 

 
Supplementary Fig. 16. Enrichment of lipid-associated CpGs in DHS hotspots from specific tissues using eFORGE tool. A. ENCODE B. Roadmap 
Epigenome. In figure points in dark red indicate cell types with enrichment p-value of FDR q-value < 0.01.
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Supplementary Fig. 17. Overview of significant associations between lipid-associated 
CpGs and serum metabolites. Significant associations (FDR < 0.01) are depicted in orange 
for positively associated effects and blue for negatively associated effects. CpGs are depicted 
on the X-axis and metabolites on the Y-axis. 
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Supplementary Table 1. Cohort characteristics 

FHS PIVUS LBC1936 LBC1921 GOLDN 

Sample type Blood Blood Blood Blood T-cells 
Fasting status Fasted Fasted Non-fasted Non-fasted Fasted 
Age, mean (SD) 66.4 (8.9) 70.2 (0.2) 69.5 (0.8)  79.1 (0.6)  48.8 (16) 
BMI (kg/m2) 28.3 (5.3) 26.9 (4.3)  27.4 (4.2) 26.1 (4.0) 28.3 (6) 
Female (%) 54.3 49.8 52.8 60.3 52.3 
TC (mg/dL) 
N 1494 812 654 380 991 
Mean (SD) 201 (33)  215.4 (36.9) 224.9 (41.6) 221.7 (43.6) 190.0 (38) 
Range 85 - 328 116 - 363.5 123.7 - 417.6 127.6 - 379.0 98- 332 
LDL (mg/dL) 
N 1494 810 588 -- 991 
Mean (SD) 118 (28) 136 (31.9) 135.5 (36.7) -- 121.6 (31) 
Range 26-215 42.5-266.8 33.9 - 317.6 -- 44 - 236 
HDL (mg/dL) 
N 1494 812 592 -- 991 
Mean (SD) 61 (19) 59.4 (16.7) 60.4 (17.4)  -- 47.0 (13) 
Range 22-156  23.2-146.9 26.3 - 147.7 -- 22- 110 
TG (mg/dL) 
N 1494 812 588 376 991 
Mean (SD) 112 (65) 109.0 (48.4) 140.8 (64.6) 164.7 (76.9) 137.0 (95)  
Range 30-790 11.5-372.0 41.6 - 419.8 62.0 - 611.1 23 - 1085 
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Supplementary Table 13. Genes annotated to lipid CpGs in GWAS loci of cardiovascular 
traits 
Associated lipid 

trait in 
epigenetic 
analysis 

Gene annotated 
to lipid-

associated 
CpG(s) 

GWAS trait(s) Reference 

TC, LDL-C APOB 
Lipids (TC, LDL-C), Coronary artery 

disease 
1, 2 

HDL-C TRIB1 
Lipids (TC, LDL-C, HDL-C, TG), 

Adiponectin 
1, 3 

HDL-C LDLR 
Lipids (TC, LDL-C), Coronary artery 

disease 
1, 2 

TG MYLIP Lipids (TC, LDL-C) 1 
LDL-C GALNT2 Lipids (HDL-C, TG) 1 
HDL-C AMPD3 Lipids (HDL-C) 1 

TC, LDL-C FADS2 Lipids (TC, LDL-C, HDL-C, TG) 1 
HDL-C KLF13 Waist-hip-ratio 4 
HDL-C CBX3 Waist-hip-ratio 4 

TG LY86 Waist-hip-ratio 4 
TC ADCY3 BMI 5 
TC PTPRD Type-2 Diabetes 6 
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Supplementary Table 14. Enriched biological categories among genes annotated to TC-
associated CpGs (FDR <0.05) 

Category Term Fold FDR 
Discovery 

GO BP GO:0016125~ sterol metabolic process 30.44 2.90E-03 

GO BP 
GO:0008203~ cholesterol metabolic 

process 
33.42 

4.00E-03 
KEGG Pathway hsa00100: Steroid biosynthesis 74.78 1.19E-02 

GO BP GO:0008202~ steroid metabolic process 15.22 2.85E-02 

Panther BP 
BP00019: Lipid, fatty acid and steroid 

metabolism 
5.71 

3.66E-02 
Replication 

KEGG Pathway hsa00100:Steroid biosynthesis 299.12 3.34E-03 
UP_SEQ_FEATURE nucleotide phosphate-binding region:FAD 313.33 2.21E-02 

REACTOME Pathway 
REACT_602:Metabolism of lipids and 

lipoproteins 22.65 4.41E-02 
mRNA expression of gene associated with CpG 

KEGG Pathway Antigen processing and presentation 30.63 3.76E-02 
GO BP Sterol metabolic process 57.40 4.72E-02 

BP, Biological Process 
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Supplementary Table 15. Enriched biological categories among genes annotated to HDL-C 
associated CpGs (FDR <0.05) 
Category Term Fold FDR 

Discovery 
N.S. N.S. N.S. N.S. 

Replication 

REACTOME Pathway 
REACT_602:Metabolism of lipids and 
lipoproteins 

22.65 4.41E-02 

mRNA expression of gene associated with CpG 

REACTOME Pathway 
REACT_602:Metabolism of lipids and 
lipoproteins 

16.99 5.64E-03 
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Supplementary Table 16. Enriched biological categories among genes annotated to TG-
associated CpGs (FDR <0.05) 

Category Term Fold FDR 
Discovery 

Panther BP BP00013: Amino acid metabolism 18.110 3.40E-02 
Replication 

Panther BP BP00013: Amino acid metabolism 26.16 5.58E-03 
mRNA expression of gene associated with CpG 

Panther BP BP00013: Amino acid metabolism 26.16 6.09E-03 
BP, Biological Process 
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Supplementary Table 18. Lipid-associated CpGs significantly associated with levels of expression of neighbouring genes in blood in FHS (FDR <0.05). 

CpG CGI info Gene Property 
Gene 

annotated to 
CpG 

Expression of Gene 
Associated with CpG 

Beta P 

meQTL SNP is also 
an eQTL for 

associated expressed 
gene (P<1E-4) 

meQTL peak SNP 
eQTL peak 

SNP 

r2 meQTL 
SNP - eQTL 

peak SNP 

cg17901584 S_Shore TSS1500 DHCR24 DHCR24 -1.22 4.84E-13 Yes rs6687489 rs12131972 0.72 
cg19273683 Body ECE1 ECE1 -0.73 6.75E-08 Yes rs3026815 rs1067221 0.264 
cg01751802 S_Shore TSS1500 KANK2 KANK2 -0.41 6.50E-05 Yes 19:11317508:TG_T rs7254270 0.001 
cg26313301 S_Shelf Body LDLR LDLR 0.68 8.95E-05 Yes rs2569550 rs77373181 -- 
cg14476101 S_Shore Body PHGDH PHGDH -0.38 2.76E-08 Yes rs11583993 rs11583993 Identical 
cg16246545 S_Shore Body PHGDH PHGDH -0.41 3.06E-06 Yes rs11583993 rs11583993 Identical 
cg25739016 Body RCSD1 LOC100128751 2.1 2.34E-09 Yes rs1229359 rs7513712 0.007 
cg22304262 N_Shelf 5UTR/Body SLC1A5 PRKD2 -0.42 6.91E-07 Yes rs8105903 rs60652743 0.15 
cg08129017 S_Shore Body SREBF1 SREBF1 -0.51 1.07E-11 Yes rs9899634 rs8078756 1 
cg09978077 Island Body SREBF2 SREBF2 -2.05 9.37E-12 Yes rs9607850 rs9611674 0.87 
cg05295703 -- -- IL1RL1 -3.26 1.42E-18 Yes rs12469892 rs1420103 0.734 
cg05295703 -- -- IL18R1 -1.74 2.86E-06 Yes rs12469892 rs10490202 0.148 
cg24002003 -- -- CHSY1 0.88 9.63E-08 Yes rs3784526 rs3784526 Identical 
cg01176028 N_Shore Body ABCG1 ABCG1 -0.66 1.36E-06 No rs225448 rs9976024 0.17 
cg06500161 S_Shore Body ABCG1 ABCG1 -1.75 8.58E-49 No rs225443 rs9976024 0.03 
cg27243685 S_Shelf 5UTR/Body ABCG1 ABCG1 -1.94 7.23E-28 No rs4148086 rs9976024 0.63 
cg22488164 N_Shelf Body PLBD1 PLBD1 -0.54 4.84E-05 No rs2098542 rs151001109 -- 
cg17501210 Body RPS6KA2 RNASET2 -0.62 9.75E-10 No rs7745806 rs429083 >500kb 
cg22304262 N_Shelf 5UTR/Body SLC1A5 SLC1A5 -0.64 3.63E-07 No rs8105903 rs3027953 0.27 
cg11001536 -- -- FAM114A2 -0.62 2.36E-05 N.A.1 -- -- -- 
cg00574958 N_Shore 5UTR CPT1A CPT1A -4.02 5.53E-19 N.A.1 -- -- -- 
cg17058475 N_Shore 5UTR CPT1A CPT1A -2.47 2.20E-10 N.A.1 -- -- -- 
cg09737197 N_Shore 5UTR CPT1A CPT1A -1.58 1.36E-08 N.A.1 -- -- -- 
cg08788930 Body DENND3 SLC45A4 -1.12 1.20E-05 N.A.1 -- -- -- 
cg21645268 N_Shelf Body FDFT1 CTSB -3.55 1.58E-33 N.A.1 -- -- -- 
cg21645268 N_Shelf Body FDFT1 CTSB 1.31 1.57E-06 N.A.1 -- -- -- 
cg18520125 Body FLT1 FLT1 -0.69 8.94E-07 N.A.1 -- -- -- 
cg16609995 3UTR; TSS1500 GPSM3; PBX2 HLA-DRB6 -3.09 1.92E-06 N.A.1 -- -- -- 
cg16609995 3UTR; TSS1500 GPSM3; PBX2 AGER; RNF5 -0.93 3.12E-06 N.A.1 -- -- -- 
cg16609995 3UTR; TSS1500 GPSM3; PBX2 SLC44A4 -0.67 2.04E-05 N.A.1 -- -- -- 
cg09676013 ncRNA HLA-DPB2 HLA-DPB1 -1.08 2.77E-13 N.A.1 -- -- -- 
cg09676013 ncRNA HLA-DPB2 HLA-DPA1 -0.64 5.38E-08 N.A.1 -- -- -- 
cg09676013 ncRNA HLA-DPB2 HLA-DPB2 0.78 3.81E-05 N.A.1 -- -- -- 
cg03717755 Body MYLIP MYLIP -0.46 1.90E-05 N.A.1 -- -- -- 

cg06690548 
 

Body SLC7A11 
SLC7A11; SLC7A11-

AS1 
-0.74 3.38E-15 N.A.1 -- -- -- 

cg00285394 S_Shore Body SQLE SQLE -1.42 8.28E-13 N.A.1 -- -- -- 

1. No significant meQTL  
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Supplementary Table 20. Association of 33 replicating lipid-associated CpGs with incident CHD1 up to ten years after baseline in FHS and PIVUS.  
      Meta-analysis FHS PIVUS     

CpG Gene 
Gene 

Property 
HR (95% CI)2 P Heterogeneity P HR (95% CI)2 P HR (95% CI)2 P Trait(s)3 

Direction 
CpG - 
lipid 

cg272436851 ABCG1 5UTR/Body 1.38 (1.15-1.66) 6.86E-04 0.56 1.41 (1.12-1.77) 3.40E-03 1.33 (0.96-1.84) 0.079 
TG 

(m1&m2) 
+ 

1. 115 events in FHS and 64 events in PIVUS 
2 Hazard ratio per SD increment in methylation at CpG site. 
3. m1: primary model, m2: secondary BMI-adjusted model 
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Supplementary Methods 

Cohort descriptions and sample collections 

Discovery cohorts 
FHS Offspring Cohort was initially recruited in 1971 and included 5,124 offspring (and 
their spouses) from the FHS Original Cohort 7. In the FHS, the eligible sample for this 
investigation was from the 3,021 participants in the FHS Offspring Cohort who attended the 
eighth examination cycle in 2005-2008. The included sample was determined based on the 
number of participants consenting to genomic studies with available DNA and methylation 
assays passing quality control measures. The DNA methylation, anthropometric, and 
laboratory measures were obtained from the same examination. At each study visit, 
participants underwent a routine physical examination and a medical history interview. 
Participants were asked to bring in their current medication containers. Weight was measured 
to the nearest pound with the participant wearing only a gown without slippers or shoes, 
standing in the middle of the scale (Detecto Scale, Worchester Scale) with weight equally 
distributed on both feet. Standing height was measured to the nearest ¼ inch, with the 
participant barefoot or wearing thin socks, using a vertical mounted stadiometer. BMI was 
calculated as weight in kg divided by height in meters squared. Peripheral blood samples were 
collected in the morning from participants after an eight-hour fast. TC, HDL-C and TG were 
measured via an enzymatic colorimetric assay (Roche Hitachi 911, Roche Diagnostics) and 
LDL-C was calculated by the Friedewald equation. CHD was defined as a fatal or non-fatal 
myocardial infarction (MI), coronary death, revascularization procedure (percutaneous 
transluminal coronary angioplasty or coronary artery bypass graft) or coronary insufficiency 
(unstable angina). All CHD events were reviewed and adjudicated by a physician endpoint 
committee.  
PIVUS is a prospective community-based cohort of participants from Uppsala, Sweden. All 
men and women at age 70 living in Uppsala in 2001 were invited to participate. The 1,016 
participants (50% women) have been extensively phenotyped, as described previously 8, and 
on the Internet (www.medsci.uu.se/pivus/). The eligible sample for investigation was from the 
1,016 enrolled patients at 70 years of age and conducted between the years of 2001-2003. 
Lipid traits were measured at Uppsala University Hospital using routine medical chemistry 
methods. LDL-C was calculated by the Friedewald equation. The participants have been re-
examined at ages 75 and 80, and their morbidity and mortality has been followed via national 
registers and journal review. Clinical diagnoses by journal review of CVD up to 10 years after 
baseline were used to define disease events. In the present study, we combined acute fatal or 
non-fatal MI and revascularization procedure (percutaneous transluminal coronary 
angioplasty or coronary artery bypass graft) into a composite atherosclerotic CHD endpoint.  

Replication cohorts 
The LBC 1921 and 1936 are two longitudinal studies of ageing 9-11. They derive from the 
Scottish Mental Surveys of 1932 and 1947, respectively, when nearly all 11-year old children 
in Scotland completed a test of general cognitive ability 9. Survivors living in the Lothian area 
of Scotland were recruited in late-life at mean age 79 for LBC1921 (n=550) and mean age 70 
for LBC1936 (n=1,091). Follow-up has taken place at ages 70, 73, and 76 in LBC1936 and 
ages 79, 83, 87, and 90 in LBC1921. The eligible sample for investigation was collected 
between at age 70 for LBC1936 and age 79 for LBC1921. Collected data include genetic 
information, longitudinal epigenetic information, longitudinal brain imaging (LBC1936), and 
numerous blood biomarkers, anthropomorphic and lifestyle measures. Serum cholesterol was 
measured as part of a blood analysis profile. Non-fasting blood was drawn on the day of 
cognitive assessment and analysed within 24 h in serum stored at 4 °C using an enzymatic 
Quinoneimine dye method measuring at 500 nm, at the Western General Hospital, Edinburgh. 
For LBC1921 HDL-C and LDL-C were not available. 
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GOLDN: The National Heart, Lung, and Blood Institute GOLDN study was designed to 
identify genetic determinants of lipid response to two interventions (a high-fat meal challenge 
and fenofibrate treatment for 3 weeks). The GOLDN study has been previously described in 
detail in Irvin et al 12. Briefly, the study ascertained and recruited families from the Family 
Heart Study at two centres, Minneapolis, MN and Salt Lake City, UT, who self-reported to be 
white. Only families with at least two siblings were recruited for a total of 1,327 individuals. 
Volunteers were required to withhold lipid-lowering agents (pharmaceuticals or 
nutraceuticals) for at least 4 weeks prior to the initial visit to be eligible. A total of 1,053 met 
all eligibility requirements. The study protocol was approved by Institutional Review Boards 
at the University of Minnesota, University of Utah, and Tufts University/New England 
Medical Center. For the current study, we evaluated fasting blood lipids among 991 
participants for whom baseline epigenetic data were available. Lipids were measured before 
the diet and drug intervention. Participants were asked to fast for ≥12 hours and abstain from 
alcohol intake for ≥24 hours. TG was measured by a glycerol-blanked enzymatic method 
(Trig/GB, Roche Diagnostics Corporation, Indianapolis, IN). TC was measured using a 
cholesterol esterase–cholesterol oxidase reaction (Chol R1, Roche Diagnostics Corporation) 
on the Roche/Hitachi 911 Automatic Analyzer (Roche Diagnostics Corporation). The same 
reaction was also used to measure HDL-C after precipitation of non-HDL-C with 
magnesium/dextran. LDL-C was measured by a homogeneous direct method (LDL Direct 
Liquid Select™ Cholesterol Reagent, Equal Diagnostics, Exton, PA). Data on medical 
history, physical activity and other lifestyle factors such as alcohol intake, smoking status, 
and diet were collected using an interviewer-administered questionnaire. Weight was 
measured by a beam balance and height was ascertained by a stadiometer. BMI was 
calculated as weight in kilograms divided by height in meters squared. 

Genome-wide DNA methylation profiling 
FHS: Buffy coat preparations were obtained from the whole blood samples and genomic 
DNA was extracted using the Gentra Puregene DNA extraction kit (Qiagen, Venlo, 
Netherlands). DNA samples were bisulphite converted using the EZ DNA Methylation kit 
(Zymo Research, Irvine, CA) and analysed on Illumina HumanMethylation450 chips 
(Illumina Inc., San Diego, CA, USA) following the manufactures' protocol. DNA methylation 
arrays were run in two laboratory batches at the John’s Hopkins Center for Inherited Disease 
Research (lab batch #1) and University of Minnesota Biomedical Genomics Center (lab batch 
#2). The first batch included 576 samples from an earlier CVD case-control study 13 and the 
second batch included 2,270 samples from the remainder of the Offspring cohort participants. 
DNA methylation data were normalised within laboratory batches using the DASEN 
methodology implemented in the wateRmelon package 14 in R (version 3.0.2), which includes 
background adjustment of the methylated and unmethylated intensities and quantile 
normalisation of the methylated and unmethylated probes within the two types of probe 
technologies separately. Samples with a missing rate >1% at P<0.01 (n=10 for batch #1 and 
n=35 for batch #2), poor single nucleotide polymorphism (SNP) matching to the 65 SNP 
control probe locations (n=38 for batch #1 and n=41 for batch #2), and outliers by multi-
dimensional scaling techniques (n=25 for batch #1 and n=48 for batch #2) were excluded. 
Probes with missing rate >20% at P<0.01 (n=466 from batch #1 and n=366 from batch #2), as 
well as probes previously identified to map to multiple locations 15 or to have an underlying 
SNP (minor allele frequency [MAF] >5% in European ancestry (EUR) 1000 genomes project 
data) at the CpG site or within 10 bp of the single base extension (n=42,251) were excluded. 
Following quality control, DNA methylation data from 2,377 FHS participants and 443,252 
probes remained for analyses. The FHS methylation data are available at dbGaP under the 
accession number phs000724.v2.p9. 
PIVUS: Blood for DNA methylation assay were collected at baseline (at age 70). Genomic 
DNA was extracted from blood samples and bisulphite conversion of 500ng genomic DNA 
was performed using the EZ-96 DNA Methylation Gold Kit (Zymo Research Product). The 
equivalent of approximately 200ng of bisulphite converted DNA, was removed, evaporated to 
a volume of <4μl, and used for methylation profiling using the Illumina Infinium assay and 
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the Illumina HumanMethylation450 v.1.2 bead chip according to the protocol from the 
supplier (Illumina Inc., San Diego, CA, USA). The results were analysed with GenomeStudio 
2011.1 (Illumina Inc., San Diego, CA, USA). After exclusion of replicates a total of 1,002 
study participants had methylation data available for quality control procedures. Three 
samples were excluded based on poor bisulphite conversion efficiency, twelve samples due to 
low pass rate of CpG sites (<98.5% with a detection P>0.01) and a further six samples based 
on low SNP genotype match (>1 SNP mismatches) between genotypes from the methylation 
array and Omni/Metabochip genotyping chips leaving 981 individuals with adequate 
methylation data available for analyses. Following removal of participants with abnormal 
leukocyte cell counts (>10x109 cells/L; n=14) methylation data from 967 individuals 
remained for analyses. The signal intensities for the methylated and unmethylated state were 
then quantile normalised for each probe type separately, and beta values were calculated.  
LBC 1921 and 1936: Detailed information about the collection and QC steps undertaken on 
the LBC methylation data has been reported previously 16. Briefly, the Infinium 
HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA) was used to measure DNA 
methylation in whole blood of consenting participants. Background correction was performed 
using the R minfi package 17 and QC was used to remove probes with a low detection rate 
(<95% detection rate at P<0.01), probes with low quality (manual inspection), samples with a 
low call rate (samples with <450,000 probes detected at P<0.01), and samples with a poor 
match between genotypes and SNP control probes (cross-checked using wateRmelon package 
14) or incorrect predicted sex. Post QC, DNA methylation data were available for 446 
LBC1921 participants at age 79 and for 920 LBC1936 participants at age. The LBC 
methylation data are available at European Genome-Phenome Archive under accession 
number EGAS00001000910. 
GOLDN: DNA was extracted from CD4+ T-cells harvested from stored buffy coats using 
antibody-linked Invitrogen Dynabeads 18. Stored buffy coats were collected at the same time 
lipid concentrations were measured. We lysed cells captured on the beads and extracted DNA 
using DNeasy kits (Qiagen, Venlo, Netherlands) and methylation was assayed across ~470,00 
autosomal CpG sites using the Illumina Infinium Human Methylation450 Beadchip (Illumina, 
San Diego, CA). For each assay, 500ng of DNA was treated with sodium bisulfite (EZ DNA, 
Zymo Research, Irvine, CA) prior to standard Illumina amplification, hybridization, and 
imaging steps. The resulting intensity files were analyzed with Illumina’s GenomeStudio 
which generated beta scores (i.e. the proportion of total signal from the methylation specific 
probe or color channel) and “detection P-values” (the probability that the total intensity for a 
given probe falls within the background signal intensity). Beta scores with an associated 
detection P-value greater than 0.01 were removed and samples with more than 1.5% missing 
data points were eliminated from further analysis. Furthermore, any CpG probes where more 
than 10% of samples failed to yield adequate intensity were removed. A total of 58 samples 
were removed. The filtered beta scores were then subjected to batch normalization with the 
ComBat package for R software in non-parametric mode 19. We performed the normalization 
in parallel on random subsets of 20,000 CpGs per run where each array of 12 samples was 
used as a “batch.” These methods have been extensively described in Absher et al and the 
utility of ComBat to correct for batch effects in comparison to other programs is reported 20, 21. 
To correct for probe chemistry, we separately normalized probes from the Infinium I and II 
chemistries and subsequently adjusted the β scores for Infinium II probes using the equation 
derived from fitting a second order polynomial to the observed methylation values across all 
pairs of probes located <50bp apart (within-chemistry correlations >0.99), where one probe 
was Infinium I and one was Infinium II. Finally, we eliminated any CpGs where the probe 
sequence mapped either to a location that did not match the annotation file or to more than 
one locus. We identified such markers by re-aligning all probes (with unconverted Cs) to the 
human reference genome. After these quality control procedures, there were methylation data 
from 461,281 CpGs. Principal components (PCs) based on the beta scores of all autosomal 
CpGs passing QC were generated using the prcomp function in R (V 2.12.1) and used to 
adjust for cell purity in association analysis. Deconvolution estimated CD4+ T-cell 
percentages were calculated adapting the method of Abbas et al 22. Predicted CD4+ T-cell 
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percent purity was highly correlated with PC1 (r2=0.85, P=4E-293) but not other PCs, thus 
supporting the usefulness of methylation PCs in adjusting for cell purity in our analysis. The 
GOLDN methylation data are available at dbGaP under the accession number 
phs000741.v1.p1. 

Association of methylation of blood cell-derived DNA with lipid levels 
FHS: Linear mixed effects regression models were conducted to test the association between 
site-specific DNA methylation and each lipid phenotype (TC, HDL-C, LDL-C, TG) 
individually. Participants currently on lipid lowering medication were excluded. The primary 
model was adjusted for age, sex and technical covariates. The secondary model was 
additionally adjusted for BMI. Technical covariates included chip, row, column (specified as 
random effects) and two methylation principal components (PCs) to adjust for unmeasured 
batch effects. Cell count heterogeneity was accounted for by adjusting for imputed cell counts 
obtained by the Houseman method 23. The linear mixed effect models were run with the 
pedigreemm package in R (version 3.1), which additionally accounts for the family 
correlation structure in the FHS. Familial relatedness was obtained by reported relationships 
and genetic similarity calculated by identity-by-descent (IBD) probabilities. For any 
inconsistencies between reported and IBD relationships, relationships obtained from IBD 
probabilities were utilized. After removing individuals on lipid-lowering medication and thus 
with missing phenotype, a total of 1,494 participants were considered in the association 
analyses.  
PIVUS: The associations between normalised DNA methylation beta values and phenotypes 
were modelled by a linear mixed effect model, using R 24 and the lmer function (lme4 
package), fitted by maximum-likelihood assuming a normally distributed error term. Models 
were adjusted for age, sex and predicted white cell counts (estimated from the DNA 
methylation data using the Houseman algorithm 23 as implemented in R package minfi for 
Illumina HumanMethylation450 17) as fixed effects and chip, chip row and chip column as 
random effects. A likelihood ratio test was used to assess the significance of the phenotype 
effect. The p-value of the phenotype effect in each model was calculated from the Chi-square 
distribution with 1 degree of freedom using -2log(likelihood ratio) as the test statistic. After 
removing individuals on lipid-lowering medication (n=155), a total of 812 individuals were 
considered in the association analyses.  
LBC 1936 and 1921: Linear regression modelling was used to assess the association between 
DNA methylation (outcome variable) and the lipid traits (predictor variable). Covariates 
included age, sex, and measured white blood cell counts (eosinophils, basophils, neutrophils, 
monocytes, and lymphocytes). Additional adjustments were made for BMI in secondary 
models. Participants were excluded from the analyses if they were taking lipid-lowering 
medication. All statistical analyses were performed using R software (http://cran.r-
project.org/). After removing individuals on lipid-lowering medication and thus with missing 
phenotype, a total of 654, 588, 592 and 588 participants were considered in the association 
analyses of TC, LDL-C, HDL-C and TG, respectively for LBC1936. For LBC1921, a total of 
380 and 376 were considered in the association analyses of TC and TG, respectively.  
GOLDN: Associations between normalised methylation beta values at each CpG site and 
lipid traits were analysed using mixed linear regression models adjusted for age, gender, study 
site, and 4 methylation PCs (as a proxy for cell purity) as fixed effects and family structure as 
a random effect using the R kinship package (lmekin function). A second set of models 
additionally adjusted for BMI. After removing four observations due to missing phenotype or 
covariate data, a total of 991 participants were considered in the association analysis.  

Genotyping and Imputation 
FHS: SNP data were obtained from the Affymetrix 550K Array (Affymetrix, Santa Clara, 
CA) and imputed to 1000 Genomes SNPs (phase 1 release), as previously reported 25. The 
FHS genotype data are available at dbGaP under the accession number phs000342.v13.p9. 
PIVUS: Individuals were genotyped using the Illumina OmniExpress and Illumina 
Metabochip microarrays. Prior to imputation, quality control was performed. Exclusion of 
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samples were performed based on the following criteria: genotype call rate <95%; 
heterozygosity >3 SD; gender discordance; duplicated samples; identity-by-descent match; 
and ethnic outliers. Monomorphic SNPs; or SNPs with Hardy-Weinberg equilibrium  
P<1x10-6; genotype call rate<0.99 (SNPs with MAF<5%) or <0.95 (SNPs with MAF≥5%); 
MAF<1% were excluded from analysis. Data were imputed to 1000G (version: March 2012) 
using Impute v.2.2.2 26. 

Gene expression profiling 
Gene expression data were available for participants in the FHS. RNA was extracted from 
whole blood using the PAXgene Blood RNA System Kit (Qiagen, Venlo, Netherlands) with 
mRNA expression profiling assessed using the Affymetrix Human Exon 1.0 ST GeneChip 
platform. Gene expression data were normalised using robust multichip average methods 27 
with quality control measures as previously described 13. Cell count proportions were derived 
from gene expression markers in this sample set as there was overlap between gene 
expression measures and directly measured cell counts (lymphocytes, monocytes, neutrophils, 
basophils, and eosinophils) from a sample of 2,280 Third Generation FHS participants 
obtained during the second examination cycle (2008-2011). Internal validation using training 
and testing datasets achieved an r2 > 0.8 in the majority of cell lines (except basophils). The 
FHS gene expression data are available at dbGaP under the accession number 
phs000363.v12.p9.  

Metabolomic profiling 
Metabolomics data were available for participants in the PIVUS. Untargeted metabolomic 
profiling of serum samples was measured in duplicates as described previously 28. In brief, 1 
μl of sample was analysed on Acquity UPLC coupled to a Xevo G2 Q-TOFMS (Waters 
Corporation, Milford, Massachusetts, USA) and raw data was processed using XCMS 
software 29 for detection, alignment, grouping, and imputation of features. For normalisation 
of data metabolic feature intensities were log-transformed and an ANOVA-type normalisation 
applied. Fragmentation spectra were reconstructed from metabolic features with strong 
correlation and similar retention time and metabolites were identified from spectra. Only 
annotated metabolites (n=229) were used in analysis in relation to DNA methylation. Raw 
spectra from mass spectrometry analysis and annotated metabolites intensities are available in 
Metabolights (http://www.ebi.ac.uk/metabolights/) with accession number MTBLS90.  
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