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Abstract

My research focuses on the development of a probabilistic model for the

classification using spectral measurements of tissue from different stages in

the progression of Barrett’s oesophagus (BE) and the implementation in this

model of variable selection with the aim of improving the classification accu-

racy.

In Chapter 1, a brief introduction to the BE disease, to spectroscopy,

and to importance of variable selection is presented. Chapter 2 focuses on

(penalized) likelihood methods for variable selection, including also evalua-

tion measures for the performance of prediction models. Chapter 3 introduces

Bayesian variable selection (BVS) using a probit model with binary responses.

Then, BVS is studied under different prior assumptions for the coefficients

and for the indicator vector (indicating if the variable is important). The next

chapter contains the results of applying these different assumptions either on

real or on simulated binary datasets.

The remaining chapters regard the extension of BVS from binary to multi-

class responses. Multi-class classification problems have been studied for pure

nominal and pure ordinal responses (Chapter 5). However, there are cases

with both types of responses, e.g. BE disease. We develop a BVS approach

for which the stages of the disease are a mixture of nominal and ordinal

responses. To address this problem we build three probit models based on

latent variables: (i) a decomposed approach using two indicator vectors, one

for nominal and one for ordinal responses (Chapter 6), (ii) BVS approach

using a common indicator vector (Chapter 7), and (iii) BVS approach using

an indicator matrix, which is a collection of indicator vectors (Chapter 8).

Finally, Chapter 9 contains the results of applying the proposed methods

to BE for clinical diagnosis and comparing with existing methods. The last

chapter contains the conclusions and suggestions for future directions.
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Chapter 1

Introduction

The theme of this thesis is the application of Bayesian variable selection

methods to high-dimensional spectroscopic data arising from a study aim-

ing to use such measurements to classify the stages of Barrett’s oesophagus.

As an introduction to the topic, this chapter has three parts: some back-

ground to Barrett’s oesophagus, a brief introduction to spectroscopy applied

to tissue samples and an introduction to variable selection from a statistical

standpoint, which includes the motivation for variable selection.

1.1 Barrett’s oesophagus

Background

The oesophagus connects the mouth to the stomach via a food pipe whose

normal lining is made up of squamous epithelium cells. In Barrett’s oesoph-

agus (BE), also known as Barrett syndrome or columnar epithelium lined

lower oesophagus, the cells of the food pipe have started to be replaced by

another cell type normally found lower in the gut. This is called metaplasia.

Metaplasia can be illustrated via on endoscopic photograph. A photograph

taken with an endoscopic camera in the oesophagus demonstrates the differ-

ence between squamous epithelium (light pink) and metaplastic epithelium

(dark pink), Figure 1.1. This distinction between healthy tissue and BE can

be seen easily. However, if we want a more detailed diagnosis we need a more

sophisticated technique like spectroscopy.

Many people with BE may have metaplasia, but not have cells that are

growing abnormally, which is called dysplasia. Before oesophageal adeno-

carcinoma (OAC), also known as cancer, occurs, there are three different

stages of BE (according to the UK classification): non-dysplastic Barrett’s

oesophagus (NDBE), low grade dysplasia (LGD) and high grade dysplasia

23



(a) Normal oesophagus. (b) BE.

Figure 1.1: Normal versus Barrett’s oesophagus. Light pink corresponds to
squamous epithelium (healthy part) and dark pink to metaplastic epithelium
(diseased part) of the oesophagus. By permission of Mayo Foundation for
Medical Education and Research. All rights reserved.

(HGD). The grade of a cell is what it looks like under a microscope. The less

normal the cells look, the higher the grade is: cells with NDBE are slightly

abnormal, those with LGD are mildly abnormal and cells with HGD are very

abnormal. The progression from healthy through three stages of the disease

can be viewed as a continuum and thus may benefit from being treated as an

ordinal sequence in any classification model, whilst the progression to cancer

where is occurs is qualitatively different and it may be advantageous not to

treat it as part of this continuum. Some physiological features of each BE

stage and of squamous (SQ), or healthy, tissue are represented in Figure 1.2.

Figure 1.2: BE progression from SQ to OAC. Permission to reproduce this
image has been granted by Johns Hopkins University.

BE epidemiology

Oesophageal cancer is the 6th biggest killer and the 8th most common cancer

in the world. It is most common in white males between 40 to 60 years

old (Zhang, 2013). Patients with BE have a 30 fold increased risk of OAC

development, but even so only 0.5% will turn into OAC (Old et al., 2015).
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There is an increased risk of OAC development as BE advances. Specifically,

there is 15-20% risk of LGD patients and 40-60% risk of HGD of progressing

to OAC (Conteduca et al., 2012). If a patient is diagnosed with OAC, there

is an 85% probability of mortality within five years (de Jonge et al., 2013;

Foreman, 2016).

In addition, some patients may suffer from gastro-oesophageal reflux dis-

ease, which can damage the lining of the oesophagus, leading to BE. The

cell changes in the food pipe are caused by stomach juices coming back up

through the valve at the top of the stomach (acid reflux). The acid in the

juices irritates the lining of the food pipe, which is able to change the cell

types to abnormal. Studies have noted that the risk of having acid reflux

is higher if the patient is overweight, a smoker or drinks large amounts of

alcohol (Zagari et al., 2008).

Biomarkers for BE

The benefit of identifying biomarkers is two-fold: they facilitate the early

detection of BE disease and support the selection of target treatment. Goblet

cells present in NDBE and gland cells present in LGD are obvious biomarkers

for the presence of BE (Figure 1.2) and are part of standard histopathology.

In addition, experimental and clinical researches are carried out with the

aim of identifying biomarkers of BE. As BE advances, DNA changes can

occur — common ones are aneuploidy, tetraploidy and loss of heterozygosity.

An aneuploid cell contains an abnormal number of chromosomes (compared

with 46 chromosomes in a normal cell), a tetraploid cell contains double the

amount of chromosomes and loss of heterozygosity is the loss of an entire

gene and the surrounding chromosomal region. Unstable tetraploid cells can

evolve into tumorigenic aneuploid cells. In addition, the tumour protein

p53 is a significant biomarker for the progression to OAC. 77% of patients

who are progressing to cancer had p53 tetraploidy and loss of heterozygosity

(Rabinovitch et al., 2001). Biomarker p53 combined with biomarker Ki67

may reduce the inter-observer agreement and hence help in accurate grading

of BE disease (McManus et al., 2004). Another biomarker that increases

during tumorigenesis is Mcm2 (Lao-Sirieix et al., 2006).

Although there is extensive literature identifying BE biomarkers, due to

clinical cost, time and poor performance measurement of trials, it is difficult

to clinically try all possible combinations of the potential biomarkers in order

to predict the stage of BE disease.

Diagnosis of BE

The usual way to diagnose BE is from histopathology of a biopsy taken via

endoscopy. An endoscope, a long, flexible tube that has a light source and a
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camera at the end, is inserted from the mouth down to the oesophagus of the

patient in order to take one or more biopsies which are the biological sam-

ples of cells or tissues for examination. The resulting biopsy is processed by

paraffin embedding, sectioning with a microtome at the thickness of 4µm, de-

paraffinisation, staining with hematoxylin and eosin, and microscopic analysis

of the physiological appearance of many thick sections. The latest analysis is

called Vienna classification (Conteduca et al., 2012). According to that clas-

sification there are five stages of the BE and the BE histopathological repre-

sentation of their sections is given in Figure 1.3. Some physiological features

are given in Figure 1.2. However, the classification process remains somewhat

subjective, since it depends on the histopathologist’s training and experience.

Kerkhof et al. (2007) recommend that at least two histopathologists evalu-

ate the BE biopsy, and, when indicated, consult a third histopathologist to

establish a final diagnosis.

Figure 1.3: BE histopathological images for different stages of BE in the
Vienna classification representation. Permission to reproduce this image has
been granted by Baishideng Publishing Group Inc.

Usually there is a low inter-observer agreement between histopatholo-

gists at the dysplastic stages of BE. The inter-observer agreement of two

histopathologists is measured using the Cohen (κ) statistic. A κ value of

one means the histopathologists are in complete agreement, and the other

ranges are: poor, any negative value to 0; slight, 0 to 0.2; fair, 0.2 to 0.4;

moderate, 0.4 to 0.6; substantial, 0.6 to 0.8; and almost perfect, 0.8 to 1.0

(Montgomery, 2005). According to Kerkhof et al. (2007) the agreement be-

tween histopathologists when analysing two groups HGD+OAC versus all the

others (in the case study of 920 patients in total), was substantial, κ = 0.61.

On the other hand, κ value of 0.25 for the same study using four groups, SQ,

NDBE+LGD, HGD and OAC, shows relatively poor inter-observer agree-

ment between histopathologists. This is because distinguishing between the

middle stages (NDBE, LGD, HGD) and cancer is more difficult than the

discrimination between healthy and cancer biopsies. So, it is important to

identify less subjective biomarkers in order to determine the stage of the BE
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disease.

Symptoms of BE

Like in many cancer types, many people do not have any symptoms and the

cell changes are found when tests are carried out for something else. However,

people with BE may also have gastro-oesophageal reflux disease of which long

term burning indigestion is the most common symptom.

Treatment of BE

Treatment of BE is based on the stage of the disease and can also be affected

by other factors such as the patient’s overall health. The general rule is that

the earlier cancer is diagnosed, the better chance of successful treatment the

patient has. Treatment aims to lower the amount of acid reflux and to remove

any damaged areas of the oesophagus.

An early, well known treatment includes medicines (patients take tablets

until they control the symptoms, and then reduce the dose). If the symptoms

are not well controlled by medicines, patients may have surgery in order to

strengthen the valve at the lower end of the oesophagus.

Most people have surgery through an endoscope, where the doctor puts a

flexible tube called an endoscope down to the throat. The endoscope contains

a camera so the doctor can see inside the food pipe. During surgery a lower

part of the food pipe is removed to stop a cancer from developing. The doctor

may suggest to patients alternative endoscopic treatments, such as radiofre-

quency ablation or photodynamic therapy, if the cells are very abnormal, in

order to destroy them. Radiofrequency ablation involves administering a high

frequency radio wave, which generates heat and treats the tissue. This treat-

ment has been effective in over 90% of patients with LGD. In more advanced

OAC, photodynamic therapy can be used where the patient is administered

an intravenous non-toxic photosensitiser (light-sensitive drug) which is acti-

vated by a laser light in order to kill cancer cells, but the patient becomes

photosensitive and needs to stay out of direct sun light for at least 24 hours.

The British Society of Gastroenterology (Fitzgerald et al., 2014), National

Institute for Health and Care Excellence (NICE, 2014), American College

of Gastroenterology (Shaheen et al., 2016), and other organizations provide

detailed guidelines for the treatment of BE.

1.2 Spectroscopy of biological samples

As mentioned above, diagnosis of BE requires endoscopy, where via a tube

light is shone into the oesophagus. Using the same tube to measure spectra in-

situ would be the ideal, but the current stage of the art is to measure spectra
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on biopsies. The advantage of the spectroscopy is that it can characterize

biopsies based on how they interact with light; molecules in different types of

tissue absorb light at different wavelengths (distance between two adjacent

peaks or troughs). Below we study how these biopsies produce spectra which

are the input of our study.

Molecular vibrations

A molecule is made up of two or more atoms, for example water (H2O)

consists of compound molecule made up of 2 hydrogen atoms and 1 oxygen

atom. A molecule has three possible types of motion that can occur in any

combination, translational (whole atom or molecule changes its location in

three dimensional space), rotational (whole molecule spins around an axis in

three dimensional space) and vibrational (motion that changes the shape of

the molecule) transitions. Absorption of light quanta and inelastic scattering

of photos can both provoke vibrational transitions. In particular, when the

energy difference between the ground state and the final vibrational state

matches the energy of a photon (Foreman, 2016). Vibrational transitions are

responsible for absorption in the region around 4000 cm−1, which corresponds

to infrared (IR) light (Figure 1.4), where cm−1 is the unit of measurement

of the wavenumber (the reciprocal of wavelength). The absorption of IR

radiation causes excitation of vibrations of the atoms of a molecule or the

crystal lattice and causes bands in the spectra. IR light is (roughly) divided

into three ranges: near infrared includes light of wavelengths of 14000− 4000

cm−1, mid-IR includes light lengths of 4000 − 400 cm−1 and far-infrared

400 − 10 cm−1. In general, the name IR spectroscopy conventionally refers

to the mid-IR region (Pasquini, 2003).

Figure 1.4: Electromagnetic spectrum. The energy of the waves increases
as the wavelengths decrease. University of Waikato. All Rights Reserved.
www.sciencelearn.org.nz

There are six types of fundamental vibrational modes (Figure 1.5), but

not all of them absorb IR light. For example, oxygen (O2) is a symmetrical

diatomic molecule, which has only one bond and one vibrational state, which
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is symmetrical and so this mode is not IR active, since it does not have a

changing dipole, because the net dipole moments are in opposite directions

and as a result, they cancel each other. On the other hand, the asymmetric

stretching and twisting are IR active modes, because the bonds move in

opposite direction and they do not cancel each other. For example, the

asymmetric stretching mode of water (H2O) is IR active.

Figure 1.5: Six types of molecular vibration modes (for example of methylene
group CH2).

Fourier transform IR spectroscopy

Fourier transform infrared (FTIR) spectroscopy uses an interferometer to cre-

ate an interferogram, which allows simultaneous recording at all frequencies.

In this case, the Michelson interferometer produces the interferogram. Then,

to create a plot of intensity (power) versus wavenumber, a Fourier transform

is applied to the interferogram (Foreman, 2016).

The Michelson interferometer (Figure 1.6a) has a beam splitter which is

placed between the fixed and moveable mirrors. The beam splitter divides

the IR light into two parts: half of the light is reflected to a fixed mirror and

the other half is transmitted to a moveable mirror. When the two beams

meet again at the splitter, they recombine. The recombined beam is aimed

at the sample and recorded by the detector. The function of the transmitted

light intensity versus the moveable mirror position produces an interferogram.

Then, a Fourier transformation applied to the interferogram provides an IR

power spectrum (which is a function of transmitted light intensity versus

wavenumber (Trevisan et al., 2012)). Multiple interferograms are then aver-

aged to achieve a sufficient signal to noise ratio. The absorbance spectrum

is calculated according to the Beer-Lambert law A = log10(I0/I), where I0

represents the intensity, also known as power spectra, of the incident light

beam (reference intensity) and I represents the intensity of the light coming

out of the sample (Pasquini, 2003). Both intensities are measured in the

same units but because the Beer-Lambert law uses a transformation of their

ratio, the absorbance spectrum is properly unitless, and usually reported as

absorbance units. The entire process can be automated by using the OPUS

6.5 software (Bruker spectrometer).

Attenuated total reflectance is a technique that, coupled with FTIR, can
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Figure 1.6: Tools to produce IR spectra.

combats the most challenging aspects of IR analyses, namely sample prepa-

ration and spectral reproducibility. These aspects greatly speed sample anal-

ysis. In our case, before the IR beam is aimed to the detector, it is internally

reflected three times within an IR transmitting prism (Figure 1.6b).

The result that the interferometer records, after applying the Fourier

transformation, is a spectrum (Figure 1.7). The fingerprint region, between

1800 − 900 cm−1 is an important region, since most of the biologically im-

portant cellular compounds such as DNA/RNA and protein, absorb in this

region, see Figure 1.7 (Foreman, 2016).

(a) Absorbance spectra. (b) Second derivative spectra.

Figure 1.7: Absorbance and second derivative spectra: peaks are colour coded
and labelled where compounds are known to produce a band. Permission to
include this figure has been granted by Dr. Liberty Foreman.
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1.3 Nature of spectral data and biological in-

terpretation

The interpretation of peaks in the fingerprint region is complicated by the

large number of different vibrations that occur here.

The simplest way to identify a compound would be to compare the spec-

trum to a library of spectra from known compounds. Advances in computer

retrieval techniques can be used to rapidly compare a spectrum from an un-

known compound to a library of known compounds. However, the algorithm

will try to match the library to the unknown compound and name the known

compounds that best fit the peaks. The more complex the mixture of un-

known compounds, the harder it will be to match it to the known library.

This technique is of limited use when interpreting biological data as it is

most effective when dealing with either a single or a small number of com-

pounds. A biological sample typically consists of a complex mixture of many

different types of bio-compounds, such as, tissue, blood, glycogen, DNA/RNA

and many more which are not known. Each of these components has a dif-

ferent and unknown concentration and each has their own distinct spectral

signature. Further, the system is in general neither linear nor additive. The

resulting spectrum is complex and cannot be simply compared to a library

of known compound spectra.

Instead, the most effective way of interpreting biological spectra in the

context of diagnosis is to find the regions within the spectra that change as

a disease progresses. Then we compare these peaks to those within a library

of known biological compounds, which were first identified as important from

the literature. It is unlikely that all the changes seen will be due to a single

compound. Therefore, several compounds are visually compared simultane-

ously and by process of elimination, it is possible to predict which compounds

are likely to be changing. This is difficult to reproduce computationally be-

cause peaks are completely dependent on the type of tissue and the disease

being analysed.

For example a tissue spectrum containing glycogen will have many bands

that are characteristic to changes in glycogen, but we know that there is little

else in tissue that absorbs in the 1081 at cm−1 (CO stretch) region. Therefore,

we can conclude that changes in this particular region of the spectrum are

most likely to be from glycogen. Another example is the 964 cm−1 band. We

know that little else in a tissue sample absorbs here apart from DNA, and

therefore changes in this region can be attributed to DNA (Foreman, 2016).

The disease studied within this thesis is BE. There has been some previous
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research into the spectral changes occurring as BE progresses. Most of the

differences observed between the diseased and the healthy stage were in the

1170-1000 cm−1, region, particularly at the wavenumbers 1168, 1154, 1116,

1066 and 1022 cm−1 which are related to DNA/RNA and glycogen. As

BE progresses from NDBE to HGD the region that has been reported to

separate them is 1610-1530 cm−1 and this region is attributed to Amide

II. The spectral differences between NDBE and HGD/OAC can be seen in

the regions 1290-1210 cm−1 and 1130-870 cm−1 which correspond to protein

and DNA/RNA (Foreman, 2016). In addition, the differences seen between

SQ and NDBE spectra are most likely to be related to either glycoproteins

(mucin) or DNA/RNA (Quaroni and Casson, 2009).

Some information about the spectra of the main components of the tissue

is available. Figure 1.8 represents four of the compounds: DNA, glycogen,

blood and mucin. From the biological point of view, the DNA should increase

as BE progresses, the glycogen is expected to change as dysplasia progresses,

the blood is important because all biopsies will contain different amounts of

blood and for the mucin it is expected to see changes in the signal for all

stages (apart from SQ versus NDBE) as the disease progresses.
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Figure 1.8: Spectra of four main compounds: DNA, glycogen, blood and
mucin.

Even though we know something about the compounds, their spectra

are very complex (Figure 1.8). Each compound has many peaks in it and

which peaks are useful for diagnosis will depend not only of the presence

of a compound but what other compounds are there and how the relevant
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position of these peaks of the compound compared with this one. Given the

amount of uncertainty, we will choose to put vague priors on the coefficients

in our Bayesian variable selection, rather than trying to force the selection

of particular peaks. Afterwards we try to interpret the results. By contrast,

our prior for the inclusion probability of variables will be informative, with a

small probability chosen because we want a sparse solution.

1.4 Spectral data of BE

This study is motivated by the use of FTIR spectra of biopsies on patients to

diagnose BE disease via spectroscopy. Our diagnostic data are a discretized

version of a functional vector of absorbance over a range of wavenumbers.

The discretization depends on the resolution of the interferometer, here ab-

sorbances at 676 wavenumbers (number of variables) ranging from 2200 cm−1

to 900 cm−1 are recorded and the resulting spectrum presented in the second

derivative form. Taking into account all patients’ spectra (samples) we can

construct the design matrix. Two histopathologists classify the samples to

one of the five possible stages of the BE disease, which is the response vector.

From this high-dimensional data we are interested in selecting only a small

subset of wavenumbers that carry information about the stages of the BE

disease with the aim of improving the classification accuracy. This subset of

wavenumbers may not only contain wavenumbers that correspond to peaks

or troughs in the spectrum but also wavenumbers that are not obvious from

the plot (Figure 1.7).

As mentioned in the previous paragraph, our data are a discretized ver-

sion of a continuous spectrum. The smoothness of the underlying spectrum

implies that there will be strong correlations between absorbances at nearby

wavenumbers.

A more subtle collinearity problem is the following. Peaks are absorbances

arising from particular molecular bonds. Many molecular bonds will absorb at

several wavelengths. So, there are distant peaks that are strongly correlated.

For example, peaks that present absorbances at wavenumbers around 1050

cm−1 and 950 cm−1 seem to carry similar information about DNA/RNA

(Figure 1.7).

1.5 Variable selection and prediction

FTIR spectrometers typically record absorbance at a very large number of

wavenumbers that depend on the resolution that they use. At the same time,
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a relatively small number of biopsies are available from patients. One way to

deal with high-dimensional problems (p � n, p is the number of variables,

here measurements, and n is the number of observations, here spectra), known

as large p, small n problems, as well as the case of highly correlated variables

with p < n, is the selection of the most important variables.

When there is collinearity among predictors, regressions become unstable.

One solution to handle collinearity is to use ridge regression estimators which

stabilize the least squares estimation. Another is to remove the ‘redundant’

variables (those that are linear combinations of existing absorbances at dif-

ferent wavenumbers) using variable selection methods. We need to be aware

though that there may be multiple solutions because of the highly correlated

variables may substitute for each other.

The goal of variable selection is to identify a small subset of variables

which together give accurate predictions. To achieve accurate prediction

given a model, overfitting and underfitting has to be avoided. If the model is

too simple, then the model has high bias/low variance and conversely, if the

model is too complex, then the model has low bias/high variance (Figure 1.9).

Model complexity
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Figure 1.9: Bias-variance tradeoff.

The aim is to choose the model that has the best balance of goodness of

fit against model complexity. This report is focused on methods that find

the important variables so that we can predict the outcome or find the best

model. However, variables that are important individually may not be a part

of the best overall predictive model and vice versa. The results of the variable

selection approach can summarized under two different settings: to identify

individually variables that are potential biomarkers and to identify the best

model (combination of variables) that can be used for predictions.

The predictions we are interested in are out-of-sample predictions. By

out-of-sample we mean the prediction of future measurements given hith-

erto unobserved explanatory variables. There is a tougher challenge than
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in-sample prediction, where the samples to be predicted are the same as, or

very similar to, the ones in the training set.

In the Bayesian framework there are some preferences concerning how to

select the prior distributions for the coefficients for each of the two tasks.

Because our focus is on out-of-sample prediction we should avoid priors like

the g-prior that effectively reinforce the pattern in the training set. We will

select priors that induce a more general shrinkage, with the aim of producing

robust predictors.

1.6 Reasons for variable selection

Variable selection is, in general, useful for interpretational reasons: simpler

models are easier to interpret than complex ones. Variable selection removes

non significant effects, giving us a chance to interpret the reduced model.

Variable selection is also useful for reducing noise in the dataset and con-

sequently achieving a good class separation. This may be important when

working with biological data, because they are often noisy and it is complex

to understand them. As a result, variable selection tends to improve the pre-

diction performance. Irrelevant variables in the input data may decrease the

classification performance. In this study variable selection not only improves

the classification performance but may help researchers to understand the

cell changes involved in the disease.

In addition, variable selection reduces the difficulty of handling and visu-

alising the data. After the process of variable selection, parameter estimation

will be stable, data visualization is easier to do and efficient storage is feasible.

Variable selection is particularly attractive for high-dimensional data, es-

pecially when p approaches or exceeds n. In these cases several problems

can arise: overfitting of the model to the sample, collinearity among the

independent variables and computational difficulties.

A very efficient way to explore the high-dimensional predictor space is to

apply Bayesian variable selection approaches. The probability-driven stochas-

tic search is able to visit many different combinations of predictors. The result

of the search is a rich one, providing both joint and marginal inclusion proba-

bilities for predictors. For example, the most visited model suggests the best

combination of wavenumbers that altogether contribute the most to predict-

ing the progression of the BE disease. For biologists it is also important to

identify some possible biomarkers, via the marginal inclusion probabilities,

which indicate wavenumbers that appear quite often in good models.

One issue in identifying important variables is the number of possibilities
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and the risk of spurious associations. In the frequentist framework one way to

check if each variable is important would be to do hypothesis testing, but the

probability of false positive results rapidly increases as the number of variables

increases. For example, if we perform a single test using a significance level

of 1% and there truly is no effect of the factor being tested, there is only a 1%

chance of a false positive result. However, if we perform 10000 independent

tests using the same significance level, we expect 10000 × 0.01 = 100 of the

tests to have p-value less that 0.01, so that 100 of the tests would be falsely

significant.

A good way to pick individual variables is by controlling the false discov-

ery rate (Muller et al., 2006). In the Bayesian set-up, the idea is to define

a threshold for the marginal posterior probability of inclusion with respect

to a specified false discovery rate level. This process (Saadi et al., 2016) can

be implemented in the following way: (i) For a given threshold, let R be

the number of predictors with marginal posterior probability bigger than the

threshold (the idea is similar to if the p-value is less than or equal to a signif-

icance level then you reject the null hypothesis). (ii) Repeatedly permute the

class labels and using the same threshold estimate the false discovery rate as

the ratio of the average of the number of false positives to R. (iii) Choose

the threshold so that the empirical false discovery rate (as calculated at step

ii) is not greater that a specified level (usually 0.05).

1.7 Motivation and contributions

The motivation of this work is to analyse spectral data related to the Barrett’s

oesophagus (BE) disease, where the stages of the disease can be described as a

mixture of nominal and ordinal variables. The aim of the work is to provide a

good model for clinical diagnosis and fully to identify some interesting regions

of the high-dimensional spectra. To the best of the author’s knowledge, this

is the first attempt to build a Bayesian variable selection method using both

nominal and ordinal variables.

The principal contributions of this thesis are:

• Chapter 2: A summary of the most famous penalised regression meth-

ods.

• Chapter 2: A summary of the most important measures to evaluate the

classifier.

• Chapter 3: A summary of the most important methods to perform
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Bayesian variable selection (BVS) using a probit model with binary

responses.

• Chapter 4: An application of BVS approaches to some datasets.

• Chapter 5: A detailed explanation of BVS using pure nominal and pure

ordinal responses, including also the similarities and differences between

the two approaches.

• Chapter 6: The building of a decomposed probit model for mixture of

nominal and ordinal responses.

• Chapter 6: A proposed algorithm for decomposed BVS.

• Chapter 7: The building of a probit model for mixture of nominal and

ordinal responses.

• Chapter 7: The construction of an algorithm that implements BVS

using a common indicator vector for all the latent variables.

• Chapter 8: The construction of an algorithm that implements BVS

using both types of responses and different indicator vectors across

different latent variables.

• Chapter 9: The extension of the proposed approach of decomposed

variable selection in existing methods.

• Chapter 9: The application of the three proposed methods in BE for

clinical diagnosis.

• Chapter 9: The comparison of the three proposed methods with existing

ones.
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Chapter 2

Classification methods for

high-dimensional data

This chapter starts with a general description of the classification problem

and how to evaluate the performance of a classification method. Afterwards

we study statistical models for categorical responses and methods to assess

different models (different variables included in the model via variable selec-

tion). In the last part, we focus on the study of variable selection for the

case of high-dimensional data, where standard approaches are not applicable

or are not efficient. Variable extraction methods are presented briefly as an

alternative way for dimensionality reduction.

2.1 The classification problem

Classification problems study how to learn a rule or a model to classify obser-

vations into a given set of classes on the basis of an observed feature vector.

In order to learn the rule or the model a set of training data is required and

the task is to produce a method that will generalise to new observations.

A classical choice, which for two groups projects the data on to a line in

order that samples from the different classes are well separated, is Fisher’s

linear discriminant analysis (LDA). In the classification context the LDA

classifier uses the criterion of maximizing the ratio of between-to within-class

variance to construct variables that are linear combinations of the original

ones. Those extracted variables may be used directly or as input for an-

other classifier. Other algorithmic based classification methods are k-nearest

neighbours (k-NN), classification trees, and random forest (Murphy, 2012).

On the other hand, model based methods rely on parametric assumptions

about the data. Various models that are appropriate for categorical responses
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can be used, for example in the probit model the errors are assumed to follow

a normal distribution. Interestingly, some methods like LDA can be derived

not only as algorithmic methods for classification but also as model based

methods. For example, LDA can also be derived by assuming that the two

classes are Gaussian distributed with a common covariance matrix (Hastie

et al., 2001).

2.1.1 Assessing the performance of a classification method

For models predicting continuous variables, classical choices to assess the

predictions are via mean square error or mean absolute error. However, the

best way to evaluate binary predictions is not so clear, and it becomes even

more complicated for multi-class predictive responses.

Evaluation measures

Particularly in medical diagnostic studies, we are often interested in predict-

ing if the result is positive (patient has the disease) or negative (patient does

not have the disease). In different contexts the idea of positive and negative

results can be adapted. Four different outcomes are possible when a binary

case is classified. A true positive (TP ) is a correctly predicted positive exam-

ple. A true negative (TN) is a correctly predicted negative example. A false

positive (FP ) is an incorrect prediction that an example was positive, when

in fact was negative. This is also known as a type I error. The last one, false

negative (FN) is an incorrect prediction that an example was negative, when

in fact was positive. This is also known as a type II error. The four outcomes

can be summarized in the confusion matrix C (Table 2.1). High values of the

diagonal elements TP and TN mean that the classifier is very good. On the

other hand, high values on the off-diagonal elements mean that mistakes were

often made. Although the confusion matrix itself is simple to understand,

there is a lot of additional terminology that needs to be explained.

Table 2.1: Confusion matrix for a binary classification problem.

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN

Based on these definitions several new functions which measure different

aspects of classification performance can be defined. Here are some of them.

The fraction of actual positives that are correctly predicted as positives is
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called sensitivity. This is also known as recall or true positive rate and is

given by

Sensitivity: ρ =
TP

TP + FN
.

Sensitivity increases as the number of FN decreases.

The fraction of actual negatives that are correctly predicted as negatives

is called specificity. This is also known as the true negative rate and is given

by

Specificity =
TN

TN + FP
.

Specificity increases as the number of FP reduces. The ideal classifier has

sensitivity and specificity equal to unity. In general, however this cannot be

achieved: as sensitivity increases, specificity decreases.

The fraction of predicted positives that are true positives is called preci-

sion. This is also known as positive predictive value and it is given by

Precision: π =
TP

TP + FP
.

Accuracy counts the number of correct classifications as a proportion of

all the cases

Accuracy =
TP + TN

TP + TN + FP + FN

and the error is simply calculated by

Error = 1− Accuracy.

In classification, the main goal is to maximize the accuracy of the classifier

or equivalently to minimize the error rate. However, all misclassification

cannot be equally considered (Pazzani et al., 1994; Fearn, 2012). For example,

for a medical diagnosis problem, the cost of diagnosing a healthy patient as

diseased may not be the same as the cost of diagnosing a diseased patient

as healthy. In some medical contexts for example a cost of 2 may assigned

to misclassifying a negative as positive. This means that it is 2 times more

important to correctly classify a negative as negative, than it is avoid to

misclassifying a positive as negative. Based on this idea, it may be of interest

to minimize an expected cost or some other criterion taking cost into account

instead of minimizing the classification error rate.

If the sensitivity (ρ) has large value but the precision (π) has small value,
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then the Fβ measure may be used to select a best classifier

Fβ =
(β2 + 1)πρ

β2π + ρ
=

(β2 + 1)TP

(β2 + 1)TP + β2FP + FN
, (2.1)

where the scalar β controls the trade-off between the precision and the sen-

sitivity. In practice, where the recall and the precision are equally important

(β = 1), the F1 micro-averaged-measure is given by

F1−micro =
2πρ

π + ρ
, (2.2)

which is the weighted harmonic mean of the precision and sensitivity.

A widely used evaluation measure that is based on the definitions of sen-

sitivity and specificity is the receiver operating characteristic (ROC) curve.

This is produced for a given classifier by varying a tuning parameter such as

a threshold to give pairs of sensitivity/specificity values. It is usually repre-

sented as a graph of sensitivity versus 1-specificity. An example of a ROC

curve is shown in Figure 2.1a. As we change the threshold the number of

FP decreases, while the number of FN increases. Maximizing sensitivity

corresponds to a large value on y−axis and minimizing the 1−specificity cor-

responds to a small value on x−axis on the ROC curve. Thus, if the line of

the graph is close to the top left, then the classifier is good.
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(a) Sensitivity versus 1−specificity.
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(b) Sensitivity versus specificity.

Figure 2.1: ROC curves and the corresponding AUC values.

Instead of studying the ROC curve itself as an evaluation measure, the

area under the ROC curve (AUC) is a well known measure for classification

performance. AUC can be calculated via numerical approximation methods

for example using trapezoidal rule. AUC equal to 0.5 corresponds to no dis-

crimination between classes (random classifier), which means that the ROC

curve is the diagonal line that starts from the origin (Figure 2.1a). On the

other hand, if the ideal classifier has AUC equal to unity this means that the
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ROC curve consists of two straight lines that have common point the upper

left corner. So, AUC is typically between 0.5 and 1.

An alternative, but not so commonly used, representation of the ROC

curve is as a graph of sensitivity versus specificity. In that case, maximizing

specificity (instead of minimizing the 1−specificity) corresponds to a large

value on x−axis on the ROC curve (Figure 2.1b). So, if the line of the graph

is close to the top right (instead to the top left), then the classifier is good.

With respect to the AUC, the area under the curve is located differently

for graphical representation of sensitivity versus 1−specificity and sensitivity

versus specificity but the values of AUC are the same in both cases. Finally,

graphical measures to quantify the performance of the classifier, which are

not so well known, are lift chart, precision-recall curves, and cost curves.

More details are given in Japkowicz and Shah (2011).

The majority of the aforementioned evaluation measures for binary re-

sponses easily extend to the multi-class responses. Measures to evaluate the

classifier for binary and multi-class cases are summarized in Table 2.2. For

the multi-class case, more details are given below.

In a multi-class classification problem, in the first instance we may be

interested in predicting if the result is member of the class m (m = 0, . . . ,M−
1, where M is the total number of classes) or not. Four different outcomes are

possible when a multi-class case is classified: TPm is the number of correctly

predicted examples of a member of the class m, FPm are examples that are

not members of the class m but are predicted as members of class m, FNm are

examples that are members of the class m but are predicted as not members

of class m, and TNm is the number of correctly predicted examples of not be

a member of the class m. Those four possible outcomes can be summarized

in the collapsed confusion matrix (Table 2.3).

Table 2.3: Collapsed confusion matrix for a multi-class classification problem.

Predicted
Be a member of
class m

Not be a mem-
ber of class m

Actual
Be a member of
class m

TPm FNm

Not be a mem-
ber of class m

FPm TNm

We can calculate those possible outcomes from the M × M confusion
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matrix (C) according to the following equations

TPm = C(m,m), FNm =
M−1∑

m′=0,m 6=m′
C(m,m′),

FPm =
M−1∑

m′=0,m 6=m′
C(m′,m), TNm =

M−1∑
m′=0,m 6=m′

C(m′,m′),

where M denotes the number of classes. Sensitivity, specificity and precision

of each class m are defined according to the last three equations and those

are

Sensitivitym: ρm =
TPm

TPm + FNm

, Specificitym =
TNm

TNm + FPm
,

Precisionm: πm =
TPm

TPm + FPm

respectively.

With respect to the Fβ measure, Equation (2.1) can also be used in the

multi-class case and a typical choice in this case is β = 1. The F1 micro-

averaged-measure for the multi-class case is given again by Equation (2.2),

where the overall sensitivity and precision are given by

Sensitivity: ρ =

∑M−1
m=0 TPm∑M−1

m=0 (TPm + FNm)
,Precision: π =

∑M−1
m=0 TPm∑M−1

m=0 (TPm + FPm)
.

The F1 macro-averaged-measure of Equation (2.1) in the multi-class case is

F1−macro =

∑M−1
m=0 F1m

M
,F1m =

2πmρm
πm + ρm

.

ROC curves were originally developed for binary problems, but they have

also been generalized for multi-class problems (Hand and Till, 2001),

AUCHT =
2

M(M − 1)

∑
∀m,m′:m 6=m′

AUC(m,m′),

where AUC(m,m′) is the area under the ROC curve involving the pair of

classes m and m′.

Data splitting

The experimental estimation of the performance of a classifier may be based

on random partition into training and test parts using various methods, but

the idea of data splitting is common: to build a classifier using the training
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set and evaluate it using the test set. In cases where an additional set (some-

times called the tuning set) is needed to tune one or more parameters the

data are split into three sets. In that case, we build a model on the training

set, we tune the parameters on the tuning set and estimate the classification

performance on the test set. This triple splitting is important because if you

use the test set for both tuning and prediction, this leads to optimistic esti-

mates of classification performance, since the tuning optimises the classifier

for the particular test set. In addition, sometimes the researchers instead of

reporting the classification performance on the test set report the classifica-

tion performance on the training set, which can be very over-optimistic.

One way to implement the random partition is by using the hold-out

method. It uses two separate datasets, training set (for example 2/3) and

test set (for example 1/3), with repeated splits. This is useful for medium

sized datasets. Another idea is to implement the random partition by using

k-fold cross validation, which means that the dataset is randomly split into

k equal size sub-samples, we use k − 1 sub-samples as training data and

the remaining sub-sample as test data and repeat this k times. Extensive

experiments have shown that 10-fold cross validation is a good choice to get

an accurate estimate. However, 5-fold cross validation is also popular, Hastie

et al. (2001). Variance can be reduced by using the mean of multiple cross-

validations as an estimate of, for example, the accuracy. Note that if a large

number of folds is selected, then the bias of the true error rate estimator will

be small, but the variance will be large. In addition, the computational time

will be very large. On the other hand, if a small number of folds is selected,

the variance of the estimator will be small and the computation time will be

reduced, but the bias of the estimator will be large. So, in practice, the choice

for k depends on the size of the dataset. For large datasets, even 3-fold cross

validation will be quite good.

A special case of cross validation is the leave-one-out cross validation

method, LOOCV (k = n). Train the model with n − 1 observations and

predict the one that was left out and repeat this process n times. Using

LOOCV the variance of the error estimates is high (Hastie et al., 2001). In

addition, it is quite computationally expensive to repeat the process n times.

For large n the computational expense becomes prohibitive, but for small size

data, it is not so slow. For very sparse datasets, LOOCV may be used in

order to train with as many samples as possible.

Within the context of variable selection (VS), mistakes in cross validation

are very common. The choice of which variables are important for the model

needs to be evaluated as part of the cross validation. We have to take care and
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put every supervised method inside the training part of the cross validation

step, not do VS using global information, and then do cross validation.

2.1.2 Unbalanced dataset

In some sciences, such as Genetics and Medicine, it is important to balance

unbalanced dataset (for example 95% of observations are healthy, only 5%

are diseased). In an unbalanced dataset the minority class (one class is rep-

resented by only a small number of observations) may not have a sufficient

number of observations to learn the data and so deriving a good rule may be

a difficult task. Usually, the classification accuracy seems very high. How-

ever, this is not the case since it is only reflecting the majority class (one

class is represented by only a large number of observations). In the binary

classification problem one way to handle an unbalanced dataset is to build a

balanced training set, use it for classifier training in two steps: first, randomly

select the desired number of minority class and then add an equal number

of randomly selected majority class via re-sampling. Another way to handle

an unbalanced dataset is to build a balanced test set and use this balanced

set to test the classification performance. There is an extensive literature on

how to balance unbalanced dataset for supervised learning, see for example

Ganganwar (2012), but it is not discussed here since it is beyond the scope

of this study.

2.2 Model based methods

In this section we study statistical models for discrete outcomes criteria,

often based on likelihood, to assess the different models. The statistical

models belong to the generalized linear model with Bernoulli or multinomial

(discrete) distributions, because of the discrete outcome.

2.2.1 Generalized linear models for categorical responses

The relationship between the responses yi and potential explanatory vari-

ables Xi,: (row vector of data matrix X with p variables, i = 1, . . . , n) is

described via a generalized linear model, which is made up of a linear pre-

dictor ηi = Xi,:β, where β is the vector of coefficients, and the link function,

which describes how the mean, E(Yi|Xi,:) = µi depends on the linear pre-

dictor via g(µi) = ηi. For a classification problem, where the responses are

categorical, the three most common link functions (Table 2.4) are logit, probit
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and complementary log-log (Hastie et al., 2001). Responses are distributed

as Bernoulli or binomial for the binary case and can be generalized to multi-

nomial or categorical for the multi-class case.

Table 2.4: Link functions for generalized linear model with categorical re-
sponses.

Logit link Probit link Complementary log-log link

ηi = log µi
1−µi ηi = Φ−1(µi) ηi = log[− log(1− µi)]

The logit link can be interpreted as modelling log odds. Logit is computa-

tionally easier than working with normal distributions through the probit link

function. Logit has slightly heavier tails, which means that a probit curve

approaches the axes more quickly than a logit curve (Figure 2.2). However,

probit is preferred when it seems plausible that there is an underlying vec-

tor of dependent variables which is normally distributed (Finney, 1947). In

addition, probit is preferred for Bayesian models where it has the advantage

that we can assign conjugate priors to the regression parameters. Albert and

Chib (1993) propose instead of using the inverse cumulative density function

(CDF) of the probit link to use the Student t inverse CDF as the link func-

tion in a Bayesian setting, where the degrees of freedom parameter becomes

part of the estimation problem. The logistic function is similar to the normal

except in the tails, where it is heavier, resembling a Student t−distribution.

In Figure 2.2, the complementary log-log link is not symmetric. Due to this

asymmetry, this link is usually only used for problems when µi is small, and

then a complementary log-log is close to a logit model.
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Figure 2.2: Visualization of common link functions with binary responses,
compared to the standard normal and a Student t−distribution.
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2.2.2 Model assessment criteria

Given a model, its evaluation is carried out according to some criteria that

are usually based on the loss function. The basic idea is that, based on the

criteria, we can compare the full model (includes all the variables) with other

models that have fewer variables in order to find the best model.

The model based methods have a loss function L(yi, ŷi), where ŷi denotes

the prediction of the i-th sample given the observed data, i = 1, . . . , n. For

categorical response variables a typical choice of loss function is the 0 − 1

loss,

L(yi, ŷi) =

{
0, if yi = ŷi

1, if yi 6= ŷi.

Another option is to select as a loss function the negative log likelihood and

to minimize that. If this loss function does not have a penalty term, then the

full model will always be the best model. This penalty term should depend

on the number of parameters, since a flexible model with many parameters

has more potential for overfitting than a simple one. We will study different

criteria that are based on the idea of minimizing the negative log likelihood

plus a penalty term.

Akaike’s information criterion (AIC) was introduced by Akaike (1998),

and it is a simple way to compare all possible models via a penalty on the

number of estimated parameters. The AIC is defined as

AIC = −2 log[L(β̂; y)] + 2p,

where β̂ denotes the maximum likelihood estimate of the model parameter

and p is the dimension of β. After calculating AIC for all possible models,

the best model is the one with the smallest AIC. AIC was derived as an

approximation to the estimated risk, based on expected Kullback-Leibler

information, of predicting using the regression model. For small sample sizes,

n, AIC underestimates the risk, and has been improved (Peruggia, 2003) to

AICc = −2 log[L(β̂; y)] + 2p+
2p(p+ 1)

(n− p− 1)
,

which is correct to O(1/n) for normal linear regression. This stronger penalty

corrects the tendency of AIC to choose models that are too complex when n

is small. Various authors have derived corrections to this bias in AIC that are

correct to O(1/n) for generalized linear models, see for example Imori et al.

(2011). Unfortunately these corrections, which use derivatives of the log

likelihood, depend on both the probability distribution and the link function
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in the generalized linear model, so that the simplicity of AIC is lost.

The deviance information criterion can be considered as a generalization

of AIC and is defined by

DIC = D(β̄) + 2pD = D̄ + pD,

where D(β̄) = −2 log[L(β̄; y)] is the deviance, β̄ is the posterior expecta-

tion of β (for AIC posterior mean is substituted by the maximum likelihood

estimate β̂), pD = D̄ − D(β̄) and D̄ = E[−2 log[L(β̄; y)]] is the posterior

mean. The pD measures the complexity of the model. A smaller deviance

information criterion indicates a better fit to the dataset.

An alternative to AIC is the Bayesian information criterion, (BIC) or

Swartz criterion, (Dayhoff and Schwartz, 1978)

BIC = −2 log[L(β̂; y)] + loge(n)p,

which penalizes model complexity more heavily, using a penalty term depen-

dent on sample size. Generalizations of Schwarz’s derivation are presented

by Cavanaugh and Neath (1999).

Model selection by AIC and BIC aims to indicate the best model, in the

sense of having the smallest error when the model is used for prediction.

AIC and BIC can be used in place of hypothesis testing in stepwise model

selection: the model with the lowest AIC/BIC score always being the one

selected at each stage. Unlike hypothesis testing methods, AIC and BIC can

be used to compare models that are not nested.

Comparing the two methods, BIC selects simpler models than AIC, and

for large sample sizes can select simpler models than hypothesis testing based

methods as well. AIC is asymptotically efficient yet not consistent and BIC is

consistent yet not asymptotically efficient. AIC is commonly used for small

sample sizes and performs better for complex models when BIC performs

better for simpler models.

Nevertheless, BIC is motivated as an approximation to the Bayes Factor,

which can be used to compare two models, M1 and M2, in a Bayesian setting,

using the ratio of their posterior probabilities

P (M1|X,y)

P (M2|X,y)
=
P (M1)

P (M2)
× P (X,y|M1)

P (X,y|M2)
. (2.3)

The second factor in Equation (2.3) is called the Bayes Factor (Jeffreys, 1935).

The Bayes factor is defined as the contribution of the data to the posterior
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odds. It is given by

BF (M1,M2) =
P (X,y|M1)

P (X,y|M2)
,

which is equal to the ratio of the posterior probabilities when both models

have equal prior probabilities. Model selection using BIC and Bayes factor

are equivalent assuming that the two models are regarded as equally probable

a-priori, such that choosing the model with the smallest BIC is equivalent

to choosing the model with the greatest posterior probability (Wasserman,

2000). The Bayes Factor for comparing two models can be interpreted us-

ing the evaluation ranges (Kass and Raftery, 1995) that are summarized in

Table 2.5

Table 2.5: Bayes Factor comparison values.

BF (M1,M2) Strength for evidence
1-3 Not worth more than the bare mention
3-10 Substantial

10-100 Strong
100-1000 Decisive

Finally, there are different versions of Mallows Cp for generalized linear

models. Hurvich and Tsai (1995) proposed a version of Mallows Cp based on

the Pearson χ2 goodness-of-fit statistic via

Cp =
(n− p̄)χp

χp̄
+ 2p− n,

where p̄ is the number of explanatory variables contained in the full model

which includes all available candidate variables and χp, χp̄ are the Pearson χ2

statistics evaluated under the model indicated by the subscripts respectively.

2.3 Dimensionality reduction methods for high-

dimensional data

There are many situations, for example in very high-dimensional data, when

the number of parameters is large, or when there is a collinearity between

variables (columns of X are highly correlated), where using the likelihood

alone does not produce estimators with good properties and so those estima-

tors may not be suitable for model selection. Standard methods for variable

selection are computationally too expensive to compare all possible models
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with different variables. In addition, in high dimensions estimating many

parameters increases the overall error of the estimations.

In high dimensions it is reasonable to assume that the relevant variables

lie in low-dimensional space. The last can consists of only a few original

important variables (this process is known as variable selection) or a few new

variables that are transformation of the original ones (this process is known

as variable extraction).

2.3.1 Variable selection in high-dimensional data

Variable selection (VS) is also called feature subset selection, feature selec-

tion or attributes selection in the literature. If it is possible to compute all

the possible models then we can use a criterion to select the best subset of

important variables, otherwise we need to apply one of many strategies for

searching for important variables. In high-dimensional data we can not fit a

full model and we can not compute all the possible models. In the last case

we study different ways of searching the space in order to include or exclude

a variable.

Stepwise procedures (search strategies)

The search for important variables can be done by either a deterministic

stepwise procedure or a stochastic one. Stepwise procedures, also known as

stepwise regression, are used to improve the fit at each step using a search

strategy that identifies significant variables. Existing methods have been de-

veloped for evaluating a number p of variables (complexity O(p2)) by adding

or deleting one variable at each step.

Specifically, for the stepwise procedure three sequential strategies are

given below which select to add or delete a variable in the model (Hastie

et al., 2001).

The first is sequential forward selection (SFS). It starts with an empty

set of variables. Then, adds variables, one at a time, in order to improve the

classification performance. One way do it is to create a criterion that esti-

mates the classification performance using cross validation methods (details

in Subsection 2.1.1) and adds the variable if the classification performance

is improved. The process stops when no other useful variables are identified

based on the specific criterion that is selected. A full sequence though to the

model with all variables would visit p(p + 1)/2 models. Generalized sequen-

tial forward selection is used when not one-at-a-time but the best q-subset (in

the sense that it improves the criterion) of the candidate variables is added
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into the model. The disadvantage of both simple and generalized sequential

forward selection is that once a variable is retained, it cannot be discarded.

This is called the nesting problem.

The second is sequential backward selection, known as backward elimi-

nation (Miller, 2002). This process starts with every candidate variable in

the model. Remove variables, one-at-a-time, until all remaining variables

contribute significantly to the classification performance or until e.g. AIC

is minimised. As with the forward stepwise algorithm, a total of p(p + 1)/2

models would be visited in a full sequence. Sequential backward selection

requires more computational time than the forward one and also suffers from

the nesting problem. Similar to the first method, generalized sequential back-

ward selection deletes the least significant q-subset of the candidate variables

at each step.

The last one, stepwise regression, which overcomes the nesting problem,

is a combination of forward and backward in various ways. For example,

the process starts with forward selection until no further variables are added,

then backward selection is run until no further variables are dropped, then

forward selection again, and so on until successive forward and backward

steps both produce no change in the model. Note that this method has two

criteria one for adding and one for removing variables and the criterion for

adding variables should be more stringent than the criterion for removing

variables so as to avoid infinite loops. Stepwise regression is fast and simple

to implement for selection, but often misses the best model by becoming

trapped in local minima. Alternatives to the aforementioned deterministic

method are stochastic algorithms, for example simulated annealing or genetic

algorithms (Murphy, 2012), which are able to escape local minima.

The complexity of Bayesian variable selection methods is harder to quan-

tify than that of stepwise methods (O(p2)). It depends on the model, the com-

plexity of Metropolis-Hastings procedures for high-dimensional data (choice

of proposal, good mixing) and the prior specification. For example, for the

Bayesian variable selection with a linear model under a sparsity constraint

the mixing time is linear in the number of covariates up to a logarithmic

factor (Yang et al., 2015).

In the case of Bayesian variable selection with probit model for healthy

and cancer tissues of BE (p = 447) for example, the method proposed about

20000 models in order to find a good model with only two variables. In this

case, the forward stepwise method would start with a null model and visit

only 893 models (at the first step the method evaluates 447 models in order

to add the first variable in the model and, at the second, from the remaining
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variables, the method evaluates 446 more models in order to add the second

variable in the model), before stopping on a model with two variables. The

backward stepwise is not feasible here, but it would in principle start with a

full model and evaluate 198915 models (= 447× 445), before finally coming

up with a model with two variables. Bayesian variable selection visits many

more models than a simple forward stepwise algorithm, but explores the

model space more thoroughly and in an efficient way.

Penalized regression methods

In multiple linear regression the ordinary least squares estimate of β is given

by β̂
ols

= argminβ{−2 log[L(β; y)]}, where the likelihood of the model is

normal. The analytical solution if X′X has full rank, is β̂
ols

= (X′X)−1X′y,

where X and y are assumed to be centered. However, ordinary least squares

estimates do not always exist; if X is not of full rank, X′X is not invertible

and there is no unique solution for β̂
ols

. In particular, in the case of high-

dimensional data, (X′X)−1 does not exist and in this case a regularization

term, also known as a penalty term or shrinkage term, may be included. The

penalty term makes the penalized estimates biased, but can also substantially

reduce the variance. Different methods add different penalties as described

below.

Ridge regression

Ridge regression was one of the first penalized regression methods. It was in-

troduced by Hoerl and Kennard (1970). It penalizes the size of the regression

coefficients but does not shrink coefficients to zero, so it is not on its own a

method of VS. Ridge regression was extended to the generalized linear model

(Friedman et al., 2010) through the criterion

β̂
ridge

= argminβ{−2 log[L(β; y)] + λ‖β‖2
2}, (2.4)

where ‖β‖2 =
√∑p

j=1 β
2
j (L2 norm, also known as the Euclidean norm) and

λ is a positive regularization parameter. In the linear case the analytical

solution of Equation (2.4) is β̂
ridge

= (X′X + λIp)
−1X′y, where the matrix

X′X + λIp is always invertible. There is a unique solution for β̂
ridge

via

Equation (2.4). The solution is indexed by the shrinkage parameter λ which

is chosen by minimizing the mean squared fitting error, typically using cross

validation. This parameter controls the amount of regularization and thus

the size of the coefficients. The higher λ is, the more all coefficients are
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shrunk towards zero. Note that if λ → 0, then the least squares solution

is obtained, β̂
ridge

→ β̂
ols

. If λ → ∞, then β̂
ridge

→ 0, which means that

the model consists only of the intercept. In the orthonormal design case, the

relation between those coefficients is β̂
ridge

= 1
1+λ
β̂
ols

.

Least absolute shrinkage and selection operator regression

Tibshirani (1996) introduced for the linear model the least absolute shrinkage

and selection operator (LASSO), where coefficients are solutions of an L1

optimization problem. LASSO was extended to the generalized linear model

(Park and Hastie, 2007) via

β̂
lasso

= argminβ{−2 log[L(β; y)] + λ‖β‖1}, (2.5)

where ‖β‖1 =
∑p

j=1 |βj| (L1 norm). As λ increases, more coefficients are

set to zero (fewer variables are selected), and among the nonzero coefficients,

more shrinkage is employed. So, as λ increases, the number of nonzero com-

ponents of β decreases.

The L1 norm penalty of the LASSO approach makes the solution non-

linear and requires a quadratic programming algorithm. For linear mod-

els, the analytical solution of Equation (2.5) is more complicated than for

L2 shrinkage. In fact, it becomes β̂
lasso

= (X′X)−1
(
X′y− λ

2
w
)

+
where

w = (w1, . . . , wp)
′
, wj ∈ {−1,+1}, depending on the sign of the corresponding

regression coefficient and + denotes the positive part of the portion that is in

parentheses. Based on the last equation, the relationship with ordinary least

squares in the orthonormal case is given by β̂
lasso

= sign(β̂
ols

)(|β̂
ols
|−λ/2)+,

where (|β̂
ols
| − λ/2)+ = |β̂

ols
| − λ/2 if |β̂

ols
| − λ/2 > 0 and 0 otherwise. If

β̂
ols

> λ/2, then β̂
lasso

> 0. If β̂
ols

< −λ/2, then β̂
lasso

< 0. This is a

least squares problem with 2p inequality constraints (there are 2p possible

sign patterns for the coefficients). LASSO works as a VS method. If p > n,

the number of selected variables is bounded by the number of samples (Park

and Casella, 2008). LASSO has one important limitation. If many variables

are correlated LASSO fails to do grouped selection. So, it tends to select one

variable from a group and ignore the others.

When there are many correlated variables, since LASSO gives nonzero

weight to only one of them, Fused LASSO (Tibshirani et al., 2005) may be

used. This is defined as

β̂
f−lasso

= argminβ{−2 log[L(β; y)] + λ1‖β‖1 + λ2

p∑
j=2

|βj − βj−1|},
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where λ1 and λ2 are a positive regularization parameters. Here, the variables

(and consequently the coefficients) are assumed to have a meaningful order-

ing. For example, in spectroscopic data, the wavenumbers have a natural

order.

Zou (2006) considers the LASSO penalty and proposes a new penalty

called the adaptive LASSO, which minimizes a penalized marginal likelihood

function with a weighted L1 penalty. The adaptive LASSO imposes differ-

ent penalties on different coefficients: unimportant covariates receive larger

penalties than important ones and vice versa. In this way, important vari-

ables can be protectively preserved in models while unimportant ones are

more likely to be shrunk to zero via adaptive LASSO

β̂
ad−lasso

= argminβ{−2 log[L(β; y)] + λ

p∑
j=1

|βj|wj},

where the nonnegative weights are chosen adaptively by data. They can be

estimated by wj = (|β̂inij |)−ξ, j = 1, 2, . . . , p, where ξ is a positive constant

and β̂inij is an initial root-n-consistent estimator of βj. In the presence of

collinearity ridge regression can be used to estimate the β̂inij , otherwise or-

dinary least squares is a possible choice. The wj are regarded as leverage

factors, which adjust penalties on the coefficients by taking large values for

unimportant covariates and small values for important ones. The choice of ξ

in the adaptive LASSO is important to assure good solutions. This penalty

can be considered as an approximation to the Lk penalties with k = 1 − ξ.
Any root-n-consistent estimates of βj can be used for the adaptive weights

without changing the asymptotic properties of the adaptive LASSO solution.

Bridge regression

Bridge regression (Fu, 1998) is a more general formulation of ridge regres-

sion and LASSO since it uses the Lκ norm ‖β‖κ =
(∑p

j=1 |βj|κ
)1/κ

, κ ≥ 0.

Ridge regression and the LASSO are special cases of bridge regression and

correspond to κ = 2 and κ = 1 respectively.

Figure 2.3 gives an illustration of the Lκ norm for two coefficients (p = 2).

Different norms produce different penalty functions that are represented with

different colors. Also shown in the figure is the ordinary least squares esti-

mate β̂
ols

and likelihood ellipses around it. The penalty shrinks the estimate

towards zero, with the constrained regression coefficient estimates being given

by the first point at which an ellipse contacts the constraint region. For ex-

ample, for κ = 1, (LASSO) the enclosed region is a diamond. The ellipsoidal
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outer contour of the residual sum of squares can touch the ‘corner’ of the

diamond which corresponds to setting the coefficient at zero (top ‘corner’

corresponds to β1 = 0) and so LASSO can perform VS (the resulting model

here will only contain β2). On the other hand, for example, for κ = 2 (ridge)

the constraint region is a disk and the ellipsoidal inner contour hits the disk

away from the axis. Since there are no ‘corners’ where the elliptical contours

hit the constraint region and the coefficients are not usually set to zero, ridge

shrinkage cannot perform VS. For κ < 1 the constraint region is nonconvex.

For κ ≥ 2, a smaller ellipsoidal inner contour touches the constraint region

at a different point and the penalty shrinks some coefficients towards zero,

but does not perform VS. When p > 2, the constraint region may have many

‘corners’ and consequently it is very likely that some coefficients will be zero.

0

0

 

 
κ = 0.5
κ = 1
κ = 1.5
κ = 2
κ = 4
κ = ∞

β̂
ols

β
2

β1

Figure 2.3: Illustrations of the Lκ norm for various values of κ.

Elastic net

For linear models Zou and Hastie (2005) proposed the elastic net, which is

a convex combination of ridge and LASSO. The elastic net was extended to

generalized linear models by Friedman et al. (2010)

β̂
e−net

= argminβ{−2 log[L(β; y)] + λ1‖β‖1 + λ2‖β‖2
2}, (2.6)
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with λ2 the ridge penalty parameter, penalizing the sum of the squared re-

gression coefficients and λ1, the LASSO penalty, penalizing the sum of the

absolute values of the regression coefficients.

If λ1 = 0, then ridge regression is obtained. If λ2 = 0, then LASSO

is obtained. The elastic net method seems to be particularly useful when

dealing with highly correlated variables: the ridge term shrinks coefficients

of correlated variables toward each other, whereas the LASSO term picks one

among the correlated variables and puts all weight on it. Elastic net selects a

group of highly correlated variables once one variable among them is selected,

in contrast with LASSO which selects only one of them. Elastic net produces

a sparse model with good prediction accuracy, while encouraging a grouping

effect. For example, for linear models the analytical solution of Equation (2.6)

is β̂
e−net

= (X′X + λ2Ip)
−1
(
X′y− λ1

2
w
)

+
. The adaptive version of elastic

net (Zou and Zhang, 2009) is given by

β̂
ad−e−net

= argminβ{−2 log[L(β; y)] + λ2‖β‖2
2 + λ1

p∑
j=1

|βj|wj},

where the nonnegative weights can estimated by wj = (|β̂j
e−net
|)−ξ. To

avoid dividing by zeros in the adaptive elastic net estimator, the nonneg-

ative weights can estimated by wj = (|β̂j
e−net
|+ 1/n)−ξ.

Summary

All the aforementioned penalized methods can be formulated as

β̂
penalized

= argminβ{−2 log[L(β; y)] + λ1f1(β) + λ2f2(β)}, (2.7)

where λ1, λ2 > 0 and f1, f2 represents specific choices of functions, namely

different norms. A summary of the penalized methods is given in Table 2.6,

according to notation in Equation (2.7).

Similarities and differences between Bayesian and penalized meth-

ods

All of these penalized methods can be given a Bayesian interpretation, with

the log of the prior distribution replacing the penalty. These prior distri-

butions (some of which are distinctly odd) are shown in Table 2.6. The

regularization parameter (usually denoted by λ) of the penalized methods

determines a scale parameter of the prior of Bayesian methods. Then, a

good choice of scale parameter (Bayesian framework), or alternatively, a good
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choice of regularization parameter (penalized framework) that can guide us

to the ‘best’ model. Penalized methods just maximize the likelihood, but

Bayesian methods explore more of the space and quantify the model uncer-

tainty. For example, LASSO is a fast and efficient method for selecting a

single model (only contains variables that do not touch to the ‘corner’ (see

Figure 2.3)), but as a penalized method it does not allow us to estimate model

uncertainty. The last is important within the Bayesian set-up, especially for

BVS with the aim to do predictions. In the Bayesian perspective, the LASSO

penalty arises from a double exponential, or Laplace prior (the prior has a

‘corner’ at zero and so the posterior mode may be identically zero). Bayesian

methods are also more flexible since they can estimate the tuning parameters

jointly with the other parameters, in contrast with penalized methods that

require tuning of one or more parameters via, for example, cross-validation.

2.3.2 Variable extraction in high-dimensional data

Some variable extraction methods, for example LDA, do not work for high-

dimensional data, since the covariance matrix is singular and the classifi-

cation rule involves a linear combination of all the variables. In this case,

we can apply, for example, penalized LDA (Witten and Tibshirani, 2011).

Another way is to first apply principal component analysis (PCA) using all

the variables and then estimate the LDA projection using only the extracted

variables (Barber, 2012). PCA does not take responses into account, so it

is an unsupervised learning method. Kernel PCA applies a non-linear trans-

formation to a potentially very high-dimensional space, instead of a linear

transformation.

Alternative techniques (instead of PCA) that are commonly used for di-

mensionality reduction in high-dimensional data are independent component

analysis, canonical correlation analysis and partial least squares discriminant

analysis (Hastie et al., 2001). These methods play an important role in over-

coming the collinearity problem. Since they are variable extraction methods,

the new variables that they produce are combinations of the original one

and thus the new variables lose their natural meaning. This may be very

important for example in medical applications.
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Chapter 3

Bayesian variable selection

Another way to carry out variable selection (VS) is within the Bayesian frame-

work. The model selection problem becomes part of the estimation: rather

than searching for the single optimal model, we estimate the posterior proba-

bility of all models. Through Bayes theorem, we can calculate or approximate

the posterior distribution which is proportional to likelihood times the prior.

In Bayesian variable selection (BVS), the penalization of models with many

variables is achieved via the prior distributions of the unknown parameters.

In practice, we are interested in estimating both the probabilities of individ-

ual models and the marginal posterior probability that a variable should be

included in the model. When the likelihood or marginal likelihood can not be

computed in closed form we can approximate it using Markov chain Monte

Carlo (MCMC) methods.

In practice, when the number of variables, p, is very large it can be impos-

sible to calculate posterior probabilities of all 2p possible models. Figure 3.1

shows how the number of models increases dramatically, as the number of

variables in the model increases. In this case BVS not only provides intuitive

probabilistic interpretation, but also efficiently explores the model space in a

stochastic way to ensure that the models with high probabilities would show

up earlier and more frequently during the MCMC simulation process.

BVS approaches are usually described in the context of linear models.

This review will describe these methods and also discuss the extension to the

probit model when the responses are categorical.
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Figure 3.1: (a) Number of models versus number of variables and (b) In a
model with p = 4 variables there are 24 = 16 possible models.

3.1 Probit model using latent variables

In this study we focus on BVS using a probit model. The representation of

the probit model with binary responses (M = 2) is given by

P (yi = 1|Xi,:) = Φ(α + Xi,:β), (3.1)

where yi is the i-th response in the n× 1 response vector y, β = (β1, . . . , βp)
′

is a p× 1 vector of regression coefficients, α is an unknown intercept, Xi,: is

the i-th row vector of n × p matrix X and Φ is the standard normal CDF,

which is a link function between the linear predictor and the probability

of the response taking value one. The probit model with binary responses

may also be presented as a normal linear model for a latent variable vector

z = (z1, . . . , zn)′ such that

zi ∼ N(α + Xi,:β, σ
2), (3.2)

for i = 1, . . . , n with yi = 1 iff zi > 0 (Albert and Chib, 1993). In the

(univariate) probit model, if both β, σ2 are unknown parameters, then they

are not identifiable from the model. P (zi > 0|Xi,:, σ
2) = Φ(α/σ2+Xi,:(β/σ

2))

depends only on the ratio between α,β and σ2. As such there are many

combinations of β and σ2 that can give the same response and likelihood.
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The common way to overcome this identifiability problem for a probit model

is to assume that the variance is fixed, i.e., σ2 = 1. Even though throughout

this chapter the variance will be taken as equal to one, the notation σ2 is still

used since later on we will assign a prior distribution to the variance instead

of fixing it. The luck of identifiability means that this must be a proper prior

and implies that the choice of prior, to be discussed later, will be important.

For fixed i, there is one latent variable and two possible responses (m = 0, 1).

The relationship between yi and zi is then simply given by

yi =

1, if zi > 0,

0, if zi ≤ 0,
(3.3)

and the corresponding illustration is presented in Figure 3.2.

zi

−∞ +∞0

yi = 0 yi = 1

Figure 3.2: Graphical representation of the relationship between binary re-
sponses and the continuous latent variable (Equation (3.3)).

The two representations, without and with the latent variable zi, are

equivalent, since for σ2 = 1

P (yi = 1|Xi,:) = P (zi > 0|Xi,:) = P (zi − α−Xi,:β > −α−Xi,:β|Xi,:)

= 1− Φ(−α−Xi,:β) = Φ(α + Xi,:β).

In order to perform the VS for the probit model a standard approach is

to use a p× 1 indicator vector γ Lee et al. (2003), where the j-th element γj

is defined such that

γj =

1, if βj 6= 0,

0, if βj = 0,
(3.4)

for j = 1, . . . , p.

In the case of using indicator variables, a model is built for VS where the

goal is to not take into account those columns X for which βj = 0. One such

representation of the model of Equation (3.1) is to select a submodel of it,

which corresponds to the probit model for VS such that

P (yi = 1|Xi,γ) = Φ(α + Xi,γβγ), (3.5)
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where Xi,γ is i-th row vector of the n× pγ (pγ =
∑p

j=1 γj) matrix Xγ which

consists of the columns of X corresponding only to γj = 1, and βγ is the

corresponding pγ × 1 vector of nonzero unknown regression coefficients. The

latent variable of Equation (3.2) in the context of VS takes the form

zi ∼ N(α + Xi,γβγ , σ
2), (3.6)

where in this chapter σ2 = 1.

Both probit representations, referred as the probit model (Equation (3.1))

and the probit model for VS (Equation (3.5)) assume that X has been cen-

tered, so that its columns sum to zero, which yields rank(X) ≤ min{n−1, p}
(Sha et al., 2004). The last comment is important in the case of large p, small

n.

3.2 Prior distributions

The choice of prior distributions for the unknown parameters is very impor-

tant in BVS approaches. With σ2 fixed, three priors, one for α, one for β (in

the case of probit model) or for βγ (in the case of probit model for VS) and

one for γ need to be specified.

3.2.1 Priors for intercept

The intercept represents the overall mean of the model and it is a common

parameter for all possible models. So, since there is usually no information

for the intercept a priori, a non-informative, also known as vague, diffuse

prior can be used, p(α) ∝ 1, α ∈ R (Russu et al., 2012). Sha et al. (2004)

and Brown et al. (1998a) use a normal prior for α

α ∼ N(α0, σ
2h), (3.7)

where α0 corresponds to the mean (typical choice α0 = 0) and h is a hyperpa-

rameter scaling the variance of the univariate normal distribution. Usually,

h is fixed at a large value, see for example Lamnisos et al. (2009). This corre-

sponds to little prior information for α being available. At the other extreme,

when h = 0, this yields α = 0, which means that the study of BVS is without

the intercept for the probit model (George and McCulloch, 1993; Lee et al.,

2003).
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3.2.2 Priors for coefficients

In contrast to the intercept α, there is extensive literature on the prior for

β, since this along with the prior for γ is the most important in BVS. The

stochastic search VS approach (George and McCulloch, 1993) is widely used

and assumes that p(βj, γj) = p(βj|γj)p(γj) and βj, j = 1, . . . , p, are inde-

pendent a priori conditional on γ, where the coefficients come from mixture

distributions that is often described as spike and slab:

p(βj|γj) = (1− γj)g1 + γjg2, (3.8)

where g1, g2 are any continuous or discrete PDF/PMF that correspond to the

spike and the slab respectively. Specifically, the g1 is responsible for driving

the coefficients to zero and g2 allows for nonzero coefficients.

One widely used case of the last equation is a mixture of two normal

distributions with different variances

p(βj|γj) = (1− γj)N(β0, c
2
1σ

2
β) + γjN(β0, c

2
2σ

2
β), (3.9)

where β0 is the mean (typical choice β0 = 0), and c2 � c1. In this case

the first normal distribution is responsible for βj to be relatively close to

zero compared to βj’s that belong to the second normal distribution. This is

one case of spike and slab priors with both distributions being normal. This

prior applies the same shrinkage to all βj and the relative size of the columns

of X is important. If the columns of X have substantially different scales,

standardization may be appropriate. In this thesis we are working mainly

with spectroscopic data and they are all the same type of variables. As such,

it is enough to center the spectroscopic data, since they are all in the same

units (absorbance).

A special case of spike and slab (Equation (3.10)) is one where the spike

is a discrete point mass at zero and the slab is a normal distribution, namely

p(βj|γj) = (1− γj)I0 + γjN(β0, c
2σ2), (3.10)

where I0 is a point mass at zero and βj are iid given γ. γj = 0 is equivalent to

βj = 0 (βj is exactly zero) and the prior on the nonzero coefficients is normal.

A normal prior for the slab part is preferred against, for example, a uniform

prior (Mitchell and Beauchamp, 1988) because a normal prior allows efficient

sampling of the posterior. A graphical representation of different examples

of spike and slab priors is given in Figure 3.3.
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Figure 3.3: Three cases of spike and slab priors for the coefficients.

In the BVS setup a commonly used prior form for nonzero coefficients is

a multivariate normal (MVN) with a flexible choice for the covariance matrix

(not necessarily assuming independence between nonzero coefficients) via

βγ |γ ∼MVN(β0γ , σ
2Hγ),Hγ = c1(Xγ

′Xγ)+ + c2Dγ , (3.11)

where β0γ is the corresponding mean vector (typical choice β0γ = 0), c1 and

c2 are constants, (Xγ
′Xγ)+ is the Moore-Penrose inverse matrix (or pseudoin-

verse matrix) and Dγ is a pγ × pγ diagonal matrix. With σ2 still fixed at 1,

setting c1 = 0, c2 = c2,Dγ = Ipγ in Equation (3.11) leads to Equation (3.10).

The simplest choice in Equation (3.11) is Hγ = cIpγ (c1 = 0,Dγ = Ipγ ),

where Ipγ is the pγ × pγ identity matrix, which means that the nonzero

coefficients are independent. Setting c2 = 0 in Equation (3.11) yields the

generalized g-prior (gsg-prior) Hγ = c(Xγ
′Xγ)+. The Moore-Penrose inverse

matrix is suggested for the coefficient prior in the probit model (Ai-Jun and

Xin-Yuan, 2010) so as to avoid the problem of singular inverse matrix when

pγ > n. If Xγ is a full column rank matrix, then (Xγ
′Xγ)+ = (Xγ

′Xγ)−1

and thus a special widely used case of Equation (3.11), for c1 = g (g scalar)

and c2 = 0, is a Zellner’s g-prior Hγ = g(X′γXγ)−1 (Zellner, 1986). A

diagonalized version of the g-prior is a special (not so usual) case of the g-

prior, where Hγ = c diag((Xγ
′Xγ)−1), which has a computational advantage
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since it is easy to invert a diagonal matrix. Zellner’s g-prior cannot be used

if pγ > n, or if some variables (out of p) are linear combinations of others, in

which case the gsg-prior can used. The normal prior for nonzero coefficients

can be replaced by a Cauchy prior (Zellner and Siow, 1980; Gelman et al.,

2008), βγ |γ ∼ Cauchy(β0γ , g(Xγ
′Xγ)−1), where g is a scalar. However, it

does not lead to a closed form expression for the marginal likelihood, so it is

not usually preferred.

Instead of using the Moore-Penrose inverse matrix in Equation (3.11),

another idea to address singularity related issues is by limiting the number of

selected covariates at each iteration (Baragatti and Pommeret, 2012), which

is a computational advantage. Alternatively Gupta and Ibrahim (2007) pro-

posed to use a ridge parameter, so that Hγ can be written as

Hγ = c1(Xγ
′Xγ + λIpγ )−1 + c2Dγ . (3.12)

For λ = 0, Equation (3.12) is equivalent to Equation (3.11) if Xγ is a full

column rank matrix. Actually, Equation (3.12) for c2 = 0 corresponds to the

Bayesian formulation of the frequentist penalized ridge regression (Subsec-

tion 2.3.1).

In the aforementioned cases, the choice of c1 and c2 is crucial because they

control the amount of shrinkage of the nonzero regression coefficients. Values

of c1 and c2 that are too small lead to over-shrinkage and bad out-of-sample

prediction but a value of c1 that is too large leads to Lindley’s paradox (the

model with no regressors is favoured regardless of the data). This suggests

that there are values of c1 between those extreme values that will return

a good out-of-sample prediction. For the probit case using Hγ = cIpγ , Sha

et al. (2004) suggest that c should correspond to the ratio of prior to posterior

precision (inverse of variance) being between 0.1 and 0.005, that is

c?(λ̄, 0.1) < c < max{c?(λ̄, 0.005), c?(λ0.1, 0.5)}, (3.13)

where c?(λ, p) = (1 − p)/(pλ), λ̄ is the mean of the r nonzero eigenvalues

of the sample variance matrix (r = rank(X)) and λ0.1 the eigenvalue such

that 10% of eigenvalues are less than it. George and Foster (2000) estimate

c by maximizing its marginal likelihood. Strimenopoulou and Brown (2008)

describe an empirical Bayes method for maximum a-posteriori estimation for

the logistic model. Lamnisos et al. (2012) select c so as to minimize the

criterion log predictive score, which is used as a measure of performance.

Cross validation densities are used to specify c and sampling from them is

67



implemented via importantce sampling. Alternatively, it may be useful to

try to put a prior on c.

In addition, to allow incorporation of variable to variable interaction, a

partial least squares g-prior was introduced by Peng et al. (2013). Here the

prior Hγ for βγ is based on the scores from a partial least squares analysis

of the βγ .

In contrast with the above mentioned priors, Kuo and Mallick (1998) as-

sume independent prior distributions for βj and γj, i.e., p(βj, γj) = p(βj)p(γj).

In this case a conjugate normal prior is assigned to β

β ∼MVN(β0, σ
2H),H = c1(X

′
X)+ + c2D, (3.14)

which form is be similar to the prior of Equation (3.11) but without taking

into account γ (because of independence), with Hγ replaced by H, Dγ by

D (D = diag(d1, . . . , dp)), with typical choices being β0 = 0 and σ2 = 1.

As it stands, this is not equivalent to spike and slab priors. However, the

equivalence can seen if we consider γjβj, j = 1, . . . , p. Then the prior of γjβj

is the spike point mass at zero and a normal slab.

Instead of using an indicator vector γ for VS Bae and Mallick (2004)

modeled β via a prior on the covariance matrix H, for example, a Laplace

prior distribution can be used for the covariance matrix with mode zero and

prior variance ν = 2/λ2, where λ is a penalty factor. The zero mode encodes

a prior belief of no effect, the prior variance determines the strength of this

belief and hence the sparseness of the fitted model. The Laplace prior does not

produce an analytically tractable solution for the posterior, since it is not a

conjugate prior. The Bayesian LASSO uses Laplace priors on the coefficients

(Park and Casella, 2008). The Laplace prior has also been used for BVS

for survival regression, where the method simultaneously performs regression

parameter estimation (via a penalized maximum likelihood approach) and

BVS (Tachmazidou et al., 2010).

Different priors on the coefficients induce different amounts of shrinkage

in their estimates. This varies from a small amount of shrinkage, or even

no shrinkage, to coefficients with a large amount of shrinkage, or even com-

plete removal of coefficients. Prior densities with heavier tails will lead to less

shrinkage and those that are more peaked at zero will lead to larger shrinkage.

For example, comparing Equation (3.9) with Equation (3.10) (independent

coefficients), in the last case the amount of shrinkage is much higher for

the coefficients that are close to zero, corresponding to removing these co-

efficients altogether. Then, focusing on the prior of the nonzero coefficients
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and allowing some dependence between them, see Equation (3.11), further

shrinkage can be achieved via c1. For the aforementioned equation, different

types of shrinkage can be achieved via c1(Xγ
′Xγ)+ (for c2 = 0) versus c2Iγ

(for c1 = 0). The first one simply shrinks all coefficients by the same scalar

factor regardless of how well they are estimated from the data and may lead

to unstable estimations of coefficients, whereas the second is a ridge type

shrinkage that can stabilize collinearity. If we are interested in out-of-sample

prediction, this latter type of shrinkage is preferable. Finally, Cauchy prior

helps in not shrinking the large coefficients too much compared to the normal

distribution.

3.2.3 Priors for indicator vector

A prior on the model space can be specified through γ. BVS commonly uses

a Bernoulli prior (George and McCulloch, 1997, 1993; Lee et al., 2003)

p(γ) =

p∏
j=1

w
γj
j (1− wj)1−γj , (3.15)

where wj, 0 ≤ wj ≤ 1, is the probability that each column of X enters into the

model (probability of success P (γj = 1) for the Bernoulli prior) independently

of the remaining columns of X. In Equation (3.15) to distinguish groups of

variables, different wj can be chosen for different groups. In the special case

where wj = w for j = 1, . . . , p, Equation (3.15) yields

p(γ) = wpγ (1− w)p−pγ , (3.16)

so that the distribution of pγ is binomial, Bin(p, w). The value of w can be

set to control the number of selected variables a priori.

In the case that there is prior knowledge about the plausible values that w

can take, w can be fixed. In the case of p� n, small values of w are chosen,

so as to restrict the number of variables in the model. For example, for a

dataset with 1000 variables and a smaller number of observations, setting

w = 0.01 means that only 10 variables are expected to be selected before

observing the data. So, the last prior penalizes larger models when w is

given a small value. Alternatively, in the case of p � n, sets Dobra (2009)

a maximum model size pmax so that we take into account only models where

pγ < pmax, with a uniform prior across the models. The particular choice of

w = 1/2 in Equation (3.16), yields the uniform prior where all models have

equal probabilities. In this case, p(γ) = 2−p which is easy to specify and
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reduces the computational cost since it can be omitted from the marginal

conditional distribution of γj. However, for our application we will not select

w = 1/2 because giving all models have equal prior probabilities will not lead

to the selection of a sparse model.

As an alternative to specifying w, a distribution can be assigned to it.

Uncertainty on w can be modeled by imposing a Beta hyperprior for w,

(w ∼ Beta(δ1, δ2), p(w) = wδ1−1(1−w)δ2−1

B(δ1,δ2)
, where B is the Beta function) as

defined in Kohn et al. (2001). The distribution of pγ is a beta-binomial

distribution. The distribution of γ, without the binomial coefficient term, is

p(γ) =

∫
p(γ|w)p(w)dw =

B(δ1 + pγ , p− pγ + δ2)

B(δ1, δ2)
,

where the parameters δ1 > 0 and δ2 > 0 can be specified based on the

prior belief about the model size pγ . The choice of two parameters arises

from solving the linear simultaneous equations of mean E(pγ) = pE(w) and

variance var(pγ) = var(E(pγ |w)) + E(var(pγ |w)) of pγ , in terms of δ1 and

δ2. This hyperprior provides control of model sizes, in the sense that the

unknown probability of success w has a prior, and the number of variables

pγ that enter in the model can be controlled.

Instead of putting a prior on w, a prior on model size pγ , f(pγ), can be

used (Chipman et al., 2001). Then,

p(γ) =

(
p

pγ

)−1

f(pγ),

where the first term is the inverse binomial coefficient, which indicates that

there are
(
p
pγ

)
different models of size pγ , where pγ = 0, . . . , r − 1 (r =

rank(X)). The case where all the different model sizes are equally likely,

leads to the simple form p(γ) =
(
p
pγ

)−1
(Abramovich and Grinshtein, 2010).

3.2.4 Bayesian variable selection via dependent indica-

tor variables

One limitation of the priors for the indicator vectors described above is that

the presence or absence of a variable is independent of the presence or absence

of the other variables (Subsection 3.2.3). Here we consider the possibility that

γj are dependently distributed with a two stage first-order Markov model used

to represent the dependence, so as to build a more realistic model.

A probit model with binary responses is studied, where the model for

latent variables includes an intercept α. We assume that the prior of α is
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normal (Equation (3.7)) and the prior of the nonzero coefficients βγ is normal

(Equation (3.11) for c2 = 0) with Hγ = c(X′γXγ)+. Under the consideration

that the inclusion of Xj is dependent on the inclusion of Xj′ for all |j−j′| = 1,

the prior assumption for γ is considered to be a two stage first-order Markov

model with transition probabilities

p(γj = 0|γj−1 = 0), p(γj = 1|γj−1 = 0),

p(γj = 0|γj−1 = 1), p(γj = 1|γj−1 = 1).

We specify the aforementioned probabilities via 2×2 matrix in three different

ways:

• Case 1: An empirical approach

( 0 1

0 1− ηw ηw

1 1− w w

)
(3.17)

where the probability to include the specific variable when the previous

one is not included in the model is η times higher than the probability

to include the specific variable when the previous one is included. In

this case, the stationary distribution for the Markov chain is(
1− w

1− w − ηw
,

ηw

1− w − ηw

)
.

This means that, leaving the chain to run for a long time the proportion

of 0’s is equal to the first element of the stationary distribution, and the

proportion of 1’s to the second element of the stationary distribution.

The last term reflects the number of 1’s that we expect to see and

in practice we need this to be small in order to achieve sparsity in

the solution. We select η and w together under the restriction that

η � 1/w.

• Case 2: If w = P (γj = 1) is the probability of success, then q =

1 − w = P (γj = 0) is the probability of failure. In addition, we let

ρ = corr(γj−1, γj), ρ > 0. In this case the t-step transition matrix of a

Markov chain is

( 0 1

0 1− w(1− ρt) w(1− ρt)
1 q(1− ρt) 1− q(1− ρt)

)
.
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So, the Markov chain represents a sequence of correlated Bernoulli ran-

dom variables γj, j = 1, . . . , p (Minkova and Omey, 2014). The station-

ary distribution depends on the correlation coefficient and is(
q(1− ρ)

q(1− ρ) + w(1− ρ)
,

w(1− ρ)

q(1− ρ) + w(1− ρ)

)
.

• Case 3: Muenz and Rubinstein (1985) employed logistic regression mod-

els to describe the transition probabilities from one stage to another

P (γj = 0|γj−1 = 0) =
eα+Xi,:β0

1 + eα+Xi,:β0
, P (γj = 1|γj−1 = 0) =

eα+Xi,:β1

1 + eα+Xi,:β1
,

where β0 and β1 are the vector of coefficients in the two logistic regres-

sions. We apply the last idea, instead of logistic, to a probit regression

as follows

P (γj = 0|γj−1 = 0) = Φ(α+Xi,:β0), P (γj = 1|γj−1 = 0) = Φ(α+Xi,:β1)

where β0 and β1 coefficients can calculated via the MLE approach,

Albert and Chib (1993). In this case, the stationary distribution for

the Markov chain is more complicated and can be derived as eα+Xi,:β1

1+eα+Xi,:β1

1− eα+Xi,:β0

1+eα+Xi,:β0
+ eα+Xi,:β1

1+eα+Xi,:β1

, 1−
eα+Xi,:β1

1+eα+Xi,:β1

1− eα+Xi,:β0

1+eα+Xi,:β0
+ eα+Xi,:β1

1+eα+Xi,:β1

 .

According to Ai-Jun and Xin-Yuan (2010), integrating out α and βγ

from the joint posterior can reduce the strong posterior correlation between

βγ and γ and between z and βγ . The dependence between some of the indi-

cator variables is taken under consideration when carrying out the posterior

inference.

Rather than specifying η and w, in case 1, we could assign a prior on

η|w ∼ Bin(p, w) and a hyperprior on w, where w ∼ Beta(δ1, δ2). This hyper-

prior could be integrated out similarly to the beta-binomial model. In case

2, it would be complicated to assign a prior on the hyperparameter ρ of a

probit model. In the simple case where two random variables have a bivariate

normal distribution, the prior on the correlation coefficients can chosen to be

proportional to (1+ρ)r, where r will determine the weight the prior will have

in estimation (e.g. r = −3/2 multiple parameter Jeffreys’ rule) (Schisterman

et al., 2003). However, it is difficult to see how to use this here.
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3.3 Bayesian inference for probit models

First we consider inference for a probit model using a latent variable (Sec-

tion 3.1), but without variable selection there are two main approaches.

In the first approach (Albert and Chib, 1993), β and z are updated se-

quentially. The latent variable z conditioned on β follows a univariate normal

distribution truncated at zero

zi|Xi,:, yi,β ∝

N(Xi,:β, σ
2) truncated on the left at 0, if yi = 1,

N(Xi,:β, σ
2) truncated on the right at 0, if yi = 0,

(3.18)

where these authors fixed σ2 = 1. The PDF of an example of the univariate

normal truncated at zero is given in Figure 3.4.
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0 is the truncation point

zi

Figure 3.4: PDF of the normal distribution with mean and variance one
truncated on the left (right) at zero.

The coefficient vector β conditioned on z follows, for the normal prior on

β of Equation (3.14) with σ2 = 1, a multivariate normal distribution

β|z,y ∼MVN(W,V),W = V(H−1β0 +X′z),V = (H−1 +X′X)−1, (3.19)

where a typical choice is β0 = 0. Sampling from Equation (3.19) is straight-

forward. A random sample from the truncated normal distribution (Equation

(3.18)) can be drawn based on the exponential accept reject method algorithm

of Robert (1995) or alternatively based on the fast method of Chopin (2011).

Based on Equations (3.18) and (3.19) the Gibbs algorithm can be applied for

the parameters z and β.

The graphical representation of this model is given in Figure 3.5 via a

directed acyclic graph (Madigan et al., 1995) which is a graph that shows
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the conditional dependence structure between random variables. The latent

variable z depends on coefficients β, design matrix X and the variance and

the response y depends on the latent variable z.

y

z Xσ2

β

Figure 3.5: Graphical model for a probit model based on Albert and Chib
(1993): circles denote random variables, squares constants and arrows indi-
cate a dependency between variables or constants. Here σ2 = 1.

There is strong correlation between β and z following from the definition

of the latent variable (Equation (3.2)). Alternately updating these variables

is likely to cause mixing problems in the Markov chain. The second approach

(Holmes and Held, 2006) reduces the correlation and improves this mixing

problem by updating β and z jointly using the factorization

p(β, z|y) = p(z|y)p(β|z),

where the first term on the right hand side follows a multivariate truncated

normal distribution, the Zi being independent given β and y, but not given

just y, and the second term follows the multivariate normal distribution in

Equation (3.19) with β0 = 0 and W = VX′z. Since it is difficult to sam-

ple directly from the truncated multivariate normal, Gibbs sampling is used

in order to sample component-wise from the full conditional distribution of

p(z|y) (Albert and Chib, 1993). Sampling component-wise from this condi-

tional distribution means sampling from univariate truncated normals, where

here the means and variances are updated at each step from the leave-one-

out marginal predictive densities. By sampling from p(z|y), samples are less

likely to be stuck far from the distribution of interest and so the mixing of

the chain is improved.

The above methods can extended to perform inference for a probit model

that is used for VS as we will describe in the next section.
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3.4 Bayesian variable selection inference meth-

ods

In this section, BVS methods are described based on the probit model with

binary responses as introduced by Albert and Chib (1993) (Section 3.1).

Different MCMC schemes for sampling the unknown parameters come from

different prior assumptions, different approaches to integrating out some pa-

rameters or/and joint updating some of the unknown parameters.

3.4.1 Literature review on sampling for MCMC in

Bayesian variable selection

There are two main approaches to do BVS (with and without an indicator

vector), and the review starts with methods that do not use the indicator

vector.

No indicator vector

Since the indicator vector is not available, sparsity in the models can be in-

troduced in different ways. For example, Bae and Mallick (2004) proposed,

instead of a one-level, a two-level hierarchical Bayesian model assuming a

prior that favours sparseness. In the two-level hierarchical Bayesian model,

the prior distribution for β has mean zero and unknown variances H = D

(Equation (3.14) with c1 = 0 and c2 = 1). They put three different priors

on the elements of D, Inverse-Gamma, exponential and a non-informative

Jeffreys prior. Different priors result in different degrees of sparseness. Sim-

ilar to Albert and Chib, Equation (3.18) is used. With this form for D,

Equation (3.19) becomes

p(β|z,y,D) ∝MVN(VX
′
z,V),

where V = (X
′
X + D−1)−1. For p > n, the covariance matrix can be cal-

culated faster using the Woodbury-Sherman-Morrison matrix identity, V =

D−DX
′
(XDX

′
+I)−1XD, since this reduces the dimension of the matrix to

be inverted from p to n. The full conditional distribution of z is a truncated

normal distribution (Equation (3.18)). To complete the sampling, the full

conditional distribution for D, p(D|z,y,β) is needed and this is proportional

to Inverse-Gamma, Inverse-Gaussian and product of Gamma respectively for

the three priors above. The full conditional distribution of D for the Inverse-
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Gamma prior with parameters d1, d2 is

p(D|z,y,β) ∝
p∏
j=1

Inverse-Gamma

(
d1 + 1

2
,

2

d2 + β2
j

)
,

for the exponential prior with parameter u is

p(D−1|z,y,β) ∝
p∏
j=1

Inverse-Gaussian

(√
u

βj
, u

)
,

and for the Jeffreys prior is

p(D−1|z,y,β) ∝
p∏
j=1

Gamma

(
1

2
,

2

β2
j

)
.

The selection is then based on the posterior mean of the elements of D,

which correspond to the variances of β. The variables with significantly

large variances are selected (i.e. we eliminate variables with small variances).

However, there is not a clear way to select how many variables are important

and should be included in the model. For example, coefficients that are bigger

in absolute value than a selected threshold can be considered as selected ones,

but the choice of threshold is sensitive. If the threshold is very large, then the

model may consist of few variables or in the extreme case be the null model

(the model with no variables in). On the other had, if the threshold is very

low, then the model will include many variables or in the extreme case the

model could be full (include all the variables in the model). There is more

literature about exploiting the sparsity, however in this study we will focus

on the BVS using an indicator vector.

Indicator vector

Instead of building sparse models via putting a suitable prior on the variance

of coefficients and then have the difficulty of specifying the threshold for

important variables, a more direct approach is to use an indicator vector.

The main advantage of using an indicator vector is that we can calculate

the most frequently visited indicator vector in the MCMC iterations, which

contains the combination of important variables. Now methods that use an

indicator vector in order to perform BVS are studied. The methods are

studied in the linear context and in the probit context if the method has

already been extended. This is because there is not much literature on BVS

using the probit model, and in addition the probit model is an extension of
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the linear model.

The simple version of BVS for linear models using an indicator vector

has three variables, γ, y, and β. Existing methods can be divided into

three main cases according to the (in)dependence assumptions between the

variables: (i) β is independent of γ (Kuo and Mallick, 1998), (ii) y and γ

are independent given β (George and McCulloch, 1993), and (iii) y depends

on γ and β (Dellaportas et al., 2000). In order to visualize the relationships

between the variables of the model and the independenence structure so as

to do inference, the graphical representation of the three methods is shown

(Figure 3.6). In the first subfigure, β is independent of γ and for this reason

there is no arrow between them. However, y depends on both β and γ and

the dependence is shown using arrows. In the second subgfigure, since y and

γ are independent given β, there is no arrow directly from γ to y. The third

subfigure has all the arrows since y depends on both γ and β and also β

depends on γ.

(a) Kuo and Mallick (b) George and

McCulloch

(c) Dellaportas et al.

Figure 3.6: Graphical representations for three different methods.

Firstly, Kuo and Mallick (1998) used the indicator vector in the model

where β and γ are independent a priori. In this case, the full conditional

posterior distributions are given by

p(βj|y,γ,β\j) ∝

p(y|β,γ)p(βj|β\j), if γj = 1,

p(βj|β\j), if γj = 0,

p(γj = 1|y,γ\j,β) = p(y|β, γj = 1,γ\j)p(γj = 1,γ\j), (3.20)

where γ\j = (γ1, . . . , γj−1, γj+1, . . . , γp)
′
and β\j = (β1, . . . , βj−1, βj+1, . . . , βp)

′

respectively.

Secondly, in the case where y and γ are independent given β, the method

is known as stochastic search VS (George and McCulloch, 1993) for linear

models. One example for the prior of β is given by Equation (3.9). In the
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case of stochastic search VS for a linear model, the full conditional posterior

distributions of βj and γj are given by

p(βj|y,γ,β\j) ∝ p(y|β)p(βj|γj),

p(γj = 1|y,γ\j,β) = p(β|γj = 1,γ\j)p(γj = 1,γ\j). (3.21)

The stochastic search VS approach has been extended to the multivariate lin-

ear model (Brown et al., 1998b) and to the generalized linear model (George

and McCulloch, 1997). The stochastic search VS approach has been extended

to the probit model by Ai-Jun and Xin-Yuan (2010).

Finally, Dellaportas et al. (2000) consider Gibbs VS via a partition of

(βγ ,β\γ) corresponding to the components of β that are included and not

included in the model respectively. Different priors are assigned to different

partitions: the prior β|γ is partitioned into the model prior βγ |γ and the

pseudoprior β\γ |βγ ,γ. In this case, the full conditional posterior distribu-

tions for βγ , β\γ and γ are respectively given by

p(βγ |y,γ,β\γ) ∝ p(y|β,γ)p(βγ |γ)p(β\γ |βγ ,γ),

p(β\γ |y,γ,βγ) ∝ p(β\γ |βγ ,γ), (3.22)

p(γj = 1|y,γ\j,β) = p(y|β, γj = 1,γ\j)p(β|γj = 1,γ\j)p(γj = 1,γ\j).

Equation (3.22) contains both likelihood and prior. There are two special

cases of it: Equation (3.21), where the first term of the general case is omitted

since y is independent of γ given β, and Equation (3.20), where the second

term of the general case is omitted since γ is independent of β given y.

The advantage of the approach in Kuo and Mallick (1998) is that it is

simple, as it only requires one to specify the prior for the coefficients. How-

ever, there is no scope for improving the efficiency of sampling because of the

independence between the coefficients and indicator vector. Dellaportas et al.

(2000) and George and McCulloch (1993) methods can use similar priors for

β, for example a mixture of two normal distributions. In the latter method

the pseudopriors (for βj with γj = 0) are kept close to zero by defining their

mean to be zero and the variance to be small and all the prior parameters

have impact on the posterior. However, the pseudoprior in Dellaportas et al.

(2000) does not affect the posterior distribution of gamma, and the latter

may not be distributed around zero for γj = 0. For instance, the pseudoprior

may be chosen in a way that helps to increase the efficiency of the sampling

(e.g. via proposal densities estimated using a pilot run of the model with all

the variables in). In the last case the specification of pseudopriors is difficult.
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In summary, the three BVS methods for linear models have been studied

for generalized linear models by simply doing variable selection for the linear

predictor (Dellaportas et al., 2000). Here we will focus on BVS for a probit

model with latent variables where the methods that we will study below are

based on the stochastic search VS idea.

In the probit case, instead of modelling directly the discrete response vec-

tor y, the continuous latent variables z are modelled and there is an one to

one relationship between responses and latent variables. Lee et al. (2003)

consider a model with three unknown parameters: z, βγ and γ. Instead of

drawing from the full conditionals, they draw γ from the marginal distribu-

tion after integrating out βγ . This can reduce the strong posterior correlation

between βγ and γ and improve the mixing. The steps of the Gibbs sampling,

under the prior assumption of Zellner’s g-prior for β with covariance matrix

Hγ = c(X′γXγ)−1 (special case of Equation (3.11)) are the following

p(γ|z) ∝ exp

[
−1/2

(
z
′
z− c

1 + c
z
′
Xγ(X

′

γXγ)−1X
′

γz

)]
p(γ),

βγ |γ, z ∼ MVN(VγX
′

γz,Vγ),Vγ =
c

1 + c
(X

′

γXγ)−1, (3.23)

zi|Xi,γ , yi,βγ ∝ truncated normal (see Equation (3.18), mean: Xi,γβγ).

Ai-Jun and Xin-Yuan (2010) consider a model with four unknown param-

eters, α, z, βγ and γ. From the joint posterior they integrate out α and βγ

so as to avoid the convergence problem in MCMC due to Xγ not being full

column rank which leads to c
1+c

(Xγ
′Xγ)+ not being positive definite when

using the generalized g-prior. This integration not only can reduce the strong

posterior correlation between βγ and γ but also between z and βγ . So, inte-

grating out can speed up the computations and the Gibbs sampling is based

on the following two steps

p(γ|z,X,y) ∝ |Hγ |−1/2 exp
[
−1/2(z

′
H−1
γ z)

]
p(γ),

Hγ = In + h1n1
′

n + cXγ(X
′

γXγ)+X
′

γ , (3.24)

z|γ,X,y ∝MVN(0,Hγ)
n∏
i=1

1(zi ∈ Ai),

where in Equation (3.24) the last expression is the multivariate truncated

normal, 1(.) is the indicator function of the set Ai with

Ai =

{zi : zi > 0}, if yi = 1,

{zi : zi ≤ 0}, if yi = 0.
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Since it is difficult to sample directly from the multivariate truncated nor-

mal the univariate case of it (Equation (3.18)) is used via Gibbs sampling

(Kotecha and Djuric, 1999).

Russu et al. (2012) also consider a model with four unknown parameters,

α, z, βγ and γ. Similar to the previous case, they integrate out α and βγ , but

in this case only from the marginal likelihood of z, and use the special case

prior of Equation (3.11) for βγ with Hγ = cIpγ . In this case, the conditional

distributions for Gibbs sampling are

p(γ|z) ∝ exp
[
−1/2

(
z
′
z− z

′
Xγ(c−1Ipγ + X

′

γXγ)−1X
′

γz
)]
p(γ),

βγ |γ, z ∼ MVN(VγX
′

γz,Vγ),Vγ = (c−1Ipγ + X
′

γXγ)−1, (3.25)

zi|Xi,γ , yi,βγ ∝ truncated normal (see Equation (3.18), mean: Xi,γβγ).

Russu et al. (2012) use the fast scan Metropolis-Hastings (Richardson et al.,

2010) to sample from p(γ|z).

Finally, the Holmes and Held (2006) idea may be extended in the VS

context using joint updates, where the full conditional distribution can be

expressed as p(γ|z)p(α,βγ |γ, z).

In summary, Ai-Jun and Xin-Yuan (2010), the MCMC approach after

integrating out the intercept and the coefficients from the joint posterior is

computationally more stable and efficient than Lee et al. (2003). In addition,

the Russu et al. (2012) method seems more efficient than both.

3.4.2 Bayesian variable selection via alternative priors

on the coefficients

Similar to Section 3.1, we use a probit model in VS setup, where the model

is described by Equation (3.5) with one latent variable (Equation (3.6)).

Following the idea of George and McCulloch (1993) for linear models,

a spike and slab prior is proposed, with the multivariate normal prior of

Equation (3.11) with

Hγ = DγRDγ ,

where R is a prior correlation matrix, and Dγ ≡ diag[τ1, . . . , τpγ ]. The

aforementioned prior (referred to us as DgRDg) is flexible in the sense that

DγRDγ is always symmetric and positive definite, compared to the prior

Hγ = c(X
′

γXγ)−1. In this case, selecting a single crucial parameter c (Lam-

nisos et al., 2012) is avoided and we can select different values for the τi

or for blocks of them, based on prior knowledge. Under the consideration
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that the inclusion of Xj is independent of the inclusion of Xj′ for all j 6= j′,

the prior assumption for γ is Bernoulli (Equation (3.15)). This model has

three unknown parameters z,βγ and γ. Figure 3.7 represents the relationship

between the unknown parameters and observations using a graphical model.

y

z Xσ2

β

γ

τ

w

Figure 3.7: Graphical model of DgRDg.

We compute the full conditional distributions to implement Gibbs sam-

pling. The following steps are a variation of the calculations of Lee et al.

(2003). In the first step, we integrate out βγ , since βγ is conditionally inde-

pendent of y given z, and the sampling from p(z|γ) is then from the following

distribution

p(z|γ) ∝MVN(0, (In −XγVγX
′

γ)−1),

where Vγ = (D−1
γ R−1D−1

γ + X′γXγ)−1 . To apply the data augmentation

method (a method to construct iterative optimization via latent variables for

computational convenience), it is necessary to be able to sample not only

from p(z|γ) but also from p(γ|z). In this case, it is straightforward to sample

from the last distribution, namely

p(γ|z) ∝MVN(0, (In −XγVγX
′
γ)−1)

p∏
j=1

w
γj
j (1− wj)1−γj .

To speed up the stochastic search VS process, we can sample component-wise

from p(γj|z,γ\j) (Ai-Jun and Xin-Yuan, 2010).

In the next step of the Gibbs sampler the full conditional distribution of

the nonzero coefficients is calculated as

p(βγ |z,γ) ∝MVN(VγX
′
γz,Vγ). (3.26)
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Finally, the posterior distribution of zi given βγ and yi has a truncated normal

distribution (see Equation (3.18), mean: Xi,γβγ). So, the Gibbs algorithm

in this case consists of three steps.

3.5 Sampling from the posterior of the indi-

cator vector

This section starts by summarizing some existing VS methods that use Gibbs

sampling for a probit model and have already been studied in the previous

section. However, in all the cases it is not easy to sample from the conditional

distribution of the indicator vector. For this reason, the second subsection

describes different ways to specify an appropriate proposal for γ for VS.

3.5.1 Gibbs variable selection

The Gibbs sampler may be used to sample from the joint distribution if the

full conditional distribution for each parameter is known (e.g. see Equations

(3.23), (3.24)). Table 3.1 gives a summary of BVS in a probit model using

Gibbs sampling.

Table 3.1: Summary of the BVS methods in a probit model using Gibbs.
Notation ‘-’ means that the corresponding method does not use this step.

Parameters

Authors α β (βγ) γ z D Integrate Out Jointly

Ai-Jun and Xin-Yuan α βγ γ z - α, βγ from γ, z|X,y -

Russu et al. α βγ γ z - α, βγ from γ|z -

Lee et al. - βγ γ z - βγ from γ|z -

Holmes and Held α βγ γ z - - βγ , z

Bae and Mallick - β - z D - -

Of the Gibbs steps, sampling from the indicator vector γ is the difficult

task. At that step we will apply a Metropolis-Hastings algorithm as described

in the next subsection.

3.5.2 Metropolis-Hastings algorithm

Within Gibbs, a Metropolis-Hastings (MH) algorithm can be used to take

random samples from p(γ|Z) since there is no analytical solution for it and
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within Gibbs sampling mixing is very slow. The efficient performance of

the MH algorithm depends on a good choice of proposal (or pseudoprior)

distribution. In the VS context, the proposal relates to γ.

The model proposal q(γ∗|γ), where γ∗ is the new candidate, influences

the convergence of the MH algorithm (Algorithm 1). So, the selection of the

model proposal is crucial. An asymmetric transition kernel can be considered

for the MH algorithm:

q(γ∗|γ) = qd′ if

p∑
j=1

(γ∗j − γj) = d′, (3.27)

where qd′ is the probability that candidate γ∗ will have d
′
more variables than

γ (George and McCulloch, 1997). If d′ < 0, the candidate value represents a

more parsimonious model than the one from the previous step.

Algorithm 1 Metropolis-Hastings (sampling from p(γ|z))

t = 0
γ = γ(t)

while t < N do
γ∗ ∼ q(γ∗|γ(t))

α(γ(t),γ∗) = min
(
q(γ(t)|γ∗)
q(γ∗|γ(t))

p(γ∗)

p(γ(t))

p(z(t)|γ∗)
p(z(t)|γ(t))

, 1
)

if u ∼ U [0, 1] < α then
γ(t+1) = γ?

else
γ(t+1) = γ(t)

end if
t = t+ 1

end while

A widely applied and useful proposal comes from the special case of the

MH algorithm, the Metropolis algorithm, which uses a symmetric proposal

distribution. Then, the proposal ratio (q(γ|γ∗)/q(γ∗|γ) = 1) can be omit-

ted from the acceptance rate α(γ,γ∗) in Algorithm 1 and the symmetric

transition kernel (special case of Equation (3.27)) has the form of

q(γ∗|γ) = qd if

p∑
j=1

|γ∗j − γj| = d,

where qd is the probability that candidate γ∗ will have d new components.

Note that for large values of d the corresponding algorithm makes big jumps

to different γ values which requires high computational time per iteration.
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The simplest symmetric transition kernel, qd = 1/p if d = 1, is

q(γ∗|γ) =

1
p
, if

∑p
j=1 |γ∗j − γj| = 1,

0, otherwise,

and requires less computational cost compared to the algorithm that uses the

symmetric proposal with d > 1.

A classical choice of the simplest symmetric proposal is a new candidate

γ∗ is selected by randomly choosing one of the following three transition

moves with equal probability 1/3 (Fearn et al., 2002):

i. Add: Randomly choose a 0 in γ and change it to a 1,

ii. Delete: Randomly choose a 1 in γ and change it to a 0, and

iii. Swap: Choose independently and randomly a 0 and a 1 in γ, and switch

their values (in order to get γ∗).

Alternatively, the new candidate can randomly be drawn by selecting one

of the two transition moves with equal probability 1/2: add or delete a vari-

able and swap two variables (Brown et al., 1998a). The simplest symmetric

proposal corresponds to the case of local moves where the proposed value γ∗

differs from the current value in a single component (with the add or delete

moves) or in two components (with the swap move). Then the algorithm

consists only of local moves and the model proposal is not efficient for VS

problems with large numbers of variables. The algorithm can spend a large

amount of time trying to add one variable before proposing to delete one,

since the probability of adding one variable, (p − pγ)/p, is very close to 1

if p � pγ . It may produce a low acceptance rate between models. Below

we will present some methods that are more flexible in moves and may have

higher acceptance rates.

On the other hand, high acceptance rates are often associated with poor

mixing. To achieve a suitable acceptance rate, Lamnisos et al. (2009) intro-

duced a new model proposal to combine local moves with more global ones

by changing a block of variables simultaneously. In this case, the maximum

number of variables N that can be changed from the current model γ at

each iteration t is fixed, and N (t) ∼ Bin(N − 1, ψ), where N (t) + 1 vari-

ables are changed at the t-th step and ψ influences the proportion of local

to global moves. Small values of ψ mean more local moves and large values

mean more global moves. If ψ = 0, then the model proposal reduces to the

local model proposal. When ψ increases, the number of variables proposed
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to add or delete or swap increases on average. In order to find proposals

that achieve good mixing, adaptive methods are used by Lamnisos et al.

(2013), where a scale parameter ζ defined on [0, 1] controls the differences

between the current and the proposed model. In this case the adaptive ver-

sion of MH algorithm (Algorithm 1) contains, instead of a fixed proposal,

an adaptive one that changes at each step of the algorithm. It starts with

ζ(t), selects γ∗ from γ∗ ∼ qζ(t)(γ
∗|γ(t)), computes the acceptance rate α using

qζ(t)(γ
(t)|γ∗)/qζ(t)(γ∗|γ(t)) (instead of q(γ(t)|γ∗)/q(γ∗|γ(t))) and at the last

step computes the ζ(t+1) = ρ(ζ(t) + s(t)(α(γ(t),γ∗)− τ̄)), where

ρ(ζ) =


0, if ζ < 0,

ζ, if ζ ∈ [0, 1],

1, if ζ > 1,

s(t) = ζ0/t, where ζ0 is a free parameter usually set to be 0.5, and τ̄ is a

value chosen in the range 0.25 to 0.4. The scale parameter ζ(t+1) decreases

when the acceptance rate is small and increases when the acceptance rate is

high. The sequence of scale parameters converges to a value that results in

the target acceptance rate τ̄ .

Zucknick and Richardson (2008) assume that there is a sparse dependence

structure in X, and then only those variables that are correlated need to be

updated together, using a joint MH proposal. They proposed a dependence

structure among the variables, in the case of logistic regression with a latent

variable (Holmes and Held, 2006), in order to update them in block at each

iteration. The blocks update idea defines neighbours for each variable based

on correlation (or partial correlation). Block update improves the mixing

compared to the simplest inclusion or exclusion of a variable.

In the case of a linear model with large p and small n an efficient sampling

of γ could also be based on the parallel tempering strategy, which is used

to weaken the dependence of the function from its parameters by adding a

‘temperature’ (Bottolo and Richardson, 2010). Different chains have differ-

ent temperatures, which ‘flatten’ the likelihood. Evolutionary Monte Carlo

extends the idea of parallel tempering and proposes efficient moves when up-

dating the indicator vector. This method is known as evolutionary stochastic

search. In this case the indicator vector is updated using local moves, based

on Fast Scan MH (the accept/reject step depends also on the temperature

of each chain), and global moves that allow the algorithm to escape from

local models, which include four crossover operators and two exchange op-

erators. Specifically, the algorithm either performs local moves or applies
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one of the crossover operators; each choice has probability 1/2. After this

is done, the algorithm picks uniformly between the two exchange operators

and applies one of them (Bottolo and Richardson, 2010). An extension of

the evolutionary stochastic search approach of linear models from univariate

to multidimensional responses is also based on the evolutionary Monte Carlo

approach and is called hierarchical evolutionary stochastic search (Richard-

son et al., 2010). This approach hierarchically relates sparse regressions to

responses, associating each response with a small subset of the variables via

a VS, and then linking the selection indicators in a hierarchical manner. The

implementation of the hierarchical evolutionary stochastic search and evolu-

tionary stochastic search is provided by Bottolo et al. (2011); Saadi et al.

(2016).

3.5.3 MCMC convergence

Independent of which MCMC algorithm is used, a common way to check

the convergence of the chains to the stationary distribution is to run multiple

chains. We expect to see from the diagnostic plot posterior probability versus

variable index (ID) that similar variables are being selected for all chains

and from the diagnostic plot number of selected variables versus number of

iterations that the chains have mixed well. Note that the chains would have

to be run for a very long time to give reasonable samples and results.

In order to keep the variance of the MCMC estimator low, the autocor-

relation between the samples is studied. A commonly used measure of the

efficiency of any given sampler (measure of mixing) is the effective sample

size

ESS =
n

1 + 2
∑n

k=1 ρk
,

where ρk is the autocorrelation function with lag k.

If there is significant autocorrelation between the samples, then it can be

reduced by systematically using every t∗-th sample (t∗ > 1) and discarding

the others, which is known as the thinning process. Instead of collecting T

samples after a suitable burn-in period (without thinning), in this case we

select the same number of samples after a suitable burn-in period and after

thinning. So, actually we can generate a lot of samples but to save on storage

(memory) T uncorrelated samples after the thinning process are saved and

used to identify the best model.
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3.6 Parameter estimation

Two different ways to carry out parameter estimation for VS are identified in

order to find an appropriate model for accurate prediction. After the MCMC

is finished, we are searching for replications of the proposed models, and we

re-calculate the log-relative posterior probability of gamma for the distinct

models using the sample mean of the latent variables. Then we calculate

the normalized posterior probabilities of visited models and we can select the

model with the maximum posterior probability. We refer to the latter as the

best model (γ̂). Alternatively, variables that have largest posterior marginal

probabilities can be selected via p(γj = 1|X,y) or more simply by empirical

frequencies in MCMC

p̂(γj = 1|X,y) =
1

T

T∑
t=1

1(γ
(t)
j = 1). (3.28)

In the last case the most frequently visited variables are discovered. Variables

with the high posterior inclusion probabilities are relevant for classification.

The first method (that is based on the highest posterior probability) is

direct, whereas the second one (that is based on the marginal posterior prob-

abilities) is indirect since it requires a threshold on the top frequencies of

the variables. However, if the aim of the study is to identify only important

variables and not carry out predictions, then the important variables can be

directly specified by Equation (3.28).

3.7 Prediction

When the MCMC algorithm is done, the Monte Carlo posterior predictive

estimate of the new observation Ynew is given by

P̂ (ynew = 1|X) =
1

T

T∑
t=1

p(ynew = 1|X, z(t),β(t),γ(t), α(t),H(t)) (3.29)

where T is the total number of iterations after suitable burn-in period and z(t),

β(t),γ(t), α(t) and H(t) are the MCMC samples from the posterior distribution.

This is a general form for the predictive distribution for all the aforementioned

methods (β(t) can be replaced by β(t)
γ for some methods). In the special

case where the sampling takes place without using indicator latent variables

the term γ(t) can be omitted from Equation (3.29). If the model does not

contain the intercept or has intercept but it is known then the term α(t) can

87



omitted. Note that H(t) exists in the equation only in the case of the two-

level hierarchical model (Bae and Mallick, 2004). So, predictions can be made

with the aim to correctly classify new observations for all the aforementioned

variations of models and priors.

Instead of averaging all the models of the MCMC steps to draw predic-

tions, in practice we can calculate a single model prediction. Finding a best

model either by selecting the model with the highest posterior probability

among the visited models or by considering a threshold (for example median

model) for the estimated marginal inclusion probabilities, the single model

prediction can be obtained calculating the least squares predictions of the

latent variables and then using the relationship between latent variables and

responses. Alternatively, BVS allows to pick, instead of the best model, the

top few best models and averaging among them. The last approach is known

as Bayesian model averaging (Brown et al., 2002; Wasserman, 2000).
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Chapter 4

Existing methods and

variations applied to some

datasets

This chapter is focused on the application of a probit model with binary out-

comes. The results of BVS are given under different assumptions: a general

form of prior distribution for the coefficients (Section 4.1), a DgRDg prior

approach for the coefficients (Section 4.2) and a first order dependence be-

tween indicator variables (Section 4.3). The three variations are applied to

a simulated dataset. Apart from the simulated results, the second method

implemented is on two literature datasets. In the last section of the chapter

some preliminary results are presented applying existing methods to the BE

dataset that motivated this research.

4.1 Bayesian variable selection with a flexible

prior for the coefficient vector

We simulate data with binary responses using latent variables and then per-

form VS using this data and assigning a flexible prior for the coefficient vector

via Equation (3.11).

For the simulation study, we identify the number of variables (p), the

number of samples (n), the indices j of the important elements of β denoted

by βj, the values that correspond to the important (nonzero) coefficients by

v (most v = 0), and a diagonal covariance matrix. We simulate from X ∼
MVN(0,D), where D is a diagonal matrix, then we construct z = Xβ + ε,

which is the latent variable that includes an error term (ε ∼MVN(0, σ2
sI)).

At the next step we calculate the vector of responses by generating a random
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draw from a Bernoulli distribution y ∼Bernoulli(Φ(z)).

In order to implement BVS the flexible choice of prior of Equation (3.11)

is used, via Hγ = c1(X′γXγ)+ + c2Dγ . We initialize the β(0) setting four

nonzero entries, γ(0) selecting randomly four variables equal to one and we

initialize z(0) as follows

z
(0)
i =

{
1, if yi = 1,

−1, if yi = 0.
(4.1)

The different settings of the simulated data and the results of VS using

these data are given in Table 4.1, where in all cases D = I and the error term

σ2
s of the latent variable in the simulation is 2. Using a variety of values for

the constants c1 and c2, all the simulations correctly identified the important

variables individually and the best model.
Table 4.1: Simulation results for the flexible prior (Equation (3.11)).

n p βj = v c1 c2 Found Found

j v best γj best model

100 15 1,4,5,10 10,12,10,12 100 0 X X

100 15 1,4,5,10 10,12,10,12 50 100 X X

100 15 1,4,5,10 10,12,10,12 100 50 X X

100 15 1,4,5,10 10,12,10,12 0 100 X X

100 15 1,4,5,10 10,12,10,12 100 0 X X

4.2 Bayesian variable selection via DgRDg prior

Firstly, simulation of some data from the probit model is done in order to

check if the idea described in Subsection 3.4.2 works well. This method uses

DgRDg prior for the covariance matrix of nonzero coefficients Hγ = DγRDγ

(in Equation (3.11)). Afterwards, an illustration of the approach using two

widely studied datasets, the Colon cancer and the Leukemia datasets is pre-

sented. These two datasets are selected because they also belong to the large

p, small n problem, have binary outcomes, as when we study BE responses

in pairs, and also they are commonly studied for VS. The key point is to do

VS when n < p using a Bayesian methods for a probit model with binary

responses and the DgRDg covariance matrix on βγ prior. Once we pick the

important variables, there are many different ways to make predictions. The

most-natural, given that we have used BVS, would be to use the Bayes model

for the predictions. However, because we will compare our results with anal-

yses from the machine learning literature, we choose to do the prediction step
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using two classifiers: support vector machine (SVM) and k-nearest neighbor

(k-NN) using the selected variables. The comparison of the classification

accuracy of this approach (combination of BVS for training and classifier

for prediction) with the accuracy of existing VS approaches is presented. It

would be interesting to compare other measures of performance, but those

tend not to be available for the analyses in the literature.

Simulation studies

For the simulations of this approach the diagonal values of covariance matrix

D are equal to one and the error term σ2
s of the latent variable in simulation

is 1. The results are given in Table 4.2 (taking 10000 samples after 5000

burn-in period) for Dγ = 2I and R = I. Both best individually variables and

best combination of variables (best model) work well. The number of times

that each variable or combination of them appears, out of 10000 iterations,

is given in parentheses. Note that the frequency of individual variables is

much higher than the frequency of the models, as might be expected. In

addition, the frequency of the 2nd best model is well below the frequency of

the best model, which means that it is not necessary to increase the number

of iterations.

Table 4.2: Simulation results for DgRDg method.

n p βj = v best γj best model 2nd best model

j v (frequency) (frequency) (frequency)

20 40 2 3 X(9051) X(3904) 1676

20 40 1, 5 2,3 X(7897,5946) X(3051) 1159

20 40 5, 30 3,2 X(7522,6711) X(3843) 402

20 40 20, 30 4,5 X(6667,4518) X(2163) 1278

27 476 20, 40 3,2 X(3897,3818) X(1800) 300

Colon cancer study

The colon cancer data contains expression levels of 2000 variables for 62

different cases. Among them, 40 are tumor tissue and 22 are normal colon

tissue. Similar to other research studies on this dataset, firstly, a base 10

logarithm is applied on the data and secondly each tissue is standardized

to mean zero and unit variance. The data can be downloaded from http:

//microarray.princeton.edu/oncology/affydata/index.html.

In this analysis we specify the parameters of the Subsection 3.4.2 wj =
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0.005, j = 1, . . . , p, Dγ = 2I and R = I. If any prior knowledge is available,

the selection of the R matrix can be different than the identity matrix. The

initialization is similar to one that described in Section 4.1. The check of

convergence is done running three different chains with 5, 10 and 15 ran-

domly selected variables (randomly selected indexes of the indicator vector)

as starting vectors.

Since no test set for the Colon study is available, in order to evaluate the

performance of the classification methods the LOOCV method is used. How-

ever if the number of best variables is selected to optimise LOOCV accuracy,

then this accuracy will be biased. In order to avoid nesting cross validations,

inside the LOOCV two random training sets (with 51 observations) and two

random test sets (with 10 observations) are used to find the best number of

variables. The VS approach is applied not for 2000 variables but for the top

50 variables based on t-statistics (Antoniadis et al., 2003). In the MCMC

10000 samples after a 5000 burn in period are taken to estimate the posterior

variable inclusion probabilities. Finally, the external LOOCV procedure is

the following: (i) omit one observation of the training set; (ii) based on the

remaining n− 1 observations, reduce the set of available variables to the top

50 variables as ranked in terms of the t-statistic; (iii) the p∗ most significant

variables were chosen from the 50 variables by BVS using the DgRDg ap-

proach; and (iv) these p∗ variables were used to classify the left out sample

and (v) repeat n−times the steps (i)-(iv).

We propose the DgRDg method to find the best model with binary re-

sponses and we make predictions using SVM and k-NN algorithms. The

results are given in Table 4.3, which also contains accuracies for comparison

with the existing methods. The DgRDg method achieves accuracy 88.71%,

using only 8 variables. This percentage is close to the accuracy of the first

method, which uses half of the variables (1000). In addition, the DgRDg

method achieved at least the same classification accuracy as the other meth-

ods that are listed in this table, while using only 8 variables.

Leukemia study

The original Leukemia data contains 7129 variables and 72 patients and it

can be downloaded from http://www-genome.wi.mit.edu/mpr/data_set_

ALL_AML.html. The pre-processing described in Ai-Jun and Xin-Yuan (2010)

is followed. After the pre-processing, thresholding, filtering and base-10 log-

arithmic transformation of the data, the Leukemia dataset is studied with

3571 variables. The cases are divided into two types of acute leukemias: 47
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Table 4.3: Performance comparison using LOOCV for Colon cancer study.

Method # of variables Accuracy (%)

SVM Furey et al. (2000) 1000, 2000 90.32
LogitBoost, optimal Dettling (2004) 2000 87.10
Classification tree Dettling (2004) 200 85.48
MAVE-LD Antoniadis et al. (2003) 50 83.87
1-NN Dettling (2004) 25 85.48
LogitBoost, estimated Dettling (2004) 25 80.65
LogitBoost,100 iterations Dettling (2004) 10 85.48
AdaBoost,100 iterations Dettling (2004) 10 83.87
gsg-SVSS Ai-Jun and Xin-Yuan (2010) 14 88.71
gsg-SVSS Ai-Jun and Xin-Yuan (2010) 10 88.71
gsg-SVSS Ai-Jun and Xin-Yuan (2010) 6 87.10
DgRDg + SVM 8 88.71
DgRDg + k-NN 8 88.71

samples for acute lymphoblastic leukemia (ALL) and 25 for acute myeloid

leukemia (AML). This dataset is analysed using 38 samples (27 are ALL and

11 are AML) as the training set and 34 samples (20 are ALL and 14 are AML)

as the test set. The values of the hyperpriors are set the same as in the Colon

study. The convergence is checked running three chains with different initial

values. In this case 10000 iterations are used after a 5000 iteration burn-in

period in order to find the most significant variables.

Since there is a test set available, we did not apply LOOCV. However,

since there is no tuning set the classification accuracy in the training set is

used in order to specify the number of best variables. More details for the

accuracy of the classifiers using this method on the training set are given in

Figure 4.1. The accuracy is perfect, 100%, on the training set using only

the best 3 or 4 most important variables ranked by the posterior inclusion

probabilities. The corresponding index numbers of these variables are: 979,

2481, 456 for both classifiers, and a 4th variable for SVM has index 3441. So

these are the variables that are used in order to calculate the accuracy on the

test set.

The test set is used in order to evaluate the performance of VS using two

different classifiers. Table 4.4 shows that the DgRDg method achieves high

accuracy, 97.06% using only 3 variables out of 3571 based on k-NN classifier.

The same percentage of accuracy is reached using the top 4 variables based

on SVM. Compared to other methods that are listed in Table 4.4, DgRDg

method has at least the same accuracy using only 3 or 4 variables, depending

on the classifier.
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Figure 4.1: Accuracy on the training set of the Leukemia study versus the
number of selected variables using DgRDg method.

Table 4.4: Performance comparison using the test set of Leukemia study.

Method # of variables Testing Accuracy (%)

SVM Furey et al. (2000) 25, 1000 94.12, 88.24
WVM Golub et al. (1999) 25 85.29
MAVE-LD Antoniadis et al. (2003) 50 97.06
MAVE-NPLD Antoniadis et al. (2003) 25 97.06
gsg-SVSS Ai-Jun and Xin-Yuan (2010) 14 97.06
gsg-SVSS Ai-Jun and Xin-Yuan (2010) 10 97.06
gsg-SVSS Ai-Jun and Xin-Yuan (2010) 6 97.06
DgRDg + k-NN 3 97.06
DgRDg + SVM 4 97.06

In conclusion, we consider the prior Hγ = DγRDγ on the coefficients

when the responses are binary. The BVS approach selects a small subset of

variables that inform the response binary outcome. The proposed procedure

is compared with other existing methods and achieves better or comparable

accuracy in classification with variables using different classifiers. Finally, in

the Colon cancer and Leukemia studies just 8 and 4 variables respectively

give very high classification accuracies.

4.3 Bayesian variable selection with depen-

dent indicator variables

In this section we consider that the γj are dependently distributed and a two-

stage first-order Markov model is used to represent the dependence (Subsec-

tion 3.2.4). This idea is applied to simulated data.
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For each simulation of this approach the number of samples, the number

of variables and the important coefficients are varied as is noted in Tables 4.5

and 4.6. In addition, for all simulations we set the diagonal values of the

covariance matrix equal to one, and the error term of the latent variable is

0.1.

For the analysis we set c = 10 in the g-prior of the coefficient vector

(special case of Equation (3.11)) and h = 104 (in Equation (3.7)). In case 1

and 2 of the Subsection 3.2.4, we set w = 1/40 (for the first three simulations)

and w = 2/40 (for the remaining simulations). Then, 20000 samples are

selected after 5000 burn-in iterations. In the cases where more samples are

taken, the number of samples are noted in the footnotes of those tables that

contain the results of the VS.

In case 1 the probability to include the corresponding variable when the

previous one is not included, can be for example 3 times higher than the

probability to include the corresponding coefficient when the previous one is

included (η = 3 in Equation (3.17)). Table 4.5 contains the results for the

case 1 (empirical approach). Both the best individual variables and the best

model are identified via this approach. In the last two simulations, the best

model has much lower frequency than each γj, but the method still found the

correct model.

Table 4.5: Simulation results for case 1 of the first-order Markov model.

n p βj = v best γj best model 2nd best model

j v (frequency) (frequency) (frequency)

20 40 1 2 X(14267) X(7560) 20

20 40 10 -2 X(13971) X(6382) 79

20 40 20 0.9 X(13777) X(8276) 41

20 40 10, 11 2,2 X(39565,13643) a X(310) 88

20 40 32, 33 2,3 X(40135,14865) b X(421) 91

aNumber of samples: 40000.
bNumber of samples: 50000.

In case 2, instead of fixing the probability p(γj = 1|γj−1 = 0) regardless

to the probability p(γj = 1|γj−1 = 1), we update the probabilities taking into

account the autocorrelation. Those probabilities are updated at each step

step of the Markov chain. Those results are presented in Table 4.6. The

method gives the expected results.

95



Table 4.6: Simulation results for case 2 of the first-order Markov model.

n p βj = v best γj best model 2nd best model

j v (frequency) (frequency) (frequency)

20 40 1 2 X(14213) X(6691) 26

20 40 10 -2 X(13751) X(6001) 48

20 40 20 0.9 X(13543) X(7598) 41

20 40 10, 11 2,2 X(37121,16185) a X(311) 127

20 40 32, 33 2,3 X(29393,10064) b X(401) 151

aNumber of samples: 40000.
bNumber of samples: 50000.

In conclusion, the idea of the first order Markov chain on γ’s prior, which

may be more realistic in real problems, gave the expected results in these

simulations.

4.4 Bayesian variable selection for BE diag-

nosis

We have studied methods to apply BVS on binary data. After first providing

some information about the collection process of the biopsy, then we focus on

applying BVS methods on binary responses, healthy versus cancer samples.

Biopsy collection

Each patient had previously been diagnosed with BE prior to their assessment

and had consented for additional biopsy collection under the clinical trial at

UCL Hospital for the purpose of this project at the time of endoscopy. Biop-

sies were taken at various levels of the metaplastic segment. Four biopsies

were taken from each level according to the position on the oesophagus: ante-

rior, posterior, left and right. In the case of a visual abnormality, additional

targeted biopsies were collected, referred to as multiple biopsies.

In this project two different data collection methods have been used:

adjacent-paired dataset (APD) and intercepted-matched dataset (IMD). The

differences of these methods are outlined in Table 4.7. Based on the first row

of it, a weakness of the APD is that the two different samples could poten-

tially be at different BE stages, which would cause a discrepancy between

the IR and histological analyses. IMD collection overcomes this problem by

using the same sample for both IR and histological analyses. In IMD, due to

the slippery nature of the sample, the spectrum was first visualized in real

time before being recorded, which allowed the position of the sample to be
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optimized to gain an optimum amide II band (∼ 1556 cm−1, Figure 1.7). In

the IMD process, the spectrum was taken, the sample was lifted, the prism

and lens cleaned, and the sample replaced on the prism in the opposite orien-

tation and another spectrum recorded. When a sufficient number of spectra

had been collected, the samples were then placed in formalin and sent to

histology (Foreman, 2016).

Table 4.7: Differences between adjacent-paired and intercepted-matched data
collection.

Adjacent-paired dataset Intercepted-matched dataset

Analysis of
the biopsy

Two adjacent biopsies:
one biopsy was analysed

by attenuated total
reflection and FTIR
spectroscopy and the
other was clinically

analysed by the UCLH
histopathology lab.

Only one biopsy was taken.
It was analysed by

attenuated total reflection
and FTIR spectroscopy first
and then the same biopsy

was analysed by the UCLH
histopathology lab.

Collected by
Dr. Rehan Haidry,

Gastrointestinal
consultant at UCLH

Liberty Foreman, Institute
of Structural & Molecular

Biology, UCL

A Bruker Optics IFS 66/s FTIR spectrometer recorded the region of

2200− 900 cm−1 with 4 cm−1 resolution, with 3 reflections on a silicon prism

with ZnSe optics. In this section the APD is analysed. The pre-processing

methods that are applied are water vapor correction, water subtract correc-

tion, normalize by Amide II, and second derivatives by Savitzky Golay with

17 pt smoothing. Each stage of BE has a different number of spectra, as

given in Table 4.8.

Table 4.8: Number of samples for each stage of APD.

SQ NDBE LGD HGD OAC Total

19 18 7 17 8 69

Here we focus on the binary study of the SQ and OAC recorded biop-

sies of APD. Figure 4.2 gives an illustration of those records. This dataset

has only 27 samples and 676 variables that correspond to 676 wavenum-

bers. Some MCMC methods are applied for VS. The ideas of Lamnisos et al.

(2009) together with Holmes and Held (2006) are applied in the SQ versus

OAC case with c2 = 5, c1 = 0 (special case of Equation (3.11)), h = 104 (in

Equation (3.7)), w = 0.0104 (probability of success). In addition, we set the
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Figure 4.2: Second derivative spectra comparing all SQ biopsies with all OAC
biopsies from the APD.

maximum number of proposed new variables to two. Due to the absence of

a test set and to the small sample size of the training set, we apply LOOCV.

The top 20 variables were the following 387, 388, 386, 389, 345, 414, 344, 343,

413, 385, 346, 412, 336, 335, 337, 347, 395, 415, 404 and 403. The adaptive

approach of the last method (Lamnisos et al., 2013) was also implemented

using the same values on the MCMC but with a Beta prior on variable in-

clusion probability instead of fixing w. The top 20 variables were 387, 388,

386, 389, 414, 345, 346, 344, 385, 413, 415, 335, 343, 336, 396, 412, 347, 334,

397 and 337. The non-adaptive and adaptive method identify the same 13

top variables but in a slightly different order.

In the adaptive and non adaptive case, the first four variables are consid-

ered to come from the same component since they belong to the same peak.

Each one of them and the top 1, 2, 3 and 4 of them give a high classification

accuracy (after applying LOOCV) compared to the accuracy without VS for

both methods (Table 4.9). In this case, we predict the healthy or cancer stage

using the selected variables and different classifiers than before, for example

Naive Bayes, J48 which is a classification tree approach (Hall et al., 2009),

and random forest. Variable selection improves by 4% the classification ac-

curacy compared with not applying VS (Table 4.9). VS also increases the

accuracy when we use other binary pairs of ATD.

Table 4.9: Accuracy for some classifiers using selected variables (by the adap-
tive approach) or using all variables (without VS).

Naive Bayes J48 Random forest

1st Top, 2nd Top, 3rd Top, 4th Top 96.29 96.29 96.29

Top 1-2, Top 1-3, Top 1-4 96.29 96.29 96.29

No VS 92.59 92.59 92.59
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In this section we presented some preliminary results on two stages from

the BE dataset. Applying VS on healthy and cancer samples and using only

the selected variables we can improve the classification accuracy even though

the sample size is small. More results about the real application on the

proposed methodologies will be presented in Chapter 9.
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Chapter 5

Variable selection methods for

multi-class problems via

MCMC

When studying a multi-class classification problem (multi-class responses), it

is important to note whether the response is ordinal (consisting of ordered

categories) or nominal (consisting of un-ordered categories). There are many

methods to solve multi-class classification problems where the responses are

purely nominal or purely ordinal (Section 5.1), and some of the them use

variable selection in order to improve classification performance. However,

the literature for BVS for multi-class responses is limited. Before extending

the methodology to a mixture of ordinal and nominal categories in Chap-

ter 5, we look here at the methods for just the nominal or just the ordinal

multinomial probit model, as we will discuss in Sections 5.2 and 5.3.

5.1 Introduction

In statistics and machine learning, many methods have been proposed for

classification, but they are usually relevant either to pure nominal or to pure

ordinal responses. Classification methods, such as support vector machines

and k-nearest neighbour have been introduced for use with nominal responses

(Murphy, 2012). Some of them, for example support vector machines (Chu

and Keerthi, 2007), have also been applied to ordinal responses. In clas-

sical statistics, the most common models are multinomial probit model for

pure nominal/ordinal responses and multinomial logit model for pure nom-

inal/ordinal responses (McCullagh, 1984). The Bayesian approach for the

multinomial probit model involves latent variables Albert and Chib (1993).
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In the context of a large number of regression predictors, it is also impor-

tant to introduce sparsity in the model in order to improve prediction accu-

racy. For example, classification trees and random forests have been intro-

duced for variable selection when the categorical responses are pure nominal

or pure ordinal ((Piccarreta, 2008) and (Janitza et al., 2014) respectively).

Dimensionality reduction techniques, for example LDA, create a few new

variables using linear transformation of the original variables, for either pure

nominal or pure ordinal responses (Witten and Tibshirani, 2011). A non-

linear version of LDA called kernel discriminant analysis has been proposed

for pure nominal (Scholkopft and Mullert, 1999) and pure ordinal responses

(Sun et al., 2010). Details about frequentist approaches for variable selection

have been presented in Subsections 2.2.2 and 2.3.1. A famous approach for

variable selection is the LASSO, and the LASSO representation for ordinal

responses is described by Park and Hastie (2007).

In Bayesian statistics, penalization takes place via prior distributions. As

in the binary case, priors that offer penalisation in variable selection are usu-

ally a mixture of two distributions, known as a spike and slab prior (George

and McCulloch, 1993). A classical choice is a spike at zero and a normal slab.

Alternatively, the Laplacian (or double-exponential) prior (Zou and Hastie,

2005) can be used for penalisation, which corresponds to the Bayesian formu-

lation of the LASSO. We focus in BVS on multi-class classification problems.

In the Bayesian framework, there are extensions of the binary studies, Ai-Jun

and Xin-Yuan (2010) and Lee et al. (2003), to the multi-class studies, Aijun

et al. (2013) and Sha et al. (2004), respectively. References in multi-class

BVS have studied either just the (nominal) multinomial probit model (Sha

et al., 2004; Zhou et al., 2006) or just the ordinal multinomial probit model

(Kwon et al., 2007). The last two methods will be thoroughly studied in the

next two sections.

5.2 Bayesian variable selection in the probit

model with nominal responses

In this section we will present a probit model with multi-class nominal re-

sponses using latent variables, which is an extension of the binary case, in

order to use this model for variable selection. We will discuss the main sim-

ilarities and differences between two methods (i.e. binary and multi-class

nominal responses).
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5.2.1 Model

Let us assume that the vector of categorical responses y can take M values

(m = 0, 1, . . . ,M − 1), which is a general case of binary (m = 0, 1). Assume

that the zero response is the ‘baseline’ category of the multinomial probit

model. Also assume Z is an n×(M−1) matrix of latent variables distributed

as multivariate normal with common variance Σ across different possible

responses

Zi,: = α
′
+ Xi,:B + Ei,:,Ei,: ∼MVN(0,Σ), i = 1, 2, . . . , n, (5.1)

where Zi,: = (Zi,1, Zi,2, . . . , Zi,M−1) is the row vector of the Z matrix that

refers to the i-th sample, Zi,: are independent for i = 1, . . . , n, α is the

(M − 1)× 1 vector of the intercept, Xi,: is the i-th row of the n× p matrix X

and B is a p× (M −1) matrix of regression coefficients. Brown et al. (1998b)

generalized the methods of George and McCulloch (1997) from univariate to

multivariate regression with (M − 1)-variate responses (one of these is the

‘baseline’ category). Following this we replace the β vector by B matrix and

here we work with matrix distributions.

The equivalent matrix normal (MN) distribution (Appendix A) to Equa-

tion (5.1) can be expressed as

Z− 1nα
′ −XB ∼MN(In,Σ), (5.2)

where 1n is a n dimensional column vector of ones. In analogy with the uni-

variate probit model, the multivariate probit model the unknown parameters

B, Σ are not identifiable from the model. Since the assignments to groups

depend only on the relative sizes of the elements of Z, rescaling Z would

give the same fit to the data. According to the original paper (Sha et al.,

2004), one way to handle identifiability in a probit model is to fix Σ (even

though in practice the authors assign a prior to it). This process of fixing Σ,

usually as an identity matrix, adds a strong restriction. It is a generalization

of the restriction that was added to the univariate probit model (with binary

responses) by setting the variance equal to one.

There are less drastic solutions to address the identifiability issue than

setting Σ = I, since this imposes more constrains than are strictly neces-

sary. Some of these methods are: setting the first diagonal element of the

covariance matrix σ11 = 1 (McCulloch and Rossi, 1994) or drawing samples

from an inverse Wishart conditional on σ11 = 1 (Linardakis and Dellaportas,

2003), or fixing the trace of the covariance matrix (Jiao and van Dyk, 2015).
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Unfortunately these constraints make the MCMC more difficult. In the case

of σ11 = 1 Imai and van Dyk (2005) proposed an efficient MCMC algorithm

which expands the constrained covariance matrix (σ11 = 1) into an uncon-

strained covariance matrix (the strategy is known as parameter expansion for

data augmentation).

Another way to handle non-identifiability is to restrict the covariance ma-

trix to a correlation matrix, since this is not only positive semi-define but

also has diagonal elements equal to one, while off-diagonal elements belong

to the interval [−1, 1] (Chib and Greenberg, 1998). However, this method is

computationally expensive since there is no conjugate prior for a correlation

matrix. Talhouk et al. (2012) adopted this restriction and used the param-

eter expansion framework to build an efficient algorithm for inference in the

multivariate probit model case. Their idea is to expand the correlation ma-

trix into a covariance matrix, update this covariance matrix using standard

simulation steps and project it back to a correlation matrix. In addition, they

extend the prior to accommodate sparse structure in the correlation matrix.

In the original paper (Sha et al., 2004) the authors decided to assign a

proper prior to Σ. Using a proper prior resolves the identifiability problem

but replaces it with the problem of picking the appropriate proper prior.

Too strong a prior and we may introduce bias; too weak and the near non-

identifiability can cause problems for the MCMC. Even with a proper prior

there will be some aspects of the model where the prior essentially carries

through to determine the posterior so that interpreting the coefficients and

extrapolating could be problematic.

To continue the study of the model, we denote by Z?
i = max

1≤r≤M−1
{Zi,r}.

The relation between responses and latent variables is given by

yi =

{
0, if Z?

i ≤ 0

r, if Z?
i > 0 and Zi,r = Z?

i .
(5.3)

Denote the probability that the i-th object belongs to the m-th class (m =

0, 1, . . . ,M − 1) by pim . Then, the probabilities of the multinomial probit

model with nominal responses based on latent variables can be expressed as

pi0 = P (yi = 0) = P (Z?
i ≤ 0),

pir = P (yi = r) = P (Z?
i > 0, Zi,r = Z?

i ), for r = 1, . . . ,M − 1.

The simplest case of Equation (5.3) is the binary case (M = 2) where just

one latent variable (Equation (3.2)) is used in the model and the relationship

with responses is simply given by Equation (3.3). The graphical represen-
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tation of Equation (5.3) for M = 3 (yi = {0, 1, 2}) is given in Figure 5.1a.

In this case, there are two latent variables, Zi,1 and Zi,2 (for each i). If the

maximum of the two latent variables is nonpositive or equivalently Zi,1 ≤ 0

and Zi,2 ≤ 0 (zero is the ‘baseline’ category), then the response is yi = 0

(green region). If Zi,1 > Zi,2 and Zi,1 > 0, we focus on the red region, where

yi = 1. Similarly, if Zi,2 > Zi,1 and Zi,2 > 0, then the response is yi = 2 (blue

region). The axes are from minus infinity to plus infinity, since both latent

variables can take any real value. The contours indicate probability densities

for Zi,:. The contours in the figure are centered at zero but in general will be

centered at αr + Xi,:B:,r, where here r = 1, 2.
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Z
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(b) Volumes using 3 (= M) latent variables.

Figure 5.1: Graphical representation of Equations (5.3) and (5.4) respectively,
for M = 3 and fixed i.

In the case of nominal responses, an alternative representation for the

regression is to use M latent variables, Zi = (Zi,1, Zi,2, . . . , Zi,M), which cor-

respond to M regression equations (there is no ‘baseline’). In this case the

relation with the responses is simple and is the following

yi = r − 1, if Zi,r = Z??
i , (5.4)

where Z??
i = max

1≤r≤M
{Zi,r}. The graphical representation of Equation (5.4) for

M = 3 is given in Figure 5.1b. In this case we need three latent variables,

Zi,1, Zi,2 and Zi,3. Based on their relationship we can define three volumes

that correspond to three classes. For example, if Zi,1 > Zi,2 and Zi,1 > Zi,3,

the point belongs to the volume that corresponds to yi = 0 (green volume).

Similarly, if Zi,2 is the maximum latent variable, then the class is yi = 1

(red volume). The missing space is cyan, which corresponds to the volume
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where yi = 2, but it is not shown to reveal how the cube looks inside. In

statistics, it is common to select one category as the baseline category of

the model because it is one way to avoid redundant comparisons between

categories and to help with the interpretation of the model. In addition, in

the MCMC approach, selecting a baseline category produces a model with

one fewer (M−1) latent variable, which is a computational advantage during

the MCMC process compared to use of M latent variables.

In order to perform variable selection in the multi-class multivariate case,

a common p × 1 indicator vector ξ is used across different latent variables.

The j-th element of ξj is defined such that

ξj =

1, if Bj,r 6= 0 for all r,

0, if Bj,r = 0 for all r,
(5.5)

where Bj,r is the entry in the j-th row and r-th column of B, for j = 1, . . . , p

r = 1, . . . ,M − 1. Selection of the j-th variable corresponds to ξj = 1, which

requires all the coefficients of the j-th row to be nonzero. Later we will

propose a model with two indicator vectors and we will use the two notations

(γ and ξ).

Note that incorporating ξ into Equation (5.2) yields an expression which

will simplify algebra later,

Z− 1nα
′ −XξBξ ∼MN(In,Σ), (5.6)

where Xξ refers to those columns of X (out of p) that correspond to selected

variables and Bξ refers to those rows of B (out of p) that correspond to

selected variables.

5.2.2 Prior distributions

The prior distributions of the unknown parameters α, Bξ, ξ and Σ are spec-

ified below.

The prior for the intercept of the standard binary probit model is typically

set as a univariate normal (Equation (3.7)), and here it is extended to the

matrix normal

α′ −α0
′ ∼MN(h,Σ). (5.7)

Similarly, the prior of the nonzero coefficients for the standard binary

probit model is typically set as a multivariate normal (Equation (3.11)) and
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here it is extended to a the matrix normal,

Bξ −B0ξ ∼MN(Hξ,Σ), (5.8)

where Hξ refers to the entries of H that correspond to selected variables

ξj = 1.

A proper conjugate prior is assigned to Σ as follows

Σ ∼ IW (δ; Q), (5.9)

where IW (δ; Q) is the inverse Wishart distribution with shape parameter

δ = n− (M − 1) + 1 = n−M + 2, n is the degrees of freedom and M − 1 is

the dimension of the covariance matrix. The scale matrix hyperparameter Q

usually takes the form dIM−1, where d is a constant. As already noted, the

non-identifiability means that this choice may be an important one. With

this conjugate form for the regression prior, the choice of Hξ will control the

shrinkage in the estimation of Bξ whilst the choice of Q with control the

scale of Z. It seems clear from Equation (5.10) below that Q = I would

have a similar result so far as scaling of Z is concerned to fixing Σ = I, the

main difference being that Z will have a matrix T-distribution instead of a

matrix normal. Since there are different parametrizations of inverse Wishart

distribution, the following inference is done based on the parametrization

that is presented in Appendix A.

Finally, several priors on the indicator vector ξ can be assigned as dis-

cussed for γ in Subsection 3.2.3. Here a special case of Equation (3.15) where

wj = w (same probability of success for Bernoulli trials across different latent

variables) is selected as is commonly used in the literature.

5.2.3 Posterior inference

Here, similar to the binary case, α, Bξ and Σ can be integrated out from the

joint posterior. The inference is done via two Gibbs steps. Setting α0 = 0

and B0ξ = 0, the full conditional probabilities can be explicitly derived as

follows.

Sampling for latent matrix Z is given by

Z|ξ,X,y ∼MT (δ; Pξ,Q)
n∏
i=1

1(Zi,: ∈ Fi), (5.10)

where MT is the matrix Student distribution (Appendix A), Pξ = In +
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h1n1
′

n + XξHξX
′

ξ and 1(.) is the indicator function of the set Fi with

Fi =

{
{Zi,: : Z?

i ≤ 0}, if yi = 0,

{Zi,: : Z?
i > 0 and Zi,r = Z?

i }, if yi = r.
(5.11)

Since it is difficult to sample directly from Equation (5.10), a Gibbs sampler

of full conditional distributions of the truncated Student distribution can be

applied. An efficient way to sample from that distribution is given by Geweke

(1991), where the exponential rejection sampling method is optimized.

Sampling from the posterior distribution of ξ given all other parameters

is done via

p(ξ|Z,X,Y) ∝ p(ξ)
∣∣∣In + XξHξX

′

ξ

∣∣∣−M−1
2 ∣∣Qξ

∣∣− δ+n+M−2
2 ,

where Qξ = Q + Z
′
(In − XξV

−1
ξ X

′

ξ)Z, Vξ = X
′

ξXξ + H−1
ξ , X is centered

around column means (subtract the column mean from each element) and h

is large. It is not easy to sample from the last formula, so the Metropolis

algorithm according to Brown et al. (1998a) is applied within the Gibbs

step. The candidate indicator vector is updated by randomly picking between

adding or deleting a variable, or swapping two variables. In order to speed

up the computations, the QR deletion or addition algorithm can be applied

(Brown et al., 1998b). The data augmentation for Hξ = c3Ipξ (pξ =
∑p

j=1 ξj)

yields
∣∣∣In + XξHξX

′

ξ

∣∣∣ =
∣∣∣H1/2

ξ X
′

ξXξH
1/2
ξ + In

∣∣∣ =
∣∣∣X̃′

ξX̃ξ

∣∣∣, where

X̃ξ =

(
XξH

1/2
ξ

Ipξ

)
(5.12)

is a (n+pξ)×pξ augmented matrix. Then, Qξ = Z̃
′

Z̃− Z̃
′

X̃ξ (X̃
′

ξX̃ξ)
−1X̃

′

ξZ̃,

where

Z̃ =

(
Z

0

)
(5.13)

is a (n+ pξ)× (M − 1) augmented matrix.

5.2.4 Classification and prediction

As we discussed in Section 3.6, we can derive the marginal posterior proba-

bilities for each variable and for each model.

We focus on how to use the best model in order to do accurate predictions.

Let us denote by Xf the nf × p matrix of new (future) measurements. The
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least squares model prediction, based on the best model (ξ̂), is given by

Ẑf = 1nf α̃
′ + Xf ξ̂B̃ξ̂, (5.14)

where Ẑf is a nf × (M −1) estimated matrix of latent variables for new mea-

surements, α̃ =
¯̂
Z (mean of MCMC samples) and B̃ξ̂ =

(
X
′

ξ̂
Xξ̂ + H−1

ξ̂

)−1

X
′

ξ̂
Ẑ.

Alternatively, instead of using just the one best model, the average of the best

models can be used, so as to improve predictions. This approach is known as

Bayesian model averaging (Brown et al., 2002; Wasserman, 2000). In both

cases, taking into account the estimated latent variables Ẑf , the labels of fu-

ture measurements, Ŷf (nf×1), can be predicted according to Equation (5.3).

5.2.5 Hyperparameter settings

Usually, there is no information available about the intercept a priori. A

non-informative prior is assigned to it by selecting a large value for h.

The hyperparameter of the indicator vector, w, controls the number of

selected variables a priori. In the case of p� n, small values of w are chosen,

so as to restrict the number of variables in the model.

For the hyperameter of the coefficient matrix Sha et al. (2004) set Hξ =

c3Ipξ (easy to calibrate). In these cases, the choice of c is crucial, because it

controls the amount of shrinkage of the regression coefficients. Independent

of whether the responses are binary or multi-class, a good choice of c is given

via Equation (3.13).

5.3 Bayesian variable selection in the probit

model with ordinal responses

In the current section we will discuss the probit model with multi-class ordinal

responses, which can be considered as an extension of the binary case in the

sense that it uses more than one boundary instead of just the zero cutoff

that is used in the binary case. We will comment on important differences

between the model with multi-class ordinal, multi-class nominal and binary

responses.

5.3.1 Model

Similarly to the study of the probit model with nominal responses, let z be

the n×1 vector of latent variables that is distributed as normal with common
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variance σ2 across different groups

zi = α + Xi,:β + εi, εi ∼ N(0, σ2), i = 1, 2, . . . , n, (5.15)

where zi is the i-th latent variable, the scalar α is the intercept and β is a p×1

vector of regression coefficients (just one column compared to the coefficient

matrix B in the multi-class nominal case). The probit model with ordinal

responses can seen as a general case of the binary probit. The identifiability

problem concerning scales is the same, and the solution via fixing σ2 = 1 is

again the simplest one, though we may be instead use a proper prior for σ2.

Now, however, we have an additional problem with the (multiple) boundaries,

and it is common to fix one of these to avoid get another identifiability issue.

The equivalent matrix form of the last equation can be expressed as a

multivariate normal distribution

z− 1nα−Xβ ∼MVN(0, σ2In). (5.16)

The form of the covariance between observations is σ2In, where throughout

this subsection σ2 = 1 for identifiability, similar to the case of a probit model

with binary responses. Even though throughout this subsection the variance

is fixed at one, σ2 is still used since later on we will assign a proper prior to

it as an alternative way to handle the non-identifiability. In the ordinal case

(and also in the binary case) z is a latent vector in contrast with nominal

case with more than two classes where Z is a latent matrix.

The relationship between the latent variables (Equation (5.15)) and the

response, according to Albert and Chib (1993), is the following

yi = m, if km < zi ≤ km+1, (5.17)

where k = (k0, . . . , kM), k0 = −∞ and kM = +∞ by definition, k1 is fixed at

0 to avoid non-identifiability problem, and k2, k3, . . . , kM−1 are the unknown

boundaries for the ordinal responses. The corresponding ordinal multinomial

probit model that is based on the latent variable, can be expressed as

pim = P (yi = m) = P (km < zi ≤ km+1).

The graphical representation of Equation (5.17) for M = 3 (yi = {0, 1, 2})
is given in Figure 5.2. The three ordinal responses can be specified by just

one latent variable yi (i is fixed) and four boundaries. Again, the green region

corresponds to yi = 0, the red to yi = 1 and the blue to yi = 2. The length
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of the rectangles (distance between two boundaries) will vary for different

classes.

zi

yi = 0 yi = 1 yi = 2

k1 = 0k0 = −∞ k2 k3 = +∞

Figure 5.2: Graphical representation of Equation (5.17) for M = 3 ordinal
responses.

In order to perform variable selection for the multi-class multivariate case,

the p × 1 indicator vector γ is used as defined in the binary case (Equa-

tion (3.4)). Incorporating γ in Equation (5.16) yields a convenient algebraic

expression

z− 1nα−Xγβγ ∼MVN(0, σ2In),

where again in this subsection σ2 = 1 (Kwon et al., 2007).

5.3.2 Prior distributions

In this subsection the prior distributions of the unknown parameters α, βγ , γ

and k are studied. Now, an extra prior is needed for the unknown boundaries

k of the ordinal responses. Kwon et al. (2007) place a flat prior on the

components of the boundaries. k2, k3, . . . , kM−1 are uniformly distributed on

the interval (0,+∞) subject to the constrain that k2 < k3 < . . . < kM−1

(since k0 = −∞, kM = +∞ by definition and k1 = 0 by choice).

As in the binary case, the same univariate normal prior, α ∼ N(α0, σ
2h)

(Equation (3.7), σ2 = 1) can be assigned to the intercept. The prior for the

nonzero coefficients is assumed multivariate normal βγ |γ ∼MVN(β0γ , σ
2Hγ)

(Equation (3.11), σ2 = 1). In the absence of any additional information we

set α0 = 0 and β0γ = 0. If Hγ is fixed, its value has to be considered care-

fully because the amount of shrinkage in the estimation of βγ is determined

by Hγ . Thus we cannot learn from the data what is the appropriate level

of shrinkage. If we choose an inappropriate value for Hγ there is a risk of

underfitting or overfitting on the training data. The former will be noticed

in a poor fit, but the latter will only be apparent when we try. One way to

select a sensible amount of shrinkage is to look at the size of the eigenvalues

of Xγ
′Xγ . Alternatively, a prior can be assigned to the shrinkage parameter

so that we can learn from the data, but in practice this is computationally

expensive (there is one extra step on the Gibbs algorithm, sampling from the

shrinkage parameter which does not belong to any standard distribution and

a MH algorithm is used). With respect to the prior of the indicator vector
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γ, we assume that each element of it is an independently and identically

distributed Bernoulli random variable (Equation (3.15)) with wj = w.

5.3.3 Posterior inference

Similar to the nominal case, inference is done via a Gibbs sampler. However,

an extra Gibbs step is included in order to sample the unknown boundaries.

Integrating out α and βγ (using the fact that α0 = 0 and β0γ = 0)

sampling for the latent vector z is given by

z|γ,k,X,y ∼MVN(0,Pγ)
n∏
i=1

1(zi ∈ Ri), (5.18)

where here Pγ = In + h1n1
′

n + XγHγX
′

γ and

Ri = {zi : km < zi ≤ km+1}, if yi = m. (5.19)

Equation (5.18) is a multivariate truncated normal distribution (Appendix A),

which cannot be sampled from directly. A Gibbs sampler for sampling from

the multivariate truncated normal distribution, as proposed by Kotecha and

Djuric (1999) can be applied. This technique uses the fact that the full con-

ditional distributions are (univariate) truncated normal.

The full conditional posterior distribution of γ is calculated based on the

following factorization

p(γ|z,k,X,y) ∝ p(γ)p(z|γ,k,X,y). (5.20)

Similarly to the nominal case study, since the last full conditional distribution

does not have a closed form, the Metropolis algorithm (Brown et al., 1998a)

is applied within that Gibbs step.

Finally, according to Albert and Chib (1993), the full conditional density

of kν given the rest, for ν = 2, . . . ,M − 1, is given by

p(kν |γ, z,X,y,k\ν) ∝
n∏
i=1

[1(yi = ν − 1)1(kν−1 < zi ≤ kν)

+ 1(yi = ν)1(kν < zi ≤ kν+1)],

where k\ν = (k0, . . . , kν−1, kν+1, . . . , kM).

Actually, the update of each boundary parameter can be implemented via
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kν |γ, z,X,y,k\ν ∼ U
(

max[{zi : yi = ν − 1}, kν−1],

min[{zi : yi = ν}, kν+1]
)
.

(5.21)

So, sampling from boundaries is the easiest step of the Gibbs sampling. For

models with ordinal responses, if we alternately sample boundaries and latent

variables neither of them can move very much between iterations because of

the constraints. This can cause slow mixing. To improve that Cowles (1996)

proposed the latent variables and boundaries to be updated simultaneously

using a Hastings-with-Gibbs, instead of sampling individually from their full

conditionals. In that case the proposal is univariate truncated normal (at left

and right) with mean the corresponding boundary of the previous step and

fixed variance. However, since it is difficult to fixed this variance Nandram

and Chen (1996) proposed an improved method using Dirichlet proposal dis-

tribution based on a rescaling transformation of boundaries, coefficients and

latent variables.

5.3.4 Classification and prediction

Variables that have the largest marginal posterior probabilities are found

similarly to the nominal case (see Section 3.6). However, here we recalculate

the posterior probabilities of gamma for distinct by using not only the sample

mean of the latent variables but also the sample mean of the boundaries.

In addition we can identify the best model. The least squares model

prediction of ordinal responses is based on the best model and is given by

ẑf = 1nf α̃ + Xf γ̂β̃γ̂ ,

where here ẑf is the estimated nf×1 vector of latent variables, α̃ is the mean

of the estimated vector of latent variables and β̃γ̂ =
(
X
′

γ̂Xγ̂ + H−1
γ̂

)−1

X
′

γ̂ ẑ.

Alternatively, as in the nominal case, here we can apply Bayesian model

averaging. Using the estimated latent variable ẑf we are able to do predictions

via Equation (5.17).

5.3.5 Hyperparameter settings

We assign a vague prior to the intercept, selecting h to be large. For the co-

variance matrix of selected coefficients we select Hγ = c2Ipγ (Equation (3.11)

for σ2 = 1, c1 = 0,Dγ = Ipγ ), to give a ridge type shrinkage. Without loss of

generality we assume that k1 = 0.
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Chapter 6

Decomposed Bayesian variable

selection in the probit model

with a mixture of nominal and

ordinal responses

In the previous chapter we reviewed BVS approaches for multi-class responses

in the purely nominal and purely ordinal case. However, there are some cases

where the multi-class response is a mixture of nominal and ordinal. In this

chapter, we propose a decomposed BVS method in the multinomial probit

model with a mixture of both types of responses using latent variables. Our

approach consists of two distinct parts: one part treats the ordinal responses

as a single nominal category and separates nominal responses, whereas the

other part separates ordinal responses within this category. We present the

decomposed approach for BVS under two different settings: the variance of

the latent variables can be known or unknown i.e., fixed or given a prior dis-

tribution. We develop efficient posterior sampling and apply the decomposed

methodology on simulated data. We compare the classification accuracy of

our method to existing ones. This proposed decomposed BVS method has

been published in a conference paper (Kotti et al., 2016c).

6.1 Introduction

References in multi-class BVS have studied either the purely nominal multi-

nomial probit model with unknown covariance matrix Σ across different la-

tent variables (Sha et al., 2004) or the purely ordinal multinomial probit

model with known variance σ2 of the single latent variable (Kwon et al.,
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2007). Firstly, we are interested in studying the remaining two cases of BVS:

the (nominal) multinomial probit model but with known covariance matrix

Σ across different latent variables (proposed method 1 in Figure 6.1) and

the ordinal multinomial probit model with unknown variance σ2 of the la-

tent variable (proposed method 2 in Figure 6.1). Secondly, having the four

methodological approaches available, we will combine them as follows: the

method 1 with the Kwon et al. (2007) approach (covariance matrix and vari-

ance known) and the approach of Sha et al. (2004) with method 2 (covariance

matrix and variance unknown), with aim to propose a BVS approach with

mixture of nominal and ordinal responses.

Figure 6.1: BVS for pure nominal, pure ordinal and mixture of nominal and
ordinal responses, suggesting in the last case a decomposed approach.

6.2 Methods 1 and 2

Before developing the decomposed methodology, we study the methodological

parts of the probit model with nominal responses and Σ known (method 1)

and of the probit model with ordinal responses and σ2 unknown (method 2),

in detail in the following section.

6.2.1 Model and prior distributions

Probit model with nominal responses, Σ known

The multinomial probit model for nominal responses using M − 1 latent

variables has already been explained in Subsection 5.2.1, but here we assume

that the distribution of the latent variables (Equation (5.2)) has a known

covariance matrix Σ. It is sufficient to fix Σ, in practice to an identity

matrix, for identifiability. Nominal responses have a common indicator vector

ξ (Equation (5.5)).
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Prior distributions for nominal responses case

The priors for the unknown parameters α, Bξ and ξ are presented in Sub-

section 5.2.2. Note that, since we assume that Σ is fixed, we do not assign

any prior to it.

Probit model with ordinal responses, σ2 unknown

We discussed the multinomial probit model for ordinal responses using one

latent variable in Subsection 5.3.1. However, here we assume that the distri-

bution of the each component of the latent variable (Equation (5.15)) has an

unknown variance σ2. We will assign a proper prior to σ2, which in principle

solves the non-identifiability problem, though, as discussed earlier, problems

of MCMC convergence and interpretation of results may remain.

To distinguish the indicator vectors of method 1 and 2, we denote the

indicator vector that is used for the ordinal responses by γ. In addition, the

vector of latent variables related to the ordinal responses is denoted by z (in

contrast to the latent matrix Z of nominal responses).

Prior distributions for ordinal responses case

In this case, the unknown parameters are α, βγ , γ, k and σ2. We have

assigned prior distributions on the first four parameters (Subsection 5.3.2).

In addition, we assign a conjugate prior for σ2, σ2 ∼ IG(d1, d2).

6.2.2 Posterior inference

Nominal responses case

Similar to the study of Sha et al. (2004), α and Bξ are integrated out from the

joint posterior. Inference is performed via two Gibbs steps. Setting α0 = 0

and B0ξ = 0, we can sample from the latent matrix Z according to

Z|ξ,X,y ∼MN(Pξ,Σ)
n∏
i=1

1(Zi,: ∈ Fi), (6.1)

where Fi is given by Equation (5.11).

Since it is difficult to sample directly from Equation (6.1), we use a a Gibbs

sampler and we derive the full conditional distributions of the truncated

matrix normal distribution. An efficient way to sample from that distribution,

which will be multivariate truncated normal, is given by Geweke (1991),

where an exponential rejection sampling method is optimized.
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We are then interested in sampling from the posterior distribution of ξ

given by

p(ξ|Z,X,y) ∝p(ξ)
∣∣∣In + XξHξX

′

ξ(In + h1n1
′

n)−1
∣∣∣−M−1

2 ·

|Pξ|−
M−1

2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]}
.

(6.2)

Note that, if X is centered and h is large, then it is true that
∣∣∣In + XξHξX

′

ξ

(In + h1n1
′

n)−1
∣∣∣ ≈ ∣∣∣In + XξHξX

′

ξ

∣∣∣. Since it is not easy to sample from this

full conditional distribution, the Metropolis algorithm according to Brown

et al. (1998a) is applied within that Gibbs step. The candidate indicator

vector is updated by randomly choosing between adding or deleting a vari-

able or swapping two variables. In order to speed up the computations, the

QR deletion or addition algorithm can be applied. More details about the

algebraic calculations are presented in Appendix B.

Ordinal responses case

The unknown parameters α, βγ and σ2 are integrated out from the joint

posterior. Similar to the nominal case inference is performed via a Gibbs

sampler.

Setting α0 = 0 and β0γ = 0, the full conditional distribution of the vector

of latent variable becomes a multivariate Student distribution (MVT),

z|γ,k,X,y ∼MV T

(
2d1; 0,

d2

d1

Pγ

) n∏
i=1

1(zi ∈ Ri), (6.3)

where Ri is given by Equation (5.19) and Pγ = In+h1n1
′

n+XγHγX
′

γ . Since

we cannot easily sample from a truncated multivariate Student distribution, a

Gibbs sampler is used to sample from the full conditional distributions using

the method of Geweke (1991).

The conditional posterior distribution of γ then becomes

p(γ|z,k,X,y) ∝ p(γ)
(∣∣∣In + XγHγX

′

γ(In + h1n1
′

n)−1
∣∣∣)−1/2

|Pγ |−1/2 .

(6.4)

Similarly to the nominal case the Metropolis algorithm Brown et al. (1998a)

is applied within that Gibbs step.

Finally, updating the boundaries is not affected by whether the variance is

fixed or not, and their distribution is described completely by Equation (5.21).

Appendix C contains more details about how to calculate those three full
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conditional probabilities.

6.2.3 Classification and prediction

The predictive step for each approach is described in Subsection 5.2.4 for

nominal responses and in Subsection 5.3.4 for ordinal responses.

6.2.4 Hyperparameter settings

Nominal responses case

We have to specify two fewer hyperparameters (δ, Q), compared to the study

of BVS with nominal responses and Σ unknown (Subsection 5.2.5), since here

Σ is fixed.

Ordinal responses case

The hyperparameters here are the same as described in the ordinal case with

σ2 known (Subsection 5.3.5). In addition, the prior for σ2 is assumed to be

an Inverse-Gamma(d1, d2) distribution, which is a univariate version of the

Inverse-Wishart(δ,Q) distribution, where Q is the scale matrix. Based on

this fact, d1 = δ/2 and d2 = q11/2, where Q = dIM−1. The value δ = 3 is the

smallest integer value so that the expectation E(Σ) = Q/(δ − 2) = Q exists

(Brown et al., 1998b), and so we take d1 = 1.5.

6.3 Decomposed Bayesian variable selection

for a mixture of response types

6.3.1 Method

Let us assume that from the total of M responses, |t| are ordinal, where

t = (t0, . . . , t|t|−1), and the remaining M − |t| are nominal responses. In

this case we combine the existing and proposed methods as is noted in the

last part of Figure 6.1. We assign the same coding to all ordinal responses

and consider them as a single new class of nominal response. In this part of

the decomposed method, we apply the BVS approach using M − |t| latent

variables/regression equations that refer to the M−|t|+1 nominal responses

(part A of Algorithm 2), assuming that zero is the ‘baseline’. Note, that in

this case the indicator vector is common (Equation (5.5)) across the different

regression equations. From the posterior inference of the indicator vector
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we identify important variables or most frequently visited models. In the

next part of the decomposed method, we apply the BVS approach for |t|
ordinal responses using just one latent variable (part B of Algorithm 2). In

this case we use a different indicator vector than before, which is related to

the inclusion or exclusion of the coefficients that refer only to the ordinal

responses (Equation (3.4)). The two models may have some variables in

common but the models that are most frequently selected by the approach

may be different for those two parts. Taking the combined results of the two

parts into account we can identify the important variables or most frequently

visited models for the case of mixture of nominal and ordinal responses.

Algorithm 2 Decomposed Bayesian variable selection : mixture of nominal
and ordinal responses

Part A: BVS on M − |t|+ 1 nominal responses
(M − |t|: nominal responses and all ordinal responses are treated as a
single nominal category)

0: Initialize values ξ(0) and Z(0)

1: Draw ξ(jA) from p(ξ|Z(jA−1),X,y)
2: Draw Z(jA) from p(Z|ξ(jA),X,y)
3: Repeat steps 1 and 2 until the number of iterations is achieved and

stop (Results: V S†A and MS†A)

Part B: BVS on |t| ordinal responses

0: Initialize values γ(0), z(0) and k(0)

1: Draw γ(jB) from p(γ|z(jB−1),k(jB−1),X,y)
2: Draw k(jB) from p(k|z(jB−1),γ(jB),X,y)
3: Draw z(jB) from p(z|γ(jB),k(jB),X,y)
4: Repeat steps 1, 2 and 3 until the number of iterations is achieved and

stop (Results: V S†B and MS†B)

Combine parts A and B
V S† = V SA ∪ V SB and MS† = MSA ∪MSB

†V SA (V SB): the set of selected variables for nominal (ordinal) responses using

marginal probabilities, MSA (MSB): the most frequently visited model for nom-

inal (ordinal) responses using posterior probabilities, V S: the final set of selected

variables (nominal and ordinal responses jointly), and MS: the corresponding set

of variables in the most probable model.

We denote the sample of j-th iteration of part A with the upper index

(jA) and of part B with the upper index (jB). We construct the Gibbs steps

as summarized in Algorithm 2. The algorithm consists of two parts, A and

B, and the final conclusion, which is the combination of both. Since the

two parts are independent, the order in which they are computed does not
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matter. Note that the indicator vector and latent variables are different for

each part and refer to the corresponding approach (with nominal or ordinal

responses). In this algorithm the union has been used to summarize the

results of variable selection in parts A and B. However, for predictions we

use either V SA or V SB, but not both (see Subsection 6.3.2). Using the union

we can say (without going into the details of how the decomposed method

works) that those are the important variables, and then specifically some of

them are important for case A and some of them for case B.

6.3.2 Classification and prediction

The classification procedure for a new sample is done according to the fol-

lowing process: First, we use the best model (the model with the highest

posterior probability) for nominal responses and we do predictions according

to Equation (5.3). If the predicted response is nominal, then we finish the

prediction. If the predicted response corresponds to the group of ordinal re-

sponses that are treated as one nominal case, then we use the best model for

ordinal responses and we do predictions according to Equation (5.17).

6.4 Simulation results

6.4.1 Simulations

The experimental study was performed using simulated data from the probit

model with multi-class nominal and ordinal responses.

For the simulation study first we fix the number of variables, the number

of samples, the total number of possible responses and the ordinal responses.

For each simulation part (nominal and ordinal), we identify the indices of

the important variables via the indicator vectors. Based on those two indi-

cator vectors we can extract the joint indicator vector. Then, the important

variables determine the nonzero coefficients that have to be specified sepa-

rately for each type of responses. The probability of success for the Bernoulli

distribution may differ for the two parts of the simulation.

We consider that Xi,j are i.i.d. and Xi,j ∼ N(0, 1) for i = 1, . . . , n and

j = 1, . . . , p. In part A, we treat the ordinal responses as one nominal

response, and without loss of generality we assign them the coding of the

first ordinal response (t0). Then, we construct Z = XB + ε, which is the

matrix of latent variables where ε is an n × (M − |t|) matrix, εi,g are i.i.d.

and εi,g ∼ N(0, σ2
A) for i = 1, . . . , n and g = 1, . . . ,M − |t| where by σ2

A
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we denote the error variance from part A. Here B has most of the entries

zero as the indicator vector is sparse. Based on the simulated Z we assign

values to the response vector y with coding 0, . . . ,M − |t|. In the next part,

we select those rows of X and y that correspond to yi = t0 and denote

them by Xt0,: and yt0 respectively. Then, in order to separate the ordinal

responses, we construct z = Xt0,:β+εt0 , where z refers to the vector of latent

variables of just ordinal responses and εt0 to the error term of the ordinal

responses, εt0i are i.i.d. and εt0i ∼ N(0, σ2
B) for i = 1, . . . , n0 (n0: number

of samples with ordinal responses). β has most of its entries zero. We use

|t| − 1 quantiles of the z to choose the boundary vector k. The reason that

we are using quantiles is because we are interested in ensuring that in each

of |t| intervals [kν′−1, kν′), ν
′ = 1, . . . , |t|, there fall a large enough number

of latent variables or in the ideal case approximately the same number of

latent variables (balanced ordinal responses). Based on the simulated z and

k we assign ordinal values to the response vector yt0 with coding t0, . . . , t|t|−1.

Finally, we plug in the values of yt0 into y in the positions that have yi = t0

and we construct the response vector that has a mixture of nominal and

ordinal responses.

We run two different simulations to cover the following scenarios: (i) Σ

and σ2 are known with n � p, (ii) Σ and σ2 are unknown with n � p

and (iii) Σ and σ2 are unknown with n � p. In the first two cases, for

generating simulated data we set n = 100, p = 10, M = 6, t = [3, 4, 5]

and σA = σB = 1. Thus, σ2 = 1 and Σ = I3. The majority of B’s entries

(related to the nominal responses) are zero except for B[3,8],1 = [−1, 0.4],

B[3,8],2 = [0.5,−0.9] and B[3,8],3 = [0.6,−0.4], where B[j,f ],r = [Bj,r, Bf,r], for

j, f = 1, . . . , p and r = 1, . . . ,M − |t| (latent variables). In addition, the

majority of β’s entries (related to the ordinal responses) are zero except for

β1 = −0.5.

For scenario (i) in the BVS analysis we set Σ equal to I3, σ2 = 1, w(nom) =

2/10 and w(ord) = 1/10. In addition, we select the hyperparameters as follows:

h = 106 and c2 = c3 = 5. In part A, we initialize ξ(0) randomly selecting two

(out of p) variables to be one and the remaining are zero. Then, we initialize

Z(0) that is related to the nominal responses (included the one extra group

of ordinal) according to

Z
(0)
j,r =


−1, if yj = 0,

1, if yj = r,

0, otherwise,

(6.5)
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where r = 1, . . . ,M − |t| (here r = 1, 2, 3). We run four different chains with

3000 iterations after 1000 burn-in iterations. In part B, we initialize the γ(0)

randomly selecting one variable to be one. Then, we initialize z(0) that is

related only to the ordinal responses as follows

z
(0)
i =

{
−1, if yi = t0,

1, otherwise,
(6.6)

and k(0) drawing the non-fixed boundaries uniformly in (0,1000). We run four

different chains with 3000 iterations after 1000 burn-in iterations. Figure 6.2

contains the results of variable and model selection of the two parts, averaging

over the chains. Our proposed algorithm correctly identifies the individually

important variables 3 and 8 (part A) and 1 (part B). The remaining vari-

ables have marginal posterior probabilities close to zero. In addition, the

combination of the variables 3 and 8 is the best model for part A (bottom

of Figure 6.2: first line of x−axis) and the model with just one variable (the

first) is the best model for part B (bottom of Figure 6.2: second line of

x−axis), with posterior probability much higher than the second, third, etc.

best models.

Figure 6.2: Marginal posterior probabilities (top) and posterior probabilities
on a log scale (bottom) of average of chains for scenario (i).

For scenario (ii) in the variable selection approach, we set the values for

the hyperparameters of the unknown covariance matrix Σ, δ = 3, d = 1,

Q = I3 and the hyperparameters of the variance σ2, d1 = δ/2 = 1.5 and

d2 = 0.5 (inverse Gamma is the univariate case of inverse Wishart). The

remaining parameters and hyperparameters are the same as in scenario (i).

The figure of the scenario (ii) would be similar to the Figure 6.2 and the
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results are similar to those reported in scenario (i).

Finally, we focus on the more interesting scenario (iii), where n� p and

Σ is unknown. To generate data from the model we set n = 100, p = 200,

M = 5, t = [1, 2, 3], w(nom) = 2/200, w(ord) = 3/200 and σA = σB = 1. The

majority of B’s entries (related to the nominal responses) are zero except for

B[3,8],1 = [0.85, 0.81] and B[3,8],2 = [0.83, 0.62]. In addition, the majority of

β’s entries (related to the ordinal responses) are zero except that β5 = −1.4,

β100 = 1.2 and β150 = 1.3. The hyperparameters are fixed as in scenario

(ii). We run four different chains with 5000 iterations after 2000 burn-in

iterations. Figure 6.3 contains the results of variable and model selection

for the two parts, averaging across chains. Our proposed algorithm correctly

identifies the individually important variables 3, 8 (part A) and 5, 100, 150

(part B) and the corresponding best models.
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Figure 6.3: Marginal posterior probabilities (top) and posterior probabilities
on a log scale (bottom) of average of chains for scenario (iii).

6.4.2 Predictions

In order to perform prediction of a new (future) sample for the last scenario,

we generate new data Xf (a hundred samples, referred to as the test set)

according to the parameters of scenario (iii). The process of generating the

test set is the same as the process of the training set, except that here we

use the boundary vector k from the training set rather than deriving it from

the simulated z. We pick from the test design matrix only the variables

that had been selected after applying Algorithm 2 and we make predictions.

We repeat the process of generating test sets one hundred times. Based on
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Table 6.1: Comparison of classification accuracy for one test set after applying
variable selection approaches for scenario (iii).

Accuracy (%)
Nominal Ordinal

‘Highest’ accuracy 66
Our proposed method 60

LASSO 50 47
Classification trees 41 29

Random forests 48 31
SVM 36 35

the inherent amount of error that the simulated data has, in our case the

highest classification accuracy that could be achieved is on average 66.02%.

The proposed method achieves on average a 61.55% classification accuracy

for the test set, which is very close to the highest possible.

In order to compare the proposed method with existing methods, we select

one test set (out of a hundred). Table 6.1 contains the results of the compar-

ison with some other methods that have been proposed for pure nominal or

pure ordinal responses. The highest classification accuracy for this test set is

66% and our method achieves classification accuracy 60%, beating existing

methods. The methods presented in this table have already been cited in the

previous chapters. There is a wide range of toolboxes to apply those meth-

ods for nominal responses. On the other hand, focusing on ordinal responses

there are just a few toolboxes, recently developed, that implement variable

selection for the following methods: LDA, kernel discriminant analysis and

SVM (Gutiérrez et al., 2016), LASSO (Archer and Williams, 2012), classi-

fication trees (Galimberti et al., 2012) and random forest (Hothorn et al.,

2015).

6.5 Discussion and conclusion

We have presented a decomposed Bayesian probit model for variable and

model selection with mixtures of nominal and ordinal responses. For this

purpose, we use latent variables. The decomposed approach consists of two

parts: treat the ordinal responses as one nominal category and apply BVS

for nominal responses, and then apply BVS just to the ordinal responses. We

used two indicator vectors to represent the presence, or absence, of a predictor

in the regression (one for each part of the decomposed method): the model

with nominal responses (increased by one) has a common indicator vector

across different regression equations and the model with ordinal responses

has a different indicator vector from the model with nominal responses.
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The Bayesian methodology is applied twice, for the nominal and for the

ordinal responses. This means that the we had to select two different burn-in

periods and sampling from conditional distributions of indicator vector twice.

In this chapter we passed this hurdle by running in parallel the BVS approach

using nominal and ordinal responses, which allowed the proposed algorithm

to be computationally efficient and simple.

However, when the number of variables is very large, this procedure be-

comes very time intensive. For this reason in the next chapter we will propose

a new methodology, where the same latent variable has a double role. This

requires us to sample from the conditional distribution of the indicator vector

one time (instead of two).
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Chapter 7

Bayesian variable selection in

the probit model with a

mixture of nominal and ordinal

responses using a common

indicator vector

In this chapter we first build a new (one step) model for multi-class classifica-

tion problems with a mixture of nominal and ordinal responses. The model

makes use of latent variables. In this case, the latent variable that corresponds

to the sequence of ordinal responses has a double role: to discriminate the

ordinal responses from nominal ones and to order the responses within the

sequence. This double role allows us to use a one step model, instead of the

decomposed model that was studied in the previous chapter. We propose a

BVS approach based on that model. Variable selection is achieved by using

a common indicator vector across different responses. This proposed BVS

method with a common indicator vector has been presented in a workshop

(Kotti et al., 2015).

7.1 Method

7.1.1 Model

We develop an extension of the usual probit model to the multi-class nomi-

nal/ordinal case, assuming that zero response is the ‘baseline’ category and it

is also a part of the ordinal sequence. As in the previous chapter, we study a
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classification problem with M classes (coding m = 0, 1, . . . ,M −1), consider-

ing that |t| of the responses are ordinal (t = (t0, . . . , t|t|−1)). The remaining

s responses are nominal, where s = M − |t|+ 1, because in this case the zero

response is nominal as well as part of the ordinal sequence.

We use a latent variable representation of the response classes, where

subsets of s continuous latent variables correspond to the different response

classes. Assume Z is the n×s matrix of latent variables that is distributed as

multivariate normal with common variance Σ (s × s) across different latent

variables

Zi,: = α
′
+ Xi,:B + Ei,:,Ei,: ∼MVN(0,Σ), i = 1, 2, . . . , n,

where Zi,: = (Zi,1, Zi,2, . . . , Zi,s) is the row vector of Z that refers to the i-th

sample, similarly Xi,: is the row vector of X, B is a p× s matrix of regression

coefficients and α is the s× 1 vector of intercepts. Note that in the proposed

model the matrix of latent variables contains the latent variables of both

nominal and ordinal responses. Specifically, the first column of the matrix of

latent variables and the first column of the matrix of coefficients refer to the

ordinal responses.

This model has the same identifiability issues as our earlier ones, slightly

complicated by the fact that the first latent variable has a different role to

the others so that the question arises whether we want to impose the same

constraint on it. We will solve the problem in the same ways as before, either

by fixing Σ or by assuming a proper prior distribution to Σ. In either case

we can see no obvious reason for treating the first latent variable differently

(or to be more precise, it is far from clear exactly how one should treat it

differently) and so we will typically fix Σ = I or give Σ an inverse Wishart

prior with Q ∝ I.

The equivalent matrix normal distribution of the last equation can be

expressed as

Z− 1nα
′ −XB ∼MN(In,Σ). (7.1)

We focus on the simple case where M = 5 and |t| = 4, which requires two

latent variables. The graphical representation for this is given in Figure 7.1,

where responses 0 and 4 are nominal, and the sequence of 0, 1, 2 and 3 are

ordinal in the sense that zero is also a part of the ordinal sequence and it

is the ‘baseline’ category. If Zi,2 > Zi,1 and Zi,2 > 0, then the response is

yi = 4 (blue region). Afterwards, if we know that Zi,1 > Zi,2 and Zi,1 > 0,

we are interested to discriminate the ordinal responses. For this purpose Zi,1

axis of positive values split vertically in three trapezoids, since the splitting
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should verify the last inequality. The boundary components k2 and k3 are

responsible for the separation between the three ordinal responses which are

the following: yi = 1 (gray region), yi = 2 (red region) and yi = 3 (yellow

region). Since zero is the ‘baseline’ category, if Zi,2 > Zi,1 and Zi,2 ≤ 0 or

Zi,1 > Zi,2 and −∞ ≤ Zi,1 ≤ k1 (k1 = 0), then the response is yi = 0 (green

region), which corresponds to zero as nominal response and also as a part of

the ordinal sequence respectively. The contours indicate probability densities

of the latent variables. To simplify the illustration we draw the contours

centered at zero, though in general they will not be.

yi = 0

yi = 4
y i

=
1

y i
=

2

y i
=

3

+∞-∞
-∞

Zi,1

Z
i,

2

0

+∞

k30 k2

Figure 7.1: Graphical representation of the relationship between responses
(M = 5, |t| = 4) and two latent variables. Responses 0, 4 are nominal and
the sequence of 0, 1, 2, and 3 are ordinal (zero is part of the ordinal sequence
is also the ‘baseline’).

We denote by Z?
i = max1≤r≤s{Zi,r}. The relation between responses and

the s latent variables is described in two steps. Firstly,

yi =

{
0, if Z?

i ≤ 0,

r + |t| − 2, if Z?
i > 0 and Z?

i = Zi,r.
(7.2)

Actually, Equation (7.2) distinguishes response zero from nominal responses

and from the group of ordinal responses. Afterwards, knowing that the second

part of this equation is true for r = 1, the relationship between ordinal

responses and the corresponding latent variables Zi,1 is given by

yi = td, if kd < Zi,1 ≤ kd+1, (7.3)
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for d = 0, . . . , |t| − 1 where k = (k0, k1, . . . , k|t|), k0 < k1 < . . . < k|t|, is the

boundary vector for the ordinal responses with k0 = −∞ and k|t| = +∞, and

where we fix k1 = 0 (zero is the ‘baseline’) for reasons of identifiability. It is

important to note that the ordinal responses have a common latent variable

and are specified via the boundary vector. Nominal responses each have a

different latent variable. In summary, the relationship between all possible

responses and the latent variables is given via Equations (7.2) and (7.3).

The multinomial probit model with a mixture of nominal and ordinal

responses, based on the latent variables and the boundaries, can be expressed

as

pi0 = P (yi = 0) = P (Z?
i ≤ 0),

pitd = P (yi = td) = P (kd < Zi,1 ≤ kd+1|Zi,1 = Z?
i ),

piv = P (yi = v) = P (Z?
i > 0, Z?

i = Zi,v−|t|+2),

where v ∈ {0 : (M − 1)}\ {t0, . . . , t|t|−1} and \ denotes the relative comple-

ment.

In order to perform variable selection for the multi-class multivariate case

with a mixture of response types, a common p × 1 indicator vector ξ is

used across different latent variables. In this chapter we will use a common

indicator vector and in the next chapter we will use a different indicator

vector for different regression equations. The j-th element of ξj is defined

such that

ξj =

1, if Bj,r 6= 0 for all r,

0, if Bj,r = 0 for all r,

where Bj,r is the entry in the j-th row and r-th column of B, for r = 1, . . . , s.

Selection of the j-th variable corresponds to ξj = 1, which requires all the

coefficients of the j-th row of B to be nonzero.

Note that incorporating ξ into Equation (7.1) simplifies the algebra later

on

Z− 1nα
′ −XξBξ ∼MN(In,Σ). (7.4)

In summary, the model and the dependence between the variables are

presented in a directed graphical model (Figure 7.2). Circles denote random

variables and squares constants. For example, w is a constant that comes

from the prior knowledge of the indicator vector.
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r = 1, . . . , s

Figure 7.2: Directed graphical model for the probit model with latent vari-
ables and a common indicator vector. Circles denote random variables,
squares constants. Z:,r is the r-th column vector of latent variables, B:,r

is the r-th column vector of coefficients vector and σ2
r = 1.

7.1.2 Prior distributions

In this section the priors for the unknown parameters α, Bξ, ξ, k and Σ

when it is not fixed are specified. The priors of the first three parameters are

similar to those that are presented in Subsection 5.2.2. k2, k3, . . . , k|t|−1 are

uniformly distributed on the interval (0,+∞) subject to the constraint that

k2 < k3 < . . . < k|t|−1 (k0 = −∞, k|t|−1 = +∞ and k1 = 0). When Σ is not

fixed we assume Σ ∼ IW (δ; Q), where here δ = n − s + 1 according to the

parametrization of Dawid (1981).

7.1.3 Posterior inference

The posterior inference is carried out under two different settings for Σ, either

assigning a prior distribution to it (case A) or fixing to a specific value (case

B), but inference follows very similar steps. First, the unknown parameters α,

Bξ (and Σ if it is not fixed) are integrated out from the joint posterior. In the

absence of prior information setting α0 = 0 and B0ξ = 0, inference is done

via three Gibbs steps. Let us denote the sample of the j-th iteration with the

upper index (j), and construct the Gibbs steps as summarized in Algorithm 3.

Appendices D and E contain details about the algebra calculations under the

two different settings for Σ.
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Algorithm 3 Gibbs sampling for mixture of responses using an indicator
vector

0: Initialize values ξ(0),Z(0) and k(0)

1: Draw ξ(j) from p(ξ|Z(j−1),k(j−1),X,y)
2: Draw k(j) from p(k|Z(j−1), ξ(j),X,y)
3: Draw Z(j) from p(Z|ξ(j),k(j),X,y)
4: Repeat steps 1, 2 and 3 until the maximum number of iterations is
achieved and stop.

Case A: Σ has a distribution

Derivations for calculating the full conditional distributions are carried out

after integrating out Σ. The derivation of the first step of Gibbs sampling

(Algorithm 3) is easy if the algebra calculations are first done for the third

step of this algorithm.

The third step of Algorithm 3, sampling for the latent matrix Z, is per-

formed via

Z|ξ,k,X,y ∼MT (δ; Pξ,Q)
n∏
i=1

1(Zi,: ∈ Gi), (7.5)

where Pξ = In + h1n1
′

n + XξHξX
′

ξ. The indicator function contains the

truncations of the matrix Student distribution based on both boundaries and

latent variables and it is given by

Gi=


{Zi,: : Z?

i ≤ 0}, if yi = 0

{Zi,: : Z?
i = Zi,1 and kd < Zi,1 ≤ kd+1}, if yi = td

{Zi,: : Z?
i > 0 and Z?

i = Zi,v−|t|+2}, if yi = v.

(7.6)

Since it is difficult to sample directly from Equation (7.5), a Gibbs sampler

can be applied (Geweke, 1991).

Now, sampling from the posterior distribution of ξ (first step of Algo-

rithm 3) is implemented according to the factorization p(ξ|Z,k,X,y) ∝
p(ξ)p(Z|ξ). This factorization notes that ξ depends on Z, k, and y, but

once we condition on Z, then k and y are independent of ξ (Figure 7.2).

Then,

p(ξ|Z,k,X,y) ∝ p(ξ)
∣∣∣In + XξHξX

′

ξ(In + h1n1
′

n)−1
∣∣∣− s2 ∣∣Qξ

∣∣− δ+n+s−1
2 (7.7)

where Qξ = Q+Z
′
G−1Z−Z

′
G−1Xξ

[
X
′

ξG
−1Xξ + H−1

ξ

]
X
′

ξG
−1Z, with G =

In+h1n1
′
n. Note that, if X is centered and h is large, then

∣∣∣In + XξHξX
′

ξ

∣∣∣ ≈∣∣∣In + XξHξX
′

ξ(In + h1n1
′

n)−1
∣∣∣. The full conditional distribution defined via
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Equation (7.7) it is not easy to sample from, so we apply Metropolis within

Gibbs to update ξ Brown et al. (1998a). This is very computationally inten-

sive if p is large. For this reason, a QR-decomposition (Seber, 2000; Brown

et al., 2002) is applied. The data augmentation for Hξ = cIpξ (pξ is the num-

ber of selected variables) yields
∣∣∣In + XξHξX

′

ξ

∣∣∣ =
∣∣∣H1/2

ξ X
′

ξXξH
1/2
ξ + In

∣∣∣ =∣∣∣X̃′

ξX̃ξ

∣∣∣, where X̃ is given via Equation (5.12). Then, Qξ = Z̃
′

Z̃ − Z̃
′

X̃ξ

(X̃
′

ξX̃ξ)
−1X̃

′

ξZ̃, where

Z̃ =

(
Z

0

)
is a (n+ pξ)× s augmented matrix.

Finally, the boundaries are related only to the ordinal responses. Follow-

ing the basic idea of Albert and Chib (1993), the full conditional density of

kν given the rest is given by

p(kν |ξ,Z,X,y,k\ν)

∝
n∏
i=1

[1(yi = tν−1)1(kν−1 < Zi,1 ≤ kν)

+ 1(yi = tν)1(kν < Zi,1 ≤ kν+1)],

(7.8)

where k\ν = (k0, . . . , kν−1, kν+1, . . . , k|t|), for ν = 2, . . . , |t|−1. In fact, the up-

date of each boundary parameter can be implemented (using Equation (7.8))

via

kν |ξ,Z,X,y,k\ν ∼ U(max[{Zi,1 : yi = tν−1}, kν−1],min[{Zi,1 : yi = tν}, kν+1]).

(7.9)

Case B: Σ is fixed

In the case where Σ is taken to be fixed, the three Gibbs steps are derived for

convenience in the same order as in the previous section. Initially, to sample

the latent matrix Z we can use the relation

Z|ξ,k,X,y ∼MN(Pξ,Σ)
n∏
i=1

1(Zi,: ∈ Gi),

where Gi is given via Equation (7.6) and the mean of the latent matrix is

the zero vector (it is not denoted here). A Gibbs sampler is used in order to

take samples from the full conditional distributions of the truncated normal

distribution (Geweke, 1991).

Sampling from the posterior distribution of ξ, this time without integrat-
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ing out Σ (which is fixed), is performed via

p(ξ|Z,k,X,y)∝ p(ξ)
∣∣∣In + XξHξX

′

ξ(In + h1n1
′

n)−1
∣∣∣− s2

· |Pξ|−
s
2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]}
,

where tr(.) denotes the trace of a square matrix. Again, this formula is not

easy to sample from and a Metropolis algorithm (Brown et al., 1998a) is

applied, within the Gibbs step, in order to generate posterior samples from

ξ. The Metropolis algorithm via QR fast updating is implemented in order to

speed up the computations. Updating the boundaries of the ordinal responses

follows exactly the same form as before (Equation (7.9)).

7.1.4 Classification and prediction

We focus on how to use the best model in order to make predictions. The

least squares model prediction is given by Equation (5.14), where here Ẑf is

the nf × s estimated matrix of latent variables that it is related to a new

(future) measurement (B̃ξ̂ is p× s and Ẑ is n× s). Then, the labels of future

measurements, ŷf (nf × 1), can be predicted according to Equations (7.2)

and (7.3).

7.1.5 Hyperparameter settings

The hyperparameters are specified as explained in Subsection 5.2.5. We as-

sign a vague prior to the intercept selecting h to be large and fix k1 = 0.

7.2 Simulation results

7.2.1 Simulations

An experimental study was performed using simulated data from the probit

model with multi-class nominal and ordinal responses.

For the simulation study, we identify the indices of the important variables

via the common indicator vector. The important variables then determine

the nonzero coefficients of B. In addition, we fix the number of variables (p),

the number of samples (n), the sequence of ordinal responses t and the total

number of responses (M).

We consider that Xi,j are i.i.d. and Xi,j ∼ N(0, 1) for i = 1, . . . , n and

j = 1, . . . , p. Then, for fixed B, we construct Z = XB+ε, which is the matrix

of latent variables where ε is an n×s matrix, εi,r are i.i.d. and εi,r ∼ N(0, σ2)
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for i = 1, . . . , n and r = 1, . . . , s. Focusing on the ordinal responses, we

define k via |t| − 1 quantiles of the corresponding latent variable. Based on

the simulated Z and k we assign values to the response vector y with coding

0, . . . ,M − 1. The simulation process produces X and y that are required as

inputs of the variable selection process.

We run one simulation to cover the following analysis scenarios: (i) Σ is

fixed with n� p and (ii) Σ has a distribution with n� p. In both cases, we

set n = 100, p = 200, M = 5, t = [1, 2, 3] and σ = 0.8 for generating data.

The majority of B’s entries are zero except that B[8,100,180],1 = [4,−6.5, 4] and

B[8,100,180],2 = [−5.5, 5,−2]. This means that the two latent variables have the

same important variables (coefficients 8, 100 and 180 are nonzero), because

we use a common indicator vector for variable selection. To apply BVS, we

assign values to parameters and hyperparameters separately in each scenario.

For scenario (i) variable selection is done assuming that Σ is equal to I2,

which is not equal to 0.8I2 as used in the simulation. In the variable selection

approach we set h = 106, Hξ = cIpξ with c = 10 and w = 3/200. We initialize

the ξ(0) randomly selecting three of the variables to be one and the rest are

zero and the k(0) by drawing the non-fixed boundaries uniformly in (0, 1000).

In addition, we initialize Z(0) as described in Equation (6.5) for r = 1, 2.

We run four different chains with 30000 iterations after 20000 burn-in

iterations. Averaging the four chains, our proposed algorithm correctly iden-

tifies the individually important variables 8, 100 and 180 (top of Figure 7.3)

and the best model that consists of these variables (bottom of Figure 7.3).

Note that the second, third, etc. best models have very small posterior prob-

abilities compared to the posterior probability of the best model.

For the variable selection under scenario (ii) we set the values for the

hyperparameters of the unknown covariance matrix Σ, δ = 3, Q = I2 and

the remaining parameters and hyperparameters are the same as in scenario

(i). The results are similar to those reported in Figure 7.3 and in the previous

paragraph.

7.2.2 Predictions

We generate some new data (test sets) according to the procedure that is

described in Subsection 6.4.2 for scenario (ii). We pick from the test design

matrix only variables 8, 100 and 180 that had been selected after applying

Algorithm 3 and we make predictions for the one hundred new samples.

The highest possible classification accuracy for this test set is 69% and our

method achieves classification accuracy 66%. Table 7.1 contains the results
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Figure 7.3: Marginal posterior probabilities (top) and posterior probabilities
on a log scale (bottom) of average of chains for scenario (i).

of the comparison with some other methods (Section 5.1) that have been

proposed for pure nominal or pure ordinal responses. Our approach beats

the existing methods.

Table 7.1: Comparison of classification accuracy for the test set after applying
different variable selection approaches.

Accuracy (%)
Nominal Ordinal

‘Highest’ accuracy 69
Our proposed method 66

LDA 60 41
LASSO 50 47

Classification trees 55 55
Random forests 59 42

7.3 Discussion and conclusion

We have described a Bayesian probit model for variable and model selection

with mixture of ordinal and nominal responses and with a common indicator

vector across latent variables. In this case latent vectors of nominal and

ordinal responses are combined in one matrix in order to build a complete

probit model. It is important to note that the latent variables of the ordinal

responses have double utility: to discriminate ordinal from nominal responses
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and also from each other. We derived efficient MCMC sampling for posterior

inference. The computational advantage here is that we sample from the full

conditional density of a single indicator vector (instead of two as we discussed

in the previous chapter). The proposed algorithm is simple in the sense that

the variable selection and prediction are each a one step process.

In this modelling process we consider a common indicator vector in vari-

able selection, which discovers the same important variables for the rows of

the coefficient matrix. However, in real problems sometimes different vari-

ables may be important for each of the nominal responses and for the sequence

of ordinal responses. This requires different indicator vectors for each one of

the nominal responses and one more indicator vector for the sequence of or-

dinal responses (or, equivalently, an indicator matrix). In the next chapter

we will extend the current idea of variable selection proposing an indicator

matrix. In practice this means that the important variables for the rows of

coefficient matrix can differ.

In this study we consider that the shrinkage parameter and probability of

success of the Bernoulli distribution are known. However, we could relax this

assumption and assign prior distributions on them. Conjugate prior selection

would use inverse Gamma and Beta distributions respectively.
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Chapter 8

Bayesian variable selection in

the probit model with a

mixture of nominal and ordinal

responses using an indicator

matrix

In the previous chapter we proposed a BVS approach for a mixture of nominal

and ordinal responses using a common indicator vector (assuming the same

set of important variables across different responses).

However, in some applications we expect that different variables may be

important for different responses. For this reason, in the current chapter,

we propose a variable selection method using an indicator matrix (instead of

the indicator vector), where each column corresponds to one latent variable

(indicating the presence of the covariate). We apply our approach on simu-

lated data and we compare the classification accuracy of this method with

existing ones. This proposed BVS method using an indicator matrix has been

published in a workshop (Kotti et al., 2016b).

8.1 Method

8.1.1 Model

The basic model is a probit model with a mixture of nominal and ordinal

responses using latent variables (Equation (7.4)) and the relationship between

responses and latent variables remains the same (Equations (7.2) and (7.3)).
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As before, we use s latent variables. Let us assume a Z (n × s) matrix

of latent variables, where each column is distributed as multivariate normal

with mean zero and covariance matrix the identity. That is,

Z:,r = 1nαr + XB:,r + E:,r,E:,r ∼MVN(0, σ2
rIn), (8.1)

where Z:,r is the r-th column vector of Z, B:,r is the r-th column vector

of B (p × s) and σ2
r is the noise variance of the r-th latent variable, for

r = 1, . . . , s. The equivalent matrix normal distribution of the last equation

can be expressed as

Z−A−XB ∼MN(In,Σ), (8.2)

where A = (1nα1, . . . ,1nαs) and Σ = diag(σ2
1, . . . , σ

2
s). The dimensions of

those matrices are n×s and s×s respectively. We tackle the non-identifiability

problem by fixing σ2
1, . . . , σ

2
s , typically with all σ2

r = 1.

In order to perform variable selection for the multi-class multivariate case

with a mixture of response types, a p×s (s is the number of latent variables)

indicator matrix Ξ is used, where each of its columns (Ξ:,r) represents the

important variables for the r-th regression equation. The j-th element of the

r-th latent variable of this matrix is denoted by Ξj,r and is defined as

Ξj,r =

1, if Bj,r 6= 0,

0, if Bj,r = 0,
(8.3)

for j = 1, . . . , p and r = 1, . . . , s. Selection of the j-th variable in the r-th

regression equation corresponds to Ξj,r = 1.

The relationship between the aforementioned random variables is repre-

sented in Figure 8.1, which also includes the data and the fixed parameters

of the proposed model.

Finally, note that incorporating Ξ:,r into Equation (8.1) simplifies the

algebra later on

Z:,r − 1nαr −XΞ:,rBΞ:,r,r ∼MVN(0, σ2
rIn),

where XΞ:,r refers to those columns of X (out of p) that correspond to selected

variables of the r−th regression equation and BΞ:,r,r refers to those rows of

B (out of p) that correspond to selected variables of the r−th regression

equation and to the column of the r−th regression equation.
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r = 1, . . . , s

Figure 8.1: Graphical representation that indicates the relationship between
random variables (circles) and data/constants (squares).

8.1.2 Prior distributions

In this section, the priors for the unknown parameters αr, BΞ:,r,r, Ξr and k

are presented for each one of the r regression equations.

The prior for the intercept is αr − α0r ∼ N(0, σ2
rh) and the prior for the

nonzero coefficients, for different regression equations, is given by

BΞ:,r,r −B0Ξ:,r,r ∼MVN(0, σ2
rHΞ:,r). (8.4)

We generalize the form of the covariance matrix in Equation (8.4) from the

case of common ξ to the case of different ξ’s across different regression equa-

tions. We extend the specification of the covariance matrix (Brown et al.,

2002) to the full g-prior HΞ:,r = cr(X
′

Ξ:,r
XΞ:,r)

+, or to the diagonalized ver-

sion of it HΞ:,r = cr diag{(X′

Ξ:,r
XΞ:,r)

+}, where the ‘plus’ denotes the pseu-

doinverse matrix, or, for even greater simplicity, HΞ:,r = crIpΞ:,r
(pΞ:,r is

the number of important variables that correspond to the r-th regression

equation). We assume that the columns of the indicator matrix are inde-

pendent and Ξj,r ∼ Bernoulli(wr), with different probability of success across

different nominal responses and the same probability of success across or-

dinal responses. As in the previous studies, we assume the the boundaries

k2, k3, . . . , k|t|−1 are uniformly distributed on the interval (0,+∞) subject to

the constraint that k2 < k3 < . . . < k|t|−1, and with k1 fixed at 0.
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8.1.3 Posterior inference

In our model, the unknown parameters αr and BΞ:,r,r can be integrated out

from the joint posterior, which significantly simplifies computations. In the

absence of prior information we set α0r = 0 and B0Ξ:,r,r = 0. Inference is

done via three Gibbs steps (details in Appendix F). We denote the sample

of the j-th iteration with the upper index (j), and construct the Gibbs steps

as summarized in Algorithm 4.

Algorithm 4 Gibbs sampling for mixture of responses using an indicator
matrix

0: Initialize values Ξ(0),Z(0) and k(0)

1: Draw Ξ(j) from p(Ξ|Z(j−1),k(j−1)X,Y)
2: Draw k(j) from p(k|Z(j−1),Ξ(j),X,Y)
3: Draw Z(j) from p(Z|Ξ(j),k(j),X,Y)
4: Repeat steps 1, 2 and 3 until the desired number of iterations is achieved

and stop.

Sampling the latent matrix Z is performed via

Z|Ξ,k,X,Y ∼
s∏
r=1

[
MVN(0,PΞ:,r)

] n∏
i=1

1(Zi,: ∈ Gi), (8.5)

where PΞ:,r = In +h1n1
′

n + XΞ:,rHΞ:,rX
′

Ξ:,r
and the set Gi is given via Equa-

tion (7.6). Since it is difficult to sample directly from Equation (8.5), a Gibbs

sampler can be applied for each latent variable in turn (Geweke, 1991).

Sampling from the posterior distribution of Ξ is performed via

p(Ξ|Z,k,X,Y) ∝
s∏
r=1

[
p(Ξ:,r)

∣∣∣In + XΞ:,rHΞ:,rX
′

Ξ:,r
(nh+ σ2

r)
−1
∣∣∣− 1

2 ·

∣∣PΞ:,r

∣∣− 1
2 exp

{
−1

2

[
Z
′

:,rP
−1
Ξ:,r

Z:,r

]} ]
.

(8.6)

The Metropolis algorithm of Brown et al. (1998a) is applied within the Gibbs

step, since the last expression is not easy to sample from directly. Similarly

to the case of common ξ, here we apply r times a QR decomposition to

avoid squaring (Seber, 2000; Brown et al., 2002). The data augmentation for

the HΞ:,r = crIpΞ:,r
, X centered and large h yields

∣∣∣In + XΞ:,rHΞ:,rX
′

Ξ:,r

∣∣∣ =∣∣∣H1/2
Ξ:,r

X
′

Ξ:,r
XΞ:,rH

1/2
Ξ:,r

+ In

∣∣∣ =
∣∣∣X̃′

Ξ:,r
X̃Ξ:,r

∣∣∣, where

X̃Ξ:,r =

(
XΞ:,rH

1/2
Ξ:,r

IpΞ:,r

)
(8.7)
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is a (n+ pΞ:,r)× pΞ:,r matrix. Then,

QΞ:,r
= Z̃

′

:,rZ̃:,r − Z̃
′

:,rX̃Ξ:,r(X̃
′

Ξ:,r
X̃Ξ:,r)

−1X̃
′

Ξ:,r
Z̃:,r,

where Z̃:,r is given by

Z̃:,r =

(
Z:,r

0

)
which is a (n+ pΞ:,r)× 1 augmented vector.

Finally, the full conditional distribution for each component of the bound-

aries is uniform (Equation (7.9)), since it is not affected by whether the vari-

able selection is carried out via a common indicator vector or an indicator

matrix.

8.1.4 Classification and prediction

The model prediction for the r-th regression equation, based on the best

model (Ξ̂:,r), is given by

Ẑf :,r = 1nf α̃r + XfΞ̂:,r
B̃Ξ:,r,r, (8.8)

where Ẑf :,r is a nf × 1 estimated vector of latent variables that is related

to the r-th regression equation, B̃Ξ:,r,r =
(
X
′

Ξ̂:,r
XΞ̂:,r

+ H−1

Ξ̂:,r

)−1

X
′

Ξ̂:,r
Ẑ:,r

and α̃r =
¯̂
Z:,r. Alternatively, instead of using just the one best model for

each regression equation, the average of the best models can be used for

each regression equation, which may improve the classification accuracy. In

both cases, combining all estimated column vectors of latent variables, we

can determine the estimated matrix of latent variables and we can make

predictions according to Equations (7.2) and (7.3).

8.2 Simulation Results

8.2.1 Simulations

The experimental study was performed using simulated data from the pro-

bit model with multi-class nominal and ordinal responses using an indicator

matrix for the purpose of variable selection.

The multi-class simulation study is similar to the one that we have al-

ready described in Subsection 7.2.1, except that here we can select different

important variables for each regression equation. We set n = 100, p = 476,
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M = 6, the sequence of responses 0, 1, 2, 3 is ordinal and σr = 1, so that

Σ = I3, for generating simulated data with n � p. The majority of B’s en-

tries are zero except that B[5,15],1 = [4,−5] (related to the ordinal responses),

B[10,155],2 = [5.5, 4] and B[50,300],3 = [4.5, 4] (related to the nominal responses).

To apply variable selection we set in the analysis Σ = I3, h = 106,

wr = 2/476, HΞ:,r = crIpΞ:,r
and cr = 10 for r = 1, 2, 3. We initialize

Ξ(0) selecting randomly two variables for each regression equation. Then, we

initialize Z(0) and k(0) (details in Subsection 7.2.1). We run four different

chains with 5000 iterations after 2000 burn-in iterations. Figure 8.2 contains

the results of variable and model selection for the average of the chains. Our

proposed algorithm correctly identifies the individually important variables

for each regression equation. The rest of the variables have marginal poste-

rior probabilities close to zero. In addition, the posterior probabilities of the

best model are much higher than the second, third, etc., best models for each

regression equation (bottom of Figure 8.2).

Ξ:,1

Ξ:,2

Ξ:,3

5 15 5 15 314 5 15 216
10 155 10 155 202 10 155 258
50 300 13 50 300 50 145 300

3 best models

Figure 8.2: Marginal posterior probabilities (top) and posterior probabilities
on a log scale (bottom) for BVS approach using an indicator matrix.

8.2.2 Predictions

In order to evaluate the best model, we generate a test set (as for the training

set) with n = 200. For the test set, in order to generate the ordinal responses,

we use the same boundaries as on the training set. Then, from the test design

matrix, we pick only the variables that our approach has selected. Afterwards,

we repeat the process of generating test sets 100 times and the classification

accuracy of the test sets is on average 84.04%. Based on the amount of error

144



Table 8.1: Comparison of classification accuracy for one test set after applying
different variable selection approaches.

Accuracy (%)
Nominal Ordinal

’Highest’ accuracy 90
The proposed method 83

Penalized LDA 51 26
LASSO 65 26

Classification trees 45 21
Random forests 53 24

that the simulated data have, the highest classification accuracy that we can

achieve is 90.50%. So, the proposed method produces a high classification

accuracy on the test set, in the sense that it is very close to the highest

possible. To compare our method with existing ones, we randomly select one

test set. Table 8.1 contains the results of the comparison with some other

methods that have been proposed for pure nominal or pure ordinal responses.

In all cases the proposed method beats existing methods.

8.3 Discussion and conclusion

We have presented a Bayesian probit model for variable and model selection

with a mixture of ordinal and nominal responses and with different indicator

vectors across different latent variables. To build the appropriate model, we

use different latent variables for the nominal responses and a common latent

variable for the ordinal responses, where the last one has a double role as we

discussed in the previous chapter. With respect to variable selection, using

different indicator vectors allows us to identify different important variables

for different regression equations, which is an advantage. This is a more

realistic scenario for real applications, compared to the case of using common

indicator vector. In the extreme case that the important variables are the

same for all the different latent variables, then we could drop to the simple

case of using a common indicator vector instead of the indicator matrix.

The new algorithm remains simple and efficient, because the indicator

vectors are independent and we can sample from them in parallel at each

step. This is an advantage, since sampling from indicator vectors is the most

time-consuming step of our algorithm. In addition, we can sample from the

latent variables in parallel too.

In this study we consider that cr and wr are known for each regression

equation and indicator vector respectively. An advantage here is that the
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shrinkage and the prior probability of success can be different across dif-

ferent regression equations, which is a realistic scenario. Alternatively, we

could assign conjugate priors to them (inverse Gamma and Beta distribution

respectively), at the expense of more computation.
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Chapter 9

Application to Barrett’s

oesophagus (BE) for clinical

diagnosis

In Chapters 6, 7 and 8 we proposed three BVS methods, all based on latent

variables, with the aim of improving classification accuracy. In this chapter

we explore the BE disease (intercepted-matched dataset) as a classification

problem in which we are interested in finding a good classification rule as well

as identifying the variables most important in diagnosing the stage of the

disease. Our results of BVS by using an indicator matrix with an application

to BE have been published in an international conference (Kotti et al., 2016a).

9.1 Data description and pre-processing

In the BE application FTIR spectra, which measure IR-absorbance over the

range of wavenumbers as described in Section 1.2, are recorded on tissue sam-

ples. Standard data pre-processing was carried out on the spectra to improve

the signal quality of the BE dataset. This involved liquid water subtraction,

water vapour subtraction, normalization by Amide II band, spectral smooth-

ing by a 13pt point Savitzky-Golay second derivative filter (Savitzky and

Golay, 1964) and cropping the noisy part above wavenumber 1760 cm−1.

Each patient has a unique ID number, the patient ID. This enables the

identification of each spectrum and biopsy with an individual patient. A

unique ID that identifies spectra and biopsies is also available, as there are

multiple biopsies taken from different positions of the oesophagus in each

patient and multiple spectra per biopsy. The multiple spectra of the same

biopsy were averaged to produce a single spectrum per biopsy. Histopathol-
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ogists labelled each biopsy as belonging to one of the five possible classes:

healthy (H), Barrett’s oesophagus type 1 (BE1), Barrett’s oesophagus type

2 (BE2), Barrett’s oesophagus type 3 (BE3) and cancer (C). We use this

notation here because it is concise and highlights the mixed nominal/ordinal

structure. The correspondence with the UK classification (Chapter 1) is: H

is SQ, BE1 is NDBE, BE2 is LGD, BE3 is HGD, and C is OAC. Our dataset

contains 309 spectra (samples) from 103 patients with one (possibly averaged

spectrum) per biopsy. Where there are patients with multiple biopsies with

different diagnoses, we refer to this as multi-labelled diagnosis. We split the

dataset, with two thirds being the training set and one third being the test

set such that all the spectra of one patient are in the same set. We would

like to test our model on single-labelled diagnoses. Towards this goal, we

randomly select single-labelled diagnoses, i.e. patients all of whose biopsies

have the same diagnosis, to construct the test set. Then, the training set

consists of whatever remains of the single-labelled diagnoses as well as all

of the multi-labelled ones. Both sets now contain different patients and this

is a realistic scenario, since actually the test set contains only unseen (for

training) patients.

Table 9.1 presents a summary of BE dataset for the training, test, and

the entire dataset. Healthy and early stage patients are more frequent than

patients that are in late stages of the disease, which leads to an unbalanced

dataset. This is typical in clinical diagnosis of diseases. In addition, it is very

difficult to histologically distinguish BE2 from the remaining middle stages.

This is one of the reasons that our dataset includes so few BE2 spectra

(Figure 9.1).

Table 9.1: Summary of BE training set, test set and entire dataset.

Training set Test set Entire dataset
Patients Spectra Patients Spectra Patients Spectra

H 27 47 14 24 41 71
BE1 27 92 8 45 35 137
BE2 5 8 2 4 7 12
BE3 9 31 1 16 10 47

C 7 29 3 13 10 42
Total 75 207 28 102 103 309

Figure 9.2 contains barplots showing the number of spectra per patient for

the training and test sets. All the biopsies in the test set come from patients

with a single diagnosis. The training set has 46 such patients and the test

set has 28 such patients. The total number of patients in the training set

is greater than 46 (Table 9.1) because it includes patients that have multi-
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Figure 9.1: Barplots of the number of spectra versus the five possible labels
on the training and test set.

labelled diagnosis. Counting all the spectra and assigning to each patient in

a specific stage a number, we also visualize the distribution of the spectra for

each patient in the training set in each stage of the BE disease (Figure 9.3).
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Figure 9.2: Barplots of the number of spectra versus the patient ID for the
training and test set.

Further details about the spectra distribution of each patient is given at

the top of Figure 9.4. The training set contains 46 patients with either unique

or multi-labeled spectra. Different colors correspond to different labels/stages

of the disease and the height of the bar indicates how many spectra each

patient has. For example, patient one has three spectra, two of them are

healthy and one is BE2. However, patient two has also three spectra, and all

of them are diagnosed as BE1. The case where the same patient has spectra

that correspond to three different labels (e.g. patient forty three) is rare.

The test set has 28 patients with all of their spectra having only one label

(bottom of Figure 9.4).
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Figure 9.3: Barplots of the number of spectra per patient for each stage of
the BE disease (H, BE1, BE2, BE3, C) for the training set.
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Figure 9.4: Number of spectra for each patient with the diagnoses shown for
the training (top) and test (bottom) set.

9.2 Visualizing important variables for BE di-

agnosis

Initially, we plot the spectra with the aim of visually spotting the differences

between spectra from different stages of the BE disease. These differences

may suggest diagnostic variables and associated wavenumbers that could be

used as potential biomarkers, or to improve the classification accuracy com-

pared with using all variables. We will compare spectra from the simple case

of the first versus the last stage and then between the middle stages, and fi-

nally we present more complex comparisons between those stages. The more

complex comparisons of spectral differences between multiple labels corre-

spond to different approaches to find potential important variables in each of
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our methods.

Figure 9.5 contrasts the mean of the H versus the mean of the C spec-

tra. Some potential diagnostic wavenumbers that may be able to distinguish

H from C spectra are 1358, 1263, 1226, 1207, 1172, 1155, 1024 and 995 cm−1

(corresponding variable ID: 209, 258, 277, 287, 305, 314, 382 and 397).
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Figure 9.5: Mean second derivative spectra comparing H versus C on the
training set.

Figure 9.6 compares the mean spectra for BE1 versus the means of BE2

and BE3. Some potential diagnostic variables that may be able to distinguish

the spectra of the three stages are at wavenumbers 1315, 1273, 1261, 1213,

1161, 1082, 1061, 1043, 1030, 1007 and 972 cm−1 (ID: 231, 253, 259, 284,

311, 352, 363, 372, 379, 391 and 409). The peaks and troughs are more than

one variable wide, and may be represented by different selected variables.
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Figure 9.6: Mean second derivative spectra comparing the three BE progres-
sion stages on the training set.

Then we can combine the above mentioned results in three different ways:

(i) BE1 versus BE2 versus BE3 (Figure 9.6) and H versus BE1+BE2+BE3

versus C (Figure 9.7), where by BE1+BE2+BE3 we denote the merged
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group of the three stages. Some common potential important variables

of H versus BE1+BE2+BE3 versus C may be at wavenumbers 1635,

1357, 1292, 1263, 1172, 1155, 1035 and 977 cm−1 (ID: 65, 209, 243, 258,

305, 314, 376 and 406) and in general those variables differ from the

important variables of BE1 versus BE2 versus BE3 noted above apart

from the variable with ID 258,

(ii) H versus C (Figure 9.5) and H versus BE1 versus BE2 versus BE3

(Figure 9.8). In the latter case, differences between the spectra are

noted at wavenumbers 1267, 1171, 1155, 1024, 995 and 947 cm−1 (ID:

256, 306, 314, 382, 397 and 422). Potentially common important vari-

ables are at wavenumbers 1267, 1171, 1155 and 1024 cm−1 (ID: 256, 306,

314 and 382), in the sense that they are so close that they belong to the

same peak/trough, and

(iii) the same comparison as in (ii) but here we are interested in finding the

potentially different important variables for each stage of the disease.

According to Figure 9.9 those can be H: wavenumbers 1635, 1263, 1172,

1155, 1024 and 995 cm−1 (ID: 65, 258, 305, 314, 382 and 397), BE1: wave-

numbers 1263, 1165 and 1122 cm−1 (ID: 285, 313 and 382), BE2: wave-

numbers 1157, 1020 and 1032 cm−1 (ID: 313, 384 and 378), BE3: wave-

numbers 1155, 1032 and 974 cm−1 (ID: 314, 384, and 408), and C: wave-

numbers 1288, 1157 and 970 cm−1 (ID: 245, 313 and 410). We note that

H, BE1, BE2, and BE3 have common variables with ID 314 and 384.
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Figure 9.7: Mean second derivative spectra comparing the H versus
BE1+BE2+BE3 versus C on the training set.

These variables are just indications and they will not necessarily appear

among the important variables that belong to the best model though it will
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Figure 9.8: Mean second derivative spectra comparing H versus BE1 versus
BE2 versus BE3 on the training set.
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Figure 9.9: Mean second derivative spectra comparing the five stages of the
BE disease on the training set.

be interesting to see if they do. Additionally, averaging the spectra can com-

promise details such as variation between spectra for the same diagnosis,

and the comparisons above ignore the partial order of the response vector.

All of these limitations are addressed by applying one of our three proposed

methods. Actually, scenario (i) corresponds to the proposed idea of decom-

posed BVS (Chapter 6), scenario (ii) to the BVS using a common indicator

vector (Chapter 7), and scenario (iii) to the BVS using an indicator matrix

(Chapter 8).

9.3 Bayesian variable selection (BVS) on BE

We will now apply the three proposed methods on BE dataset, which consists

of M = 5 stages. We assign the following coding: H = 0, BE1 = 1, BE2 = 2,

BE3 = 3 and C = 4. From the five stages of BE disease, H and C are nominal

and BE1, BE2, and BE3 is the sequence of ordinal responses (t =(BE1, BE2,
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BE3)) with H added in this sequence in the non-decomposed cases. In the

training set n = 207 spectra are recorded at 447 different wavenumbers, which

correspond to p = 447 variables. The design matrix X of the training dataset

is centered by column mean.

9.3.1 Decomposed BVS

Firstly, our decomposed approach is implemented in two parts (Algorithm 2):

In part A, we merge BE1, BE2, and BE3 and treat them as one extra group

of nominal responses (we refer to it as BE1+BE2+BE3). We apply BVS for

the nominal responses H, BE1+BE2+BE3, and C (with unknown covariance

matrix) using two latent variables. In part B, we apply BVS for the ordinal

responses BE1, BE2, and BE3 by using one latent variable and a boundary

vector that distinguishes the classes.

For part A, we set the values for the hyperparameters of the unknown

covariance matrix Σ, δ = 3, d = 1, Q = I2, and in addition w(nom) = 3/447

(the earlier graphical analysis suggests a small number of important variables

may suffice), h = 106 (vague prior for the intercept) and Hξ = c2Ipξ (special

case of Equation (3.11), give a ridge type shrinkage). A simple way to find

a range of possible values that the regularization parameter c2 can take is to

apply PCA on the covariance matrix, calculate the eigenvalues, sort and stan-

dardize them, and finally calculate the cumulative sum of the standardized

eigenvalues. From the cumulative sum we can say that the top 5 to 10 eigen-

values explain 93.6% to 99.7% of the variability of the data. These correspond

to 1.72 and 0.06, and thus reasonable values for the regularizing parameter

lie between 0.6 and 17 (the reciprocals of these eigenvalues). Trying regular-

izing parameter values in this range, we select c2 = 10, which corresponds to

the highest classification accuracy on the training set. We run four different

chains with 40000 iterations from which the 20000 iterations are the burn-in

period. As we expect only few variables to inform the responses, we initialize

the indicator vector of each one of the four chains randomly, selecting 1, 2,

3, and 5 variables respectively to be important. The components of the two

latent variables are initialized according to Equation (6.5) for r = 1, 2.

For part B, we set the hyperparameters of the variance σ2, d1 = δ/2 = 1.5

and d2 = 0.5 (inverse Gamma is the univariate case of inverse Wishart),

similarly w(ord) = 3/447, h = 106 and Hγ = c3Ipγ , with c3 = 10. We run four

different chains with 150000 iterations out of which 100000 iterations is the

burn-in period. We initialize the indicator vector of each chain as in part A,

the latent variable according to Equation (6.6), and the non-fixed boundaries
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distributed uniformly in (0, 1000).

Figure 9.10 shows the results for variable and model selection for the aver-

age of chains for both parts of the decomposed approach. Variable 314 is the

most important for part A with marginal inclusion probability very close to 1

and 284 is the most important variable for part B with inclusion probability

0.93 (top of Figure 9.10). These variables were noted in the visualization of

the mean spectra (Figures 9.7 and 9.6). In addition, these variables are in-

cluded in the best models of the corresponding parts (bottom of Figure 9.10).

The best model for each part has very high posterior probability compared to

the second and third best models. Comparing the two best models we note

that they are distinct. Overall, the variables with high (marginal) posterior

probabilities in parts A and B are quite different, which is not surprising as

we noticed at scenario (i) in Section 9.2.

Figure 9.10: Marginal posterior probabilities of variables (top) and posterior
probabilities of models on a log scale (bottom) based on the average of chains
for decomposed BVS approach.

9.3.2 BVS with an indicator vector

In order to apply BVS with common indicator vector (BVS ξ), we use two

latent variables (s = 2), where the first one has a double role. The first latent

variable distinguishes H from the sequence of ordinal responses as well as

separating the ordinal classes, and the second latent variable distinguishes H

from C spectra. In the BVS ξ approach, we are interested in finding the best

model with common important variables across the two latent variables. The

earlier graphical analysis suggests a few of the variables may be important

jointly.
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We set the values for the hyperparameters of the unknown covariance

matrix Σ, δ = 3, d = 1, Q = I2. Additionally, we set w = 3/447, h = 106,

and c2 = 15. We run four different chains with 100000 from which 30000

iterations are the burn-in period. We initialize the indicator vector of each

one of the four chains by randomly selecting 1, 2, 3 and 5 variables respectively

to be important. Latent variables are initialized according to Equation (6.5)

for r = 1, 2 and boundaries as we described in Subsection 9.3.1, part A. Figure

9.11 contains the results of the BVS ξ. Only two variables (ID: 314 and 384)

are the same as or similar to those identified in scenario (ii) in Section 9.2

and those are combined with another five variables (ID: 127, 313, 316, 327,

and 386) in order to get the best model (bottom of Figure 9.11). Note that

those five variables are hard to discern by inspection of the mean spectra.

Figure 9.11: Marginal posterior probabilities of variables (top) and posterior
probabilities of models on a log scale (bottom) based on the average of chains
for BVS using a common indicator vector ξ.

9.3.3 BVS with an indicator matrix

In order to apply BVS with an indicator matrix (BVS Ξ), we use two latent

variables (s = 2), where the first one has a double role as before. However,

in this method, we wish to pick two best models, one for the sequence of

ordinal responses and one for the nominal responses, which allows us to have

flexibility.

We set the hyperparameters and handle the initialization as for the com-

mon ξ. The only difference is that here we initialize two indicator vec-

tors instead of a common one and we set w1 = w2 = 2/447. Here we set

HΞ:,1 = c2IpΞ:,1
and HΞ:,2 = c3IpΞ:,2

with c2 = c3 = 3. Figure 9.12 con-
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tains the results for both best variables and best models. It is clear that

the individual important variables are different for Ξ,:1 (which corresponds

to ordinal responses) and for Ξ,:2 (which corresponds to nominal responses)

(top of Figure 9.12). Just one variable of each (314 for Ξ,:1 and 347 for Ξ:,2)

is the same as in scenario (iii) in Section 9.2. Finally, variable 314 combined

with 51 gives the best model for Ξ:,1.
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Figure 9.12: Marginal posterior probabilities of variables (top) and posterior
probabilities of models on a log scale (bottom) based on the average of chains
for BVS using an indicator matrix Ξ.

In summary, the individual variables that our methods identify would

be difficult to discern with just visual information about their spectral dif-

ferences. In fact, only a small number of them would be selected if we only

looked at the peaks or troughs where the five stages show significant variations

in the spectra. Those peaks/troughs may vary slightly but the interpreta-

tions remain the same. For example, wavenumber 1155 cm−1 (ID: 314) is

associated with DNA, similarly to wavenumbers 1157, 1152 and 1151 cm−1

(ID: 313, 315, 316). However, the best models (combination of important

variables) of decomposed BVS and BVS ξ include ID 314 and 315 or 314 and

316 respectively in order to get accurate predictions.

9.3.4 Comparing the best models with different meth-

ods

In this section, we first compare the best models provided by the three pro-

posed methods: decomposed BVS, BVS ξ, and BVS Ξ. Then, we contrast

them with the best models of existing BVS methods and afterwards with

non Bayesian methods that treat responses as pure nominal or pure ordinal.

Table 9.2 summarizes the best models that different methods identify.
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Comparing the three new methods, we notice that the variable with ID

314 is included in the best models for each approach, but the best models

are different for each of the three cases. This means that there is a key

variable (ID 314), although the aim of the three proposed methods is different

(find two best models considering ordinal responses as one nominal, find one

common best model and find two best models, one for nominal and one for

ordinal responses). However, ID 314 is combined with different variables

according to the method used in order to build a good model for predictions.

In addition, comparing the BVS ξ approach with other new and existing BVS

approaches, we note that variables with ID 313, 314, 316 seem to mainly come

from the part A (decomposed approach) or pure nominal part, in contrast

with 384, 386 that come from the BVS pure ordinal part.

A more specific comparison is between the nominal (ordinal) decomposed

BVS and pure nominal (ordinal) BVS respectively. The BVS approach for

pure nominal responses has the same most important variables as the nom-

inal (part A) decomposed BVS, ID 314, 316 and 358, together with some

extra variables, but does not have any common variable with the ordinal de-

composed step. Then, comparing the variable ID’s of the decomposed BVS

approach for ordinal responses (part B) with the approach that uses pure

ordinal responses, we note only that the variable with ID 346 may belong to

the same peak as the 348.

Before continuing the discussion on comparisons with existing non Bayesian

methods, we remind the reader of details and notation in Table 9.2. The

methods are: Penalized LDA, LASSO, classification trees, random forests,

and SVMs. Penalized LDA uses an L1 penalty and finds the combinations of

the important variables that are noted in the table, see Witten and Witten

(2015). Both LASSO methods include the intercept in the best model. The

LASSO method for ordinal responses minimizes the regularization parameter

using BIC as criterion. Random forests for pure nominal responses find a

best model with 91 variables that is used for predictions, but in this table we

only write down the ID of the top 15 variables. Similarly, random forests for

pure ordinal responses finds that the best model contains 177 variables that

are used for predictions but in this table we include the ID of only the top

15 variables.

The existing BVS (pure) nominal method identifies that variable 316

(roughly, it can be 314, 315) belongs in the best model. On the other hand,

the existing BVS (pure) ordinal method identifies that variable 346 (roughly,

it can be 347, 348) belongs in the best model. This explains why, for exam-

ple, classification trees for pure nominal responses has at the root of the tree
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variable 316, whereas for the pure ordinal case there is a different one (346).

In addition, those two ID’s (314 for entirely nominal and 346 for entirely or-

dinal responses) are part of the best model of the non Bayesian methods that

treat responses as pure nominal or ordinal. However, each existing Bayesian

and non Bayesian method combines the two variables with different ones in

order to create the best model that can be used for predictions.
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Table 9.2: Best models (note the variable ID) for each method.

Method Best Model

Decomposed BVS Part A: 47, 135, 140, 309, 314, 315, 358, 413
Part B: 114, 284, 346, 427

BVS ξ 127, 313, 314, 316, 327, 384, 386

BVS Ξ Ξ:,1: 51, 314
Ξ:,2: 347

BVS pure nominal 41, 52, 154, 273, 275, 314, 316, 346, 358, 367, 376,
402, 419

BVS pure ordinal 348, 358, 383, 387

Penalized LDA pure nominal {1:447}r{8, 17, 18, 24, 72, 106, 119, 137, 142, 153,
154, 171, 184, 191, 193, 214, 218:220, 223, 245,
247, 248, 301, 335, 343, 363, 369:376, 388, 415,
443, 444, 447}

Penalized LDA pure ordinal {1:447}r {8, 24, 72, 106:110, 119, 153, 154, 171,
184, 214:223, 256:261, 301, 335, 343, 363, 415:423,
436:447}

LASSO pure nominal H: a0, 162, 264, 286, 314, 315, 358, 427
BE1: a1, 5, 14, 15, 45, 46, 110, 111, 151, 164,
212, 234, 235, 284, 290, 310, 368, 377, 401, 429,
430
BE2: a2, 5, 57, 110, 111, 151, 152, 201, 262,
287, 334, 335, 340, 377, 378, 402, 414, 437
BE3: a3, 54, 55, 171, 178, 210, 230, 262, 284,
285, 335, 344, 365, 378, 397, 398, 405, 421, 427,
431, 437, 447
C: a4, 4, 97, 188, 195, 213, 215, 226, 236, 242,
243, 264, 291, 414, 432, 443, 447

LASSO pure ordinal 226, 238, 413, 347, 1, 359, 237, 381, 348, a0,
358, 3, 186, a1, a3, a2

Classification trees pure nominal H: 316
BE1: 316, 346, 405, 14, 394 or 316, 346, 405,
57 or 316, 346, 265, 234, 414, 1, 314
BE2: 316, 346, 405, 14, 345, 4 or 316, 346, 265,
234, 414, 1 or 316, 346, 265, 234, 414, 1, 314
BE3: 316, 346, 405, 14, 345, 4 or 316, 346, 265
C: 316, 346, 405, 14, 394 or 316, 346, 405, 14,
345 or 316, 346, 405, 57 or 316, 346, 265, 234
or 316, 346, 265, 234, 414

Classification trees pure ordinal H: 346, 315
BE1: 346, 243, 376 or 346, 315, 234
BE2: 346, 315, 243, 60
BE3: 346, 243, 405, 159 or 346, 243, 376
C: 346, 243, 405, 159 or 346, 243, 405 or 346,
315, 234, 60

Random forests pure nominal 24, 42, 272, 285, 287, 308 , 310, 312, 315, 316,
360, 367, 410, 416, 423

Random forests pure ordinal 306, 315, 380, 314, 337, 51, 348, 352, 384, 78,
265, 22, 178, 311, 406

SVM pure nominal {1:447}r {8, 17, 18, 24, 72, 106, 119, 137, 142,
153, 154, 171, 184, 191, 193, 214, 218, 220, 223,
245, 248, 301, 335, 343, 363, 369, 370:376, 388,
415, 443, 444, 447}

SVM pure ordinal {1:447}r {8, 24, 72, 106:110, 119, 153, 154, 171,
184, 214:223, 256:261, 301, 335, 343, 363, 415:423,
436:447}
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9.3.5 Classification and prediction

We use the variables of the best models that our approaches have found in

order to quantify the predictive ability of the best models on the test set.

Table 9.3 contains these results, employing the overall classification accuracy

on the test set as performance measure. The three proposed methods achieve

at least 4% better performance than existing methods that treat all responses

as nominal or ordinal. The decomposed BVS comes out with the highest clas-

sification accuracy, at least 8% higher than the best of the existing methods.

The improvement of the accuracy is important because, on the one hand, it

confirms that the proposed methodologies are properly modelling a classifi-

cation problem with mixture type of responses and, on the other, they are

beneficial for the study of BE disease.

Table 9.3: Comparison of overall classification accuracy for the three proposed
BVS approaches with mixture of responses with existing methods, where the
last one treats responses as pure nominal or pure ordinal.

Accuracy (%)
Nominal Ordinal

Decomposed BVS 74.5
BVS ξ 71.6
BVS Ξ 70.6
BVS 64.7 66.7

Penalized LDA 47.1 44.1
LASSO 64.7 61.8

Classification trees 61.8 66.7
Random forests 63.7 66.7

SVM 63.7 44.1

A more fair comparison for the accuracy on the BE disease would be to

apply decomposed BVS versus using the decomposed versions of five exist-

ing methods. The main idea of the decomposed method remains the same

(Chapter 6, Algorithm 2): in part A apply a method for nominal responses H,

BE1+BE2+BE3, and C, in part B apply a method only for ordinal responses

BE1, BE2, and BE3 and finally combine the two results. Interestingly, our

decomposed BVS approach has the highest classification accuracy, at least 5%

better performance, compared to the remaining methods in Table 9.4. Com-

paring those decomposed methods with existing methods that treat responses

as pure nominal or ordinal (Table 9.3) we conclude that the application of the

decomposed methods can increase the classification accuracy in the case that

the responses are a mixture of nominal and ordinal, but again the accuracy

is not as good as our proposed decomposed BVS.

Finally, in Table 9.5 we compare the class-specific classification accuracy

of our three proposed methods with existing ones that treat the responses as
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Table 9.4: Comparison of overall classification accuracy of the proposed de-
composed BVS with existing methods that are applied in a decomposed man-
ner for nominal and ordinal responses.

Accuracy (%)
Decomposed BVS 74.5

Decomposed penalized LDA 55.9
Decomposed LASSO 67.7

Decomposed classification trees 67.7
Decomposed random forests 69.7

Decomposed SVM 67.7

Table 9.5: Overall and for each stage of BE disease classification accuracy on
the test set.

Accuracy (%)
Method H BE1 BE2 BE3 C Overall

Decomposed BVS 100.0 86.7 0 37.5 53.9 74.5
BVS ξ 100.0 82.2 0 0 92.3 71.6
BVS Ξ 95.8 91.1 0 0 61.5 70.6

BVS pure nominal 95.8 80.0 0 31.3 15.4 64.7
BVS pure ordinal 83.3 82.2 0 31.3 46.2 66.7

Penalized LDA pure nominal 95.8 44.4 0 0 38.5 47.1
Penalized LDA pure ordinal 95.8 35.6 0 12.5 30.8 44.1

LASSO pure nominal 100.0 68.9 0 56.3 15.4 64.7
LASSO pure ordinal 75.0 82.2 0 6.3 53.9 61.8

Classification trees pure nominal 91.7 71.1 0 50.0 7.7 61.8
Classification trees pure ordinal 95.8 75.6 0 31.3 46.2 66.7
Random forests pure nominal 100.0 73.3 0 25.0 30.8 63.7
Random forests pure ordinal 91.8 91.1 0 0 38.5 66.7

SVM pure nominal 100.0 62.2 25.0 37.5 46.2 63.7
SVM pure ordinal 87.5 40.0 0 18.8 23.1 44.1

entirely nominal or ordinal. We may draw further conclusions based on this

table. We can see that the easiest task is to correctly classify healthy spectra,

but it is very difficult to distinguish class BE2 from the remaining stages. This

difficulty arises partly from the fact that the BE2 spectra in the training set

are very few, but may also reflect unreliability on the histologist’s diagnosis.

The classification accuracy of BE1 is higher than BE3, which verifies that

it is easier to identify an early stage disease. This is important because it

can be treated. Class BE3 is difficult to classify histopathologically and for

this reason all methods have not so high accuracy for this class. On the

other hand, the last stage of the disease is full cancer and in general we can

diagnose with higher accuracy a cancer spectrum than a spectrum from an

intermediate stage. Focusing on our methods, they achieve almost perfect

accuracy for healthy spectra, the highest for BE1 and cancer spectrum and

the overall accuracy is much higher when compared to other methods.

The three proposed methods are applied on the BE disease and illustrated

to have prediction accuracy superior to that of some well-established machine
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learning methods. This could be because BVS methods can potentially ex-

plore the space of the possible models more efficiently. Although there will

be no method/model that works best for every problem, decomposed BVS

works well for the particular problem of the BE diagnosis.

9.4 Discussion of the BE results

It is important that the proposed models and variable selection approaches

accomplish finding the best model(s). Such models can give good predictions

for an unseen patient of the test set, and not just discriminate well within the

training set. We achieve this discrimination by including variable 314 in the

best model but in each approach combining it with different variables. The

model that gives the best classification results is the one that the decomposed

BVS found. It is interesting that 1155 cm−1 (ID: 314) together with 1153

cm−1 (ID: 315) and others achieve very high overall predictive accuracy.

We try to provide some insight into the biological problem of predicting

BE for each one of the three proposed models. In the decomposed model, to

discriminate the H from BE1+BE2+BE and C, the combination of wavenum-

bers 1080, 1124 and 1171 cm−1 played an important role. Those wavenumbers

were attributed to glycogen. Focusing then on the process of discovering the

best combination of biomarkers for BE1, BE2 and BE3, we note that the

important ones are at wavenumbers 1541, 1213, 1093 and 937 cm−1, which

were attributed to DNA/RNA combined with amide II and metabolites.

In the BVS ξ, where all the latent variables use the same wavenumbers,

important wavenumbers for the five possible BE stages were 1516, 1157, 1155,

1551, 1130, 1020 and 1016 cm−1, which correspond mainly to DNA/RNA

combining also with Amide II and glycogen.

Finally, in the BVS Ξ, important wavenumbers included: for H versus C

samples at wavenumber 1091 cm−1 which are assigned to DNA/RNA, and

for H, BE1, BE2, BE3 the combination of wavenumbers 1662 and 1155 cm−1,

which are assigned to the combination of Amide I with DNA/RNA.

In summary, DNA/RNA is the main compound that is combined with

Amide I, II, and/or glycogen in order to increase the classification accuracy

of the five stages of BE (according to the different proposed methods).

Among the three proposed models, the decomposed BVS was the one

preferred by the biologists. This is because it is important to end up with

a model that distinguishes satisfactorily the middle stages of the BE disease

and the model delivers some important variables for the middle stages that

would be difficult to identify by eye. This step is crucial as it is difficult to
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find biomarkers as BE progresses from BE2 to BE4. Combining this task with

the easier step of finding potential biomarkers for healthy, BE2+BE3+BE4,

and cancer, can give an approach to identifying potential biomarkers for the

five stages of the BE disease according to the UK classification.

The outcomes of the BVS approaches are presented as individually impor-

tant variables and best model (combination of important variables), where

the first are used mainly for biomarker identification (based on marginal as-

sociations) and the second for predictions (based on the best model). Both

ways are useful, even though there is no preference between the two from the

biological point of view.

When using the marginal posterior probabilities we refer to the top vari-

ables, where a threshold of a probability is required such that variables above

that threshold correspond to important variables and below it to unimpor-

tant variables. Here in order to present the top (individual) variables to

biologist and doctors, we pick 0.5 as the threshold. This is known as median

probability model (Barbieri and Berger, 2004). In high dimensional settings,

a more advanced technique is to control the FDR as discussed in Chapter 1.

We note that, even the simple threshold of 0.5 leads to identifying the same

variables as those in the best model (the model with the highest probability)

in all cases of the current study. There are also other applications, for exam-

ple on the Ozone dataset (Berger and Molina, 2005), which exhibit the same

interesting behavior.

As we mentioned above, it is challenging to correctly classify BE2 spectra

(Table 9.5). We could try to merge BE2 with BE3. Then, H and C would

be nominal and H, BE1, and BE2+BE3 the sequence of ordinal responses.

Again, both the BVS ξ and the BVS Ξ approach would use two latent vari-

ables, but we would have to sample for just one component of the boundary

vector.
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Chapter 10

Conclusions

In this chapter, a summary of the achieved objectives in this work is given,

focusing on both statistical methodology and the Barretts oesophagus (BE)

application. Finally, some comments on the possible directions for future

methodological research are presented.

10.1 Summary of thesis

In this thesis statistical models were developed to deal with classification

problems with a mixture of nominal and ordinal responses, focusing on how to

eliminate irrelevant variables in high-dimensional data, for example data from

spectroscopy. This was achieved by extracting the most useful information

from the data, which was then included in the best model that allows us

in the BE case to correctly classify tissue as healthy, BE1, BE2, BE3, and

cancer.

We built three models that are appropriate for the mixture of ordinal and

nominal responses. Since the aim was to find a simple model that contains

the important variables, we proposed Bayesian variable selection (BVS) ap-

proaches. The three methods were decomposed BVS, BVS ξ, and BVS Ξ.

All of the methods are based on a probit model with latent variables and are

able to incorporate prior knowledge, where it exists. The three methods were

applied successfully in the BE disease class prediction. We demonstrated that

those methods work well for high-dimensional data (n � p). We can select

any of the three methods depending on the aim of the specific study. The

guideline is the following: If the aim of the study is to identify one best model

for nominal responses and one for ordinal, then the appropriate method is the

decomposed BVS. On the other hand, if the goal is to identify different best

models for each one of the nominal responses and one (common) model for

167



ordinal, then the method to use is the BVS Ξ. However, in some cases, for

example in the initial stage of a study, it may be interesting to identify just

one (common) best model that encapsulates both nominal and ordinal re-

sponses. Then, the preferred method is a BVS ξ. Finally, if we are interested

only in predictions and we do not have knowledge about the interpretation of

the application, then we can apply all of the proposed methods and keep the

one that satisfies some criterion of our choice, e.g. classification accuracy.

We conclude that the three proposed methods can give higher classifica-

tion accuracy than existing methods that treat responses as pure nominal or

pure ordinal. This means that the models and the variable selection methods

are successfully taking into account both types of responses. Additionally,

applying the decomposition idea to any existing methods ha the potential to

increase the classification accuracy compared to applying the same methods

onto pure nominal or ordinal responses. If we contrast the existing decom-

posed methods with the decomposed BVS we can say that the latter performs

better than frequentist methods, because the Bayesian method incorporates

prior knowledge, e.g. the number of variables included in the model may be

controlled by the prior. Finally, from the three methods, the highest classi-

fication accuracy is achieved via the decomposed BVS in the case of the BE

application. This means that we found two best models: the first discrim-

inates nominal responses H from C and BE1+BE2+BE3 (group of ordinal

responses that treated as one nominal response) and the second discriminates

between the ordinal responses (BE1, BE2, BE3). Then, the classification pro-

cess follows the same pattern. This idea works nicely, since it splits a complex

problem into two simpler problems (through the decomposition).

The advantages that arise from the BE application are beneficial for the

patients, medicine, and hospital management as well. Speed of the diagnosis

(without waiting for histological results) and low cost of it (without the need

of expert histopathologists) are the main advantages for diagnose of the BE

disease via the best model. Therefore, the management options for the BE

tend to become easier. The option to have more frequent follow ups may

helps the patient to have better life quality. For the medical science, finding

the combination of important variables is of prime importance and opens

new possibilities for understanding the cell changes involved in the disease.

Up to now, medical doctors know that variable 314 is a biomarker, but it

is new knowledge that this variable, combined with the variables 47, 135,

140, 309, 315, 358 and 413, contains a lot of information from the tissues

in order to discriminate H from C and BE1+BE2+BE3, even though those

variables may or may not be biomarkers themselves. However, we notice that
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the important variable 314 (and the others that were just mentioned) is not

a potential biomarker for BE1, BE2 and BE3, and does not belong to the

best model of the three middle stages.

Finally, correctly identifying the stage of the disease that the patient has,

can assist the doctors in providing the appropriate treatment. Additionally,

this reduces the cost of repeatedly taking extra biopsies to identify the stage

of the disease as well as the risk of mistreating the patient, which could lead

to health issues. Avoiding giving inappropriate treatments to the patient

at a specific stage of the disease can provide a cost-effective strategy for

managing BE. This strategy promises an economical plan for hospitals and

governments.

10.2 Future work

This work could be extended or improved in several directions. In most

published examples and in this study the prior information for the coefficients

uses some standard choice for the covariance matrix, in order, for instance,

to be invertible and not computationally expensive. However, we could try

to extract some prior knowledge that comes from the specific BE study in

order to use the benefits of the Bayesian approach of variable selection. One

choice may be an AR(1) small bands covariance matrix for β (if the the lag

between two variables is small, then they are dependent and if it is large

are independent). In addition, we could add low order dependences between

the indicator variables, similar to the binary case where we used a first order

Markov model that captures the dependency. In the models under those more

complex assumptions, and also in the proposed methods it will be useful to

reduce the computational cost. However, the first aim remains the same: to

set up an appropriate model for mixture of nominal and ordinal responses

and to identify the best model(s) in order to achieve accurate predictions.

One natural extension of BVS Ξ would be to study this method under

different assumptions, where the covariance matrix is unknown. In this case

we would work with the block matrices, for example block matrix of coef-

ficients, where each block will be related to different regression equations.

However, in this case variable selection can be challenging, as we have to

take into account correlations between the latent variables when computing

the conditional distributions.

In the current study, we focus on the case of a mixture of nominal and

ordinal responses where there is one sequence of ordinal responses. However,

it might be interesting to construct a model for the mixture of responses using
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more than one group of ordinal responses. One example is the emoticons

that are mainly used in social media. Those emoticons can be very sad, sad,

happy, and very happy (one group of ordinal responses), upset, angry, and

furious (another group of ordinal responses), and shocked and scared (nominal

responses). In this case, we can extend the three methodologies for model

building and variable selection. In the modelling part we will introduce two

boundary vectors, one for each group of ordinal responses, and consequently

two of the latent variables will be related to those boundary vectors. In the

variable selection process we will use one extra indicator vector for the second

group of ordinal responses.

Another possible extension is to multi-label classification, for example the

topics in the document/newspapers/media could be sports, politics (nominal)

primary, secondary and high education (ordinal). The extension will contain

two parts: modelling and variable selection approach. The variable selec-

tion with many labels is more challenging, especially if there is dependence

between those labels.

Apart from the methodological extensions of the proposed methods, a

practical direction would be to develop a novel and user-friendly software

that speeds up the diagnosis of BE disease with a high accuracy using the

proposed decomposed BVS but without the need for a histologist’s diagnosis.

Although, the diagnosis of the BE will become automatic, we will need to

verify the clinical relevance via testing many samples.

Finally, the proposed approaches for variable selection can be applied in

many scientific areas such as Bioinformatics (microarrays, gene expression),

pattern recognition (image processing, face recognition, handwritten digit

recognition signal, document classification), Neuroscience (functional MRI

studies of the brain), Medicine (cancer types), Finance (loan applications,

income), Social sciences (nursery application, students grade), Genetics and

Genomics.
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Appendix A

Multi and matrix variate

distributions

i. Truncated multivariate normal

The definition of a truncated distribution at a, b of a random variable

X, is given by

f(X) =


P (a≤X≤b)∫ b

a P (a≤X≤b)dX
, if a ≤ X ≤ b

0, otherwise.
(A.1)

Based on this definition, the PDF for the truncated multivariate normal

(TMV N) X ∼ TMV N(µ,Σ, a,b) can be expressed as

f(X,µ,Σ, a,b) =
exp

{
−1

2
(X− µ)

′
Σ−1(X− µ)

}∫ b

a
exp

{
−1

2
(X− µ)′Σ−1(X− µ)

}
dX

, (A.2)

for a ≤ X ≤ b and 0 otherwise. The constant term, c(p) = (2π)−
p
2 |Σ|− 1

2

of the PDF of a p-variate normal distribution does not appear in the last

equation because it cancels out in ratio.

The first idea to generate variates from a truncated multivariate normal

distribution is to draw from the untruncated distribution and accept only

those samples inside the support region. However, this is not an efficient

algorithm. The second approach to generating random samples is to use

the Gibbs sampler and take samples from conditional univariate distri-

butions are actually truncated univariate normal distributions Kotecha

and Djuric (1999).

ii. Matrix normal

Let Z be a p×q random matrix. Z follows a matrix normal distribution,
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Z−M ∼MN(P,Q), where M is the mean of Z and piiQ and qjjP are

the covariance matrixes of i-th row and j-th column respectively. If P

and Q are positive definite, the PDF of the matrix normal is

f(Z) = c(p, q)|P|−
q
2 |Q|−

p
2 exp

{
−1

2
tr[P−1(Z−M)Q−1(Z−M)

′
]

}
,

(A.3)

with c(p, q) = (2π)−
pq
2 , where |.| represents the determinant of square

matrix and tr(.) is the trace of the square matrix (i.e., the sum of the

diagonal elements of it).

iii. Inverse Wishart

Let V ∼ IW (δ,Q), where Q is the positive definite scale matrix and

δ = ν − q + 1 > 0 (ν ≥ q) is the parameter that denotes the degrees

of freedom (ν degrees of freedom of Wishart distribution). Then V is

positive definite and the PDF, according to Dawid (1981), is given by

f(V) = c(q, δ)|Q|
δ+q−1

2 |V|−
δ+2q

2 exp

{
−1

2
tr(V−1Q)

}
,V > 0, (A.4)

with c(q, δ) = 2
−(δ+q−1)p

2 /Γq[(δ + q − 1)/2]), where q is the dimension of

V (V ∈ Rq×q) and Γq is the multivariate generalization of the gamma

function and is equal to

Γq(x) = π
q(q−1)

4

q∏
j=1

Γ[x+ (1− j)/2].

This formula of inverse Wishart distribution it does not require constant

adjustment of the shape parameter V, since it is true that E(V) =

Q/(δ − 2) for δ > 2. The inverse Wishart distribution as defined here

is also consistent under marginalization, a property that is not true by

other parametrizations (it comes from different specification of degrees

of the freedom).

iv. Matrix Student distribution

Let Σ ∼ IW (δ,Q) and given Σ, T ∼ MN(P,Σ). Then the marginal

distribution for T is a p× q matrix Student distribution and is denoted

by MT (δ; P,Q). The PDF of the matrix Student distribution exists for

δ > 0, P > 0 and Q > 0 and is

f(T) = c(p, q, δ)|P|
δ+p−1

2 |Q|−
p
2 |P + TQ−1T

′ |−
δ+p+q−1

2 , (A.5)
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with c(p, q, δ) = π−
pq
2 Γq[(δ + p+ q − 1)/2])/Γq[(δ + p− 1)/2]).

Marginal and conditional distributions of the matrix T also have a matrix

Student distribution. If T is partitioned as T
′

= (T
′

1,T
′

2) (Ti is pi × q
matrix, i = 1, 2, p1 + p2 = p), then the marginal distribution is T2 ∼
MT (δ; P22,Q) and the conditional distribution of T1 given T2 is T1 −
P12P

−1
22 T2 ∼ MT (δ + p2; P11.2,Q + T2P

−1
11 T

′

2), where P11.2 = P11 −
P12P

−1
22 P21.

v. Truncated multivariate Student

Let X follow a truncated multivariate Student distribution with degrees

of freedom ν. The PDF of X ∼ TMNT (ν;µ,Σ, a,b, ) can be expressed

as

f(X,µ,Σ, a,b, ν) =

[
1 + 1

ν
(X− µ)

′
Σ−1(X− µ)

]− ν+p
2∫ b

a

[
1 + 1

ν
(X− µ)′Σ−1(X− µ)

]− ν+p
2 dX

, (A.6)

for a ≤ X ≤ b and 0 otherwise. The constant term, c(p, ν) = (νπ)−
p
2 ·

|Σ|− 1
2

Γp[(ν+p)/2]

Γp[ν/2]
of the PDF of a p-variate Student T distribution does

not appear in the last equation because in cancels out in the ratio.

The sampling method for the truncated multivariate normal distribution

can be easily generalized to a method for sampling from the truncated

multivariate Student T distribution (Geweke, 1991), since truncated mul-

tivariate normal can be obtained as the ratio of a truncated multivariate

Student T to the square root of an independent chi-squared random vari-

able divided by its degrees of freedom.

vi. Inverse Gamma

Let σ2 ∼ IG(ν1, ν2), ν1 is the shape (ν1 > 0) and ν2 is the scale (ν2 > 0).

The PDF of σ2, according this parametrization, is given by

f(σ2) = c(ν1, ν2)(σ2)−ν1−1 exp
{
− ν2

σ2

}
(A.7)

with c(ν1, ν2) = νν12 /Γ(ν1), where Γ(.) is the gamma function and is equal

to

Γ(ν1) =

∫ ∞
0

(σ2)ν1−1 exp(−σ2)dσ2.

The inverse Gamma distribution can be parameterized differently using

as the second positive parameter the rate (instead of scale). In this study

we select to work with the parametrization of shape and scale.
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vii. Normal inverse Gamma

Let X be a random variable that distributed as multivariate normal

with mean µ and covariance matrix σ2Σ, where σ2 ∼ IG(ν1, ν2). The

common distribution of them is the normal inverse gamma, X, σ2 ∼
NIG(µ, σ2Σ, ν1, ν2), and the PDF is given by

f(X, σ2) = c(ν1, ν2)

(
1

σ2

)n/2+ν1+1

exp

{
−(X− µ)

′
Σ−1(X− µ) + 2ν2

2σ2

}
where c(ν1, ν2) = (2π)−n/2νν12 /Γ(ν2)|Σ|−1/2.
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Appendix B

Algebra calculations for the

probit model with nominal

responses, Σ known, common ξ

This appendix contains the algebra calculations of the multi-class BVS with

mixture of nominal and ordinal responses under the assumption that Σ is

known and ξ is common across different classes, as described in Subsec-

tion 6.2.1. The prior distributions are described in the same subsection. This

appendix actually contains the algebra calculations of part A of the decom-

posed approach for Σ known (Figure 6.1, Algorithm 2 at Chapter 6). Setting

α0 = 0 and B0ξ = 0 the full conditional distributions are calculated below.

In this case, the unknown parameters are Z,α,Bξ and ξ. We assume

that α, Bξ are independent, namely that p(α,Bξ) = p(α)p(Bξ). The joint

posterior is proportional to likelihood times the prior distribution and it is

given by

p(Z,α,Bξ, ξ,k|X,y)

∝ |Σ|−n/2 exp

{
−1

2
tr
[(

Z− 1nα
′ −XξBξ

)
Σ−1(Z− 1nα

′ −XξBξ)
′
]}

·
n∏
i=1

1(Zi,: ∈ Fi) |Hξ|−(M−1)/2 |Σ|−pξ/2 exp

{
−1

2
tr
[
H−1
ξ BξΣ

−1B
′
ξ

]}
(B.1)

· |Σ|−1/2 exp

{
−h
−1α

′
Σ−1α

2

}

·
p∏
j=1

wξj (1− w)1−ξj ,

where Fi is given by Equation (5.11).

First, in order to integrate out α given Z,Bξ and ξ, the exponential
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terms that are associated with α (excluding 1
2
Σ−1) in Equation (B.1) can be

rewritten as

−
(
Z− 1nα

′ −XξBξ
)′ (

Z− 1nα
′ −XξBξ

)
− h−1αα

′

=−
[
(Z−XξBξ)− 1nα

′
]′ [

(Z−XξBξ)− 1nα
′
]
− h−1αα

′

=− (n+ h−1)αα
′
+ 1

′
n(Z−XξBξ)α+α

′
(Z−XξBξ)

′
1n

−(Z−XξBξ)
′
(Z−XξBξ)

=− (n+ h−1)
[
αα

′ − (n+ h−1)−11
′
n(Z−XξBξ)α

− (n+ h−1)−1α
′
(Z−XξBξ)

′
1n + (n+ h−1)−1(Z−XξBξ)

′
(Z−XξBξ)

+− (n+ h−1)−1h−1(Z−XξBξ)
′
(Z−XξBξ)

]
=− (n+ h−1)VV

′ − (nh+ 1)−1(Z−XξBξ)
′
(Z−XξBξ), (B.2)

where V = {α′−(n+h−1)−11
′

n(Z−XξBξ)} and (n+h−1)−1h−1 = (nh+1)−1.

Combining the factors 1
2
tr(Σ−1), |Σ|−1/2 and the exponential terms of the first

and penultimate line in Equation (B.1) together with Equation (B.2) yield∫
|Σ|1/2 exp

{
−1

2
tr
(
Σ−1

[
(n+ h−1)VV

′

+(nh+ 1)−1(Z−XξBξ)
′
(Z−XξBξ)

])}
dα

∝ exp

{
−1

2
tr
(
Σ−1

[
(nh+ 1)−1(Z−XξBξ)

′
(Z−XξBξ)

])}
, (B.3)

where in Equation (B.3) there is a constant that comes from the matrix

normal density MN(In,Σ).

Using Binomial inverse theorem, also known as Sherman-Morrison-Woodbury

formula (Woodbury (1950); Plackett (1950)),

(nh+ 1)−1(Z−XξBξ)
′
(Z−XξBξ) = (Z−XξBξ)

′
(In + h1n1

′
n)−1(Z−XξBξ).

(B.4)

Secondly, in order to integrate out Bξ, the exponential terms that are

associated with Bξ in Equation (B.1) together with the term that is in the

squared brackets of Equation (B.3), using also Equation (B.4), can be rewrit-
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ten as

B
′

ξH
−1
ξ Bξ + (Z−XξBξ)

′
(In + h1n1

′

n)−1(Z−XξBξ)

=B
′

ξH
−1
ξ Bξ + Z

′
(In + h1n1

′
n)−1Z− Z

′
(In + h1n1

′
n)−1XξBξ

−B
′

ξX
′

ξ(In + h1n1
′
n)−1Z + B

′

ξX
′

ξ(In + h1n1
′
n)−1XξBξ (B.5)

=B
′

ξWξBξ −B
′

ξN−N
′
Bξ + J +−N

′
W−1

ξ N

=(Bξ −W−1
ξ N)

′
Wξ(Bξ −W−1

ξ N) + J−N
′
W−1

ξ N,

where Wξ = X
′

ξ(In + h1n1
′
n)−1Xξ + H−1

ξ , N = X
′

ξ(In + h1n1
′
n)−1Z and J =

Z
′
(In+h1n1

′
n)−1Z. Combining the factors −1

2
tr(Σ−1), |Σ|−n/2, |Hξ|−(M−1)/2,

|Σ|−pξ/2 and the corresponding exponential term of Equation (B.1) together

with the first term of Equation (B.5) yield the completed quadratic form of

the matrix normal density MN(W−1
ξ ,Σ). Continuing the integration of Bξ,

|Σ|−n/2 |Hξ|−(M−1)/2 |Σ|−pξ/2

·
∫

exp

{
−1

2
tr
[
Σ−1

(
Bξ −W−1

ξ N
)′

Wξ

(
Bξ −W−1

ξ N
)]}

dBξ

· exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

∝ |Σ|−n/2 |Hξ|−(M−1)/2 |Σ|−pξ/2 |Σ|pξ/2
∣∣W−1

ξ

∣∣(M−1)/2

· exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

∝ |Σ|−n/2 (|Hξ| |Wξ|)−(M−1)/2 exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

, (B.6)

where J−N
′
W−1

ξ N = Z
′
P∗−1
ξ Z and P∗−1

ξ = (In+h1n1
′
n)−1−(In+h1n1

′
n)−1Xξ·

[X
′

ξ(In + h1n1
′
n)−1Xξ + H−1

ξ ]−1X
′

ξ(In + h1n1
′
n)−1. Since P∗−1

ξ Pξ = In, P∗ξ

takes the simple form Pξ = In+h1n1
′

n+XξH
−1
ξ X

′

ξ and Z
′
P∗−1
ξ Z = Z

′
P−1
ξ Z.

From Equation (B.6) it is true that Z|ξ,X ∼MN(Pξ,Σ). From this we can

easily calculate the full conditional distribution of Z (we also condition on

the y), so that

Z|ξ,X,y ∼MN(Pξ,Σ)
n∏
i=1

1(Zi,: ∈ Fi) (B.7)

p(Z|ξ,X,y) ∝ |Σ|−n/2 |Pξ|−(M−1)/2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]} n∏
i=1

1(Zi,: ∈ Fi).

Then, we calculate the conditional probability of ξ given the remaining

unknown parameters using Equations (B.1), (B.6) and (B.7), which is the
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following

p(ξ|Z,X,y) = p(ξ)p(X,y,Z|ξ)

=p(ξ)p(X,y|Z, ξ)p(Z|ξ) = p(ξ)p(X,y|Z)p(Z|ξ)

∝p(ξ)p(Z|ξ) = p(ξ)

∫
p(Z|α,Bξ, ξ)p(α)p(Bξ|ξ)dαdBξ

∝p(ξ)(|Hξ| |Wξ|)−(M−1)/2 |Pξ|−(M−1)/2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]}
,

where in general |Hξ| |Wξ| = |HξWξ| =
∣∣∣In + XξHξX

′

ξ(In + h1n1
′

n)−1
∣∣∣. In

the special case that X is centered by column and h large it is true that

|Hξ| |Wξ| ≈
∣∣∣In + XξHξX

′

ξ

∣∣∣.
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Appendix C

Algebra calculations for the

probit model with ordinal

responses, σ2 unknown

This appendix contains the algebra calculations of the multi-class BVS with

ordinal responses under the assumption that σ2 is unknown as described in

Subsection 6.2.1. The prior distributions are described in the same subsec-

tion. This is actually part B of the decomposed approach for σ2 unknown

(Figure 6.1, Algorithm 2 at Chapter 6). Setting α0 = 0 and β0γ = 0 the full

conditional distributions are calculated below.

In this case the unknown parameters are z, α,βγ ,γ, σ
2 and k. We assume

that α, βγ are independent conditionally on σ2, namely that p(α,βγ |σ2) =

p(α|σ2)p(βγ |σ2). The joint posterior is proportional to likelihood times the

prior distribution and it is given by

p(z, α,βγ ,γ,k, σ
2|X,y)

∝
(

1√
2πσ2

)n
exp

{
− 1

2σ2

n∑
i=1

(
zi − α−Xi,γβγ

)2}

·
n∏
i=1

1(zi ∈ Ri) ·
n∏
i=1

[
M−1∑
m=0

1(yi = m)1(km < zi < km+1)

]

·
(

1

σ2

)1/2

|Hγ |−1/2 exp

{
−
βγH−1

γ β
′
γ

2σ2

}
(C.1)

· 1

h1/2
√

2πσ2
exp

{
− nα2

2hσ2

}
·
p∏
j=1

wγj (1− w)1−γj

· dd12

Γ(d1)
(σ2)−d1−1 exp

{
−d2

σ2

}
,
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where Ri is given via Equation (5.19).

First, in order to integrate out α given z,βγ ,γ, k and σ2, the exponential

terms that are associated with α in Equation (C.1) can be rewritten as

−
∑n

i=1

(
zi − α−Xi,γβγ

)2
2

− nα2

2h

=−
(
z− 1nα−Xγβγ

)′ (
z− 1nα−Xγβγ

)
2

− α2

2h

=−
(
z− 1nα−Xγβγ

)′ (
z− 1nα−Xγβγ

)
+ h−1α2

2

=−
[(

z−Xγβγ
)
− 1nα

]′ [
(z−Xγβγ)− 1nα

]
+ h−1α2

2

=−
(n+ h−1)α2 − 1

′
n(z−Xγβγ)α− α(z−Xγβγ)

′
1n − (z−Xγβγ)

′
(z−Xγβγ)

2

=−
(n+ h−1)

[
α2 − (n+ h−1)−11

′
n(z−Xγβγ)α− (n+ h−1)−1α(z−Xγβγ)

′
1n

2

−
(n+ h−1)−1(z−Xγβγ)

′
(z−Xγβγ)

2

+−
(n+ h−1)−1h−1(z−Xγβγ)

′
(z−Xγβγ)

]
2

(C.2)

=− (n+ h−1)VV
′ − (nh+ 1)−1(z−Xγβγ)

′
(z−Xγβγ),

where V = {α−(n+h−1)−11
′

n(z−Xγβγ)} and (n+h−1)−1h−1 = (nh+1)−1.

Combining the factor 1/σ2 and the exponential terms of Equation (C.1)

together with the Equation (C.2) yield

∫
1

h1/2
√

2πσ2
exp

{
− 1

σ2

[
(n+ h−1)V 2

2

+
(nh+ 1)−1(z−Xγβγ)

′
(z−Xγβγ)

2

]}
dα

∝ exp

{
− 1

2σ2

[
(nh+ 1)−1(z−Xγβγ)

′
(z−Xγβγ)

]}
, (C.3)

where there is a proportionality constant that comes from the normal dis-

tribution N(V, σ2(n+ h−1)−1).

Using Binomial inverse theorem, also known as Sherman-Morrison-Woodbury

formula (Woodbury (1950); Plackett (1950)),

(nh+ 1)−1(z−Xγβγ)
′
(z−Xγβγ)

2
=

(z−Xγβγ)
′
(In + h1n1

′
n)−1(z−Xγβγ)

2
.

(C.4)
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Secondly, in order to integrate out βγ , the exponential terms that are

associated with βγ in Equation (C.1) together with the term that is in the

squared brackets of Equation (C.3), using also Equation (C.4), can be rewrit-

ten as

β
′

γH
−1
γ βγ + (z−Xγβγ)

′
(In + h1n1

′

n)−1(z−Xγβγ)

=β
′

γH
−1
γ βγ + z

′
(In + h1n1

′
n)−1 − z

′
(In + h1n1

′
n)−1Xγβγ

−β′γX
′

γ(In + h1n1
′
n)−1z + β

′

γX
′

γ(In + h1n1
′
n)−1Xγβγ (C.5)

=β
′

γWγβγ − β
′

γN−N
′
βγ + J +−N

′
W−1

γ N

=(βγ −W−1
γ N)

′
Wγ(βγ −W−1

γ N) + J−N
′
W−1

γ N,

where Wγ = X
′

γ(In + h1n1
′
n)−1Xγ + H−1

γ , N = X
′

γ(In + h1n1
′
n)−1z and

J = Z
′
(In +h1n1

′
n)−1z. Combining the factors − 1

2σ2 , |Hγ |−1/2 and the corre-

sponding exponential term of Equation (C.1) together with the first term of

Equation (C.3) yield the completed quadratic form of the multivariate normal

density MVN(0, σ2W−1
γ ). Continuing the integration of βγ ,

|Hγ |−1/2

∫
exp

{
− 1

2σ2

(
βγ −W−1

γ N
)′

Wγ

(
βγ −W−1

γ N
)}

dβγ

· exp

{
− 1

2σ2

(
J−N

′
W−1

γ N
)}

∝ |Hγ |−1/2
∣∣σ2W−1

γ

∣∣1/2 exp

{
− 1

2σ2

(
J−N

′
W−1

γ N
)}

(C.6)

= (|Hγ | |Wγ |)−1/2 exp

{
− 1

2σ2

(
J−N

′
W−1

γ N
)}

(σ2)1/2,

where J − N
′
W−1

γ N = z
′
P∗−1
γ z = z

′
P−1
γ z and P∗−1

γ = (In + h1n1
′
n)−1 −

(In + h1n1
′
n)−1Xγ · [X

′

γ(In + h1n1
′
n)−1Xγ + H−1

γ ]−1X
′

γ(In + h1n1
′
n)−1. Since

P∗−1
γ Pγ = In, P∗γ takes the simple form Pγ = In + h1n1

′

n + XγH
−1
γ X

′

γ .

From Equation (C.6) p(z|γ,k,X) ∼ MVN(0, σ2Pγ). From it we can easily

calculate the full conditional distribution of z (also conditioning on the y) so
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that

p(z|γ,k,X,y, σ2)

∝ (2π)n/2(σ2)−n/2 |Pγ |−1/2 exp

{
−1

2

[
z
′
P−1
γ z

σ2

]}
dd12

Γ(d1)
(σ2)−d1−1

exp

{
−d2

σ2

} n∏
i=1

1(zi ∈ Ri)

z|γ,k,X,y, σ2 ∼MVN(0, σ2Pγ)
n∏
i=1

1(zi ∈ Ri)p(σ
2). (C.7)

Integrating out σ2 from the last equation, via the density

IG
(
d1 + n

2
, 1

2
z
′
P−1
γ z + d2

)
p(z|γ,k,X,y)

∝ (2π)−n/2 |Pγ |−1/2 dd12

Γ(d1)

n∏
i=1

1(Zi ∈ Ri)

∫
exp

{
−

1
2
z
′
P−1
γ z + d2

σ2

}
dσ2

∝ dd12

2n/2πn/2Γ(d1) |Pγ |1/2
·

Γ
(

2d1+n
2

)[
1
2
z′P−1

γ z + d2

]d1+n
2

n∏
i=1

1(zi ∈ Ri)

∝
dd12 Γ

(
2d1+n

2

)
2n/2πn/2Γ(d1) |Pγ |1/2

[
1

2d2
z′P−1

γ z + 1
]d1+n

2

n∏
i=1

1(zi ∈ Ri) (C.8)

∝
d
d1
2

Γ

(
2d1+n

2

)
πn/2Γ

(
2d1
2

)
2n/2 |Pγ |1/2

[
d1

2d2d1
z′P−1

γ z + 1
]d1+n

2

n∏
i=1

1(zi ∈ Ri)

∝
Γ
(

2d1+n
2

)
πn/2Γ

(
2d1
2

) ∣∣∣2d1
d2
d1

Pγ

∣∣∣1/2 [ 1
2d1

z′
(
d2
d1

Pγ

)−1

z + 1

] 2d1+n
2

n∏
i=1

1(zi ∈ Ri).

where Γ(·) denotes the gamma function.

So, z|γ,k,X,y ∼MV T
(

2d1; 0, d2
d1

Pγ

)∏n
i=1 1(zi ∈ Ri).

Using Equations (C.1), (C.6) and (C.7) it is true that
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p(z|γ) ∝
∫

(|Hγ | |Wγ |)−1/2 exp

{
− 1

2σ2

(
J−N

′
W−1

γ N
)}

(σ2)n/2

· dd12

Γ(d1)
(σ2)−d1−1 exp

{
−d2

σ2

}
dσ2 (C.9)

∝ (|Hγ | |Wγ |)−1/2 dd12

Γ(d1)

∫
exp

{
−

z
′
P−1
γ z + 2d2

2σ2

}(
1

σ2

)d1+n
2

+1

dσ2

∝ (|Hγ | |Wγ |)−1/2|Pγ |−1

where the proportionality constants do not depend on γ and |Hγ | |Wγ | =

|HγWγ | =
∣∣∣In + XγHγX

′

γ(In + h1n1
′

n)−1
∣∣∣. In the special case that X is

centered by column and h large it is true that |Hγ | |Wγ | ≈
∣∣∣In + XγHγX

′

γ

∣∣∣.
Then, after integrating out the three unknown parameters,

p(γ|z,k,X,y) = p(γ)p(X,y,Z,k|γ)

=p(γ)p(X,y,k|Z,γ)p(Z|γ) = p(γ)p(X,y,k|Z)p(Z|γ)

∝p(γ)p(Z|γ)

∝p(γ)(|Hγ | |Wγ |)−1/2 |Pγ |−1/2 ,

The last factorization based on the fact that γ depends on Z, y and k but

once we condition on Z, the k and y is independent of γ. Then, conditional

probability of ξ using Equations (B.6) and (B.7) is the following

This fully conditional density of kν given the rest is calculated easily from

Equation (C.1), selecting only the terms that associated with the boundary

vector. Then the full conditional density of each component is given by

p(kν |γ, z,X,y,k\ν) ∝
n∏
i=1

[1(yi = ν − 1)1(kν−1 < zi ≤ kν)

+ 1(yi = ν)1(kν < zi ≤ kν+1)],

(C.10)

where ν = 2, . . . ,M − 1 and k\ν = (k0, . . . , kν−1, kν+1, . . . , kM).

Actually, sampling via Equations (C.10) is done via continuous uniform

distribution, namely via

kν |γ, z,X,y,k\ν ∼ U
(

max[{zi : yi = ν − 1}, kν−1],min[{zi : yi = ν}, kν+1]
)
.
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Appendix D

Algebra calculations for the

probit model with mixture of

nominal and ordinal responses -

Σ is fixed, common ξ

This appendix contains the algebra calculations of the multi-class Bayesian

variable selection with mixture of nominal and ordinal responses, under the

assumption that Σ is fixed and ξ is common across, as described in Subsection

7.1.1. The prior distributions are described in Subsection 7.1.2. Setting

α0 = 0 and B0ξ = 0 the full conditional distributions are derived below.

In this case the unknown parameters are Z,α,Bξ, ξ and k. We assume

that α, Bξ are independent, namely that p(α,Bξ) = p(α)p(Bξ). The joint

posterior is proportional to likelihood times the prior distribution and it is

given by

p(Z,α,Bξ, ξ,k|X,y)

∝ |Σ|−n/2

· exp

{
−1

2
tr
[(

Z− 1nα
′ −XξBξ

)
Σ−1(Z− 1nα

′ −XξBξ)
′
]} n∏

i=1

1(Zi,: ∈ Gi)

·
n∏
i=1

[1(yi = tν−1)1(kν−1 < Zi,t0+1 ≤ kν) + 1(yi = tν)1(kν < Zi,t0+1 ≤ kν+1)]

· |Hξ|−s/2 |Σ|−pξ/2 exp

{
−1

2
tr
[
H−1
ξ BξΣ

−1B
′
ξ

]}
(D.1)

· h−s/2 |Σ|−1/2 exp

{
−h
−1α

′
Σ−1α

2

}

·
p∏
j=1

wγj (1− w)1−γj
n∏
i=1

1(yi = tν)
1

kν+1 − kν−1
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where Gi is given via Equation (7.6).

Firstly, in order to integrate out α given Z,Bξ, ξ and k, the exponential

terms that are associated with α in Equation (D.1) can be rewritten as

−
(
Z− 1nα

′ −XξBξ
)′ (

Z− 1nα
′ −XξBξ

)
+ h−1αα

′

=− (n+ h−1)αα
′ − 1

′
n(Z−XξBξ)α−α

′

+ (Z−XξBξ)
′
1n − (Z−XξBξ)

′
(Z−XξBξ)

=− (n+ h−1)
[
αα

′ − (n+ h−1)−11
′
n(Z−XξBξ)α (D.2)

+ (n+ h−1)−1α
′
(Z−XξBξ)

′
1n

+ (n+ h−1)−1(Z−XξBξ)
′
(Z−XξBξ)

+− (n+ h−1)−1h−1(Z−XξBξ)
′
(Z−XξBξ)

]
=− (n+ h−1)VV

′ − (nh+ 1)−1(Z−XξBξ)
′
(Z−XξBξ),

where V = {α′−(n+h−1)−11
′

n(Z−XξBξ)} and (n+h−1)−1h−1 = (nh+1)−1.

Combining the factors 1
2
tr(Σ−1), |Σ|−1/2 and the exponential terms of the first

and penultimate line in Equation (D.1) together with the Equation (D.2)

yield

∫
|Σ|1/2 exp

{
−1

2
tr
(
Σ−1

[
(n+ h−1)VV

′
])}

(D.3)

· exp
{
−1

2
tr
(
Σ−1

[
(nh+ 1)−1(Z−XξBξ)

′
(Z−XξBξ)

])}
dα

∝ exp
{
−1

2
tr
(
Σ−1

[
(nh+ 1)−1(Z−XξBξ)

′
(Z−XξBξ)

])}
,

where the proportionality hides the constant that comes from the matrix

normal density MN(Σ, In).

Using Binomial inverse theorem, also known as Sherman-Morrison-Woodbury

formula (Woodbury, 1950; Plackett, 1950),

(nh+ 1)−1(Z−XξBξ)
′
(Z−XξBξ) (D.4)

= (Z−XξBξ)
′
(In + h1n1

′
n)−1(Z−XξBξ).

Secondly, in order to integrate out Bξ, the exponential term that are

associated with Bξ in Equation (D.1) together with the term that is in the

squared brackets of Equation (D.3) using also Equation (D.4) can be rewritten
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as

B
′

ξH
−1
ξ Bξ + (Z−XξBξ)

′
(In + h1n1

′

n)−1(Z−XξBξ)

=B
′

ξH
−1
ξ Bξ + Z

′
(In + h1n1

′
n)−1Z− Z

′
(In + h1n1

′
n)−1XξBξ

−B
′

ξX
′

ξ(In + h1n1
′
n)−1Z + B

′

ξX
′

ξ(In + h1n1
′
n)−1XξBξ

=B
′

ξWξBξ −B
′

ξN−N
′
Bξ + J +−N

′
W−1

ξ N (D.5)

=(Bξ −W−1
ξ N)

′
Wξ(Bξ −W−1

ξ N) + J−N
′
W−1

ξ N,

where Wξ = X
′

ξ(In + h1n1
′
n)−1Xξ + H−1

ξ , N = X
′

ξ(In + h1n1
′
n)−1Z and J =

Z
′
(In+h1n1

′
n)−1Z. Combining the factors 1

2
tr(Σ−1), |Σ|−n/2, |Hξ|−s/2 , |Σ|−pξ/2

and the corresponding exponential term of Equation (D.1) together with the

first term of Equation (D.5) yield the completed quadratic form of the matrix

normal density MN(Σ,W−1
ξ ). Continuing the integration of Bξ,

|Σ|−n/2 |Hξ|−s/2 |Σ|−pξ/2∫
exp

{
−1

2
tr
[
Σ−1

(
Bξ −W−1

ξ N
)′

Wξ

(
Bξ −W−1

ξ N
)]}

dBξ

exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

= |Σ|−n/2 |Hξ|−s/2 |Σ|−pξ/2 |Σ|pξ/2
∣∣W−1

ξ

∣∣s/2 (D.6)

· exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

∝ |Σ|−n/2 (|Hξ| |Wξ|)−s/2

· exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

,

where J − N
′
W−1

ξ N = Z
′
P∗−1
ξ Z = Z

′
P−1
ξ Z and P∗−1

ξ = (In + h1n1
′
n)−1 −

(In + h1n1
′
n)−1Xξ· [X

′

ξ(In + h1n1
′
n)−1Xξ + H−1

ξ ]−1X
′

ξ(In + h1n1
′
n)−1. Since

P∗−1
ξ Pξ = In, P∗ξ takes the simple form Pξ = In + h1n1

′

n + XξH
−1
ξ X

′

ξ. From

Equation (D.6) it is true that p(Z|ξ,k,X) ∼MN(Pξ,Σ), which is a matrix

normal distribution. From the last expression we can easily derive the full

conditional distribution of Z given the rest, so that

Z|ξ,k,X,y ∼MN(Pξ,Σ)
n∏
i=1

1(Zi,: ∈ Gi) (D.7)

p(Z|ξ,k,X,y ∝ |Σ|−n/2 |Pξ|−s/2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]} n∏
i=1

1(Zi,: ∈ Gi).

After integrating out α,Bξ, we derive the full conditional distribution of
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ξ. Using Equations (D.1), (D.6) and (D.7), and taking into account the

relationship between the parameters of the model,

p(ξ|Z,k,X,y) ∝ p(ξ)p(Z|ξ)

∝ p(ξ)(|Hξ| |Wξ|)−s/2 |Pξ|−s/2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]}
,

where in general |Hξ| |Wξ| = |HξWξ| =
∣∣∣In + XξHξX

′

ξ (In + h1n1
′

n)−1
∣∣∣.

In the special case that X is centered by column and h large it is true that

|Hξ| |Wξ| ≈
∣∣∣In + XξHξX

′

ξ

∣∣∣.
This fully conditional density of kj given the rest is derived only for ordinal

responses. From Equation (D.1), easily select only the terms that associated

with the boundary vector and then the full conditional density of its compo-

nent is given by Equation (5.21).
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Appendix E

Algebra calculations for the

probit model with mixture of

nominal and ordinal responses -

Σ has a prior, common ξ

This appendix contains the algebra calculations of the multi-class Bayesian

variable selection with mixture of nominal and ordinal responses, under the

assumption that ξ is common, but Σ has a distribution in this case, as de-

scribed in Subsection 7.1.3. Setting α0 = 0 and B0ξ = 0 the full conditional

distributions are derived below.

In this case the unknown parameters are Z,α,Bξ, ξ,k and in addition Σ.

We assume that α, Bξ are independent conditionally on Σ, p(α,Bξ|Σ) =

p(α|Σ)p(Bξ|Σ). The joint posterior is proportional to likelihood times the
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prior distribution and it is given by

p(Z,α,Bξ, ξ,k,Σ|X,y)

∝ |Σ|−n/2

· exp

{
−1

2
tr

[(
Z− 1nα

′ −XξBξ

)
Σ−1

(
Z− 1nα

′ −XξBξ

)′]} n∏
i=1

1(Zi,: ∈ Gi)

·
n∏
i=1

[1(yi = tν−1)1(kν−1 < Zi,t0+1 ≤ kν) + 1(yi = tν)1(kν < Zi,t0+1 ≤ kν+1)]

· |Hξ|−s/2 |Σ|−pξ/2 exp

{
−1

2
tr
[
H−1
ξ BξΣ

−1B
′
ξ

]}
(E.1)

· h−s/2 |Σ|−1/2 exp

{
−h
−1α

′
Σ−1α

2

}

·
p∏
j=1

wγj (1− w)1−γj
n∏
i=1

1(yi = tν)
1

kν+1 − kν−1

· |Q|
δ+s−1

2 |Σ|−
δ+2s

2 exp

{
−1

2
tr
(
Σ−1Q

)}
where Gi is given via Equation (7.6).

Firstly, in order to integrate outα given Z,Bξ, ξ,k and Σ, the exponential

terms that are associated with α (excluding 1
2
tr(Σ−1)) in Equation (E.1) can

be rewritten as Equation (D.3), where Equations (D.2) and (D.4) are also

true.

Secondly, integrating out Bξ yields Equation (D.6). Similar to Equation

(D.6) Z|ξ,k,Σ,X ∼ MN(Pξ,Σ)p(Σ). From the last expression, where the

Σ density is given via the last line of Equation (E.1), we can easily derive

the full conditional distribution of Z given the rest:

Z|ξ,k,Σ,X,y ∼MN(Pξ,Σ)
n∏
i=1

1(Zi,: ∈ Gi)p(Σ)

p(Z|ξ,k,Σ,X,y)

∝ |Σ|−n/2 |Pξ|−s/2 exp

{
−1

2
tr
[
Σ−1Z

′
P−1
ξ Z

]} n∏
i=1

1(Zi,: ∈ Gi)

· |Q|
δ+s−1

2 |Σ|−
δ+2s

2 exp

{
−1

2
tr
(
Σ−1Q

)}
(E.2)

∝ |Pξ|−s/2 |Σ|−
n+δ+2s

2 |Q|
δ+s−1

2

· exp

{
−1

2
tr
[
Σ−1

(
Z
′
P−1
ξ Z + Q

)]} n∏
i=1

1(Zi,: ∈ Gi).

In addition, integrating out Σ from (E.2) and using the determinant prop-
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erty
∣∣∣A + USR

′
∣∣∣ =

∣∣∣S−1 + R
′
A−1U

∣∣∣ |S| |A|, we obtain

p(Z|ξ,k,Σ,X,y)

∝ |Pξ|−s/2 |Q|
δ+s−1

2

∣∣∣Z′P−1
ξ Z + Q

∣∣∣−n+δ+s−1
2

n∏
i=1

1(Zi,: ∈ Gi)

∝ |Pξ|−s/2 |Q|
δ+s−1

2

·
(∣∣∣ZQ−1Z

′
+ Pξ

∣∣∣ ∣∣P−1
ξ

∣∣ |Q|)−n+δ+s−1
2

n∏
i=1

1(Zi,: ∈ Gi)

∝ |Pξ|−s/2 |Q|
δ+s−1

2 (E.3)

·
∣∣∣ZQ−1Z

′
+ Pξ

∣∣∣−n+δ+s−1
2 |Pξ|

n+δ+s−1
2 |Q|−

n+δ+s−1
2

n∏
i=1

1(Zi,: ∈ Gi)

∝ |Pξ|
n+δ−1

2 |Q|−
n
2

∣∣∣ZQ−1Z
′
+ Pξ

∣∣∣−n+δ+s−1
2

n∏
i=1

1(Zi,: ∈ Gi)

So,

Z|ξ,k,Σ,X,y ∼MT (δ; Pξ,Q)
n∏
i=1

1(Zi,: ∈ Gi)

which is a truncated matrix Student distribution.

Using Equations (D.6) and the last line of Equation (E.1), we calculate

the

p(Z|ξ)

∝
∫

(|Hξ| |Wξ|)−s/2 |Hξ| |Σ|−n/2

· exp

{
−1

2
tr
[
Σ−1

(
J−N

′
W−1

ξ N
)]}

· |Σ|−
δ+2s

2 exp

{
−1

2
tr
(
Σ−1Q

)}
dΣ

=

∫
(|Hξ| |Wξ|)−s/2 |Σ|−

n+δ+2s
2 (E.4)

· exp

{
−1

2
tr
[
Σ−1

(
Q + J−N

′
W−1

ξ N
)]}

dΣ

∝(|Hξ| |Wξ|)−s/2
∣∣Qξ

∣∣−n+δ+s−1
2 ,

where the constants do not depend of ξ, and Qξ = Q + J−N
′
W−1

ξ N. The

last line of Equation (E.4) is true, since the portion that is inside the integral

is the density of IW (n+ δ,Qξ) without the term
∣∣Qξ

∣∣(n+δ+s−1)/2
.

ξ depends on Z, k and y (after integrated out A, Bξ and Σ), but once
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we condition on Z, the y is independent of ξ. Then, conditional probability

of ξ using Equation (E.4) is the following

p(ξ|Z,X,y,k) = p(ξ)p(X,y,Z,k|ξ)

=p(ξ)p(X,y,k|Z, ξ)p(Z|ξ) = p(ξ)p(X,y,k|Z)p(Z|ξ) (E.5)

∝p(ξ)p(Z|ξ) = p(ξ)(|Hξ| |Wξ|)−s/2
∣∣Qξ

∣∣−n+δ+s−1
2 .

The full conditional density of kν given the rest is derived only for ordinal

responses as in the case where Σ is known. From Equation (E.1) the full

conditional density is given by Equation (5.21).
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Appendix F

Algebra calculations for the

probit model with mixture of

nominal and ordinal responses -

Σ known, Ξ

This appendix contains the algebraic calculations of the multi-class Bayesian

variable selection with mixture of nominal and ordinal responses, under the

assumption that the indicator vectors are different across different responses

(which means that we work using an indicator matrix instead of indicator

vector) and the latent variables are independent. The prior distributions are

described in Subsection 8.1.2. Setting α0r = 0 and B0Ξ:,r,r = 0 for the r-th

regression equation, the full conditional distributions are calculated below.

In this case the unknown parameters (in matrix form) are Z,A,B,Ξ

and k. We assume that αr, BΞ:,r,r are independent, namely p(αr,BΞ:,r,r) =

p(αr)p(BΞ:,r,r). The joint posterior is proportional to likelihood times the
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prior distribution and it is given by

p(Z,A,B,Ξ,k|X,Y)

=
s∏
r=1

p(Y|Z:,r,k)p(k)
s∏
r=1

[
p(Z:,r|αr,BΞ:,r,r,X)p(αr)p(BΞ:,r,r|Ξ:,r)p(Ξ:,r)

]
=

s∏
r=1

p(Y|Z:,r,k)p(k)

·
s∏
r=1

[
1

(2π)−n/2σnr
exp

{
− 1

2σ2
r

n∑
i=1

(
Zi,r − αr −Xi,Ξ:,rBΞ:,r,r

)2}]

·
s∏
r=1

[
(2π)−pΞ:,r/2

∣∣HΞ:,r

∣∣−1/2
exp

{
− 1

2σ2
r

(
BΞ:,r,rH

−1
Ξ:,r

B′Ξ:,r,r

)}]
(F.1)

·
s∏
r=1

[
(2π)−1/2h−1/2 exp

{
− nα2

r

2σ2
rh

}]

·
s∏
r=1

 p∏
j=1

w
Ξj,r
r (1− wr)1−Ξj,r

 .
Firstly, in order to integrate out A given Z,B,Ξ and k, the exponentiated

terms that are associated with αr in Equation (F.1) can be rewritten as

−
∑n

i=1

(
Zi,r − αr −Xi,Ξ:,rBΞ:,r,r

)2
2σ2

r

− nα2
r

2hσ2
r

=−
[(

Z:,r −XΞ:,rBΞ:,r,r

)
− 1nαr

]2
2σ2

r

− α2
rh
−1

2σ2
r

=−
[(

Z:,r −XΞ:,rBΞ:,r,r

)
− 1nαr

]′ [(
Z:,r −XΞ:,rBΞ:,r,r

)
− 1nαr

]
+ α2

rh
−1

2σ2
r

=−
(n+ h−1)α2

r − 1′n(Z:,r −XΞ:,rBΞ:,r,r)αr

2σ2
r

−
−αr(Z:,r −XΞ:,rBΞ:,r,r)

′1n + (Z:,r −XΞ:,rBΞ:,r,r)
′(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

=−
(n+ h−1)

[
α2
r − (n+ h−1)−11′n(Z:,r −XΞ:,rBΞ:,r,r)αr

2σ2
r

−
(n+ h−1)−1αr(Z:,r −XΞ:,rBΞ:,r,r)

′1n

2σ2
r

−
(n+ h−1)−1(Z:,r −XΞ:,rBΞ:,r,r)

′(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

−
+−(n+ h−1)−1h−1(Z:,r −XΞ:,rBΞ:,r,r)

′(Z:,r −XΞ:,rBΞ:,r,r)
]

2σ2
r

=− (n+ h−1)vrv
′
r

2σ2
r

−
(nh+ 1)−1(Z:,r −XΞ:,rBΞ:,r,r)

′(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

, (F.2)

where vr = {αr − (n+ h−1)−11′n(Z:,r −XΞi,rBΞ:,r,r)} and (n+ h−1)−1h−1 =
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(nh+ 1)−1. The second term of Equation (F.2) can be written as

(nh+ 1)−1(Z:,r −XΞ:,rBΞ:,r,r)
′(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

=

(Z:,r −XΞ:,rBΞ:,r,r)
′(In + h1n1

′
n)−1(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

.

In summary, integrating out A yields

p(Z,B,Ξ,k|X,Y)

=

∫
p(Z,A,B,Ξ,k|X,Y)dA

=
s∏
r=1

∫
p(Z:,r, αr,BΞ:,r ,Ξ:,r,k|X,Y)dαr (F.3)

∝
s∏
r=1

∫
exp

{
−(n+ h−1)v2

r

2σ2
r

−
(nh+ 1)−1(Z:,r −XΞ:,rBΞ:,r,r)

′(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

}
dαr

∝
s∏
r=1

exp

{
−

(Z:,r −XΞ:,rBΞ:,r,r)
′(In + h1n1

′
n)−1(Z:,r −XΞ:,rBΞ:,r,r)

2σ2
r

}

Secondly, in order to integrate out B, the exponentiated terms that are

associated with BΞ:,r,r in Equation (F.1) together with the term that is in

the squared brackets of Equation (F.3) can be rewritten as

B′:,rH
−1
Ξ:,r

BΞ:,r,r + (Z:,r −XΞ:,rBΞ:,r,r)
′(In + h1n1

′
n)−1(Z:,r −XΞ:,rBΞ:,r,r)

=B′:,rH
−1
Ξr

BΞ:,r,r + Z′:,r(In + h1n1
′
n)−1Z:,r − Z′:,r(In + h1n1

′
n)−1XΞ:,rBΞ:,r,r

−B′:,rX
′
Ξ:,r

(In + h1n1
′
n)−1Z:,r + B′:,rX

′
Ξ:,r

(In + h1n1
′
n)−1XΞ:,rBΞ:,r,r (F.4)

=B′:,rWΞ:,rBΞ:,r,r −B′:,rN−N′BrΞ:,r
+ J +−N′WΞ:,rN

=(BΞ:,r,r −W−1
Ξ:,r

N)′WΞ:,r(BΞ:,r,r −W−1
Ξ:,r

N) + J−N′WΞ:,rN,

where WΞ:,r = X′Ξ:,r
(In+h1n1

′
n)−1XΞ:,r +H−1

Ξ:,r
, N = X′Ξ:,r

(In+h1n1
′
n)−1Z:,r

and J = Z′:,r(In + h1n1
′
n)−1Z:,r. In summary, integrating out B yields
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p(Z,A,Ξ,k|X,Y)

=

∫
p(Z,A,B,Ξ,k|X,Y)dB

=
s∏
r=1

∫
p(Z:,r, αr,BΞ:,r,r,Ξ:,r,k|X,Y)dBΞ:,r,r (F.5)

=
s∏
r=1

∫
(2π)p/2

∣∣HΞ:,r

∣∣−1/2

· exp

{
− 1

2σ2
r

[
(BΞ:,r,r −W−1

Ξ:,r
N)′WΞ:,r(BΞ:,r,r −W−1

Ξ:,r
N) + J−N′WΞ:,rN

]}
dBΞ:,r,r

∝
s∏
r=1

[(∣∣WΞ:,r

∣∣ ∣∣HΞ:,r

∣∣)−1/2
exp

{
−

J−N′WΞ:,rN

2σ2
r

}]
,

where J − N′WΞ:,rN = Z′:,rP
∗−1
Ξ:,r

Z:,r = Z′:,rP
−1
Ξ:,r

Z:,r and P∗−1
Ξ:,r

= (In +

h1n1
′
n)−1−(In+h1n1

′
n)−1XΞ:,r · [X′Ξ:,r

(In+h1n1
′
n)−1In]−1XΞ:,r+H−1

Ξ:,r
]−1X′Ξ:,r

(In+

h1n1
′
n)−1. The last matrix takes the simple form PΞ:,r = In + h1n1

′
n +

XΞ:,rHΞ:,rX
′
Ξ:,r

, since P∗−1
Ξ:,r

PΞ:,r = In.

From Equation (F.5) p(Z|Ξ,X) ∼
∏s

r=1MVN(0, σ2
rPΞ:,r), which is a

multivariate normal distribution. From it we can easily calculate the full

conditional distribution of Z given the rest,

p(Z|Ξ,k,X,Y) ∼
s∏
r=1

[
MVN(0, σ2

rPΞ:,r)
] n∏
i=1

1(Zi,: ∈ Gi) (F.6)

∝
s∏
r=1

[∣∣PΞ:,r

∣∣−1/2
exp

{
− 1

2σ2
r

[
Z′:,rP

−1
Ξ:,r

Z:,r

]}] n∏
i=1

1(Zi,: ∈ Gi).

where Gi is given by Equation (7.6).

Using Equations (F.1) and (F.6) it is true that

p(Ξ|Z,k,X,Y)

∝
s∏
r=1

[
p(Ξ:,r)p(Z:,r|Ξ:,r)

]
=

s∏
r=1

[
p(Ξ:,r)

∫
p(Z:,r|αr,BΞ:,r,r,Ξ:,r)p(αr)p(BΞ:,r,r|Ξ:,r)dαrdBΞ:,r,r

]
∝

s∏
r=1

[
p(Ξ:,r)

(∣∣HΞ:,r

∣∣ ∣∣WΞ:,r

∣∣)−1/2 ∣∣PΞ:,r

∣∣−1/2
]
,

where the proportionality constant does not depend on Ξ:,r and
∣∣HΞ:,r

∣∣ ∣∣WΞ:,r

∣∣ =∣∣HΞ:,rWΞ:,r

∣∣ =
∣∣∣In + XΞ:,rHΞ:,rX

′
Ξ:,r

(In + h1n1
′
n)−1

∣∣∣.
This fully conditional density of kd given the rest is calculated easily as
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we saw at the end of the Appendix B.
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