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The problem of shear dispersion in the atmospheric boundary layer (ABL) is

revisited. The aim is to improve understanding of how and why the behaviour of

state-of-the-art ‘random flight’ Lagrangian particle dispersion models (RFMs)

can differ from that of simpler ‘random displacement’ models (RDMs or eddy

diffusivity models). First an asymptotic analysis is used to obtain a formula,

valid for quite general profiles of turbulent statistics and the mean wind,

for the effective horizontal diffusivity of a tracer in the ABL. Second, with

‘poison gas release’ problems in mind, a large-deviation approach is used to

understand in greater detail the behaviour of the concentration in the tails of the

distribution. Results are verified by solving the RFM equations numerically for

a large ensemble of particles. Turbulent statistics relevant to stable and neutral

boundary layer conditions are considered, as is the effect of non-uniqueness in

the RFM equations. The importance of three-dimensional effects such as the

effect of an Ekman spiral in the mean wind are then considered, and criteria

determining whether plume widths are controlled by direct horizontal diffusion

or by secondary shear dispersion effects are obtained. Finally, a quantitative

account of ‘plume bending’ in the stable ABL is presented. Copyright c© 2016
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1. Introduction

Shear dispersion, sometimes Taylor or Taylor-Aris disper-

sion (Taylor 1953; Aris 1956), is a fundamental process in

fluid dynamics. In shear dispersion problems the diffusion

of a tracer in the along-flow direction of a unidirectional but

non-uniform flow is found to be controlled, not by the direct

diffusion acting in the along-flow direction, but by diffusion

in the across-flow direction acting in concert with the shear

in the flow. Counter-intuitively, the dominant term in the

effective diffusivity in the along-flow direction is found

to be inversely proportional to the across-flow diffusivity.

This is because when the across-flow diffusivity is weak,

individual fluid particles experience coherent differential

advection by the shear flow for relatively long periods,

leading to particles becoming widely dispersed in the along-

flow direction. By contrast, in the limit of strong across-

flow diffusivity, particles experience only (non-dispersive)

advection by the mean flow.

The relevance of shear dispersion to atmospheric

boundary layer (ABL hereafter) flows has long been

recognised. In a classic paper Saffman (1962) derived

analytical solutions for two idealised problems. In the first

problem, vertical diffusion is assumed uniform up to a fixed

boundary layer height, where a no-flux boundary condition

is imposed. In the second problem, the vertical diffusion

is uniform and unbounded with height. Subsequent

researchers (e.g. Smith 1965; Tyldesley and Wallington

1965; Taylor 1982; Smith 2005) have mainly focused on

the paradigm presented by the second solution, which is

relevant to the early stages of a tracer release problem in

which a near-Gaussian tracer plume or puff spreads freely

in the vertical, interacting only with the surface. The present

work, by contrast, is motivated in part by the desire to

understand shear dispersion in state-of-the-art Lagrangian

dispersion models such as FLEXPART (Stohl et al. 2005)

and NAME (Jones et al. 2007). In these models a no-flux

boundary condition is imposed at the top of ABL as in

Saffman’s first problem above, and corresponds physically

to the trapping of fluid particles within the ABL by a

horizontal interface with high stratification (i.e. an inversion

layer).

The set-up of Saffman’s first problem is illustrated

in Fig. 1, which shows scatterplots of an ensemble of

trajectories in stable ABL conditions, integrated using

a Lagrangian model to be described in detail below.

Following a point release of tracer, here at half the ABL

height h, there is a time period of the order of hu−1
∗ ,

where u∗ is the surface friction velocity (equal to
√
τ0/ρ

where τ0 is the Reynolds stress of the mean wind at the

surface), over which particles become homogenised in the

vertical (see first two panels). After this homogenisation

period shear dispersion over the depth of the ABL ensues.

In the ABL hu−1
∗ is typically of the order of tens of

minutes. Consequently Saffman’s first problem has practical

relevance for understanding the horizontal dispersion of

tracers in the ABL over periods of a few hours. Saffman’s

main result for the one-dimensional problem, for an ABL

with a height-dependent isotropic diffusivity κ(z) and

shear flow u(z), is as follows. Denoting the vertical mean

taken over the depth of the ABL by angle brackets, the

vertical mean concentration 〈c〉(x, t) evolves according to

the advection-diffusion equation

∂t〈c〉+ 〈u〉∂x〈c〉 = κeff∂
2
xx〈c〉. (1)

Results of the form (1) are generic to a wide range of tracer

dispersion problems (e.g. Majda and Kramer 1999) and can

be found using the method of homogenisation (Pavliotis and

Stuart 2007), as well as the method of moments used by

Saffman. The effective diffusivity κeff in Saffman’s problem

is given by

κeff =

〈
F 2

κ
+ κ

〉
where F (z) =

∫ z

0

(u(z̄)− 〈u〉) dz̄.

(2)

In practice κeff is usually dominated by the first term which,

as anticipated by the discussion above, depends on the

inverse of the diffusivity κ(z).

This article is protected by copyright. All rights reserved.
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The present work will re-examine the paradigm presented

by Saffman’s first problem. The aim is to better understand

the shear dispersion process as it takes place in state-of-

the-art particle dispersion models designed for the ABL

(e.g. FLEXPART and NAME). Specifically, the following

questions will be addressed:

1. Does κeff change significantly if random flight mod-

els (RFMs) are used instead of random displacement

models (RDMs)? Both FLEXPART and NAME are

RFMs, meaning that they model turbulent dispersion

using stochastic processes that describe a turbulent

velocity field with a realistic Lagrangian decorrela-

tion time. However, the results of Saffman (1962)

apply directly only to RDMs, which corresponds to

both the limit of zero decorrelation time of the RFM

(e.g. Rodean 1996) and, equivalently, to the standard

advection-diffusion model.

2. Is the large-deviation behaviour influenced by the

type of model used? Large-deviation theory (Haynes

and Vanneste 2014) describes the evolution of the low

concentrations seen in the tails of a spreading cloud

of parcels, and can be important in estimating the

time-scale on which a threshold concentration is first

met at a given location downstream, which might be

important for example, in a problem involving a toxic

gas or aerosol release. It is not obvious a prioiri how

concentrations in the tails will change if an RFM is

used as opposed to an RDM.

3. Under realistic three-dimensional ABL conditions,

what controls the horizontal effective diffusivity in

the direction perpendicular to the principal direction

of the wind shear? Under what conditions is shear

dispersion due to wind curvature with height (e.g.

in an Ekman layer) more important than direct

horizontal turbulent diffusivity?

Questions 1-3 will be answered by comparing analytical,

semi-analytical and numerical results. Note that the present

work will focus on the late-time behaviour of ABL flows,

leaving questions relating to the early-time corrections

to the shear dispersion framework (see e.g. Young and

Jones 1991; Camassa et al. 2010) to a future work. In

section 2, the RFM and RDM models are introduced,

and the large-deviation approach to the RDM model is

described, reviewing the results of Haynes and Vanneste

(2014). In section 3, analytical results are presented for

the effective diffusivity, and numerical results for the tracer

decay rate at large-distances which is controlled by the

large-deviation rate function. Possible behaviours due to

non-uniqueness of the RFM are then considered. Finally

three-dimensional effects, e.g. due to an Ekman spiral in

the mean wind, are investigated. Throughout section 3,

results are compared with numerical calculations of large

ensembles of tracer particles, using both the RFM and RDM

where appropriate. The differences between two models are

investigated in both stable and neutral conditions. Finally,

in section 4, conclusions are drawn.

2. Model and Background

2.1. The random flight model (RFM)

The RFM to be investigated is defined by the following

set of stochastic differential equations, describing the time

evolution of the position (X,Z) and eddy velocity (U,W )

of a single fluid parcel in a turbulent boundary layer with

Gaussian velocity statistics

dU = −U
τ1

dt+

(
2σ2

1

τ1

)1/2

dB1

dW =

(
−W
τ2

+
1

2

(
1 +

(
W

σ2

)2
)

d(σ2
2)

dz

)
dt

+

(
2σ2

2

τ2

)1/2

dB2 (3)

dX = (u+ U) dt

dZ = W dt

Here (B1, B2) are Brownian (Wiener) processes. Through-

out, stochastic variables (e.g. X,Z,U,W ) will be denoted

by capitals. The mean horizontal velocity profile is given

This article is protected by copyright. All rights reserved.
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Figure 1. Scatterplots of an ensemble of N = 5000 trajectories, following a point release at (X,Z) = (0, 0.5), as simulated by the RFM (3) in the
stable ABL case. Top panel: early time dispersion t = 0.2 hu−1

∗ . Second panel: particles become well-mixed in the vertical by time t = 2 hu−1
∗ .

Third panel: illustrating late time behaviour (t = 20 hu−1
∗ ) when shear dispersion is well-established. A key measure of shear dispersion, the standard

deviation Var(X)1/2 ≈ (2κeff t)
1/2, is shown for reference.

by u(z) and the turbulent statistics in the ABL are spec-

ified by the turbulent velocity scales (σ1(z), σ2(z)), and

Lagrangian decorrelation times (τ1(z), τ2(z)), where the

subscripts 1 and 2 refer to the horizontal and vertical

directions respectively. Three profiles used throughout this

work, corresponding to an ABL with idealised (constant)

statistics, and to stable and neutral ABL conditions, are

described in Appendix A.

For the purposes of this work, the equation set (3) will

be interpreted as being non-dimensional, with the boundary

layer height h, the surface friction velocity u∗ and hu−1
∗

as scales for velocity, length and time respectively. Under

this scaling no explicit non-dimensional parameters appear

in the problem. Note also that the mean velocity profile u(z)

will typically have a large magnitude (measured in units of

u∗), i.e. the implicit parameter

U = umax − umin (4)

where umax and umin are the maximum and minimum

values of u(z) respectively, is typically O(10) or greater.

Finally, without loss of generality, the vertical mean of u(z)

will be taken to be zero, i.e. we will work in the frame

following the mean position of the ensemble of trajectories.

Physically, it is easy to understand most of the terms

in (3). The equations for (X,Z) are standard trajectory

equations, whereas those for (U,W ) resemble Ornstein-

Uhlenbeck processes, or random walks in quadratic

potential wells, which in spatially homogeneous turbulence

would result in (U,W ) having ‘red noise’ frequency

spectra. The additional term in the W -equation is necessary

for the model to be ‘well-mixed’ in the sense of Thomson

(1987) as will be discussed below. Equation (3) is

essentially that used in FLEXPART (Stohl et al. 2005) and

NAME (Jones et al. 2007) to model dispersion in the ABL.

Following these models, reflection boundary conditions

are used at the model boundaries at z = 0, 1. Physically,

reflection at the boundary layer top (z = 1) is (at least

partially) justified when the ABL has locally developed

a sharp gradient in buoyancy, forming an interface across

which there is a large decrease in the intensity of turbulence.

See Wilson and Flesch (1993) and Thomson et al. (1997) for

This article is protected by copyright. All rights reserved.
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discussion, including the possibility of more sophisticated

boundary conditions.

Following Rodean (1996) it is easier to work with

scaled velocities (Λ,Ω) = (U/σ1(Z),W/σ2(Z)) which,

following application of Itô’s lemma, satisfy

dΛ = − Λ

τ1
dt+

(
2

τ1

)1/2

dB1

dΩ =

(
−Ω

τ2
+

dσ2

dz

)
dt+

(
2

τ2

)1/2

dB2 (5)

dX = (u+ Λσ1) dt

dZ = Ωσ2 dt.

A complementary approach to systems of stochastic

differential equations such as (5) is to consider the

corresponding Fokker-Planck equation (FPE) for the time-

evolution of the joint probability density p(x, z, λ, ω, t)

of the stochastic variables (X,Z,Λ,Ω). Following the

standard procedure, outlined for example in §3.4.1 of

Gardiner (2009), the FPE of (5) is found to be

pt + ((u+ λσ1)p)x + (ωσ2p)z + (σ′2p)ω =

τ−1
1 (pλ + λp)λ + τ−1

2 (pω + ωp)ω . (6)

Here subscripts denote partial derivatives and σ′2 ≡

dσ2/dz. The reflecting boundary conditions become

p(x, zb, λ, ω) = p(x, zb, λ,−ω), for zb = 0, 1. (7)

Most of our results below will be based on analysis of (6-7).

The stationary density

pe = constant× exp
(
− 1

2 (λ2 + ω2)
)

(8)

is the steady solution of (6). The solution pe, or in the

language of probability theory the invariant measure of

(5), is interpreted physically as the distribution of particles

in the background atmosphere in position-velocity space.

The ‘well-mixed’ criterion of Thomson (1987) corresponds

to ensuring that the invariant measure of the system of

stochastic differential equations being solved corresponds

to a notional, pre-specified distribution pe, which in

general is determined by the statistics of the background

atmosphere.

2.2. The random displacement model (RDM) and its

large-deviation behaviour

It is well-known (e.g. §6.3 of Rodean 1996) that the RFM

(5) can be approximated by the simpler RDM in the

distinguished limit of short decorrelation time τi → 0 and

large velocity fluctuations σi →∞, in which σ2
i τi = κi

(here i = 1, 2) is finite and non-zero. The equation set (5)

can in this case be replaced by

dX = u dt+ (2κ1)
1/2 dB1

dZ = κ′2 dt+ (2κ2)
1/2 dB2 (9)

where κ′2 ≡ dκ2/dz. The FPE of (9), which is the

equivalent of (6) for the RDM, is simply the advection-

diffusion equation

ct + u cx = κ1cxx + (κ2 cz)z . (10)

where we have identified the joint pdf of (X,Z) in (9) with

the particle concentration c(x, z, t) (in general, these can

differ by a multiplicative constant). The effective diffusivity

result, generalising (1), can be obtained from (10) by

applying the method of moments (following Saffman 1962),

or the method of homogenisation (e.g. Pavliotis and Stuart

2007). Its exact form is given in section 3.1 below.

The effective diffusivity paradigm of (1) does not

give the full picture of the long-time dispersion of

tracer particles according to (9). In certain problems, for

example the point release of a highly toxic substance, the

quantity of interest can be the time taken for the tracer

concentration to first reach a given (low) threshold at a

particular location. The evolution of the relatively low

concentrations in the tails of the spreading cloud of particles

This article is protected by copyright. All rights reserved.
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are described mathematically by large deviation theory.

Recently, Haynes and Vanneste (2014) considered the large

deviation behaviour of (10), focusing on classic Taylor-Aris

dispersion problems (Couette flow, plane Poiseuille flow

and pipe Poiseuille flow). The main point is that, while

in the central region (where x2/t ∼ O(1)) the evolution

of 〈c〉 is well-described by the effective diffusivity model

(1), in the tails of the distribution (where x/t ∼ O(1)) the

concentration c(x, z, t) can be shown to satisfy

c(x, z, t) ∼ t−1/2φ(z, ξ) e−t g(ξ), where ξ = x/t. (11)

Here φ(z, ξ), which is determined by a solving a family

of eigenvalue problems parameterised by ξ, gives the local

vertical structure of the tracer profile. In the central region

(ξ ≈ 0), where the tracer is well-mixed in the vertical, it

turns out that φ(z, 0) = 1. The effective diffusivity result

for the central region can be recovered from the leading

term in Maclaurin expansion of the so-called rate function

g(ξ), which is given by g′′(0)ξ2/2. Here, g(0) = 0 follows

from conservation of mass, and g′(0) = 0 from the fact we

are working in the frame of the mean wind. It follows, by

comparison with the well-known ‘heat kernel’ solution of

(1), that κeff = 1/(2g′′(0)).

In the tail regions, by contrast, according to (11)

the decay rate of the tracer is controlled by the rate

function g(ξ). If the effective diffusivity model were valid

everywhere, then the rate function would be everywhere

equal to its quadratic approximation g0(ξ) = ξ2/4κeff .

However, the calculations of Haynes and Vanneste (2014)

revealed that typically g(ξ) & g0(ξ), indicating that tracer

concentrations fall off much more rapidly in the tail regions

than predicted by the effective diffusivity model. In fact

there are two distinct regimes: an inner region for which ξ ∈

(umin, umax) (containing the central region) and an outer

region ξ > umax and ξ < umin. The regions are distinct

because particles can arrive at any location in the inner

region under the influence of horizontal advection alone

(e.g. by remaining at a level near that of the maximum or

minimum velocity). By contrast, a particle can only reach a

location in the outer region by a favourable combination of

horizontal advection and horizontal diffusion. The transition

between the two regimes is evident as g(ξ) is typically

found to increase very rapidly from the inner to the outer

region. Tracer concentrations are consequently very low in

the outer region, where they are controlled by the direct

horizontal diffusivity. One of our main aims below is to

determine the extent to which the rate function g(ξ) depends

on whether the RFM or RDM is used.

3. Results

3.1. Effective diffusivity in the RFM

The main purpose of this section is to use an asymptotic

approach to calculate the effective horizontal diffusivity for

particles released in the RFM. To effect this analysis two

parameters are introduced. First ε = h/L is the ratio of

the ABL depth to the horizontal length scale of the cloud

of particles. Second, δ = u∗τ/h is the ratio of a typical

Lagrangian decorrelation time τ to the reference timescale

hu−1
∗ .

The most interesting tractable regime appears to be

ε� δ � 1. Enforcing ε� δ corresponds to focusing

only on the late-time behaviour for which the diffusive

approximation applies. As explained in Haynes and

Vanneste (2014), next-order effects in ε, which could be

recovered here by considering the distinguished limit ε ∼

δ � 1, result in the diffusion equation being augmented

with higher derivative terms (e.g. ∂3
x〈c〉), which are

important only at early times. Such an augmented diffusion

equation does not preserve positivity, and hence is not very

useful in practice. It is a property of empirical profiles of

turbulent statistics that δ . 1, which justifies consideration

of δ � 1.

Based on these insights, we seek solutions of (6) of the

form p = p(x̄, z, λ, ω, t̄) where x̄ and t̄ are long time and

This article is protected by copyright. All rights reserved.
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space scales satisfying

x̄ = εx, t̄ = ε2t. (12)

Further, the turbulent statistics σi and τi are rescaled as

follows

σi = δ−1σ̄i, τi = δ2τ̄i. (13)

Notice that this scaling preserves the relationship with the

diffusivity, since σ2
i τi = σ̄2

i τ̄i = κi.

The primary expansion in ε, relative to which δ is treated

as finite, is

p =
∞∑
j=0

εjpj(x̄, z, λ, ω, t̄). (14)

Inserting this expansion into (6), at leading order in ε,

Lp0 = δ (ωσ̄2p0)z + δ(σ̄′2p0)ω, (15)

where the linear operator L acts on functions f(λ, ω, z) as

follows

Lf ≡ τ̄−1
1 (fλ + λf)λ + τ̄−1

2 (fω + ωf)ω . (16)

The leading-order equation (15) has the ‘well-mixed’

solution

p0 = P (x̄, t̄) exp
(
− 1

2 (λ2 + ω2)
)
, (17)

where P (x̄, t̄) is at this order an undetermined function of

the ‘long’ space and time variables (x̄, t̄).

At O(ε) in the expansion

Lp1 − δ(ωσ̄2p1)z − δ(σ̄′2p1)ω =

δ2up0x̄ + δλσ̄1p0x̄. (18)

To proceed a particular integral needs to be found for

equation (18). A solution can be sought based on a Hermite

polynomial (Gram-Charlier type A) expansion

p1 =
∞∑
k=0

Hek(ω)
(
Ck(z) + λDk(z)

)
× Px̄(x̄, t̄) exp

(
− 1

2 (λ2 + ω2)
)
. (19)

The probabilists’ Hermite polynomials Hek(·) are defined

in Appendix B.1, where their relevant properties are

listed. Solving for p1 involves determining the sequences

of functions {Ck(z)} and {Dk(z)}. In Appendix B.2,

asymptotic approximations to the leading terms in these

sequences are evaluated, and it is shown that Ck ∼ O(δk)

and Dk ∼ O(δk+1). Note that the full solution for p1 also

includes a complementary function, similar to the well-

mixed solution for p0 given above, but this can be set to

zero without loss of generality in order to define a unique

separation between the various orders in the expansion (14).

It is atO(ε2) in the expansion that the effective diffusivity

can be calculated. The equation for p2 is

Lp2 − δ(ωσ̄2p2)z − δ(σ̄′2p2)ω =

δ2p0t̄ + δ2up1x̄ + δλσ̄1p1x̄. (20)

At this order it is not necessary to solve explicitly for p2.

Instead, the solvability condition of (20) can be used to

obtain the effective horizontal diffusivity. The solvability

condition arises because the integral of the left-hand side

of (20), over the domain {D : (λ, ω) ∈ R2, z ∈ [0, 1]} is

evidently zero. The corresponding integral over the right-

hand side must also be zero, i.e.

∫
D

(
p0t̄ + up1x̄ + δ−1λσ̄1p1x̄

)
dz dλ dω = 0. (21)

Evaluating this integral, and using the orthogonality

properties of the Hermite polynomials, the one-dimensional

diffusion equation is obtained

Pt̄ = κeffPx̄x̄, (22)

This article is protected by copyright. All rights reserved.
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where the effective diffusivity is given by

κeff = −
〈
uC0 + δ−1σ̄1D0

〉
=
〈
FC ′0 − δ−1σ̄1D0

〉
(23)

= κ
(1)
eff + κ

(2)
eff .

where, as above, angle brackets denote the vertical average

of a quantity over the boundary layer, and F (z) is the

integral of the mean wind profile as in (2). In direct analogy

with Saffman’s result (2), the two terms κ(1)
eff and κ(2)

eff refer

to the two separate terms in the vertical average, with the

much larger term κ
(1)
eff being due to shear dispersion, and the

smaller term κ
(2)
eff being due to direct horizontal diffusion.

It is evident from (23) that only C ′0 and D0 are needed to

calculate κeff , which guides our approach to solving (18) in

Appendix B.2. There, it is shown that, approximately

κ
(1)
eff =

〈
F 2

κ2
+ κ2

(
F

σ2

)′2
− κ2

2

(
κ2

σ2

(
F

σ2

)′)′2〉
.

(24)

Equation (24) can be interpreted as an expansion in

δ2, including three terms of O(1), O(δ2) and O(δ4)

respectively, and with terms of O(δ6) neglected. The

leading term is identical to the first term in Saffman’s result

(2), with the remaining terms giving the corrections due to

the finite decorrelation times in the RFM (3). It is notable

that the dominant correction, given by the second term in

(24), is always positive. Consequently, at least for small δ,

the effective horizontal diffusivity will always be greater in

the RFM compared to its RDM limit.

Following a similar procedure, the direct diffusivity (here

correct to the first two terms) is found to be

κ
(2)
eff =

〈
κ1 +

κ2τ1
τ1 + τ2

(
κ1

σ1

)′2〉
. (25)

Once again, the leading correction term is positive definite,

showing that shear dispersion is always increased in the

RFM compared with the RDM.

An important point is that the expansion in δ2

underpinning the results (24-25) is a singular rather than

a regular perturbation expansion, as is commonly found in

multiple scales expansions. This means that the resulting

series in (24-25) will be divergent, and as a result the

optimal agreement between the series expansions and the

full model at finite δ will be obtained by truncating the series

at a finite number of terms.

3.2. Numerical calculation of κeff in the RFM

The validity and accuracy of the results (24-25) can be

tested by comparison with direct integration of the RFM

(3). It is not obvious a priori that (24-25) will be accurate

or relevant, because they are formally valid only for δ � 1,

and obviously δ takes a finite value for any physically

realistic profile of ABL statistics.

Three profiles of turbulent statistics are tested in detail,

corresponding to a simple idealised profile with constant

τi and σi, a stable ABL and a neutral ABL respectively.

Details of all three profiles are given in Appendix A. In

each case a linear shear flow u(z) = U(z − 1
2 ) is used

(recall: the velocity unit is the friction velocity u∗, and

U = umax − umin ∼ O(1− 100) is typical of the observed

ABL). Here U = 5 is used. A linear shear flow is chosen

here primarily for analytical convenience (see 3.5 below).

However tests with more realistic wind profiles have yielded

similar results.

Effective diffusivities in the RFM (3) are calculated based

on the fact that

κeff = lim
t→∞

Var(X)

2t
. (26)

In practice, the RFM is run for a suitably long period

(typically 50-100hu−1
∗ ), and a least-squares linear fit is

then made to Var(X)(t) for the later part of the integration

period. Then κeff is obtained from the gradient of this fit,

with error bars estimated by sub-sampling.

To create a robust test of (24-25), and better understand

the limitations of the approach of section 3.1, a wider
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class of RFM models are introduced as follows. For

each of the three profiles detailed in Table 1, a one-

parameter of ‘interpolated’ RFM models is defined by the

transformation:

σi → δ−1σi, τi → δ2τi. (27)

Here the ‘interpolating parameter’ δ has an analogous role

to δ in the theory of sec. 3.1, which is formally valid only

for models with δ � 1. Specifically:

• δ = 0: recovers the RDM limit.

• 0 < δ < 1: corresponds to a family of models

with shorter decorrelation times (more ‘diffusive’

behaviour) than the observed ABL.

• δ = 1: corresponds to the RFM with observed ABL

statistics as in Table 1.

• δ > 1: corresponds to a family of models with longer

decorrelation times (more ‘ballistic’ behaviour) than

the observed ABL.

Fig. 2 shows a comparison between κeff calculated

directly from RFM calculations (points with error bars)

and from (24-25) (black curves). Results are obtained from

integrations of the interpolated models with 0 ≤ δ ≤ 2, for

idealised, stable and neutral ABL profiles respectively. Note

that the δ = 0 results are obtained by integrating (9) rather

than (3). The results show that

• The three profiles (ideal, stable and neutral) have

rather different values of κeff . The controlling factor

in each case is the magnitude of the vertical

diffusivity κ2(z) (relatively high in ideal, low in

neutral), with the greatest sensitivity being to the

value in the centre of the domain where F 2 is largest.

• The analytical results (24-25) remain accurate for

δ . 1 for all three profiles, and only at δ = 2 begin

to diverge significantly from the RFM calculations.

The small-δ theory appears to be justified in practice.

• The difference in κeff between the physical RFMs

(δ = 1) and their RDM limit (δ = 0) is rather small,

in fact just 9.08%, 2.74% and 0.76% for the ideal,

stable and neutral profiles.

In summary, for flows with realistic ABL statistics, the

modelled rate of shear dispersion is relatively unchanged

if the RDM is used in place of the RFM. However this

result, which applies to the central region only, does not

tell us anything about dispersion in the tails which will be

addressed next.

3.3. Dispersion in the tail regions

The above sections were concerned with dispersion in the

central region, where x2/t ∼ O(1). The results do not tell

us anything about changes in the tail regions where x/t ≡

ξ ∼ O(1), which can be important if the key measurement

is the time at which a tracer concentration first meets a

fixed threshold, e.g. the ‘poison release’ scenario discussed

above. Hence the following question is of interest: does the

rate function g(ξ), which controls the tracer decay rate in

the tail regions, change significantly if the RFM is used in

place of the RDM?

Haynes and Vanneste (2014) have calculated g(ξ) for the

RDM (via the advection-diffusion equation 10), and here

their method is adapted for the Fokker-Planck equation (6)

corresponding to the RFM. A leading-order WKBJ-type

solution of (6) is sought using the ansatz

p(x, z, λ, ω, t) ∼ t−1/2 φ(z, λ, ω, ξ) e−t g(ξ). (28)

The function φ(z, λ, ω, ξ) is found to be determined by a

single-parameter family of eigenvalue problems

Lφ+ ((u+ λσ1) q)φ− (ωσ2φ)z − (σ′2φ)ω = f(q)φ,

(29)

where L is the linear operator defined in (16) with τi used in

place of τ̄i. The reflecting boundary conditions at z = 0, 1
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Figure 2. Effective diffusivity κeff in the ‘interpolated models’ derived from the three ABL flows (idealised, stable, neutral) detailed in Table 1, as
a function of the interpolation parameter δ. Note that δ = 0 corresponds to the RDM limit, and δ = 1 recovers the standard RFM. Points show κeff

obtained from an ensemble of integrations of (3) using (26). The dotted curves show the analytical predictions (24-25), and the solid (blue online) curves
shows κeff obtained numerically from the eigenvalue problem (29-30).

are

φ(0, λ, ω, ξ) = φ(0, λ,−ω, ξ),

φ(1, λ, ω, ξ) = φ(1, λ,−ω, ξ). (30)

The family of eigenvalue problems (29-30) are parame-

terised by q = g′(ξ), in the sense that there is a one-to-

one mapping between q and the ‘velocity’ of interest ξ. The

lead eigenvalues f(q) and the rate function g(ξ) are related

through the Legendre transform pair

f(q) = sup
ξ

(q ξ − g(ξ)) (31)

g(ξ) = sup
q

(ξ q − f(q)) .

Consequently, if the eigenvalue problem (29-30) is solved

numerically for a range of values of q, the values of

the principle eigenvalue f(q) can be used to obtain

g(ξ) by (numerically) inverting the transform (31). In

practice a nonlinear programming algorithm (MATLAB’s

fminsearch) is used.

Details of the numerical solution of (29-30) are given

in Appendix C. A key test of the accuracy of the

numerical solution is to check for consistency with the

effective diffusivity results of section 3.2. A property of

the Legendre transform pair (31) is that f ′′(0)g′′(0) =

1, from which it follows that κeff = f ′′(0)/2. From the

Maclaurin expansion, using the fact that f(0) = f ′(0) =

0, it follows that κeff = limq→0 f(q)/q2. Consequently a

numerical estimate for κeff can be obtained by solving (29-

30) for suitably small q. The calculated values of κeff are

plotted in Fig. 2 (blue curves) and show excellent agreement

with the analytical results (24-25) for δ . 1, as well as the

numerical results from the RFM itself. Importantly, these

results give confidence in the accuracy of the numerical

solver at finite q, and thus the resulting rate function g(ξ)

obtained by numerical inversion of (31).

Figure 3 (top row) shows g(ξ) calculated for the three

profiles in Table 1 for both the RFM (blue curves) and

RDM (red curves). The transitions between inner and outer

regions at ξ = umin, umax are clearly marked, as is the

parabolic approximation g0(ξ) for the RFM (black dashed

curves). In both the RFM and RDM, and for all three

profiles, g(ξ) increases rapidly compared to its parabolic

approximation g0(ξ), as the transitions to the outer region

are approached. The result is that particle concentrations

fall off particularly rapidly compared to the Gaussian

approximation. The neutral profile exhibits an interesting

asymmetry, in that g(ξ) increases more rapidly for negative

ξ compared to positive ξ. The explanation is that the

vertical diffusivity κ2(z) is rather small towards the top

of the domain in the neutral case. Parcels therefore have
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comparatively long residence times in the upper part of the

domain, where the velocity is large and positive, compared

to near the ground where the velocity is large and negative.

Hence it is more probable that a parcel remains close to

z = 1 and experiences a large net positive transport than the

corresponding negative transport near z = 0.

The lower panels show the percentage difference between

the RFM and RDM results, and show that the small

differences reported in κeff are not typical of the differences

in g(ξ) everywhere. In both the stable and neutral profiles, in

the downstream tail g(ξ) is significantly larger (& 20%) for

the RDM. It follows that the effect of realistic Lagrangian

decorrelation times in the RFM is to enhance transport into

the tail regions. The effect is largest in the downstream tail

because those trajectories are in the upper part of the domain

where the local Lagrangian timescales are longest.

In fact as ξ → ±∞, the rate functions for the RDM and

RFM can be expected to converge, because in this limit the

contribution of the mean flow can be neglected completely.

In that case the horizontal component of (5) is a canonical

Ornstein-Uhlenbeck process, whereas that of (9) is a simple

Brownian process, each of which have identical (quadratic)

rate functions. There is a strong hint of this convergence

at large |ξ| in the ideal and stable calculations shown in

Figure 3.

To demonstrate that large-deviation theory correctly

captures the spatial structure of the distribution of particles

in the tail regions, Figure 4 compares normalised vertical

profiles of concentration, according to the theory (28)

(curves), and from an ensemble of RFM calculations (3)

(points). The stable ABL scenario of Table 1 (see also

Fig. 1) is used, and the upper panel shows results at t = 20

at various positions in the positive tail region, with the lower

panel showing the negative tail.

Direct Monte-Carlo simulation of (3) is too expensive, by

some orders of magnitude, to obtain the necessary statistics

in the tail regions to generate the plots shown in Figure 4.

For example, the concentration 〈c〉(x = 45, t = 20) ≈ 5×

10−7, indicating that at the end of a direct calculation, only

one in every two million trajectories will be located within

a unit area surrounding the measurement site. To overcome

this problem, the unbiased pruning and cloning method

‘go-with-the-winners’ (GWTW) (Grassberger 2002) is used

to focus the calculation, following Haynes and Vanneste

(2014). The key to the successful implementation of

GWTW is a suitable choice of scoring function, used

to decide which trajectories are to be pruned / cloned.

Here, following the argument of Esler (2015), the scoring

function is chosen to be the product of each trajectory’s

current weight and a local approximation to the solution

of the appropriate adjoint problem. The adjoint problem

in this case is the ‘reverse-time’ transport problem, solved

backwards from the receptor where the measurement is

to be taken. For a receptor at (x0, t0) in the tail region,

with x0/t0 = ξ0 (say), the adjoint concentration can be

crudely estimated from the large deviation form, which by

symmetry with the forward problem is

c∗(x, z, t) ∼ (t0 − t)−1/2 φ∗(z, ξ∗) e−(t0−t) g(ξ∗), (32)

where ξ∗ = (x0 − x)/(t0 − t), and g(·) is the same rate

function as in the forward problem. Expanding g(ξ∗)

around ξ0, the leading order x-dependence is given by

c∗ ≈ eq0(x−x0), q0 = g′(ξ0) (33)

Choosing the scoring function based on (33) consequently

acts to focus trajectories in the GWTW calculation along

the ‘ray’ x/t = ξ0, with ξ0 being related to q0 through the

Legendre transform (31). The result is that by the end of

the calculation a large number of trajectories end up close

to the receptor region (x0 ≈ ξ0t0), with each trajectory

weight being suitably adjusted so as to keep the calculation

unbiased.

The GWTW Monte-Carlo results shown in Figure 4 are

obtained from separate calculations, which differ in the

value of q0 chosen, in order to target each receptor region

(x = 32, 38, 42, 45 etc.) in turn. It is found that N = 105

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e -3 -2 -1 0 1 2 3
ξ

0

0.5

1

1.5

2

2.5

3

3.5

4

R
at
e
fu
n
ct
io
n
g(
ξ)

Ideal case

RFM (δ = 1)
RDM (δ = 0)
Parabolic approx.

-3 -2 -1 0 1 2 3
ξ

0

0.5

1

1.5

R
at
e
fu
n
ct
io
n
g(
ξ)

Stable ABL

RFM (δ = 1)
RDM (δ = 0)
Parabolic approx.

-3 -2 -1 0 1 2 3
ξ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
at
e
fu
n
ct
io
n
g(
ξ)

Neutral ABL

RFM (δ = 1)
RDM (δ = 0)
Parabolic approx.

-3 -2 -1 0 1 2 3
ξ

8

9

10

11

12

13

14

15

16

17

18

19

P
er
ce
nt
ag

e
ch
an

ge
in

g(
ξ)

-3 -2 -1 0 1 2 3
ξ

0

5

10

15

20

25

30

P
er
ce
nt
ag

e
ch
an

ge
in

g(
ξ)

-3 -2 -1 0 1 2 3
ξ

0

2

4

6

8

10

12

14

16

18

20

22

P
er
ce
nt
ag

e
ch
an

ge
in

g(
ξ)

Umax Umax UmaxUmin

UmaxUmin UmaxUmin UmaxUmin

UminUmin

Figure 3. Top row: Rate function g(ξ) for the RFM (solid curves, blue online) and RDM (dot-dash curves, red online), and the parabolic approximation
g0(ξ) for the RFM (dashed curves, black online), for the ideal (constant with height), stable ABL and neutral ABL conditions, as detailed in Table 1.
Bottom row: Percentage difference between g(ξ) in the RFM compared to the RDM (calculated as 100(RFM-RDM)/RDM).
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Figure 4. Normalised profiles of concentration c(x0, z, t0) in the tails of the stable ABL calculation shown in Fig. 1. In both panels t0 = 20, and
x0 = 32, 38, 42 and 45 (upper panel) and x0 = −30,−36,−42 and −45 (lower panel). The curves are the large-deviation approximation, calculated
from the eigenfunctions φ(z, ω, λ, ξ) obtained from (29). The points are obtained directly from Monte-Carlo simulation of (3) augmented by the ‘go-
with-the-winners’ algorithm (see text).

trajectories are required to obtain the agreement shown with

the large-deviation predictions. It is notable that there is

an asymmetry in the positive and negative tails, which can

be explained by the vertical diffusivity being somewhat

higher in the lower part of the stable ABL, resulting in an
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eigenfunction with a thicker boundary layer compared to the

corresponding position in the forward tail.

3.4. RFM non-uniqueness

It is well-known that the ‘well-mixed’ condition of

Thomson (1987) is not sufficient to determine a unique

RFM in two or more dimensions. It is interesting to explore

how this non-uniqueness can result in changes to κeff .

Arguably the simplest family of non-unique models is

obtained by replacing (5) with

dΛ = −
(

Λ

τ1
+

Ω

τr

)
dt+

(
2

τ1

)1/2

dB1

dΩ =

(
−Ω

τ2
+

Λ

τr
+

dσ2

dz

)
dt+

(
2

τ2

)1/2

dB2 (34)

dX = (u+ Λσ1) dt

dZ = Ωσ2 dt.

Here τr(z) can be any smooth function. Its (local)

interpretation is that |τr| is a ‘rotational’ time-scale which

controls the rate of spin of trajectories in the (x, z)-plane,

with the sign of τr determining the sense of rotation. The

RFM (34) also has the invariant measure (8) and therefore

cannot be objectively distinguished from (5).

Since it has been established above that, for late-time

dispersion, in practice the RFM model represents only a

small correction to the RDM, we will focus only on the

latter here. In appendix B.3 the method of homogenisation

(e.g. Pavliotis and Stuart 2007) is applied to the RFM to

show that, in the RDM limit, the Fokker-Planck equation of

(34) is the advection-diffusion equation

ct + (u+ (κrΠ)z) cx = κ1Π cxx + (κ2 Π cz)z . (35)

Here κi = σ2
i τi for i = 1, 2 as above, κr = σ1σ2τ1τ2/τr

and

Π =
τ2
r

τ2
r + τ1τ2

(36)

is a non-dimensional ‘diffusivity suppression factor’ which

takes values in the range 0 < Π ≤ 1. Notice that in the limit

τr → ±∞, in which (34)→ (5), Π→ 1 and κr → 0, so that

(35) reduces to (10).

The consequence of using the general RFM (34) in

place of (5) is therefore generally to increase the effective

horizontal diffusivity by reducing the physical vertical

diffusivity. The effective diffusivity result analogous to that

in (2) is

κeff =

〈
F̄ 2

κ2Π
+ κ1Π

〉
, (37)

where F̄ (z) is modified from F (z),

F̄ (z) = F (z) + κr(z)Π(z)− κr(0)Π(0). (38)

Note that the mean advecting velocity in (2) is also modified

to 〈u+ (κrΠ)z〉.

3.5. Three-dimensional effects

Three-dimensional dispersion in the ABL merits separate

consideration in order to understand the effect of the

turning of the mean wind with height, i.e. in Ekman

layers. Assuming horizontally isotropic statistics, the three-

dimensional extension of the RDM (9) has Fokker-Planck

equation

ct + u · ∇Hc = κH∇2
Hc+ (κV cz)z , (39)

where u(z) = (u1(z), u2(z))T is the (2D) horizontal mean

wind profile, ∇H denotes the horizontal gradient operator

and κH = σ2
1τ1 and κV = σ2

2τ2, as obtained from the

profiles in Table 1.

Applying the homogenisation procedure to the RDM

(39), in order to obtain its long-time behaviour, results in

the two-dimensional analogue of (2)

∂t〈c〉+ 〈u〉 · ∇H〈c〉 = ∇H · (κeff · ∇H〈c〉) . (40)

Here the effective diffusivity tensor κeff , split into a shear

dispersion term κ
(1)
eff and a direct dispersion term κ

(2)
eff , is
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given by

κ
(1)
eff =


〈
F 2

1 /κV
〉
〈F1F2/κV 〉

〈F1F2/κV 〉
〈
F 2

2 /κV
〉
 (41)

where

Fi(z) =

∫ z

0

(ui(z̄)− 〈ui〉) dz̄, (42)

and κ(2)
eff = κ

(2)
eff I where κ(2)

eff = 〈κH〉 and I is the identity

matrix.

In typical ABL conditions the tensorκ(1)
eff can be expected

to be strongly anisotropic. It has eigenvalues

κ±eff =

〈
F 2

2κV

〉(
1± (1− Γ)1/2

)
, (43)

where F = (F 2
1 + F 2

2 )1/2 and Γ is a measure of anisotropy,

taking values in the range 0 ≤ Γ ≤ 1, given by

Γ = 4
〈F 2

1 /κV 〉〈F 2
2 /κV 〉 − 〈F1F2/κV 〉2

〈F 2/κV 〉2
. (44)

Notice that Γ is invariant under a coordinate rotation about

the vertical axis.

The eigenvalues give the effective diffusion rate in the

principal directions given by the associated eigenvectors

(approximately, the major axis associated with κ+
eff is in

the direction of 〈Fκ−1/2
V 〉 where F = (F1, F2)T , and the

minor axis associated with κ−eff is perpendicular to this).

When there is no turning of the wind with height, then

Γ = 0 and κ−eff = 0, meaning that shear dispersion acts in

one direction only.

The physics of the three-dimensional ABL dispersion

changes significantly based on the ordering of the

diffusivities κ+
eff , κ(2)

eff and κ−eff . Generally, U & 1 and

κ+
eff � κ−eff , κ

(2)
eff , so the interesting question concerns the

relative magnitudes of κ−eff and κ
(2)
eff . The answer is

important, as the effective diffusivity along the minor axis

will control the width of emission plumes far downstream

of sources, and consequently their rate of mixing into the

environment. The two regimes are:

• 2D shear dispersion (2D-SD) regime (κ−eff > κ
(2)
eff ):

In this regime shear dispersion dominates along the

minor axis, and the plume width will be proportional

to the magnitude of the wind strength, and inversely

proportional to the square root of the vertical

diffusivity.

• Direct dispersion-shear diffusion (DD-SD) regime

(κ(2)
eff > κ−eff ): In contrast, in the DD-SD regime

plume widths will be sensitive only to the vertical

mean of the direct horizontal diffusivity κH .

The diffusivities κ+
eff , κ(2)

eff and κ−eff can be evaluated for

the profiles of turbulent statistics given in Table 1. Taking a

linear shear flow with an Ekman spiral

u = Uz (cos (αz), sin (αz))
T
, (45)

and using the fact that in the ideal profile κV = κH = κ, the

integrals in (43) can be evaluated exactly. The leading order

result for α� 1 is the most illuminating,

κ+
eff =

U2

120κ
, κ−eff =

U2

120κ

α2

63
. (46)

The result for κ+
eff is well-known as the one-dimensional

effective diffusivity for a linear shear flow with a constant

diffusivity (e.g. Saffman 1962, see their eqn. 17). The

formula for κ−eff is striking, because it shows that for

α . 1 (radians) the effective diffusivity in the direction of

the minor axis will be weaker by two to three orders of

magnitude or more. (The small angle approximation (46)

is useful throughout this range, as the error relative to the

exact result (43) is just 7% for α = 1 radian). The result

(46) allows the critical angle αc, defined to be the angle

α for which κ−eff = κ
(2)
eff , to be estimated. It follows that

ABLs with α . αc are in the DD-SD regime and those with

α & αc in the 2D-SD regime described above. Inserting

κ
(2)
eff = κ = 0.1 for the ideal profile gives (in radians)

αc = DU−1, with D =

(
7560

100

)1/2

≈ 8.69. (47)
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Similar calculations can be made numerically for the stable

and neutral profiles, for which (47) also applies, but with

D ≈ 4.16 and D ≈ 0.793 respectively. The lower value

of D in the neutral case results in smaller values of αc,

meaning that, compared to the stable case, a wider region of

(U , α) parameter space is in the 2D-SD regime as opposed

to the DD-SD regime.

Fig. 5 (top left panel) shows 〈c〉(x, y, t) at t = 30hu−1
∗

from three-dimensional RDM calculations in the stable

ABL with U = 10 and α = 0◦, 15◦, 30◦ and 45◦ (top to

bottom). Trajectories are released at (0, 0, 1
2 ) in each case.

Based on (47) αc ≈ 24◦. The α = 0◦ and 15◦ calculations

are well within the DD-SD regime, and show near-identical

diffusion rates in the direction of the minor (y) axis. The

third and fourth calculations with α = 30◦ and 45◦ are

in the 2D-SD regime and have a clearly increased rate of

diffusion in the minor axis direction.

Fig. 5 (lower panel) shows the total effective diffusivity

in the minor axis direction κ−eff + κ
(2)
eff as a function of α.

Estimates from the RDM integrations results are shown

as solid points, and the solid curve shows the theoretical

prediction (43), which are seen to be accurate in this

parameter regime. The transition between the DD-SD and

2D-SD regimes occurs at αc ≈ 24◦.

It is notable that the plumes in Fig. 5 begin to bend once

α & αc. A similar bending of pollutant plumes has been

reported in LES calculations in stable ABL conditions by

Kemp and Thomson (1996), who attribute the phenomenon

(as here) to the turning of the mean wind with height.

The phenomenon is qualitatively easy to understand with

reference to the relative wind vectors shown in Fig. 5

(inset). Particles making large excursions along the major

axis spend more time near the top or bottom of the ABL,

where they experience a positive relative flow in the minor

axis (here y) direction, whereas particles staying near the

domain centre tend to sample a negative relative flow.

The large-deviation framework introduced in 2.2 allows

the bending of the plume to be quantified, by seeking a

solution of (39) of the form

c(x, y, z, t) ∼ t−1φ(z, ξ)e−tg(ξ), ξ = (x, y)T /t. (48)

The eigenvalue problem satisfied by φ is found to be (c.f.

Haynes and Vanneste 2014)

(κV φz)z +
(
u · q + κH |q|2)

)
φ = f(q)φ, (49)

φz = 0, z = 0, 1.

where q = ∇ξg. The rate function g(ξ) is related to the

eigenvalues f(q) via the Legendre transform

g(ξ) = sup
q

(ξ · q − f(q)) . (50)

To obtain g(ξ) numerically, it is necessary to solve (49)

numerically for q taking values over a regular grid,

recording the principal eigenvalue f(q) everywhere on the

grid. A standard nonlinear programming algorithm (with

cubic interpolation) can then be used to solve (50). The top

right panel of Fig. 5 shows the prediction (48), using the

calculated g(ξ). A caveat is that the approximation used

is somewhat crude, because for simplicity we have made

the (unjustified) assumption that 〈φ〉 is independent of ξ.

However, notwithstanding this caveat, it is clear that the

large-deviation theory does a good job of capturing the

extent of plume bending effect accurately over this time

interval.

4. Conclusions

The main results of this study can be summarised as

follows:

1. Horizontal effective diffusivity κeff in the ABL,

under realistic stable or neutral conditions, differs

by at most a few percent depending on whether

particle dispersion is modelled by the RFM or its

RDM approximation. The analytical formulae (24-

25) allow the RFM→RDM correction to κeff to be
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Figure 5. Top Left: Contour plots of vertically integrated particle concentration density 〈c〉(x, y, t) at t = 30hu−1
∗ , in RDM experiments withN = 105

trajectories. The mean ABL velocity is the Ekman spiral flow (45), with parameters U = 10 and α = 0◦, 15◦, 30◦ and 45◦ (top to bottom), and with
κH and κV corresponding to stable ABL conditions. For clarity, the concentration fields have been rotated so that the major axis is parallel to the x-axis,
and the box dimensions are 200×100 (this aspect ratio is chosen in order to show detail in the y-direction). Concentration units are 10−4h−2 with
the total amount of tracer fixed at unity. Top right: Concentration fields for the same conditions calculated from the large-deviation approximation (48).
Lower Panel: Total effective diffusivity κ(2)

eff + κ−eff in the minor axis direction as a function of α. The solid line is the theory (43) and the points are

calculated from integrations of the RDM. The dotted line shows κ(2)
eff and the dashed curve κ−eff , with their intersection at αc. Inset: Relative velocity

u− 〈u〉 in the Ekman spiral, rotated so that the mean shear is in the x-direction.

calculated for arbitrary vertical profiles of velocity

and turbulent statistics. The insensitivity of κeff

supports the choice of researchers using models based

on the RDM (e.g. the model MLPD0, D’Amours

et al. 2010) for applications involving large-scale

dispersion. In fact, given that existing RFM ‘long’

time-stepping schemes (e.g. Legg and Raupach 1982)

introduce large numerical errors at operational time-

steps (Ramli and Esler 2016), it is reasonable to

conclude that, given finite computational resources,

the RDM will be more accurate and robust for a wide

class of dispersion problems for which the RFM is

often currently used.

2. The large-deviation rate function (g(ξ) above), which

controls the evolution of the tracer concentration in
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the tail regions of the cloud of particles, is more

sensitive to the use of the RDM approximation (see

Fig. 3). In particular, the RFM exhibits increased

transport (reduced rate function g(ξ)) to the positive

tail region for the stable and neutral profiles,

compared to the RDM. For transport problems in

which the quantity of interest is the first time a

concentration meets a given (low) threshold (e.g. the

poison release problem), it may be advisable to use

the RFM to obtain accurate results.

3. The non-uniqueness of the ‘well-mixed’ RFM

in two-dimensions (Thomson 1987), means that

RFMs exist with significantly different κeff . For

example, a rotational component to the trajectory

evolution equations can be introduced (see eqn. 34).

Models with a short rotational time-scale τr have

significantly suppressed (physical) diffusivity, with a

corresponding increase in κeff .

4. In three-dimensional ABL flows with an Ekman

spiral, the effective diffusivity due to shear dispersion

in the ‘minor axis’ direction κ−eff (approximately

perpendicular to the wind shear direction), is typically

two orders of magnitude weaker than that along the

major axis κ+
eff , even for wind rotations α of up to

a radian. The nature of the resulting ABL dispersion

is controlled by the relative magnitudes of κ−eff and

the direct horizontal diffusivity 〈κH〉. For κ−eff .

〈κH〉 (the DD-SD regime above) plumes widths are

controlled by the direct horizontal diffusivity and

straight plumes emerge. For κ−eff & 〈κH〉 (the 2D-

SD regime above) bent plumes, as observed in LES

simulations of stable conditions (Kemp and Thomson

1996), are evident. The effective diffusivity reveals no

information about plume bending, however its extent

can be quantitatively predicted using large-deviation

theory.
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A. Empirical profiles of turbulent statistics

Throughout the paper three example profiles for σi(z), the

standard deviation of the turbulent velocity field, and τi(z),

the corresponding Lagrangian decorrelation timescales, are

used. Here the subscripts i = 1, 2 correspond to the x

and z-directions respectively. The profiles are detailed

in Table 1 (see also Ramli and Esler 2016, for further

discussion, including plots (their Fig. 1)). Briefly, the first

is an ‘ideal’ profile with constant σi(z) and τi(z) (i =

1, 2), which allows for explicit analytical progress. The

remaining two profiles are widely used (Hanna 1982; Stohl

et al. 2005) empirical fits to observed statistics in stable

and neutral conditions respectively. In practice, the exact

profiles suggested by Hanna (1982) are modified slightly

(see caption), to avoid singular behaviour at the ABL top

and bottom. This is necessary because in Hanna’s original

profiles either σw → 0 or τ → 0 as z → 0, 1 with neither

type of behaviour being physical.

σ1(z) τ1(z)
σ2(z) τ2(z)

Ideal
1

1

0.1

0.1

Stable
2.0 (1− z)
1.3 (1− z)

0.15 z1/2/σ1

0.1 z4/5/σ2

Neutral
2.0 exp (−2z/ε)

1.3 exp (−2z/ε)

z

2σ2(1 + 15z/ε)
z

2σ2(1 + 15z/ε)

Table 1. Non-dimensional profiles of the velocity standard deviation
σi(z) (i = 1, 2) and Lagrangian decorrelation time-scale τi(z) for three
possible ABL situations: (i) ideal (constant) profile, (ii) stable ABL,
and (iii) neutral ABL (e.g. Hanna 1982). The units are u∗ and hu−1

∗
respectively. The parameter ε = u∗/fh in the neutral profile is set to
0.8. In the case of the stable and neutral profiles, regularised profiles
(σ̄i(z), τ̄i(z)) are used in practice, where σ̄i(z) = σi(Zm(z)) and
Zm(z) = zb + z(1− 2zb) for zb = 0.05.
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B. Mathematical details

B.1. Properties of (probabilists’) Hermite polynomials

In this appendix we detail some useful properties of the

probabilists’ Hermite polynomials. The kth polynomial,

denoted Hek(ω), is defined by

Hek(ω) = (−1)
k eω

2/2 dk

dωk
e−ω

2/2. (51)

Associated with each polynomial is a Hermite functions

Hek(ω)e−ω
2/2/
√

2π. Here we give those identities used

in the derivation of equations (58), (61) and (70). All are

standard results (e.g. Abramowitz and Stegun 1965, see

chapter 22).

First, the Hermite polynomials are solutions of Hermite’s

equation

(
∂2

∂ω2
− ω ∂

∂ω

)
Hek(ω) = −kHek(ω), (52)

from which it follows that the Hermite functions satisfy

(
∂2

∂ω2
+ ω

∂

∂ω
+ 1

)(
Hek(ω)e−ω

2/2

√
2π

)
=

− k Hek(ω)e−ω
2/2

√
2π

(53)

Second, because Hermite’s equation can be written as

an eigenvalue problem with a self-adjoint linear operator,

the Hermite polynomials can be shown to satisfy an

orthogonality relation, specifically

∫ ∞
−∞

Hej(ω)Hek(ω)
e−ω

2/2

√
2π

dω = k! δjk, (54)

where δjk is the Kronecker delta. Notice that a special case

of (54), for j = 0, is the integral identity

∫ ∞
−∞

Hek(ω)e−ω
2/2 dω = 0, (k ≥ 1). (55)

Thirdly and fourthly, the following differentiation and

recursion relations can be obtained

d
dω

Hek(ω) = kHek−1(ω) (56)

ωHek(ω) = Hek+1(ω) + kHek−1(ω). (57)

The results (53)-(57) are essential to the derivation of the

systems of equations (58), (61) and (70).

B.2. Asymptotic solution for p1 in equation (18)

To find the effective diffusivity in the calculation of

section 3.1 the particular integral for equation (18)

must be found. The details follow. First note that

the boundary conditions require Ck(0) = Ck(1) = 0 and

Dk(0) = Dk(1) = 0 for k odd.

Inserting the expansion (19) into equation (18), the

following hierarchy is obtained for the {Ck},

0 = δ(σ̄2C1)′ + δ2u, (k = 0),

−kCk
τ̄2

= δσ̄2C
′
k−1 + δ(k + 1)(σ̄2Ck+1)′, (k ≥ 1).

(58)

The first equation can be integrated to obtain

C1(z) = −δσ̄−1
2 F (z). (59)

Notice that the boundary conditions are satisfied because

F (0) = F (1) = 0. Rearranging the k = 1 equation

C ′0 =
F

κ2
− 2

(σ̄2C2)
′

σ̄2
(60)

=
F

κ2
− δ2

σ̄2

(
κ2

(
F

σ̄2

)′)′
+

3δ
(
σ̄2τ̄2 (σ̄2C3)

′)′
σ̄2

.

where the k = 2 equation of (58) has been used to to

substitute for C2.

Inserting the above expression for C ′0 into equation

(23) for κ(1)
eff , integrating by parts, and using the fact that
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C3(0) = C3(1) = 0, gives

κ
(1)
eff =

〈
F 2

κ2
+ δ2κ2

(
F

σ̄2

)′2

+3δC3σ̄2

(
κ2

σ̄2

(
F

σ̄2

)′)′〉
.

Using the k = 3 equation of (58) to substitute for C3, and

integrating by parts again, results in (after some working)

κ
(1)
eff =

〈
F 2

κ2
+ δ2κ2

(
F

σ̄2

)′2

−δ
4

2
κ2

(
κ2

σ̄2

(
F

σ̄2

)′)′2〉
+O(δ6),

from which the result (24) follows upon substitution of δσ2

for σ̄2.

The explicit horizontal diffusivity κ(2)
eff can be handled in

a similar fashion. The corresponding hierarchy is

−D0

τ̄1
= δ(σ̄2D1)′ + δσ̄1, (k = 0), (61)

− τ̄2 + kτ̄1
τ̄1τ̄2

Dk = δσ̄2D
′
k−1 + δ(k + 1)(σ̄2Dk+1)′,

for k ≥ 1. Following the same procedure as above

κ
(2)
eff = −δ−1 〈σ̄1D0〉

=
〈
σ̄2

1 τ̄1 + σ̄2D1(σ̄1τ̄1)′
〉
,

where the second expression is obtained by substituting for

D0 from (61) and integrating by parts. It follows from the

k = 1 equation of (61) that

σ̄2D1 = δ2 τ̄1τ̄2
τ̄1 + τ̄2

σ̄2
2(σ̄1τ̄1)′ +O(δ4),

from which

κ
(2)
eff =

〈
κ1 + δ2 κ2τ̄1

τ̄1 + τ̄2

(
κ1

σ̄1

)′2〉
+O(δ4).

The result (25) follows upon substitution of δσi for σ̄i and

δ−2τi for τ̄i (i = 1, 2).

B.3. The RDM limit of the generalised RFM (34)

Here, the RDM limit of the generalised ‘non-unique’ RFM

(34) is obtained, using the method of homogenisation (e.g.

Pavliotis and Stuart 2007). The starting point is the Fokker-

Planck equation of (34), which following the substitution

(13) is

δ2pt +
(
(δ2u+ δλσ̄1)p

)
x

+ δ (ωσ̄2p)z + δ(σ̄′2p)ω

= Lrp (62)

where the linear operator Lr acts on functions f(λ, ω, z)

according to

Lrf ≡ τ̄−1
1 (fλ + λf)λ + τ̄−1

2 (fω + ωf)ω

+ τ̄−1
r (ωfλ − λfω) . (63)

The Fokker-Planck of the RDM is recovered in the limit

δ � 1. Expanding p as a power series in δ,

p = p0 + δp1 + ... (64)

the leading order equation is found to be Lrp0 = 0 which

has the ‘well-mixed in velocity-space’ solution

p0 = c(x, z, t) exp
(
− 1

2 (λ2 + ω2)
)
, (65)

where c is at this stage an undetermined concentration field.

At next order

Lrp1 = λσ̄1p0x + (ωσ̄2p0)z + (σ̄′2p0)ω, (66)

= (λσ̄1cx + ωσ̄2cz) exp
(
− 1

2 (λ2 + ω2)
)
.
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which has the particular integral

p1 =

(
−λτ̄1

(
σ̄1cx +

τ̄2
τ̄r
σ̄2cz

)
−ωτ̄2

(
− τ̄1
τ̄r
σ̄1cx + σ̄2cz

))
×
(

1 +
τ̄1τ̄2
τ̄2
r

)−1

exp
(
− 1

2 (λ2 + ω2)
)
. (67)

At O(δ2)

Lrp2 = p0t + up0x + λσ̄1p1x + (ωσ̄2p1)z + (σ̄′2p1)ω.

(68)

The solvability condition for this equation is that the integral

over (λ, ω) ∈ R2 of the right-hand side must be identically

zero. Inserting for p0 and p1 and evaluating this integral

leads directly to (35).

C. Numerical method for the solution of the

eigenvalue problem (29-30)

The numerical method used for the solution of the

eigenvalue problem (29-30) is as follows. First, φ is

expanded

φ(z, λ, ω, ξ) =
1

2π

∞∑
k=0

∞∑
l=0

Ck,l(z, ξ)

×Hek(ω) Hel(λ) e−(λ2+ω2)/2, (69)

in the Hermite polynomials Hek(·) detailed in

appendix (B.1) above. The expansion (69) is then

inserted into (29). Using the Hermite polynomial identities

given in appendix B.1, the resulting expression can be

rearranged into a single summation of the same form

as (69). Using orthogonality, the system can be then

be reduced to a doubly-infinite set of coupled ordinary

differential equations for the {Ck,l},

u q Ck,l + σ1 q (Ck,l−1 + (l + 1)Ck,l+1)

− σ2 ∂zCk−1,l − (k + 1) ∂z (σ2 Ck+1,l)

−
(
k τ−1

2 + l τ−1
1

)
Ck,l = f(q)Ck,l, (70)

where k, l ≥ 0, and the convention Ck,−1 ≡ 0 and C−1,l ≡

0 is used. The boundary conditions at z = 0, 1 are

Ck,l(0) = Ck,l(1) = 0, for k odd, (71)

and there are no boundary conditions for k even.

The system (70) can be truncated at finite (k, l) =

(K,L), and discretised using M points in z, resulting in

a matrix eigenvalue problem of the form

A c = f(q) c, (72)

where the square matrix A has dimension (K + 1)(L+

1)M × (K + 1)(L+ 1)M . The vector c has components

{Ck,l(zm); k = 0, ...,K, l = 0, ..., L, m = 1, ...,M}. The

vertical discretisation, based on the grid {zm = (m−
1
2 )/M ;m = 1, , ,M}, is discussed in detail in Appendix A

of Ramli and Esler (2016) as there are some subtleties

related to the implementation of the boundary conditions.

In particular the system will have the correct number

of boundary conditions only in the event that the series

is truncated at k = K odd. The discretised eigenvalue

problem (72) is solved using the QR-algorithm adapted for

sparse matrices, as implemented in the MATLAB routine

‘eigs’ (Lehoucq et al. 1998).

To accelerate the calculations a multi-grid approach is

used. Low resolution solutions are first used to identify

the principal eigenmode. The low resolution calculations

are then interpolated and used as initial guesses for

higher resolution calculations in which only the principal

eigenmode is sought. A continuation method is used where

calculations at new values of q are initialised with solutions
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at nearby values. For the profiles detailed in Table 1,

the Hermite polynomial expansion converges sufficiently

rapidly that errors below the truncation error are obtained

for (K,L) = (7, 5). The highest vertical resolution used

is M = 100. Further details, including an analysis of

numerical convergence, are given in Ramli (2016).
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