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Purpose. Multiple imputation (MI) has been proposed for
handling missing data in cost-effectiveness analyses
(CEAs). In CEAs that use cluster randomized trials (CRTs),
the imputation model, like the analysis model, should recog-
nize the hierarchical structure of the data. This paper con-
trasts a multilevel MI approach that recognizes clustering,
with single-level MI and complete case analysis (CCA) in
CEAs that use CRTs. Methods. We consider a multilevel
MI approach compatible with multilevel analytical models
for CEAs that use CRTs. We took fully observed data from
a CEA that evaluated an intervention to improve diagnosis
of active labor in primiparous women using a CRT (2078 pa-
tients, 14 clusters). We generated scenarios with missing
costs and outcomes that differed, for example, according
to the proportion with missing data (10%-50%), the covari-
ates that predicted missing data (individual, cluster-level),
and the missingness mechanism: missing completely at ran-
dom (MCAR), missing at random (MAR), or missing not at

random (MNAR). We estimated incremental net benefits
(INBs) for each approach and compared them with the esti-
mates from the fully observed data, the “true”” INBs. Results.
When costs and outcomes were assumed to be MCAR, the
INBs for each approach were similar to the true estimates.
When data were MAR, the point estimates from the CCA dif-
fered from the true estimates. Multilevel MI provided point
estimates and standard errors closer to the true values
than did single-level MI across all settings, including those
in which a high proportion of observations had cost and out-
come data MAR and when data were MNAR. Conclusions.
Multilevel] MI accommodates the multilevel structure of
the data in CEAs that use cluster trials and provides
accurate cost-effectiveness estimates across the range of
circumstances considered. Key words: cost-effectiveness
analysis; missing data; multiple imputation; hierarchical
data; cluster randomized trials. (Med Decis Making
2013;33:1051-1063)

ost-effectiveness analyses (CEAs) that use data
from well-designed randomized studies can pro-
vide a sound basis for policy making if they use
suitable methods.? Statistical methods have been
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developed that accommodate the hierarchical struc-
ture of cost and health outcome data from multicenter
randomized controlled trials*™* or cluster random-
ized trials (CRTs).>® A general methodological con-
cern is that there may be missing resource use or
outcome data—for example, because patients are lost
to follow-up or they do not return or complete qual-
ity-of-life (QoL) or resource use questionnaires.
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Multiple imputation (MI) has been proposed for han-
dling missing data in CEAs.””"" However, the ap-
proaches proposed may not be appropriate for CEAs
that use data from multicenter or cluster trials,
because they fail to recognize that data may be clus-
tered within settings. If missing data are not ad-
dressed appropriately, this can lead to misleading
results.”

The approach taken to handling missing data
should aim to provide unbiased, efficient estimates.
This requires reasons for missing costs or health out-
comes to be carefully considered. However, most pub-
lished CEAs simply discard the observations with
missing data and report complete case analyses
(CCAs)."® This unprincipled approach assumes that
the data are missing completely at random (MCAR);
that is, missing values do not depend on any observed
orunobserved variable.'* If observations with missing
endpoints differ from those with complete informa-
tion, CCA will lead to inaccurate cost-effectiveness
estimates.? Principled approaches for handling miss-
ing data, such as MI, maximum likelihood estimation,
and full-Bayesian analyses, assume that data are miss-
ing at random (MAR)."* That is, the probability of
missing data is independent of any unobserved vari-
able given the observed data. If the probability of miss-
ing data is associated with unobserved values, then
the data are termed missing not at random (MNAR)."*

MI is an attractive method for addressing missing
data in CEAs when values are MAR. A distinct feature
of Ml is that the model for the missing values is spec-
ified separately from the analytical model for estimat-
ing the parameters of interest. In the imputation model
we can incorporate information contained in observed
variables that are associated both with the outcome
and with the probability that data are missing. If these
variables are beyond those included in the analysis
model, for example, postrandomization variables
such as length of hospital stay, they are called auxil-
iary variables. Including such auxiliary variables in
the imputation model can reduce bias, can improve
efficiency, and may make the MAR assumption more
plausible than maximum likelihood approaches.

For MI to provide valid inferences, the imputation
model must appropriately recognize the structure of
the data. In CRTs, randomization is at the level of
the cluster (e.g., the primary care provider), not the
individual. In CEAs that use CRTs, the probability of
missing costs or health outcomes may be more similar
within than across clusters."”®™"” For example, miss-
ingness may depend on individual-level characteris-
tics, which tend to be more similar within the
cluster, and on cluster-level characteristics, such as
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whether the cluster is a teaching hospital. However,
previous CEAs based on CRTs have not used imputa-
tion models that accommodate clustering. We found
that of 62 studies included in a previous systematic
review,'® 38 reported missing data, which in 35 stud-
ies was addressed with unprincipled methods (27
used CCA, 6 mean imputation, 2 last observation car-
ried forward). The other 3 studies adopted single-level
MI, whereby the imputation model ignored any clus-
tering. When the probability of missingness has a mul-
tilevel structure, single-level MI can lead to biased
point estimates and incorrect uncertainty measures.'?
Instead, multilevel MI recognizes that the data may be
hierarchical'*'® and has recently been proposed for
CEAs that use CRTs.?° There is no previous evidence
on the relative performance of multilevel MI versus
single-level MI or CCA for CEAs that use CRTs.

This paper aims to compare a multilevel MI
approach with single-level MI and CCA in CEAs
that use CRTs. We extend previous work® by consid-
ering the performance of methods across a wide range
of circumstances faced by CEAs that use CRTs. We
generate different scenarios with missing data from
a fully observed data set,'* in this case a previous
CEA.”' Informed by the methodological litera-
ture,'®'""®'” we consider alternative settings that
differ according to the missing data mechanisms
(MCAR, MAR, MNAR), the proportion of observa-
tions with missing endpoint data (10%, 30%, 50%),
the type of covariate that explains missingness
(binary or continuous, patient-level, or cluster-level),
and the endpoint assumed to be missing (cost, out-
come, or both cost and outcome).

In the next section, we outline alternative MI meth-
ods for CEAs that use CRTs. Next we introduce the
case study, the framework for generating the missing
data, and the scenarios considered. We then report
the results from applying the alternative methods to
the missing data scenarios, discuss the findings,
and outline an agenda for further research.

METHODS

Important methodological considerations must be
recognized by the approach to handling missing
data in CEAs. First, the approach to handling the
missing data needs to recognize that the reasons for
missing data may differ by treatment group and end-
point. Second, the probability of missingness for one
endpoint (e.g., cost) may depend on the level of
another endpoint (e.g., utility). Third, the missing
data approach should recognize that endpoints and
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covariates may have nonnormal distributions.®""

Fourth, the approach to handling the missing data
should appropriately recognize the data structure
and be compatible with the model for the end-
points.’>'® For example, in CEAs that use CRTs,
methods for handling missing data should accommo-
date the hierarchical structure of the data.*’

Multiple Imputation

In MI, the key idea is to replace each missing value
with a set of M plausible values.?* Each of these values
is drawn, in a Bayesian manner, from the conditional
distribution of the missing observations given the
observed data, so that the set of imputed values reflects
the uncertainty associated with both the missing data
and the estimation of the parameters in the imputation
model. This is repeated M times, and in each imputa-
tion data set each missing observation is replaced with
an imputed value from the set of imputed values. The
analysis model, for example, a multilevel model, is
then applied to each completed data set to estimate
the parameters of interest. These M sets of estimates
and accompanying measures of uncertainty are then
combined using Rubin’s rules** to properly reflect
the variation both within and between imputations.

We consider 2 MI approaches, single-level MI**
and multilevel ML.">"® We use the following notation:
Let c;jand ej represent the costs and outcomes for the
ith individual within the jth cluster, and let X;; and Z;
represent the vectors of the individual- and cluster-
level auxiliary variables, that is, the variables associ-
ated with the endpoints and predictors of their miss-
ingness at the individual level and cluster level,
respectively. We consider a CRT with 2 randomized
groups, where {; is the treatment arm indicator, t; =
0 (control group) or ¢; = 1 (treatment group). We con-
sider missing values in total costs and outcomes per
patient and assume that covariates are fully observed.

Model 1: single-level MI. A single-level imputa-
tion model for costs and health outcomes
(c;j, eij)can be specified as in Model 1:

€. 2
(&) ((0) (7))
Sij 0 0'E

1

Cij = BCXL'J' + chj + bfj
eij = BeXij + ’)/eZJ + Sle»j

~—

B=(B% B°) and y= (¥ y°)are the vectors of
regression coefficients corresponding to individual-
and cluster-level covariates. The model assumes
that the error terms(ef;, ¢, ) follow a bivariate normal
distribution (BVN) with variances o2 and o2. This
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joint specification of costs and outcomes allows the
information on observed costs to be used in imputing
missing health outcomes and vice versa.

Model 1 is applied separately by treatment groups
(for tj= 0 and t;=1) to recognize that the posterior con-
ditional distribution of the missing data given the
observed may differ across treatment arms.”® An
alternative is to include in Model 1 a treatment indi-
cator as a covariate, but this assumes that the varian-
ces (02, 02)and the correlation between costs and
outcomes (p) are the same across treatment groups.

M imputations are then generated as follows®*:

1. Draw values for B, v, o, and p from their correspond-
ing posterior distributions conditioned on the
observed data.

2. Generate imputed values for each missing observa-
tion (cg‘iss, eg}”ss )using Model 1 and the parameter val-
ues drawn in step 1.

3. Repeat steps 1 and 2, M times.

Single-level MI may account for some of the cluster-
ing if cluster-level covariates (e.g., whether the cluster
is a teaching hospital or not) that help explain between-
cluster variability are included in the imputation
model as auxiliary variables. However, it is unlikely
that this approach will account for all the between-
cluster heterogeneity. The imputed values are drawn
from the conditional distribution of the missing
observations given the observed data, ignoring any
dependency between observations within a cluster
not explained by the auxiliary variables included
in the model. Therefore, the single-level imputation
model does not properly represent the conditional
distribution of the missing data given the observed
data and can lead to invalid inferences."?

Model 2: multilevel MI. Multilevel MI explicitly
recognizes the clustering by extending Model 1 to
incorporate cluster-specific random effects, u$ and
uje-, which represent the differences in the cluster
mean costs and outcomes from the overall means,
as in Model 2:

Cjj :BCXU' + ’chj + u; + Sfj
eij=BeXij+yer+uj":+sfj

&\ 0 g-? POOe
()@ (7)),
us§ 0 72 P17,
(it)-2((5) (7 7%7))
The random effects are assumed to follow a BVN

distribution with variances 72 and 72, and the clus-
ter-level correlation between costs and outcomes is
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represented by ¢. Model 2 is also conducted sepa-
rately for {;= 0 and ¢, = 1.

A multilevel MI approach for generating the M
imputations can be described as follows"%*;

1. Sample uf and uf from their posterior distributions
conditional on B, v, o, 7, p, ¢, and the observed data.

2. Draw values for 8, v, o, 7, p, and ¢ conditional on the
observed data and values obtained in step 1.

3. Generate imputed values for ¢}/**and e/ using
Model 2 and values obtained in steps 1 and 2.

4. Repeat steps 1-3, M times.

Both MI approaches assume that the imputed val-
ues are drawn from a BVN. However, because costs
are typically right skewed, it is recommended that
before imputation, a transformation (e.g., log) is taken
to help make the normality assumption more plausi-
ble.>'"?5 The transformed costs are then multiply
imputed and back-transformed onto the original scale
before applying the analysis model. For both
approaches, uniform priors are usually assumed
for the fixed-effects regression coefficients (8 and
v), whereas inverse-Wishart priors are recommen-
ded for the variance-covariance parameters (o, T,

) 19,24

Overview of the Case Study

We used cost-effectiveness data from a CRT that
evaluated an intervention to improve diagnosis of
active labor in primiparous women.*® The interven-
tion consisted of a decision support algorithm to
help midwives diagnose active labor, which was
compared with standard care (control group). The
CEA was typical of a study based on a CRT,"® in
that few clusters were randomized (14 maternity
units in Scotland, 2171 patients), there were unequal
numbers of individuals per cluster (49-198), intra-
cluster correlation coefficients (ICCs) were low for
the outcome measure (ICC ~ 0.03) but relatively
high for costs (ICC =~ 0.14),* and individual costs
and outcomes were correlated (p = —0.4). As in the
original analysis, we excluded those individuals
with missing outcomes (1%) and costs (4%) and
used the data with complete information on both end-
points (2078 patients, 14 clusters).

The primary CEA took as the effectiveness end-
point a measure of process utility*' because, unlike
measures of QoL or clinical outcome, it was

*ICCs are estimated using a small-sample adjustment due to the
small number of clusters per treatment arm.*’
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anticipated to be sensitive to any effect that the inter-
vention may have on the care process.*® The measure
encompassed women’s preferences for those aspects
of the labor experience that were deemed important
to women and expected to differ between treatment
arms.”® These included number of hospital visits
before labor ward admission, length of stay on the
labor ward, mobility during labor, pain relief
required, and mode of delivery. Information on the
process of care according to each attribute was col-
lected from the case records of the women enrolled
in the CRT. A discrete choice experiment (DCE) was
undertaken on a representative sample of women
included in the CRT to elicit their preferences for
each attribute. The actual experience of each woman
was then valued according to the preferences eli-
cited from the DCE, to report an overall measure of
process utility.?" This measure of process utility
was expressed in terms of women’s willingness to
trade between each attribute and time spent on the
labor ward (marginal disutility of increasing time
in the labor ward), providing an overall estimate of
willingness to wait (WTW),*® where higher WTW
means ‘“‘better”” process utility. Health service costs
per patient (£ sterling, 2005—2006) were calculated
by recording information on resource use on the
labor ward before and after birth and then combining
these resource use measures with standard unit
costs for obstetric admissions.?" In the CRT, infor-
mation was collected on individual- and cluster-
level covariates anticipated to be associated with
cost and WTW.

In Table 1, we report summary statistics for the
cost and process utility (WTW) endpoints and for
individual- and cluster-level covariates. Each covari-
ate had amoderate association with costs and a strong
association with WTW (Table 2). The association of
cluster size with either endpoint appeared to differ
by randomized arm. The size of the randomized clus-
ter also differed across treatment arms (Table 2, last
column); the average number of women randomized
in each cluster was higher for the control group.

We took the cost-effectiveness threshold (\) as the
mean willingness to pay (WTP) per hour reduction in
the time on the labor ward. The value for A that we
used in the base case (£32) was taken from a previous
DCE.?® We reported cost-effectiveness according to
incremental net monetary benefit (INB), by valuing
the incremental WTW for treatment versus control
by N\ and subtracting from this the incremental cost.
We considered a range of alternative thresholds for
valuing the WTW (£0-£200) when reporting cost-
effectiveness acceptability curves (CEACs).
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Table 1 Descriptive Statistics for the Fully Observed Data in the Case Study

Control (n = 1220)

Treatment (n = 858)

Endpoints
Cost (£)
WTW
Individual-level covariates
Number of visits
Labor hours
Mobility status
Normal delivery
Epidural
Cluster-level covariates
Maternity unit size®
Size of the randomized cluster
No. of women from deprived areas

2046 (1207)
75.62 (17.29)

2067 (1170)
73.15 (17.82)

0.44 (0.70) 0.82 (0.90)
8.09 (5.53) 9.15 (5.84)
871 (71%) 651 (76%)
750 (61%) 506 (59%)
482 (40%) 314 (37%)
J=7) J=7)
2974 (964) 3144 (1391)
185 (29) 157 (57)
712 (429) 838 (918)

Note: Values are mean (standard deviation) for continuous variables and n (%) for binary variables. ] = number of clusters. The willingness-to-wait (WTW)

is a measure of process utility.
a. Total annual births.

Table 2 Correlation of Each Covariate with Cost and WTW Endpoints by Treatment Arm, and Standardized
Mean Difference of Each Covariate between Treatment Groups

Control Group (n = 1220)

Treatment Group (n = 858)

Cost WTW Cost WTW Standardized Differences
Number of visits 0.01 -0.10 0.09 -0.12 27%
Labor hours 0.27 -0.67 0.30 —-0.69 19%
Mobility status 0.18 -0.59 0.18 -0.57 10%
Normal delivery 0.30 —-0.88 0.35 —-0.89 5%
Epidural 0.25 —0.66 0.27 —0.64 6%
J=7) J=7) J=7) J=7)
Maternity unit size® 0.30 -0.16 0.11 —0.59 14%
Size of the randomized cluster 0.55 0.27 -0.27 -0.91 86%
No. of women from deprived areas 0.16 0.64 0.19 —0.60 6%

Note: ] = number of clusters; WTW = willingness to wait.
a. Total annual births.

Constructing the Missing Data Scenarios

We set a proportion of the fully observed data set to
have missing endpoint data just for the cost (c;j), just
for the overall WTW score (e;), and then for both end-
points simultaneously. Let R, and R{,be the missing-
ness indicators for costs and WTW where R =1 if the
endpoint is missing and 0 otherwise. Let X;;be a con-
tinuous individual-level covariate, W;; a binary indi-
vidual-level covariate, and Z; a continuous cluster-
level covariate, each of which is fully observed as in
the original study. Then, under MAR, we defined
the probability of missing cost, P(Rf; = 1), as

LOgltP( =1|Cy, Xy, Wy, Z) =mg + 11Xy + nu Wi + m5Z;
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and similarly the probability of missing WTW,
P(R‘l?jz 1), as,

Logit P(RG = 1|Ey, Xy, Wy, Z;) = iy + ni Xy + m Wy + 132

where 717,m5 and ngare the set of coefficients repre-
senting the relationship between the covariates
and the probability of the endpoints being
missing.

Description of scenarios. In Table 3, we list the
scenarios considered. The choice of scenarios was
informed by previous literature which suggests
that the relative performance of the methods for
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Table 3 Description of the Alternative Scenarios

Predictors of Missing Cost and WTW Endpoints®

Individual Level

Cluster Level Endpoints

% with Missing % with Missing Data

Missingness

Data When Costs or When Both Costs and

Scenario Mechanism Continuous Binary Continuous WTW Is Set to Missing WTW Are Set to Missing
SO MCAR X X X X 30% 50%
S1 MAR v X X X 30% 48%
S2 MAR X - X X 30% 50%
S3 MAR X X 174 X 30% 49%
S4 MAR v v v X 30% 48%
S5 MAR I 174 174 X 10% 16%
S6 MAR 17 |7 |7 X 50% 69%
S7 MAR X WTW only Costs only X 30% 52%
S8 MAR Treatment only Control only X X 30% 49%
S9 MAR X X I X Not applicable” 29%
S10 MNAR v v v I 30% 51%

Note: MAR = missing at random; MCAR = missing completely at random; WTW = willingness to wait.
a. Unless stated otherwise, each scenario assumed the same missingness predictors, and the same level of association between predictors and missingness,

for both endpoints and treatment groups.

b. In this scenario, all cost and WTW data from 2 clusters were set to missing conditional on a cluster-level covariate, the proportion of women from

deprived areas.

handling missing data may differ according to the
proportion of individuals with missing data''®
and the type of variables that predict missingness
(e.g., continuous or binary, individual-level or clus-
ter-level).?° We have also allowed for different miss-
ing data mechanisms, MCAR, MAR, and MNAR.**
In particular, allowing the data to be MNAR was
motivated by the general concern in CEA that prob-
ability of cost and outcome data may be conditional
on the level of the endpoints.®'®?! For example, in
our case study it may be expected that women
with lower WTW may be more likely to have miss-
ing WTW. Since the process utility endpoint,
WTW, had lower ICC than the cost endpoint, we
also hypothesized that there could be smaller differ-
ences between methods for handling the missing
WTW data than for handling missing costs.’®"”

We started by considering missing costs only and
assuming that the proportion of observations with
missing data was 30%, a level typically seen in tri-
al-based CEAs.®'® In the first scenario (S0), we
assumed that the missingness mechanism is MCAR,
that is, the missingness is independent of any
observed or unobserved variable. Then, we allowed
costs to be MAR conditional on a continuous individ-
ual-level covariate, labor hours (S1); a binary individ-
ual-level covariate, delivery mode (S2); a continuous
cluster-level covariate, size of the randomized cluster
(S3); and then all 3 covariates (S4). For these scenar-
ios, we followed previous simulation studies®**® and
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set the values for n;,m9, and 713 such that there was
a moderate level of association between each covari-
ate and missingness (Pearson correlation coefficient?
around 0.4). This assumed level of association, for
example, between a binary covariate (e.g., delivery
mode) and the missing costs (scenario S2), corre-
sponded to an odds ratio of 0.21; that is, those women
who had a normal (vaginal) delivery were about 5
times less likely to have unobserved cost data than
those who did not. In the sensitivity analyses, we
allowed small (correlation = 0.2) and high (correla-
tion = 0.7) levels of association. To achieve the
desired percentage of missingness (30%) across the
alternative scenarios, we chose 7, empirically,*
given the values assumed for 7;, 1y, and n3. We
repeated scenarios SO to S4 with the same parameter
values but assuming that just the WTW was missing.
We then assumed that information for both endpoints
could be missing; the proportion of individuals miss-
ing both endpoints is reported in Table 3 (last col-
umn). We assumed the same predictors of
missingness across both endpoints and treatment
arms.

We then conducted sensitivity analyses (scenarios
S5-S10) that considered further circumstances faced

TFor example, the usual Pearson correlation coefficient between
a continuous covariate (X) and the binary missingness indicator (R)
was calculated as correlation = cov(R, X)/o,0,, where o, is the stan-
dard deviation of R.
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by CEAs that use CRTs where the relative perfor-
mance of the methods may be anticipated to differ.
We considered low (S5) and high (S6) proportions
of missing data and different missingness predictors
by endpoint (S7) and by treatment arm (S8), and we
set 2 whole clusters to have unobserved endpoints
conditional on a continuous cluster-level covariate
(S9). In the final scenario (S10), we allowed for the
data to be MNAR by setting the probability of costs
and WTW being missing to be dependent on the level
of the endpoints as follows:

LogitP(jo = 1|Cy, Xy, Wy, ZJ.) -
mo + MiXy + mpWiy + msZ; + 5°Cy

Logit PRy = 1By, Xy, Wy, Z;) =
Mo + M1 Xy + myWij + m3Z; + 8By

where 6° and 6°were chosen to allow for different lev-
els of association between the fully observed end-
points and the probability of missingness. For the
base case, we set 6° and 6° so that the level of associ-
ation was moderate (correlation = 0.4), which meant,
for example, that women were 5% less likely to have
missing WTW data (odds ratio = 0.95) for each unit
increase in their WTW. We then considered alterna-
tive levels of association between the endpoints and
the probability of missingness (levels of correlation
ranging from 0 to 0.7).

Implementation. For the imputation model, we
followed general recommendations and took an
inclusive approach to variable selection by includ-
ing all covariates associated with either endpoint
in either treatment group.”’®**** In each scenario,
we included all 5 individual-level covariates: deliv-
ery mode, number of previous hospital visits, mobil-
ity status, type of pain relief, and labor hours; and all
3 cluster-level covariates: size of the randomized
cluster, size of the maternity unit, and proportion
of women from deprived areas. Hence, the imputation
model included covariates beyond those used to sim-
ulate the missing data. We specified joint models for
the cost and WTW endpoints, separately for each
treatment arm, and costs were log-transformed prior
to imputation. We used the R packages “mice”** and
“pan”"® for the single-level and multilevel MI, respec-
tively. We followed methodological guidance'**® and
imputed M = 10 data sets in each scenario but allowed
M = 50 in the sensitivity analyses.

For each missing data approach, we estimated
incremental cost and WTW with a BVN multilevel
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model (MLM) that assumed constant variances across
clusters,® and we calculated the INB from the resul-
tant parameter estimates. We assumed that there
were no systematic imbalances in the baseline covari-
ates, and we estimated linear additive treatment
effects for both costs and WTW. For both MI methods,
estimates were obtained by applying the MLM to each
Mimputed data set. These M= 10 estimates were then
combined by Rubin’s rules®” to obtain MI estimates
and standard errors.

In each scenario, we reported the mean (standard
error) estimates for each method compared with the
corresponding estimates from the fully observed
data, defined as the “true” estimates. We reported
the relative performance of each method as the per-
centage differences in the mean estimates versus the
true estimates. For example, the percentage mean dif-
ferences (d) in the INB were calculated as
d(INB) = ‘”V%Tvigﬁvm X 100, where INBT is the true
INB and INB the INB estimated by a particular
method. We also reported CEACs for S4. All analyses
were implemented in R.

RESULTS

Missing Costs or WTW

In Table 4 (third column) we report means and
standard errors of the incremental cost across scenar-
ios in which 30% of women had missing costs. When
costs were MCAR, all methods provided incremental
costs similar to the true estimates obtained from the
fully observed data. Under MAR, CCA gave point esti-
mates that differed from the true incremental cost. In
this setting with only the cost endpoint missing, the
imputation approaches used information from the
fully observed WTW endpoint, which was highly cor-
related with the costs (p = —0.4) as well as the base-
line covariates to impute the costs. Across all
scenarios, the multilevel MI provided estimates that
were notably closer to the true estimates than the sin-
gle-level MI. As the single-level MI did not recognize
any dependency between observations within the
cluster not explained by the cluster-level covariates,
this approach also reported standard errors smaller
than the true standard errors.

Table 4 (last column) also presents the results for
the same scenarios but assuming that only WTW
was missing (30%). Between-method differences
were similar to those for missing costs; multilevel
MI provided WTW estimates consistently closer to
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Table 4 Incremental Cost with 30% Missing Costs, and Incremental WTW with 30% Missing WTW, for

CCA, Single-Level MI, and Multilevel MI

Scenario Incremental Cost Incremental WTW
True estimates 160 (272) -0.45 (2.08)
S0: MCAR CCA 157 [2%] (284) —0.47 [4%] (2.10)
Single-level MI 159 [1%] (272) —0.44 [2%] (2.10)
Multilevel MI 159 [1%] (272) —0.45 [0%] (2.11)
S1: MAR conditional on an individual-level continuous variable CCA 123 [24%] (277) —0.32 [29%] (1.99)
Single-level MI 134 [16%] (228) —0.42 [7%] (2.10)
9)

S2: MAR conditional on an individual-level binary variable

S3: MAR conditional on a cluster-level continuous variable

S4: MAR conditional on all variables above

Multilevel MI
CCA
Single-level MI
Multilevel MI
CCA
Single-level MI
Multilevel MI
CCA
Single-level MI
Multilevel MI

(272)
(284)
(272)
(272)
(277)
(228)
160 [0%] (291)
116 [28%] (269)
137 [14%] (223)

154 [3%] (295)
131 [18%] (269)
140 [13%] (224)

161 [1%] (287)
125 [22%] (242)
138 [14%] (207)

162 [1%] (280)

—0.44 [1%] (2.0
—0.28 [33%] (2.32)
—0.41 [9%] (2.13)
-0.45 [0%] (2.09)
—0.31[31%] (1.89)
—0.40 [11%] (2.12)
—0.44 [1%] (2.11)
—0.34 [24%] (2.30)
-0.41 [9%] (1.66)
—0.45 [0%] (2.11)

Note: Values are mean [% mean difference from the true estimate] (standard error). Scenarios S0-S4 were first generated by setting only costs to missing,
and methods were compared to provide incremental cost (third column). These scenarios were then replicated by setting only missing WTW to missing,
and methods were contrasted on the incremental WTW (last column). CCA = complete case analysis; MAR = missing at random; MCAR = missing com-

pletely at random; MI = multiple imputation; WTW = willingness to wait.

the true estimates. However, for the WTW endpoint,
a relatively low proportion of the variation was at
the cluster level (ICC = 0.03), and so the single-level
MI gave estimates that were somewhat closer to the
true estimates than for the previous scenarios with
missing costs. For some scenarios, CCA reported
standard errors that differed from the true standard
errors. This was because the subsamples with
observed data happened to have more or less variabil-
ity in their WTW or cost data than those observations
whose endpoints were set to missing.

Missing Costs and WTW

In Table 5 we report incremental cost, incremental
WTW, and INB assuming that for 30% of women
either costs or WTW was MAR; the proportion of
women with missing data for either endpoint was
around 50% (Table 3) and for both endpoints was
10%. CCA and single-level MI provided point esti-
mates of the INB that diverged from the true INB,
and single-level MI also provided smaller standard
errors. The divergence between the true and esti-
mated INBs reflected those for the incremental costs
and WTW, which were generally higher than for the
previous scenarios where only one endpoint was set
to missing (Table 4). Here, a higher proportion of
women were missing either endpoint (approximately
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50% v. 30%), and for those women missing both end-
points the imputation was solely reliant on the cova-
riate information. The multilevel MI gave point
estimates and standard errors consistently close to
the true INB.

The results were similar when we assumed low
(correlation = 0.2) or high (correlation = 0.7) levels
of association between the covariates and the proba-
bility of missingness, when the number of imputa-
tions was increased to 50.

The CEAGs illustrated for scenario S4 (Figure 1)
showed that multilevel MI provided estimates closest
to the true probability that the intervention is cost-
effective across a wide range of WTP thresholds
considered.

Sensitivity Analyses

Both CCA and single-level MI provided divergent
point estimates from the true estimates, even in cir-
cumstances where each endpoint was missing for
only 10% of women (84% complete cases) (Table
6). These estimates were further from the true esti-
mates when 50% of observations were missing either
endpoint (31% complete cases). By contrast, multi-
level MI reported estimates closer to those from the
fully observed data. Similar between-method differ-
ences were reported when we allowed for different
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Single-level MI

85 [47%] (214

—0.23 [49%] (2.17)

-92 [47%] (220

Table 5 Incremental Cost, Incremental WTW, and INB According to Method, across Different Scenarios
with Costs and WTW Missing

Scenario % of Missing Data Incremental Cost Incremental WTW INB?
True estimates 160 (272) —0.45 (2.08) —172 (274)
S1 48% CCA 73 [54%] (284) —-0.27 [40%] (2.24) -82 [52%] (299)
Single-level MI 118 [26%] (226) —0.34 [27%] (2.07) -129 [25%] (235)
Multilevel MI 157 [2%] (294) -0.43 [4%] (2.11) -171 [1%] (295)
S2 50% CCA 88 [45%)] (254) —0.02 [95%] (2.17) -89 [55%] (253)
Single-level MI 115 [28%] (217) —0.35 [22%] (2.11) —126 [27%] (223)
Multilevel MI 158 [1%] (280) —0.46 [2%] (2.11) -173 [1%] (284)
S3 49% CCA 59 [63%] (252) 0.35 [155%] (2.09) —48 [72%] (252)
Single-level MI 105 [34%)] (220) —-0.30 [33%] (2.11) -115 [33%] (231)
Multilevel MI 156 [3%] (285) —0.43 [4%] (2.14) —169 [2%] (292)
S4 48% CCA 36 [80%] (272) 0.44 [198%] (2.23) —22 [87%] (282)
(214) )
(275) )

Multilevel MI

153 [4%] (275

—0.46 [2%] (2.13)

-167 [3%] (276

Note: Values are mean [% mean difference from the true estimate] (standard error). CCA = complete case analysis; INB = incremental net benefit; MI = mul-

tiple imputation; WTW = willingness-to-wait.

a. INB is valued at a WTP value of £32 for 1 hour reduction in the time on the labor ward.

1.0

0.9 -=+= CCA
==+ Single-level MI
e84 3 wwes Multilevel MI

—— True probability
0.7 4

0.6 -
05 L imememememememnTTI T

0.4

Probability of being cost-effective

0.2
0.1
0.0
T T T T T
0 50 100 150 200
WTP value for one hour reduction in the time on the labour ward (£)
Figure 1 Cost-effectiveness acceptability curves according to

method, using estimates from scenario S4. CCA = complete case
analysis; MI = multiple imputation; WTP = willingness to pay.

predictors by endpoint (S7) and by randomized arm
(S8) and when the costs and WTW of all the patients
from 2 clusters were set to missing (S9).

Figure 2 illustrates the relative performance of
each method under MNAR scenarios with increasing
levels of association between the fully observed end-
points and the probability of missingness. Here, mul-
tilevel MI provides INB estimates that were relatively
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close to the true INB when the correlation between
the value of the endpoint and its missingness was
fairly weak (correlation < 0.2). Once we assumed
a stronger relationship between the endpoints and
the probability of missingness (correlation > 0.4),
none of the methods gave accurate estimates, but
those from the multilevel MI were still closest to the
true estimates.

DISCUSSION

This paper presents a multilevel MI approach for
handling missing data in CEAs that use hierarchical
data. This method is grounded on methodological
guidance in the biostatistics literature which recom-
mends its use for the analysis of missing data in hier-
archical settings.’>'®'?%* In the context of a CEA
alongside a CRT, we find that multilevel MI gives
point estimates of cost-effectiveness and standard
errors consistently close to those from the fully
observed data. We therefore recommend that future
studies adopt this approach for handling missing
data in CEAs that use cluster trials, irrespective of
the prevalence of missing data. CCA provides point
estimates that are divergent from those of the fully
observed data across all scenarios, and its use is dis-
couraged. The estimates from the single-level MI are
closer to the true estimates in less challenging set-
tings, such as when the ICC is low and only one end-
point has missing data. However, in most scenarios
this MI approach leads to misleading point estimates
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Table 6 INB (WTP value: £32 per hour) for Each Method across Sensitivity Analysis Scenarios

Scenario % of Missing Data INB
True estimate -172 (274)
S5: 10% of women missing either endpoint CCA -141 [18%] (271)
16% Single-level MI —157 [9%] (256)
Multilevel MI -174 [1%] (272)
S6: 50% of women missing either endpoint CCA 20 [112%)] (320)
69% Single-level MI -9 [95%] (242)
Multilevel MI -161 [6%)] (317)
S7: different predictors by endpoint CCA —47 [73%] (269)
52% Single-level MI —106 [38%] (231)
Multilevel MI -167 [3%] (277)
S8: different predictors by treatment arm CCA -14 [92%] (279)
51% Single-level MI -79 [54%] (225)
Multilevel MI —-163 [5%] (283)
S9: entire clusters missing® CCA -133 [23%] (269)
19% Single-level MI —149 [13%] (214)
Multilevel MI —-168 [2%] (278)
S10: MNAR CCA 97 [156%] (281)
49% Single-level MI —4 [98%] (223)
Multilevel MI -109 [37%] (287)

Note: Values are mean [% mean difference from the true estimate] (standard error). CCA = complete case analysis; INB = incremental net monetary benefit;
MI = multiple imputation; MNAR = missing not at random; WTP = willingness to pay.
a. All costand WTW data from 2 clusters were set to missing conditional on a cluster-level covariate, the number of women from deprived areas; The bench-

mark is scenario S4.

150 7 T oo a
100 - L
.'.".
50
....... Asesenes
' " o - CCA
2 [ T - Lt «+«A++ Single-level MI
501 - - Multilevel MI
....... ....---“ Y STy
-100 4 ot === Tre INB
- e
e U
-200 T T T T T T |
0 01 02 03 04 05 06 07
Cortrelation between the endpoints and missingness

Figure 2 INB (WTP value: £32 per hour) according to method for
MNAR scenarios (the benchmark is S4) at increasing levels of asso-
ciation between endpoints and missingness. CCA = complete case
analysis; INB = incremental net monetary benefit; MI = multiple
imputation; MNAR = missing not at random; WTP = willingness
to pay.

and standard errors. These scenarios include those
when the cost endpoint, which had a higher ICC, is
missing and when a higher proportion of patients
are missing either endpoint.

Single-level MI does not recognize that observa-
tions within each cluster may be correlated, and it
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assumes that there is more information than there
actually is and, hence, that the resultant precision
of the resultant estimates is overstated. Our results
suggest that approaches that ignore the clustering
not only exaggerate the precision but can also lead
to inappropriate point estimates. The way that sin-
gle-level MI weights individuals within each cluster
differs from that of multilevel MI. The resultant point
estimates can differ between single-level and multi-
level MI approaches when the randomized clusters
are of different size and the relationship between
cluster size and either endpoint differs by treatment
arm. Previous work has shown that in such circum-
stances, multilevel versus single-level analysis mod-
els can give different point estimates.®*® A previous
simulation study for handling missing univariate
endpoint data in CRTs also found that single-level
MI underestimates the uncertainty around the
estimates."”

A previous paper proposed multilevel MI for CEAs
that use cluster trials in a reanalysis of a single case
study.?® We extend this work by assessing the meth-
ods’ performance against estimates obtained from
fully observed cases. This allowed the methods to
be compared across a wide range of circumstances
typically encountered in CEAs that use CRTs."® We
found that unless data are MCAR, which is unlikely,
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CCA and the single-level MI approach appear inap-
propriate for studies with clustered data. The multi-
level MI approach is compatible with MLMs for
handling cost-effectiveness data with a multilevel
structure.”®®  Previous simulations studies®®°
showed that MLMs developed for CEAs that use
CRTs performed relatively well even with a small
number of clusters (3 per arm). In our case study,
which had 7 clusters per arm, the use of multilevel
MI for handling the missing data combined with
MLMs for the analysis provided both point estimates
and uncertainty measures close to the true values.

Previous papers have proposed single-level MI
approaches for handling missing data in CEAs.”"!
Simulations have shown that single-level MI can per-
form relatively well with a single endpoint and when
the data are not hierarchical.'®'" More generally,
CEAs based on patient-level data tend to use hierar-
chical designs such as multicenter and cluster trials,
where the data can be anticipated to have a multilevel
structure. The multilevel MI approach proposed,
although illustrated in the context of a CEA from
a CRT, can be extended to other hierarchical settings
such as multicenter or multinational studies.

While multilevel MI has been proposed more
generally for handling missing data that have a hierar-
chical structure,">'®"? the CEA context brings addi-
tional challenges for the method. In this setting,
methods need to recognize that the probability that
one endpoint is missing may be dependent on the
other endpoint; for example, patients in worse health
may be less likely to return resource use question-
naires. Here, we recognized this by considering joint
imputation models for missing costs and WTW (Mod-
els 1 and 2 above), which used the information of the
observed endpoint to impute the missing endpoint.
In addition, we acknowledged that costs tend to
have a right-skewed distribution by log-transforming
them before any imputation and back-transforming
the data after imputation.>'’ As data were back-
transformed before the analytical models were
applied, this avoided the retransformation problem
that can occur when one is back-transforming esti-
mates from log-normal endpoint models.?” For the
analytical model, we considered bivariate normal
MLMs, which have been shown to perform well
across different circumstances in CEAs that use
CRTs, including when costs are skewed.>®?°

Our analysis compared a multilevel MI approach
thatused ajoint normal distribution with acommonly
used single-level MI procedure that uses a full
conditional specification (sometimes called the
chained equations approach).’® When instead we
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implemented both single-level MI and multilevel
MI using the chained equations approach, differen-
ces in the estimates between the single-level and mul-
tilevel approach remained the same. The multilevel
MI approach can be readily implemented in available
software; we chose to use the R package and to
append code to help disseminate the method
(Appendix 2), but other available software options
include the mi macro in MLwiN'? and the REAL-
COM-impute macros.*®

MI methods, like other principled approaches for
handling missing data, such as maximum likelihood
estimation and full-Bayesian analyses (estimated via
MCMQC), assume that the data are MAR. In practice,
data may be missing dependent on unobserved fac-
tors (e.g., patient lifestyle factors); that is, the data
may be MNAR. This paper considered settings in
which data were assumed to be MNAR, and it showed
that cost-effectiveness results by either MI approach
were sensitive to departures from the MAR. In this
case study, multilevel MI reported cost-effectiveness
estimates that were closest to the true estimates
across the alternative MNAR scenarios. However, it
is important for future CEAs to conduct structural
sensitivity analyses to consider how to handle possi-
ble MNAR mechanisms. MI approaches under MAR
are amenable to such sensitivity analyses, and this
is an ongoing area of methodological research.®’

This paper has some limitations. First, we did not
undertake a full simulation study, which would have
allowed metrics such as bias, mean squared error, and
confidence interval coverage to be compared across
the methods. Previous simulation studies'>'” have
suggested that multilevel MI outperforms single-level
MI with clustered data, and either approach can
reduce bias versus CCA. Here, we chose a design
that allowed us to compare the different methods
across a range of plausible mechanisms, which gave
rise to incomplete data in a typical CEA alongside
a CRT. By taking this approach, we could examine
the implications of the choice of method on cost-
effectiveness estimates for alternative missing data
mechanisms. These findings will help inform a future
simulation study. Second, the paper has taken data
from a single case study and investigated missing
data for costs and a measure of process utility. More
generally, the missing data may take different forms
to those considered here; for example, the endpoint
may be binary or time to event, and the pattern of
the missing data may be more complex (e.g., different
components of resource use). Third, our analyses
were based on a single replication of the missing
data, but when we conducted 1000 replications for
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particular scenarios, the findings were unchanged.
Fourth, this study contrasted multilevel MI with sin-
gle-level MI, which has been previously proposed for
CEAs, and CCA, an approach commonly taken in
applied studies. However, other methods for han-
dling missing data in CEAs, such as inverse probabil-
ity weighting® and full-Bayesian approaches,*’
could also be extended to allow for clustering.

The findings from this paper provoke several areas
for further research. Future studies could consider
the relative performance of a broader range of meth-
ods in more general circumstances faced by CEAs.
In particular, it would be useful to contrast full-
Bayesian approaches with multilevel MI for handling
other complex structures, for example, CEAs that
have longitudinal data. Here, it would be interesting
to contrast the potential flexibility that Bayesian
approaches may afford with respect to exploiting
external data, with the additional requirements of
specifying prior distributions. Second, further
work is needed to develop approaches for exploring
the sensitivity the cost-effectiveness results to depar-
tures from the MAR assumption, by considering
a range of possible MNAR mechanisms.***%*! Such
approaches can allow analysts to present decision
makers with a fuller representation of the uncertainty
that surrounds the CEA results, to facilitate a sounder
basis for future decisions.
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