Supplementary material

Brain transcriptome sequencing of a natural model of Alzheimer's disease

Francisco Altimiras^{1,2,*,#}, Barbara Uszczynska-Ratajczak^{3,4,*}, Francisco Camara^{3,4}, Anna Vlasova^{3,4}, Emilio Palumbo^{3,4}, Stephen Newhouse⁵, Robert M. J. Deacon^{6,7}, Leandro A. E. Farias¹, Michael J. Hurley⁸, David E. Loyola⁹, Rodrigo A. Vásquez¹⁰, Richard Dobson⁵, Roderic Guigó^{3,4,#}, and Patricia Cogram^{6,7,#}.

¹Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile

²Telefonica Research and Development, Santiago, Chile

³Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain

⁴Universitat Pompeu Fabra, Barcelona, Spain

⁵ Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK

⁶ Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina ⁷ GeN.DDI Ltd, London, UK

⁸ Division of Brain Sciences, Centre for Neuroinflammation and Neurodegeneration, Imperial College, London, UK

⁹ National Center for Genomics and Bioinformatics, Santiago, Chile

¹⁰ Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile

*Shared first authorship

[#]Corresponding authors

Supplementary tables

Table S1. Accuracy of gene prediction. Accuracy of gene prediction on an *O. degus* "artificial scaffold" consisting of 238 concatenated *O. degus* test sequences (with 800 nucleotides of sequence between each of the gene models) using the ab initio programs geneid, AUGUSTUS and SNAP with their pre-existing Mammalian/H. sapiens parameter files (i.e. "mam/hs"). The accuracy of SGP2 (homology evidence-based prediction tool that used the genome of H. sapiens as reference) and that of Augustus (using RNASeq and transcript evidence i.e. "AUGUSTUS+hints") were also tested for accuracy on the same set of sequences. Geneid (geneid+introns) and SGP2 (SGP2+introns) using introns as external evidence were also evaluated. (SN & SP: sensitivity & specificity at nucleotide level; SNe & SPe: sensitivity & specificity at exon level; SNg & SPg: sensitivity & specificity at gene level).

Program/param	SN	SP	SNe	SPe	SNg	SPg
Geneid man/hs	0.83	0.75	0.65	0.69	0.09	0.06
Geneid+intron mam/hs	0.92	0.82	0.83	0.79	0.24	0.17
SGP2 odegus / Hs	0.90	0.82	0.77	0.73	0.12	0.08
SGP2+intron odegus / mam/hs	0.95	0.86	0.86	0.79	0.26	0.17
Augustus+hints mam/hs	0.87	0.94	0.81	0.90	0.33	0.35
Augustus mam/hs	0.81	0.84	0.68	0.75	0.06	0.07
SNAP mam/hs	0.83	0.45	0.57	0.32	0.03	0.01

Table S2. Weights used by EVM to create a consensus CDS model *O. degus*. The shortcuts interpretation: SPLAN2 uniprot90: SPLAN2 search against Uniprot90 proteins; SPALN2 uniprot-swissprot: SPALN2 against rodent uniprot/swissprot curated proteins; Exonerate uniprot-swissprot: exonerate against against rodent uniprot/swissprot curated proteins;

Туре	Source	Weight
ABINITIO_PREDICTION	Augustus	1
ABINITIO_PREDICTION	AugustusHints	1.75
ABINITIO_PREDICTION	geneid	1
ABINITIO_PREDICTION	SGP2	1.25
ABINITIO_PREDICTION	geneid+introns	1.5
ABINITIO_PREDICTION	SGP2+introns	1.75
ABINITIO_PREDICTION	SNAP	0.3
PROTEIN	SPALN2 uniprot90	5
PROTEIN	SPALN2 uniprot-swissprot	4
PROTEIN	exonerate uniprot-swissprot	4
TRANSCRIPT	PASA	10

Table S3. Comparison between EVM-based and GNOMON-based protein codinggene annotation. Statistics for two protein-coding annotations for O. degus.

Annotation versions	O.degus 2a (EVM- generated)	O.degus (ncbi GNOMON) -protein- coding only-
Genome length (Mbases)	2,995.89	
number of scaffolds	7,134	
Number of protein-coding genes	31,739	20,779
Gene density (genes/Kbase)	0.0106	0.007
Number of protein-coding transcripts	36,866	26,248
Transcripts/gene (range) (% genes with more than 1 transcript)	1.16 (SD 0.72) (1 – 32) (9.24%)	1.26 (SD 0.94) (1 – 31)(15%)
Number of transcripts with UTRs	10,648	-
Number of proteins	36,575	26,248
Number of complete proteins (%)	33,858 (92.57%)	-
Number/(%) proteins with similarity to sequences in the NCBI NR database (E=10-2; min. identity=25%)	35,475 (97%)	-
Avg. length of proteins (range)	461.96 aa. (SD 593.73) (25 – 34,458)	577.56 aa. (SD 641.03) (23 – 34,357)
Avg. length of full-length proteins (range)	478.57 aa. (SD 602.27) (25 – 34,458)	-
Number of partial proteins (not starting with "M")	1842 (5.04%)	259 (0.98%)
Avg. length of partial proteins (not starting with "M")	253.11 aa. (SD 431.8)	-
Number of partial proteins (no terminal STOP codon)	1589 (4.34%)	(can't determine as gnomon protein set has no clear STOP signal)
Avg. length of partial proteins (no	213.91 aa. (SD	-

terminal STOP codon)	350.85)		
Number of partial proteins (not starting with an M -and- no terminal STOP codon)	714 (1.95%)	-	
Avg. length of partial proteins (not starting with an M -and- no terminal STOP codon)	158.83 aa. (SD 261.08)	-	
Number of partial proteins (not starting with an M -or- no terminal STOP codon)	2,717 (7.43%)	-	
Avg. length of partial proteins (not starting with an M -or- no terminal STOP codon)	254.96 aa. (SD 423.14)	-	
Number of protein-coding exons	288,884	268,660	
Number of introns	252,018	242,412	
Number of UTRs (spliced)	19,003	-	
Number of single-exon genes	10,114	3,156	
Number of multi-exonic transcripts (genes)	26,752 (21,740)	23,092 (17,623)	
Exons/transcript (range) (excludes single-exon genes)	10.42 (SD 10.50) (2 - 313)	11.49 (SD 10.35) (2 – 313)	
Introns/transcript (range)	9.42 (SD 10.50) (1 – 312)	10.49 (SD 10.35) (1 – 312)	
"spliced" UTRs/transcript (range)	1.785 (SD 0.74) (1 - 5)	-	
Avg. length of introns (range)	5,998 (SD 19,994.1) (21 – 734,060)	5,613.03 (SD 19,909.6) (30 – 1,116,408)	
Avg. length of mono-exonic genes	519.27 (SD 430.56)	872.88 (SD 618.70)	
Avg. length of exons (excludes mono- exonic genes)	165.37 (SD 233.34)	161.25 (SD 230.37)	
Avg. length of first exons	230.78 (SD 336.07)	-	
Avg. length of internal exons	149.24 (SD 194.59)	94.59) -	
Avg. length of terminal exons	235.72 (SD 352.41)	-	
Avg. length of CDS (range)	1,392.9 (SD 1,782.42) (75 –	1,736.06 (SD 1,923.46)	

	103,074)	(69 – 103,074)
Avg. length of UTRs (range)	653.40 (SD 942.07) (1 - 11,857)	-
Avg. length of primary transcripts	43,714.8 (SD 107,530)	56,055.1 (SD 117,349)
G+C content exonic (mono-exonic genes)	49.72% (SD 7.63%)	51.85% (SD 8.56%)
G+C content exonic (excludes mono- exonic genes)	52.53% (SD 7.47%)	53.52% (SD 7.42%)
G+C content exonic (first exons)	53.62% (SD 10.85%)	-
G+C content exonic (internal exons)	51.27% (SD 9.67%)	-
G+C content exonic (terminal exons)	53.59% (SD 10.84%)	-
G+C content intronic	45.05% (SD 11.54%)	45.45% (SD 11.61%)
G+C content genomic	40.1 <mark>6% (SD 5.63%)</mark>	
G+C content UTRs	53,76% (SD 5%)	-

Table S4. Non-default parameters for RNA-seq mappings. Non-default parameters used during mapping step of pair-end reads of human brain AD subjects and control samples with STAR 2.4.0.1. First column refers to the name of the parameter, while the second to its value.

Parameter	Value
outSAMunmapped	Within
outFilterType	BySJout
outFilterMultimapNmax	20
outFilterMismatchNmax	999
outFilterMismatchNoverReadLmax	0.04
alignIntronMin	20
alignIntronMax	100000
alignSJDBoverhangMin	1
readFilesCommand	zcat

Supplementary Table S5. Functional annotation statistics. Abbreviature KO - KEGG

orthology groups.

Number of proteins/genes	36,575 / 31,739
Annotated proteins/genes	34,571 (94.5%) / 30,336 (95.5%)
Proteins with Interpro signatures	33,800 (92.4%)
Proteins with Blast2GO or KEGG definition	23,936 (65.4%)
Proteins with Blast2GO definition	16,737 (45.7%)
Proteins with KEGG definition	14,756 (40.3%)
Proteins assigned to KO groups	14,879 (40.6%)
Proteins with GO terms association	28,988 (79.2%)
Conserved domains signatures	31,874 (87.1%)
Conserved features signatures	15,017 (41%)

Supplementary Table S6. GO term annotation. A. Number of GO terms associated to each ontology **B**. Top 10 GO terms more frequently associated to proteins grouped by GO term type.

Α.

Term type	Number of proteins
Biological process	22,200
Cellular component	20,110
Molecular function	27,220
All	29,847

GO term id	GO term description	# Proteins
	Biological process	
GO:0006412	translation	2938
GO:0006355	regulation of transcription, DNA-templated	1865
GO:0007186	G-protein coupled receptor signaling pathway	1505
GO:0006414	translational elongation	1073
GO:0055114	oxidation-reduction process	1016
GO:0006413	translational initiation	904
GO:0007165	signal transduction	902
GO:0006468	protein phosphorylation	882
GO:0000184	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	830
GO:0006614	SRP-dependent cotranslational protein targeting to membrane	823
	Molecular function	
GO:0005515	protein binding	6905
GO:0003735	structural constituent of ribosome	3023
GO:0005524	ATP binding	2431
GO:0003676	nucleic acid binding	2166
GO:0008270	zinc ion binding	1982
GO:0000166	nucleotide binding	1785
GO:0003677	DNA binding	1755
GO:0046872	metal ion binding	1706
GO:0004930	G-protein coupled receptor activity	1311
GO:0003723	RNA binding	1280
	Cellular component	
GO:0005622	intracellular	3658
GO:0005634	nucleus	3517
GO:0016021	integral component of membrane	3502
GO:0005840	ribosome	2927

GO:0005737	cytoplasm	2338
GO:0016020	membrane	2165
GO:0005829	cytosol	1641
GO:0005886	plasma membrane	1487
GO:0005730	nucleolus	1429
GO:0022625	cytosolic large ribosomal subunit	1007

Table S7. GO-terms enrichment for differentially expressed genes in *O. degus.* Biological processes overrepresented by up- and down-regulated genes identified in *O. degus* brain samples. GO terms shown are those significantly overrepresented (pvalue < 0.05) by genes showing differential expression between AD-like subjects and controls. Categories are sorted by p-value.

Table S8. GO terms enrichment for differentially expressed genes in human samples. Biological processes overrepresented by up- and down-regulated genes identified in human brain samples. GO terms shown are those significantly overrepresented (pvalue < 0.05) by genes showing differential expression between AD subjects and controls. Categories are sorted by p-value.

Table S9. Genes differentially expressed between human samples. The complete list of 2963 human genes displaying differential expression between AD subjects and controls. Genes are ranked by FDR (FDR < 0.05).

Table S10. Pairwise comparisons to measure the gene expression level differencesbetween AD-like degus and controls.

Supplementary figures

A metabolism , 10.21 % B binding , 8.08 % C cell, 7.62 % D intracellular, 6.61 % E biosynthesis, 3.83 % F protein_metabolism , 3.46 % G nucleic acid metabolism, 3.43 % H catalytic_activity, 3.37 % I protein_binding , 3.33 % J cytoplasm , 3.11 % K cell_organization , 2.49 % L cell_communication , 2.42 % M development, 2.2 % N signal_transduction, 2.16 % O transport, 1.87 % P nucleic acid binding , 1.8 % Q nucleus , 1.77 % R protein biosynthesis, 1.34 % S cell differentiation , 1.31 % T hydrolase_activity , 1.25 % U transferase activity, 1.22 % V nucleotide_binding , 1.21 % W protein_modification , 1.19 % X Other , 24.72 %

Figure S1. Gene ontology mapping of O. *degus* **genes.** The GO terms were mapped into the general GO slims without top level categories – biological process, molecular function, cellular component.

Figure S2. **Distribution of functionally annotated and non-annotated proteins.** Number of annotated and non-annotated sequences in relation to their length. The blue color correspond to all proteins, red – annotated proteins and green to the non-annotated proteins.