
Section 1: Introduction  

Hemoglobin biology and the functional importance of the oxyhemoglobin dissociation curve 

Hemoglobin is crucial to the transportation of oxygen within the circulation of all 

vertebrates, and some invertebrates. The evolution of globin genes over time has led to the 

complex structure we are familiar with in human blood today. Hemoglobin is a 

heterotetramer consisting of two alpha and two beta polypeptide chains, each with a 

central heme group comprised of an iron ion and a porphyrin ring.(1, 2) The iron-

containing heme group on each of the four protein subunits permits binding of one oxygen 

molecule. Oxygen is bound to hemoglobin in regions of high partial pressure of oxygen 

(pO2), such as the lungs, and 

then released into the tissues, 

where pO2 is low due to cellular 

oxygen consumption. The pO2 

varies between normal tissues 

and this range can be 

considered “physioxia”. (3) The 

affinity of hemoglobin for 

oxygen in relation to pO2 is 

described by the oxygen-hemoglobin dissociation curve (ODC) illustrated in Figure 1. One 

of the unique features of hemoglobin is that it exhibits molecular cooperativity, responsible 

for the sigmoid shape of the ODC, that enables hemoglobin to alternate between two 

structures; the relaxed (oxyhemoglobin) and tense (deoxyhemoglobin) states, the latter 



demonstrating lower affinity for oxygen. This allows flexibility in terms of how much 

oxygen hemoglobin can bind, ensuring that the functional groups attain maximal affinity 

for oxygen. When a monomer of hemoglobin binds a molecule of oxygen a conformational 

change is induced in the three neighboring monomers, increasing their affinity for oxygen. 

Cooperativity also enables flexibility in how much oxygen is released to tissues. The p50 of 

hemoglobin is the pO2 at which hemoglobin is 50% saturated with oxygen (50% 

oxyhemoglobin, 50% deoxyhemoglobin), and quantifies the affinity of hemoglobin for 

permitting comparison of the relative affinities of different hemoglobins or conditions. The 

normal p50 range in an adult is 24–28 mmHg (3.2-3.7 kPa), however, the value varies 

throughout the body depending on the local environment (for example temperature and 

pH).  The standard p50 (P50s) is an idealized value calculated from the measured pO2 when 

the temperature of blood is 37.0 oC, partial pressure of carbon dioxide (pCO2) is 40 mmHg, 

blood pH is 7.40 and carboxyhemoglobin (COHb) is < 2%. In contrast, the in vivo p50 

reflects the oxygen tension at which hemoglobin is 50% saturated at the pH, pCO2, 

temperature and COHb level of the subject.  

 To accurately determine the p50, the ODC must be constructed or a Hill plot 

created.(4) In clinical practice, arterial blood gas machines estimate the p50 using a single-

point measurement and hemoglobin-oxygen saturation.(5) Most devices require the 

oxyhemoglobin saturation to lie on the straight section of the ODC, therefore desaturated, 

venous blood should be used. Alternatively, the Siggaard-Anderson oxygen status 

algorithm(6), incorporating the Tahn equation, is the single-point method that can most 

accurately calculate the p50 up to an oxygen-hemoglobin saturation of 97%. 

 



Principles of oxygen transport and the physiology of oxygen delivery 

Uptake of oxygen into the blood from the alveolus is determined by the pO2 gradient 

across the alveolar membrane, the properties of the membrane, and the flow of blood 

through the pulmonary circulation, alongside physical properties the hemoglobin molecule. 

Oxygen has a low solubility in plasma (0.225ml per kPa of oxygen per liter of blood), 

therefore without hemoglobin, the circulation would not be able to transport sufficient 

oxygen to organs. The actual volume of oxygen that can bind to hemoglobin in vivo remains 

controversial; the theoretical maximum volume of oxygen that can be carried by 

hemoglobin is 1.39 ml of O2/gram of Hb(7); however, this figure does not account for 

variant species of hemoglobin that are unable to bind oxygen, such as carboxyhemoglobin 

and methemoglobin. Human studies have demonstrated that a value of 1.34 ml of O2/gram 

of Hb might be more realistic.(8)  

Table 1 Relevant equations 
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ABBREVIATIONS 
[Hb] = hemoglobin concentration (g/dL) 
H = Hufner’s Constant (1.34 mL O2/g Hb) 
SaO2 or SvO2 = arterial or venous oxygen saturation percent 
𝑎𝑂2

= solubility of oxygen in water = 0.0031 mL O2/mmHg/dL 

PaO2 or PvO2 = arterial or venous oxygen tension (mmHg) 
�̇� = cardiac output (L/min) 



 

The amount of oxygen carried within arterial blood is referred to as arterial oxygen 

content (CaO2) (Table 1). Approximately 98% of circulating oxygen is carried bound to 

hemoglobin whilst the remaining 2% is dissolved in plasma.(9) Systemic oxygen delivery 

(DO2) is the total volume of oxygen, per minute, transported to the tissues from the lungs 

via the circulation. Oxygen delivery is a product of cardiac output and CaO2 (Table 1). In a 

healthy male adult of 70kg weight, systemic oxygen delivery is approximately 1000 

ml/l/min (the product of 200ml/l CaO2 and 5 l/min cardiac output). 

  At the tissue level, oxygen supply and demand is dependent on a number of factors 

including diffusion limitation of oxygen from the microcirculation to mitochondria and an 

array of variables impacting on local tissue oxygen consumption (including sedation, tissue 

edema, hypothermia/cooling and metabolic rate increased with seizures, burns or sepsis). 

Likewise, oxygen delivery can be optimized by the manipulation of cardiac output, 

hemoglobin and SaO2. However, it is the affinity of hemoglobin for oxygen, its modulation 

and its potential impact on capillary oxygen supply that is the focus of this article.  

 

Physiological modulation of the p50 and its relevance to peripheral oxygen delivery  

 The p50 is a measure of the affinity of hemoglobin for oxygen that determines the 

release of oxygen from the microcirculation into the tissues. An increased p50 (equivalent 

to a rightwards shift of the ODC in Figure 1) is indicative of a decreased hemoglobin-oxygen 

binding affinity promoting the release of oxygen to the tissues. Such an increase in p50 can 

be considered advantageous within tissues that have a high metabolic rate, and therefore 

high oxygen consumption, such as active skeletal muscle.  



 The relevance of an increased p50 to peripheral oxygen delivery is illustrated by the 

physiological responses to acute altitude acclimation and anemia, both of which result in a 

compensatory increase in production of 2,3-DPG in an effort to restore the tissue 

oxygenation lost with hypoxemia or anemia. With regards to the physiological process of 

acclimatization to altitude, a study to assess p50 during a simulated ascent of Mount 

Everest, Operation Everest II,(10) demonstrated an increase in p50 at a simulated altitude 

of 29,029 ft; most likely as a result of the hypoxia-induced increase in 2,3-DPG(11).  

 Conversely, a leftward shift of the oxygen dissociation curve (a decrease in p50), 

results in increased hemoglobin-oxygen affinity and hence decreased oxygen delivery to 

the peripheral tissues. Tissue oxygen extraction becomes impaired, hence tissue hypoxia 

may exist despite a normal PaO2, as reflected in the compensatory erythrocytosis seen in 

high affinity haemoglobin variants.(12) Fetal hemoglobin (HbF) has a lower p50 than adult 

hemoglobin (approximately 19 mmHg), an adaptation to the hypoxic conditions in utero 

that promotes superior oxygen affinity, which in turn facilitates oxygen extraction from 

maternal hemoglobin across the placental membrane. Likewise, methemoglobin (MetHb) 

and carboxyhemoglobin (COHb) have increased affinity of hemoglobin for oxygen, and will 

decrease the apparent p50 even if the natural hemoglobin p50 remains the same. 

Myoglobin has a p50 of approximately 3 mmHg, an extraordinarily high affinity for oxygen, 

essential for myoglobin’s role in storing, loading and unloading oxygen in the PO2 range of 

active skeletal muscle.  

 

 

Section 2:  



Haemoglobin variants with an altered p50 

In 1961, Reissmann et al described a case of familial cyanosis secondary to a 

hemoglobin variant with abnormally low oxygen affinity.(13) This variant (hemoglobin 

Kansas) was first identified in a 14-year old with cyanosis since birth. He was entirely 

asymptomatic aside some periods of weakness after severe exertion, but had markedly 

diminished oxygen saturation in the presence of normal oxygen partial pressures. An in 

vivo ODC demonstrated a marked shift to the right with an increase in p50 to ~70mmHg.  

Similarly, Avellan-Hietanen et al. reported a case of a patient presenting with 

pneumonia, but with an unexpectedly low SpO2. The low SpO2 persisted after recovery, 

despite lack of hypoxic manifestations and normal exercise tolerance, and a rare point 

mutation in the alpha-chain-coding gene known as hemoglobin Titusville was 

discovered.(14) This point mutation resulted in a lower oxygen affinity (p50 ~40mmHg), 

hence the SpO2 of arterial blood appeared low while the pO2 was normal.  

Conversely, high oxygen affinity hemoglobins are responsible for around 100 rare 

and heterogenous autosomal dominant genetic diseases, resulting in decreased tissue 

oxygen delivery and erythrocytosis. The diagnosis is based on the identification of a 

decreased p50 on arterial blood gas analysis and their characterisation by capillary 

electrophoresis. Many of the mutations associated with a high affinity phenotype map to 

the α1β2 hemoglobin subunit, preventing the transition of the Hb molecule to the low 

oxygen affinity state (T or tense) and hence inability to release bound oxygen 

molecules.(15) 

Clinical relevance of p50 

  Of particular note,is the observation that the p50 of transfused blood is un-



physiologically low; (16) the potential deleterious effects of that is illustrated in Figure 2. 

The blue ODC represents 21 day 

old PRBCs with an SaO2 of 99% 

and the lowest achievable SvO2 is 

54%, assuming an arterial pO2 of 

100mmHg and the venous pO2 in 

exercising muscle of 20mmHg.(17) 

If the p50 of this unit is 

allosterically modified by 

increasing 2,3DPG levels to 150% normal (the right-shift, red ODC), the SaO2 is 95% and 

the lowest achievable SvO2 is 12%. The A-V difference, therefore, is 83% for high p50 

blood and 45% for low p50 blood, a huge difference. Considering that VO2 is a product of  

cardiac output and (SaO2-SvO2), each unit of high p50 gives almost twice as much VO2 

increase as a low p50 unit, assuming the cardiac output remains constant. Transfusing 

blood with an increased oxygen affinity, such that it is less likely to off-load oxygen in the 

tissues, seems counter-intuitive. However, excessively elevating the p50 into the range 

seen with the Hb mutants, Titusville or, especially, Kansas, may worsen hypoxemia in the 

setting of acute lung injury. Several questions remain unanswered regarding the optimal 

p50 target. Nevertheless, the manipulation of oxygen affinity and hence development of a 

future therapeutic target to increases VO2 ideally with lower cardiac output requirements 

or lower transfusion thresholds, has exciting potential. 

 

Relationship between p50 and VO2 



 The major determinant of exercise capacity is the amount of oxygen available to 

exercising muscles, a function of 

DO2 and the extraction ratio that 

determines achievable VO2. The 

upper limit of oxygen utilization 

during exercise (VO2max) is 

defined as the point at which 

progressively increasing work rate fails to elicit further increases in oxygen uptake. 

VO2max coincides with the point of physical exhaustion(18) and is the most commonly 

used, and highly reproducible,(19, 20) measure of aerobic fitness. While used as a measure 

of fitness, VO2 max also reflects the maximum achievable VO2 in the setting of acute illness 

and offers insight into how we can manipulate this important parameter to optimize 

hemodynamics, avoiding shock and lactic acidosis. In health, arterial hemoglobin is close to 

fully saturated so increasing VO2 relies mostly on increasing hemoglobin concentration, 

raising cardiac output, or by decreasing the oxygen binding affinity of hemoglobin 

(increasing the p50), such that more oxygen is available and released to the hypoxic 

tissues, as illustrated by the VO2 equation in Table 1.(21) Figure 3 illustrates the profound 

effect of p50 on VO2max, permitting the same VO2max to be achieved with a lower Hb if the 



p50 is higher. Similarly, this principle will allow the same VO2max to be achieved for a 

lower cardiac output, which may be of benefit for patients with limited cardiac reserve. The 

data in Figure 4 are the result of a mathematical model of postoperative anemia treated 

with sequential transfusions of low p50 PRBCs or high p50 PRBCs, similar to those 

depicted in Figure 2, using the ODCs from Figure 2 to calculate the AVO2diff (see Table 1 for 

derivation). As a patient’s anemia becomes more profound, they require greater cardiac 

output to maintain their baseline VO2. If we consider the pre-operative VO2, calculated for a 

cardiac output of 5L/min and a hemoglobin level of 14mg/dL, to be the baseline against 

which the post-transfusion models are compared, the figure shows the requisite cardiac 

output necessary to maintain the pre-op VO2. It is evident that the use of high p50 PRBCs 

creates a larger AVO2diff, which permits the CO component of VO2 to be lower while 

maintaining the pre-operative VO2. This represents an important reduction in 

compensatory cardiac demand required to maintain a given VO2, which offers benefit in 

patients with cardiac disease. Similarly, a patient could maintain the same VO2 with a lower 

hemoglobin level, potentially 

reducing the transfusion 

requirement, as illustrated in 

Figure 3. It is possible to 

manipulate the p50 of circulating 

blood or transfused blood, as 

outlined in the following sections. 

Section 3. Artificial Modulation of p50 

RSR-13/Efaproxiral 



Developed from the cholesterol lowering agents clofibrate and bezafibrate, structural 

analogs such as RSR-4 and RSR-13 demonstrated predictable p50 increases in a rat 

model.(22) Furthermore, it was shown that these fibrate analogs increased tissue 

oxygenation, thereby confirming the viability of increasing end-organ perfusion through 

changes in hemoglobin oxygen affinity.(23) RSR-13 improved post-injury mechanical 

function and ATP concentrations in isolated rat heart models of global myocardial ischemia 

and hyperkalemic arrest(24), and similar results were seen in dogs subjected to iatrogenic 

LAD occlusion(25) and hypothermic cardiopulmonary bypass,(26) suggesting potential 

benefits of increasing tissue oxygenation. 

While no increase in reactive oxygen species at the tissue level is seen after RSR-

13,(27) it was extensively studied as an adjunct to radiation therapy for patients with 

metastatic cancer to the brain, as there is evidence of an increase in brain tissue oxygen 

tension following RSR-13 administration.(28, 29). Phase I trials showed that RSR-13 

induced a dose-dependent increase in p50 in patients with glioblastoma multiforme (GBM) 

receiving radiation therapy.(30) Despite these encouraging early results, the follow-up 

Phase III study of 515 patients with brain metastases found a modest but insignificant 

increase in survival.(31) While this research demonstrated a proof-of-concept that 

increasing p50 could increase tissue oxygenation (in this case cancer cells), it did not 

translate into a clear survival benefit in brain cancer and was pursued no further. 

Inositol Polyphosphates (IHP, ITPP)  

 Shortly after the discovery of 2,3-DPG as an intracellular allosteric regulator of 

hemoglobin oxygen affinity(32), attention was turned to other organic phosphates that 

could influence hemoglobin oxygen binding. Inositol hexaphosphate (IHP) was known to 



produce a right-shift in avian hemoglobin(33), and it was shown to reproduce that effect in 

human blood.(34) However, the clinical feasibility of IHP use was limited by its inability to 

readily cross RBC membranes. Subsequent work led to the synthesis of inositol 

tripyrophosphate and myo-inositol trispyrophosphate (ITPP)(35), which are transported 

across the membrane of RBCs through an erythrocyte band-3 dependent mechanism.(36) 

Kieda and colleagues were the first to show the possible effects of p50 increases on the 

angiogenesis pathway, finding that human endothelial cells cultured under hypoxic 

conditions had significantly lower expression of HIF-1α, VEGF, and lower observed 

angiogenesis when exposed to ITPP-laden RBCs compared to standard human RBCs.(37) A 

subsequent study in chick ova noted a similar reduction in angiogenesis, and impaired 

growth of human glioma tissue when grafted onto the ovum as part of an experimental 

model.(38) Later work in rat models of hepatocellular(39) and pancreatic(40) carcinoma, 

as well as mouse models of primary(41) and metastatic(42) colorectal cancer, all showed 

decreases in angiogenesis pathway components, tumor size, and improved animal survival 

with ITPP alone or as an adjunct to chemotherapy. Currently, a Phase Ib/IIa trial is actively 

recruiting to test ITPP as an adjunct to standard-of-care chemotherapy in patients with 

non-resectable hepatopancreaticobiliary cancers,(43) although enthusiasm may be 

tempered by the failure of RSR-13 to improve outcomes despite promising, early 

observations. 

Hemodynamic and Systemic Effects of Modulating p50 in Model Systems 

 Several studies in model systems evaluated how modulation of hemoglobin p50 can 

influence cardiovascular system parameters and tissue oxygenation. An early study by 

Valeri and colleagues, who pioneered stored erythrocyte rejuvenation, looked at isolated 



canine hearts that were perfused by human RBCs containing either 80% or 300% of the 

normal 2,3-DPG concentration. The latter had a significantly higher p50, and produced 

significantly higher oxygen consumption by the myocardium at a standardized perfusion 

rate and, crucially, produce less lactate, confirming improved tissue oxygenation.(44) A 

similar study involving IHP-loaded erythrocytes in isolated rat hearts re-demonstrated the 

significant increase in oxygen consumption with high-p50 RBC, but further noted a 

significant decrease in coronary blood flow.(45) This latter point is particularly salient – 

the greater offloading of oxygen at the myocardium compensated for an overall decrease in 

perfusion, a concept that can be explained by considering the equation for calculating 

oxygen consumption (Table 1). 

Oxygen consumption (VO2) describes the amount of oxygen used in aerobic metabolism. If 

demand exceeds the maximum achievable VO2 (VO2max), the body switches to anaerobic 

metabolism, (46) with a resulting lactic acidosis that portends a poor prognosis in the 

critically ill. (47) Clinicians boost VO2, to avoid anaerobic metabolism and lactic acidosis, by 

using inotropic support to boost cardiac output, with potentially fatal arrhythmias, or by 

raising Hb, risking transfusion-associated complications. Increasing p50 and oxygen off-

loading in the tissues increases the SaO2 – SvO2 component in the VO2 equation and 

potentially offers a novel, third therapeutic option.  

 The first in vivo studies of p50 modulation were accomplished by Teisseire and 

colleagues using IHP-loaded erythrocytes in piglets. Following isovolumic exchange 

transfusion, piglets receiving high-p50 blood were noted to have an increased 

arteriovenous oxygen differential (AVO2diff), representing increased oxygen offloading. 

There was an observed negative correlation between p50 and cardiac output, but again the 



tissue oxygen consumption was maintained by the increase in end-organ oxygen 

release.(48) The same group then observed outcomes at later timepoints in another piglet 

cohort subjected to the same isovolumic exchange transfusion of high-p50 or normal-p50 

RBCs. IHP-loaded RBCs were noted to have a lifespan equivalent to that of normal porcine 

RBCs, and maintained their elevated p50 for over 20 days following transfusion, during 

which time interval the piglets maintained pre-transfusion oxygen consumption at 

significantly lower cardiac outputs.(49) A later pilot study looking at piglets placed on 

hypothermic cardiopulmonary bypass (CPB) primed with either high-p50 or normal-p50 

RBCs found that piglets receiving IHP-loaded erythrocytes had improved left ventricular 

and aortic pressures after CPB, as well as increased oxygen consumption, suggesting a 

potential cardioprotective use of high-p50 blood during CPB.(50) 

 Mouse model systems further explore the systemic effects of p50 modulation and 

potentially physiological benefit. Using donor blood from a mouse model expressing a 

mutant, low-affinity hemoglobin (Hb-Presbyterian), Huang and colleagues induced 

endotoxemia in wild-type mice and transfused them with either normal-affinity RBCs, low-

affinity RBCs, or saline. After 7 days, survival was significantly higher in the cohort 

receiving the low-affinity hemoglobin transfusion, and there was significantly lower 

hepatocyte apoptosis in this population,(51) suggesting benefit from increasing end-organ 

tissue oxygenation in this model of sepsis with organ dysfunction. In mouse models of 

heart failure, Watanabe and colleagues used coronary artery ligation to induce heart 

failure, after which they used one of two methods (bone marrow transplant from Hb-

Presbyterian mice or RSR-13 infusion) to increase p50. Compared to animals receiving 

control bone marrow or placebo, mice with high-p50 blood had significantly higher 



exercise capacity independent of any changes in cardiac function.(52) As such, the heart 

failure persisted (confirmed by histological evidence) but there was robust improvement in 

functional status. Similarly, in a transgenic mouse model of dilated cardiomyopathy, both 

intraperitoneal and oral ITPP resulted in dose-dependent and significant increases in 

maximal exercise capacity.(21) Cabrales et al. tested the physiologic effects of a 35% 

exchange transfusion in animal models using allosterically modified blood with a range of 

p50s, and found that the maximal tissue pO2 was produced by blood that had a slightly 

elevated p50.(53) 

Although formal human studies involving p50 modulation and exercise capacity 

have not yet been performed, both RSR-13 and ITPP have been listed as prohibited 

substances for professional athletes(54), given the potential for increases in systemic 

oxygen consumption and the functional advantages thereof. 

 

Section 4. p50 Modulation in Transfusion Medicine 

Red Blood Cell Storage and p50 

 Despite their status as the most commonly transfused blood product, packed red 

blood cell units (PRBCs) have been shown to undergo major deleterious changes while in 

storage. Amongst other changes,(55) after 7 days of refrigerated storage, the p50 is 

significantly reduced from a baseline of 27 to 22 then to a nadir of 18 mmHg after 21 days 

storage. (16) This is echoed in lowered 2,3 DPG levels in patients receiving allogeneic units 

rather than cell-saver blood during surgery, (56) and in older studies that observed 

reduced 2,3-DPG and p50 in a small cohort of adult patients who underwent cardiac 

surgery with CPB and received a mean of 18 units of stored blood.(57) This finding was 



reproduced in pediatric cardiac surgery patients, where it was noted that the age of 

transfused PRBCs correlated with the decrease in serum 2,3-DPG.(58) In this clinically 

relevant setting of acute transfusion, we can see that PRBCs will reduce p50, impairing O2 

off-loading in the tissues.. 

 How does this relate to recent large, prospective outcome studies comparing “fresh” 

to “old” blood? While studies in healthy volunteers(59) and anemic outpatients(60) have 

found no evidence of microcirculatory impairment with older stored units, there is 

evidence that subjects receiving autologous units have less boost in VO2max and exercise 

duration when receiving units stored for 42 days versus 7 days. (61) A small change in 

VO2max is a valid physiological outcome but may not translate into adverse clinical 

outcomes. The ABLE and RECESS trials addressed the question of RBC storage age in 

critically-ill and cardiac surgery populations, respectively. ABLE was powered to detect a 

difference in 90-day mortality between treatment groups, and found no significant 

difference in the same between the control (mean±SD blood age 22.0±8.4 days) and 

experimental (6.1±4.9 days) groups.(62) Similarly, RECESS found no difference between 

the control (mean±SD blood age 28.3±6.7 days) and experimental (7.8±4.8 days) groups’ 7-

day organ failure scores.(63) Similarly, the INFORM trial demonstrated no mortality 

differences between “old” (mean±SD 23.6±8.9 days, median 23, IQR 16-31) and “fresh” 

(mean±SD 13.0±7.6 days, median 11, IQR 8-16) blood.(64).Overall, the evidence does not 

convincingly argue for a change in transfusion practices on the basis of stored RBC age. 

However, the concept of p50 modulation as a transfusion intervention has not been 

formally tested by any of the aforementioned studies, because “fresh” blood had been 



stored for an average of 6 ± 5 days (ABLE), 8 ± 5 days (RECESS), or 13 ± 8 days (INFORM), 

and 2,3 DPG levels would already have been substantially reduced.  

RBC Rejuvenation 

 In the 1970s, Valeri and Zaroulis showed that there was a potential clinical benefit 

to be obtained from the use of a rejuvenation solution containing pyruvate, inosine, 

glucose, adenine, and phosphate. Outdated RBC units showed evidence of normalization of 

2,3-DPG, ATP, and p50 post-rejuvenation, and the authors demonstrated a significant 

increase in 24-hour post-transfusion recovery when using the rejuvenation process.(65) 

Other effects on the storage lesion, mostly from ATP restoration, include reduced osmotic 

and mechanical fragility(66), membrane lipid peroxidation(67), and injurious RBC-

endothelial interactions.(68) Nearly expired units could be rejuvenated and frozen, with 

acceptable 24-hour post-transfusion recovery and hemolysis measurements when thawed 

months to years later;(69-71) rejuvenation was primarily introduced and FDA approved to 

extend the storage life of rare phenotype RBC units.  

Figures 3 and 4 model the physiological benefits of high p50 blood in terms of 

maintaining VO2 at a lower cardiac output or at a lower Hb, with obvious potential 

applications. This could theoretically be achieved with rejuvenated blood that has a p50 of 

35-40mmHg. The logistics of achieving this in the clinical setting is under investigation.  

Expert Commentary 

 Oxygen consumption (VO2) describes the amount of oxygen used in aerobic 

metabolism. If demand exceeds the maximum achievable VO2 (VO2max), the body switches 

to anaerobic metabolism, with a resulting deleterious lactic acidosis. Clinicians boost VO2, 

to avoid anaerobic metabolism and lactic acidosis, by using inotropic support to boost 



cardiac output or by raising hemoglobin levels, risking arrhythmias and transfusion-

associated complications.  

 The formula for VO2 is a multiplication of hemoglobin level, cardiac output, and 

arteriovenous oxygen differential (SaO2-SvO2). Increasing p50 and oxygen off-loading in 

the tissues increases the SaO2 – SvO2 component in the VO2 equation and offers a 

therapeutic alternative to iatrogenic manipulation of CO and hemoglobin level. Current 

clinical studies are either focusing on increasing systemic p50 with the allosteric modifier 

myo-inositol trispyrophosphate (ITPP), to reduce tumor related angiogenesis, or using an 

FDA-approved solution of pyruvate, phosphate buffers, inosine, glucose and adenine, 

approved to extend the life of rare phenotype RBCs prior to frozen storage, to increase the 

p50 of RBCs prior to transfusion. 

5-year view 

 There is a peaking interest in a third therapeutic option for managing borderline 

shock states in critically ill patients especially when cardiac function is compromised or 

minimizing transfusion is desirable and adjuncts to cancer therapy have even broader 

appeal. Challenging existing transfusion triggers could result from using more efficacious 

RBC transfusions, with positive effects on inventory and donor exposure. Current studies 

evaluating increased p50 in the setting of chemotherapy(43) and sickle cell disease 

(NCT02731157) will inform emerging protocols, and using VO2max to test this concept of 

“blood transfusion efficacy” could be particularly applicable in this setting.(61) As a readily 

available parameter on a venous blood gas, increasing, or at least normalizing, p50 could 

feasibly become a goal of resuscitation. 

Key Issues 



 Cooperative binding in the 4 subunits of adult hemoglobin gives rise to the 

sigmoidal shape of the oxygen dissociation curve (ODC) and allows for the 

calculation of p50, the partial pressure of oxygen at which hemoglobin subunits are 

50% saturated. 

 Systemic oxygen consumption (VO2) is a function of cardiac output, blood 

hemoglobin levels, arterial and venous oxygen saturation, and p50. VO2 is increased 

by moderate elevations of p50 due to increased oxygen off-loading in the tissues. 

 Endogenous factors influence p50. Acidosis, 2,3-DPG and hypercapnia cause right-

shifting of the ODC, while alkalosis, hypothermia, methemoglobinemia, and fetal 

hemoglobinemia cause left shifting. 

 Increasing p50 in animal models has shown to improve systemic hemodynamics, 

tissue oxygenation, microvascular function, and exercise capacity. 

 Stored RBCs suffer a rapid depletion of 2,3-DPG, a resulting decrease in hemoglobin 

p50 and accumulate other biochemical/structural changes. 

 Commercially available processes to replete 2,3-DPG and ATP in stored RBCs, 

increase p50 and reverse some storage-related structural abnormalities.  

 Hemoglobin p50 demonstrates dose-dependent increases in vivo in response to 

inositol polyphosphates, exogenous 2,3 DPG and the fibrate analog efaproxiral. 
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