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1 INTRODUCTION

ABSTRACT

Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over
large fields of view, which results in large w-modulations of the sky image. This effect
complicates the relationship between the measured visibilities and the image under scrutiny.
In algorithmic terms, it gives rise to massive memory and computational time requirements.
Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years,
several works have shown that large w-modulations promote the spread spectrum effect. Within
the compressive sensing framework, this effect increases the incoherence between the sensing
basis and the sparsity basis of the signal to be recovered, leading to better estimation of the
sky image. In this article, we revisit the w-projection approach using convex optimization in
realistic settings, where the measurement operator couples the w-terms in Fourier and the de-
gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement
operator through adaptive sparsification procedures. Consequently, memory requirements and
computational cost are significantly alleviated at the expense of introducing errors on the
radio interferometric data model. We present a first investigation of the impact of the sparse
variants of the measurement operator on the image reconstruction quality. We finally analyse
the interesting superresolution potential associated with the spread spectrum effect of the
w-modulation, and showcase it through simulations. Our c++ code is available online on
GitHub.
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Li, Cornwell & de Hoog 2011; McEwen & Wiaux 2011; Carrillo,
McEwen & Wiaux 2012, 2014; Dabbech, Mary & Ferrari 2012;

Radio interferometric imaging has been a subject of numerous de-
velopments in the recent years, with the rise of the new-generation
radio telescopes, namely the Square Kilometre Array (SKA)' and
its pathfinders such as the Low-Frequency Array (LoFAR)?> and
the upgraded Karl G. Jansky Very Large Array (VLA).> These
instruments are characterized with extremely high resolution and
sensitivity along with their capabilities of mapping large regions
of the radio sky. To meet such specifications and hence, deliver
the expected science goals, there is an urgent need to revolution-
ize radio interferometric imaging. Newly proposed imaging tech-
niques in the last decade (Wiaux et al. 2009a; Wenger et al. 2010;
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Uhttp://www.skatelescope.org/
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Dabbech et al. 2015; Garsden et al. 2015; Onose et al. 2016; Prat-
ley et al. 2016; Onose, Dabbech & Wiaux 2017) have been built
almost exclusively based on sparse regularizations, and they have
shown to outperform the conventional methods, namely CLEAN
and its variants (Hogbom 1974; Wakker & Schwarz 1988; Cornwell,
Golap & Bhatnagar 2008; Pratley & Johnston-Hollitt 2016). These
approaches solve the two-dimensional (2D) radio interferometric
imaging problem, in the absence of propagation and receiver er-
rors and within small fields of view (FoVs). Under these simplified
conditions, the problem consists in the recovery of the radio image
from its partial and noisy Fourier samples. The imaging problem
is ill-posed due to the incompleteness of the Fourier sampling,
resulting from the finite number of antennas and is challenging
per se.

In the context of wide-field radio interferometric imaging, the
non-coplanarity of the radio interferometric array, its long base-
lines and its probed large FoV give rise to the so-called w-effect,
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which originates from the third dimensionality of the Fourier space
where visibilities are measured. This results in a modulation of the
imaged radio sky with a chirp-like phase term parametrized by the
w-component of the baseline in the direction of sight, also referred
to as the w-term. Consequently, the radio interferometric imaging
problem becomes three dimensional, requiring a massive increase
of memory requirements and computational cost. Yet, ignoring this
effect in the imaging step can significantly hamper the quality of the
reconstructed image. In the literature, several approaches have been
proposed to correct for the w-effect, namely w-projection (Cornwell
et al. 2008) and w-stacking (Offringa et al. 2014). These techniques
have demonstrated a reasonable compromise between memory re-
quirements and computational cost on the one hand, and the quality
of the recovered image on the other hand with respect to the tradi-
tional approaches such as faceting (Cornwell & Perley 1992). The
latter exploits the fact that the w-component is smaller close to the
phase centre. The imaged radio sky is thus decomposed into facets,
where on each facet, the w-effect is considered flat, allowing for
the use of a single point spread function (PSF) in the deconvolution
step. The w-projection approach relies on the use of w-dependent
convolution kernels in the Fourier domain. The data are obtained by
projecting the sky Fourier transform from the plane (u, v, w = 0) to
the correct (4, v, w) plane. This implies that the two-dimensional
Fourier transform can be used, hence preserving the advantages of
fast Fourier transforms (FFTs). Whereas the w-stacking approach
operates rather on the image domain; visibilities are gridded on
discrete w-layers and the correction is performed on the image
domain.

Recently, w-projection within the context of convex optimiza-
tion has been introduced (Wiaux et al. 2009b; Wolz et al. 2013). In
Wiaux et al. (2009b), the authors presented a theoretical study of the
spread spectrum effect promoted by the w-terms within the com-
pressive sensing theory. The latter states that the unknown signal
can be accurately recovered from a few number of measurements
provided that the sensing basis and the signal’s sparsity basis are
incoherent. In this context, the authors have presented a seminal
study of how a constant w-modulation increases the incoherence
between the sensing basis and the signal sparsity basis. As a result,
the quality of the imaged radio sky is significantly enhanced. Wolz
et al. (2013) demonstrated the spread spectrum effect for varying
w values, considering that the data arise from sparse versions of
the w-terms in the Fourier domain, in order to lower memory re-
quirements. In this article, we revisit the w-projection for realistic
settings within the same framework. We study the image recon-
struction quality when the original visibilities, arising from exact
non-sparse w-kernels, are modelled with sparse approximations of
the w-kernels. These models give rise to errors on the measure-
ment operator. We provide a first study of their limits and effects
on the quality of the image recovery as well as their efficiency in
terms of memory requirements and accelerated computational time.
Though the general tendency is to reduce or neglect the w-terms
due to their resulting massive computational and memory demands,
we provide a proof of concept that the w-modulation has a large
potential to promote superresolution, recovering images beyond the
resolution of the radio interferometer limited by its largest projected
baseline.

The remainder of the paper is organized as follows. Section 2 de-
scribes the radio interferometric imaging problem in the presence
of the w-term. In Section 3, we recall the minimization problem
in radio interferometric imaging that we solve using PURIFY, a soft-
ware for radio interferometric imaging (Carrillo et al. 2014; Prat-
ley et al. 2016), into which we have incorporated w-projection. In
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Section 4, we describe two sparsification strategies for approximat-
ing the measurement operator and also study the effect of sparsifi-
cation on the image reconstruction quality. In Section 5, we analyse
and showcase the potential of the w-term to promote superresolu-
tion. Finally, we state our conclusions in Section 6.

2 RADIO INTERFEROMETRIC IMAGING
PROBLEM

Radio interferometers probe the electric field E coming from the
sky, each acquired measurement, called visibility, corresponds to the
cross-correlation of the sensed signals by an antenna pair. Assuming
a monochromatic radiation, the vectorial distance separating two
antennas (p, ¢) and denoted by b, is described by its coordinates
in units of the wavelength (u, v, w), with w is the coordinate in the
direction of sight and u = (u, v) are the relative coordinates on its
perpendicular plane. The radio interferometric measurement y(u)
is related to the sky surface brightness % through

y(ll, w) — /n(l)71 a(l) e72i7ru:(n(l)7l) 5(‘?(1) 672i7tu-l le7 (l)

where I = (I, m) are the coordinates of a source in a tangent plane
to the celestial sphere and n(l) = /1 — |I|? its coordinate on the
line of sight, with |I| = +/I> + m?. We explicitly introduce the
w-modulation term as a function c(w, I) = e~ 27O~ into equa-
tion (1). The function a(l) is the illumination function of the antenna
and depends on the source position. Other direction-dependent ef-
fects (DDEs), describing unknown instrumental errors and iono-
spheric perturbations, can be incorporated in the same manner as
the illumination function a(l), even if not done so explicitly here.
Note that, the term c(w, :) is also a DDE as it depends on the
source position through n(l), yet unlike the mentioned DDEs it is
known, thus easier to model accurately although at the expense of
large memory requirements. From now on, we call the sky inten-
sity x(I) = a(l)X(l); which is the modulated sky surface brightness
with the illumination function. Here, we assume that the illumina-
tion function is known and invariant. However, this is not always
the case in practice; a(l) underlies time-dependent variations, and
consequently it can be described as a DDE requiring calibration.

When observing a narrow FoV |I|> < 1 (see Wiaux et al. 2009b)
and also when the array is co-planar w = 0, the w-term corresponds
to a flat function c(w, I) = 1, V1. In this case, each visibility reduces
to a Fourier component of the sky intensity image. These approx-
imations, however, break down in the case of wide-field imaging;
modern radio interferometers will probe large FoVs and their an-
tennas span hundreds and even thousands of kilometres. Further-
more, the radio sky is rather spherical (McEwen & Scaife 2008;
McEwen & Wiaux 2011). Nevertheless, to remain in the context
of a 2D imaging, in the present study, we consider a relatively
small FoV with non-negligible w-terms. Under this assumption,
we adopt a first-order approximation of the w-term that is a linear
chirp c(w, I) = ™", The w-term is thus considered as a norm-
preserving phase modulation of the sky intensity map x(I) with a
linear chirp of rate w. This modulation has been well studied in
Wiaux et al. (2009b) and Wolz et al. (2013) where the authors have
demonstrated that the chirp modulation induces the spread spectrum
effect, that is in favour of a better image reconstruction quality of
the sparsity-based approaches. Note that the spread spectrum effect
is not restricted to the w-modulation, in fact, all DDEs inherently
induce similar effects due to their convolution nature in the Fourier
domain.
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2.1 The de-gridding operator

In order to promote the use of the FFT, radio measurements must
lie on a regular grid (usually with a size of a power of 2). Therefore,
they are modelled from uniformly sampled Fourier components
via linear operations, where the continuous (i.e. off the grid) mea-
surements are interpolated using convolution kernels in the Fourier
domain. In absence of the w-term and the noise, the radio inter-
ferometric measurement in equation (1) can be recast in a discrete
setting as follows:

y = GFZDx, 2)

wherethedatay € CY = {y, = y(u,, wye)}i<e<m are complex mea-
surements of size M. The signal to be recovered x € RY is positive
and of size N. The operator F is the Fourier transform operator.
The matrix Ge CM*V) s sparse. Its rows g, € C*N are convo-
lution kernels with P <« N non-zero elements, called de-gridding
kernels, each centred around its corresponding continuous spacial-
frequency point u, = (uy, v;). The diagonal matrix D € R@ V-«*N)
is correcting for the convolution in the Fourier domain; when ap-
plied to the sky, it corresponds to point-wise division of x with the
inverse Fourier transform of the de-gridding kernel. The operator
Z is an oversampling operator by a factor a? (that is a factor & on
each dimension often set to 2), allowing for a fine discrete uniform
sampling in the Fourier domain via zero-padding of the image to be
recovered.

The de-gridding operator not only allows for modelling the con-
tinuous measurements, but also corrects for aliasing. In fact, it at-
tenuates the sky-image brightness at the boundaries of the region
of interest. The choice and the support (i.e. number of non-zero
elements) of the convolution kernels is crucial. Ideally, one would
use the Sinc function for an accurate interpolation. Adopting this
function translates into a multiplication of the imaged sky with a
box function in the image domain, thus cancelling aliasing arte-
facts from sources outside the imaged region of the radio sky.
However, this function is not band-limited i.e. it has an infinite sup-
port in Fourier, thus leading to heavy computational cost comparable
to the use of the direct Fourier transform. Therefore, band-limited
convolution kernels with a compact support in the Fourier domain
are usually preferred. In radio interferometry, prolate-spheroidal
wave functions (PSWF) are widely adopted (Schwab 1984; Sault,
Teuben & Wright 1995) with a support size of 6 x 6 pixels. Kaiser—
Bessel functions are also used (Offringa et al. 2014) often with a
support size 8 x 8 pixels. Unlike PSWFs, the Kaiser—Bessel kernels
present the advantage of having an analytic expression that can be
evaluated easily and accurately. Furthermore, they can be adopted
with a lower support size. In general, both functions lead to compa-
rable performance (see Greisen 1998; Pratley et al. 2016, for further
discussion).

2.2 The measurement operator

In this section, we introduce the w-term into the discrete setting
of equation (2). In the image domain, the w-modulation can be ex-
pressed as a multiplication of the sky image with the w-term. The lat-
ter can be approximated by a linear chirp ¢,, = {e™!I’}, V¥ I pixel
positions. Equivalently, in the Fourier plane, the modulation corre-
sponds to the convolution of the Fourier transform of the linear chirp
with that of the signal. Since the w-rate is baseline-dependent, each
sensed measurement y, is the coefficient at the spacial-frequency u,
of the signal resulting from the convolution of the Fourier transform
of the linear chirp ¢,, characterized by the rate w,, with that of the
sky image *. This means that the resulting sensed signal affected
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by the w-modulation is not the 2D conventional convolution but
rather the outcome of a 2D convolution with a visibility-dependent
kernel.

For a narrow FoV denoted by L, the band limit of a linear
chirp with a rate w, is deduced from its instantaneous frequency
and is approximated as B,, = |w¢|L/2 (Wiaux et al. 2009b). The
largest bandwidth of the modulated signal B/ !

max 18 glven by Bmax =

max By, + |l u¢ |l>. Note that, in the absence of w-modulation,
<{<

the bandwidth of the signal to be recovered is B = max ||u;||2,
1<t<M

which constitutes the band limit of the radio interferometer. The
true radio sky is characterized with an infinite bandwidth. There-
fore, a correct modelling of the visibilities requires accommodating
the bandwidth of the unknown signal, at least, up to the largest band-
width B, ., which is accessible by the highest w-modulation. This
translates in choosing a pixel-size Al’ = 1/2B],,, in the image do-
main, which is smaller than the radio interferometer resolution (i.e.
Al = 1/2B). Consequently, the imaging step consists of estimating
the unknown signal at a resolution above the instrument band limit.
Yet, in practice a convolution of the deconvolved image of the sky
with a low-pass filter, which is smoothing kernel corresponding to
the instrument resolution, is often applied. Hence, all the spatial
Fourier modes above the instrument’s band limit are set to zero.
When accounting for the w-term, each measurement y, reads

Ve = g[ FZDx, withg, = ¢, * g, 3)

where * denotes linear convolution. The estimated image x is of
size N', with a bandwidth B/, . The vector & € C"" denotes the
Fourier transform of the chirp modulation of size N’ = >N’ and
support K, < N". g, € CV " are convolution kernels coupling the
de-gridding interpolation kernels and the w,-terms, with a support

N¢ = P + K,,. The radio measurements are hence modelled as
y = GFZDx + n = ®x +n, 4

where G is the w-projection operator, whose rows correspond
t0 8,p< € CV', and n € CM is additive white Gaussian noise,
with known statistics, modelling the instrumental noise. The op-
erator ® = GFZD is the measurement operator, incorporating the
w-modulation. The problem of recovering the signal x from the
measurements y is ill-posed due to the incomplete sampling and
the noise i.e. it does not present a unique solution. Therefore, addi-
tional prior information on the signal to be recovered x is usually
imposed to better constrain the imaging problem, consequently ob-
taining a good approximate of the unknown image.

3 SPARSE IMAGE RECONSTRUCTION

Numerous works have demonstrated the applicability of compres-
sive sensing theory to solve the radio interferometric imaging prob-
lem. Within this framework, the unknown signal is assumed to
be sparse or compressible in a data representation space ¥ (e.g.
wavelets, curvelets, discrete cosine transform). This is generally
the case for natural signals. The theory of compressive sensing
states that the exact recovery of the unknown signal is possi-
ble from a small number of measurements M that is below the
Shannon—Nyquist sampling rate, provided that the sensing operator
@ and the signal’s sparsity basis ¥ are incoherent (Candes 2006;
Donoho 2006); the mutual coherence defined as the largest cross-
correlation between the columns of ¥ and ®.

In radio interferometry, the Fourier basis constitutes the sensing
basis. Furthermore, assuming sparsity-by-synthesis of the signal x
in a dictionary W, that is x = Wa, where the synthesis coefficients
vector & is sparse, the mutual coherence of the sparsity and the
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sensing basis is defined as the largest modulus of the Fourier co-
efficients of the basis functions constituting the sparsity basis W.
For instance, considering a signal of size N, sparse in its domain,
its sparsity basis ¥ is the Dirac basis and the mutual coherence
of the Fourier basis and the Dirac basis is given by 1/+/N. For
large N, the mutual coherence goes to zero. Therefore, the Dirac
basis is totally incoherent with the Fourier basis. For more com-
plex signals, sparsity is assumed in more sophisticated dictionaries
such as wavelets. The latter can be sufficiently incoherent with the
Fourier basis. Note that the choice of the adequate sparsity basis
is important and is application-dependent. In radio astronomy, sev-
eral dictionaries have been adopted and have shown to be relevant,
namely wavelets such as the isotropic undecimated wavelet trans-
form adopted in Li et al. (2011), Dabbech et al. (2012, 2015) and
Garsden et al. (2015), the Daubechies wavelets concatenated with
the Dirac basis in Carrillo et al. (2012, 2013, 2014), Wolz et al.
(2013), Onose et al. (2016), Pratley et al. (2016) and Onose et al.
(2017).

The w-term, as a norm-preserving modulation, spreads the en-
ergy of the Fourier coefficients of the sparsity dictionary’s basis
functions over the neighbouring Fourier modes, reducing the am-
plitudes of these Fourier coefficients. Consequently, the mutual
coherence of the sparsity dictionary and the sensing basis is sig-
nificantly decreased. Therefore, intrinsically, the w-term reinforces
the embedding of the radio interferometric imaging problem within
the compressive sensing theory, a detailed theoretical study on the
matter is provided in Wiaux et al. (2009b).

3.1 Imaging with convex optimization

To solve the inverse problem given in equation (4), we adopt
sparsity-by-analysis promoting prior as a regulizer. This imposes
that the projection of the unknown signal in a sparsity basis ¥ is
sparse, that is @ = W x and the analysis vector a being sparse.
The adopted sparsity basis is that proposed in Carrillo et al. (2012),
W is overcomplete and is chosen to be the concatenation of nine
basis; the Dirac basis and the eight Daubechies wavelet basis. The
minimization problem reads

|y —®@x 2=k,
x>0,

min || Wiy || s.t.{ (3)
where the bound e is the £, norm of the noise n. To impose sparsity
onWix, intuitively one should minimize the ¢( norm of W x; how-
ever, this leads to NP-hard problem. Therefore, the £y norm is often
relaxed by adopting the £, norm, which is sparsity-promoting and
convex. Re-weighted schemes of the £, norm have been proposed in
the literature to better approximate the £y norm (Candes, Wakin &
Boyd 2008). Furthermore, they have shown considerable improve-
ments of the image recovery quality (Carrillo et al. 2012, 2014).

The constrained minimization problem (equation 5) can be ef-
ficiently solved using convex optimization; furthermore, it can be
written as follows:

min || Wi [l g () + 15(@x), ©)

where the constraints defined in equation (5) are imposed using the
indicator function ¢¢, defined on a non-empty set C as

@all eec ™
fele) 2 400 z¢C.

Minimizing the function RN imposes the positivity and reality con-
straints on the signal to be recovered, x. The function ¢z applied
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to ®x is the data fidelity term. When minimized, it constrains the
residual to be in the £, ball 3. The latter is a convex set, characterized
by the noise level € such that B = {z € C" : ||z — y|l» < €}.

The problem (6) fits well within proximal splitting methods.
These are solving for optimization problems of the form

min g, (x) + g2(x) - - + £, (x), ®

where the functions g; ¢ {1...,) are proper, convex and lower semi-
continuous. Each function is minimized individually. Solutions to
differentiable functions, such as the ¢, norm, are obtained using
their gradient. While, minimizing non-smooth functions involve the
use of their proximity operators, in particular the £, norm is min-
imized through its proximal operator, which issoft-thresholding.
We direct the reader to Combettes & Pesquet (2009) for a good
review. These methods have gained wide interest in the recent
years thanks to the splitting of the functions, hence their scala-
bility to large-scale problems. In particular, several proximal split-
ting methods have been proposed to solve equation (6) for radio
interferometry. Carrillo et al. (2012) used the Douglas—Rachford
splitting method (Combettes & Pesquet 2007), Carrillo et al. (2014)
adopted the simultaneous-direction method of multipliers (SDMM;
Setzer, Steidl & Teuber 2010). More recently, Onose et al. (2016)
have proposed two highly parallelizable and distributed algorithmic
structures based on the alternating direction method of multipliers
(ADMM,; Boyd et al. 2011) and the Primal-Dual (PD) algorithm
(Komodakis & Pesquet 2015), allowing for full splitting of the data
and the linear operator into blocks.

3.2 Radio interferometric imaging in PURIFY

In our study, we use the software pURIFY* (Carrillo et al. 2014;
Pratley et al. 2016), that is a package written in c++ for radio
interferometric imaging and using ¢, regularization-based solvers,
in particular, the SARA algorithm originally proposed in Carrillo
et al. (2012). puriry supports standard de-gridding kernels (Pratley
et al. 2016), in particular Kaiser—Bessel convolution kernels, with
optimized parameters suggested in Fessler & Sutton (2003) and the
prolate-spheroidal wave kernels as described in Schwab (1984). We
have implemented the w-terms as described in equation (3) leading
to the w-projection operator G detailed in Section 2. Variants of the
measurement operator are also included where sparse models of the
w-projection operator G through adaptive sparsification strategies
of its convolution kernels are adopted, these are detailed in Section 4.

PURIFY calls the Sparse OPTimisation (sopt) software package,’ a
collection of solvers of the convex problem (6), namely the SDMM
algorithm proposed by Carrillo et al. (2014) and the proximal
ADMM proposed by Onose et al. (2016). The PD-based splitting
algorithm proposed in the latter article will be included in a fu-
ture release of sopt. While SDMM is known to be computationally
heavy since it involves matrix inversion, both algorithmic structures
proposed in Onose et al. (2016) are parallelizable and allow for an
efficient distributed implementation, through the splitting of the
data into blocks.® In the present study, we have adopted the ADMM

4 http://basp-group.github.io/purify/

3 http://basp-group.github.io/sopt/

6 1In particular, PD-based splitting algorithm has shown to be very flexible
allowing for full data and operators splitting, resulting in lower computa-
tional burden and memory requirements. It is also prone to further increased
scalability by using randomized updates; where only randomly selected data
blocks are processed within each iteration.
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algorithm as a solver. Note that the block splitting feature will be
included in a future release of PURIFY.

4 SPARSE REPRESENTATIONS OF THE
MEASUREMENT OPERATOR

The w-projection approach allows for an accurate correction of the
w-term, accounting for the exact w-modulation through its discrete
Fourier transform. The resulting w-terms, however, are usually non-
sparse resulting in a high-dimensional, non-sparse measurement op-
erator. In fact, in the presence of high w-rates their corresponding
chirp kernels ¢ do not decay rapidly to zero. Moreover, even in the
presence of small w-rates, their corresponding ¢ can present large
amounts of very small coefficients yet non-zero valued, and so they
are rather compressible but not strictly sparse, the same applies
for the resulting w-projection operator G. This is computationally
demanding as it involves a heavy measurement operator ®. In prac-
tice, Cornwell et al. (2008) suggest to consider truncated w-terms
such that coefficients below 10 per cent of the maximum coefficient
in terms of modulus are set to zero. Moreover, the w-rates are fur-
ther sampled on a discrete small set of values. These considerations
result in faster operators, though they might introduce large errors
on the model of the measurement operator, hence hampering the
reconstruction quality and the dynamic range in particular.

We shall define the Fourier-transformed chirp operator € whose
TOWS Ci<¢<y € CV" are the Fourier transforms of the linear chirp
modulations with the rates w; < < », centred at the zero frequency.
In the context of discrete measurements on a uniformly sampled
grid, no de-gridding kernels are involved and the w-projection op-
erator is given by the Fourier transformed w-terms ¢, each centred
at its corresponding u, point. In this case, Wolz et al. (2013) show
that the w-projection operator, when expressed as a sparse matrix,
results in low effective computational time and memory require-
ments for imaging, provided that it is remains accurate.

In this study, we present two approaches for sparse representa-
tions of the measurement operator. The first strategy is based on the
sparsification of the Fourier-transformed chirp operator € before
the convolution with the de-gridding operator G and resulting in a
sparse w-projection operator G. The second approach consists in
the direct sparsification of the w-projection operator G. In the first
approach, thanks to the reduced number of the non-zero elements
of €, the process of the row-wise convolution of the de-gridding
operator G and C is accelerated since the number of non-zero ele-
ments in each w-term is significantly reduced. This is not the case
in the direct sparsification of the w-projection operator G, since
the convolution is performed using the non-sparse w-terms, though
in general this approach yields more sparsity of the measurement
operator as it is shown in this section.

To determine a sparse representation of the w-projection opera-
tor G, we adopt the sparsification technique proposed in Wolz et al.
(2013). The idea is to apply an adaptive hard-thresholding on each
row r; of an operator R € CM*V | which is a component-wise op-
eration. The hard-thresholding operator denoted by ‘H is defined as
follows:

H Tie riel > e Vi 9
( rg(r@)).A_ 0 |ri.Z| <7 i, ( )

1

with the constraint of losing a fixed energy fraction y across all
the rows. The energy of a vector r, € CM is defined as the sum
of the squared modulus of its elements E°*' = 3" |r,;|?. For a

preserved energy E,""° = (1 — y) x EX¥ where 0 < y < 1, the
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Figure 1. Adopted ASKAP uv-coverage for the study of sparse approxima-
tions of the measurement operator, with M = 7560 measurements. The u-
and v-components correspond to x-axis and y-axis, respectively, colours cor-
respond to the w-components in absolute values. Left: naturally generated
w-components, right uniformly distributed w-components for w¢ = 0.1.

significant non-zero elements of r, are determined by computing
a threshold 7, using a bisecting method such that elements con-
tributing to the energy EI*% = E'°@ — £ are set to zero. This
approach allows us to adaptively reduce the number of significant
elements for any given operator while not limiting the process to a
specific support size. A sparse approximation of the w-projection
operator G is obtained by applying this sparsification technique on
the rows €1 <¢<m of € or the rows &1<p<y Of G.

The present study consists of studying the effect of adopting
sparse approximations of the w-projection operator in the image
recovery step. This results in model errors of the radio interfer-
ometric measurements. We therefore provide limit values of the
sparsification levels considered in the sparse approximations of the
w-projection operator, for additive noise n characterized by two
input signal-to-noise ratios (iSNRs). In these limit cases, degrada-
tion of the image reconstruction quality is observed; the errors of
the adopted backward model are no longer buried in the noise. We
shall recall that in Wolz et al. (2013), the authors have shown that
sparse chirp operators do enhance the image reconstruction quality.
Exact sparse w-projection operators have been employed for imag-
ing; in both the forward model, adopted for radio interferometric
data simulation following equation (10), and the backward model,
considered in the image recovery using the approach described in
equation (5).

4.1 Simulation settings

We study the explained strategies for a sparse measurement operator
through realistic simulations of radio interferometric data. A realis-
tic uv-coverage is simulated using the MEQTREES software (Noordam
& Smirnov 2010) from the antenna configuration of the Australian
Square Kilometre Array Pathfinder (ASKAP’, see Fig. 1, left-hand
panel). The coverage is obtained for a total observation time of 1 h
and time spacing §t = 5 min, pointing at declination —1040™0* and
right-ascension 0°0™0°. The total number of u points is M = 7560.
The w-components generated in this setting are extremely small
leading to chirp kernels that can be easily approximated by a Dirac
for nearly 90 per cent of the uv-coverage. Therefore, in our tests,
we consider artificially large w values, which we generate as zero-
mean uniform distribution w values — hence not correlated to the uv
point distribution, such that the maximum w-rate |wy,y| = w X w*,
where w* = 2B/L? is the w-rate resulting in a w-modulation having

7 http://www.atnf.csiro.au/projects/askap/index.html
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GC image

Figure 2. Galaxy cluster image GC of size 128 x 128 pixels, displayed in
log10 scale.

the bandwidth B of the signal. Hence, the parameter wy translates
the fraction of the maximum w-modulation with respect to w*. In
Fig. 1, we showcase an example of uniformly distributed w values
for wy = 0.1 versus the naturally generated w values, where the
maximum w-rate corresponds to wr = 8.5 x 107%,

The considered ground-truth sky image is an image of a galaxy
cluster (GC), obtained using the FARADAY tool (Murgia et al. 2004,
see Fig. 2, right-hand panel). The GC image is a collection of
very bright compact sources corresponding to galaxies and a cen-
tral diffuse faint emission that corresponds to a radio halo. Besides
its diversity as an image, in terms of structure, it is also charac-
terized with a high dynamic range of the order of 10°. We con-
sider a low-resolution version of the GC image, which is of size
N = 128 x 128 pixels with its highest pixel value scaled to 1 and
its bandwidth equal to the radio interferometric band limit, which is
B = max || ¢ |l2. The observed FoV is narrow with L = (021 and

is determined by the simulated baseline coverage and the size of the
ground-truth image. We generate radio interferometric visibilities
at the frequency 1 GHz in marLAB. The measurements are corrupted
with additive white Gaussian noise, with iSNRs of 30 and 40dB.
For the de-gridding kernels, we adopt the Kaiser—Bessel interpola-
tion kernels and fix their support size to 4 x 4 pixels. Note that, to
accommodate the full w-modulation kernels up to the bandwidth
B, .. as described in Section 2.2, we apply an up-sampling operator
to the sky image, which consists in performing a zero-padding in
the Fourier domain. Simulated observations are thus given by

y= GFZDUx +n = ®x +n, (10)

where U is the up-sampling operator such that the up-sampled
image Ux is of size N' (determined with respect to the highest w-
modulation considered, see Section 2.2). The measurement operator
is ® = GFZDU, and its adjoint operator is of = ODZFTGT, where
the operator 2 is undoing the zero-padding in the image space and
U is the down-sampling operator.

For image recovery, we adopt the ADMM algorithm solving for
the minimization problem (5). For further details on the ADMM
algorithm, we direct the reader to the work of Onose et al. (2016).
We consider the following parameters; the parameter controlling the
proximal operator of the £; norm is set to k¥ = 10~ and the stopping
criteria that are the maximum number of iterations /I, = 2500, the
variation on the solution 8 =5 x 1076, The bound € on the £,-ball is
set from the 2 distribution of the noise as €2 = (2M + 4/ M)o2/2,
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Figure 3. SR (y-axis) of the Fourier-transformed chirp operator ¢. Spar-
sification is applied on the operator C using different sparsification levels
Nsparse (x-axis).

where /2 is the variance of both the real and imaginary parts of
the noise (Carrillo et al. 2012; Onose et al. 2016) and on which
we allow an upper bound that is €’ = 1.005 x €. To assess the
reconstruction quality, we adopt two metrics. These are the signal-
to-noise ratio (SNR) and the minimum ratio metric (MR), defined
as

[1x]]2

SNR = 20log;, X —xlh

and

where X denotes the estimated signal of the ground-truth signal x.
Compared to the SNR, the MR metric can be more sensitive to
pixel-wise errors, in particular for high dynamic range images such
as the GC image, where the SNR metric tends to be dominated by
the brightest structures, containing the highest energy of the image.

4.2 Sparsification of the Fourier-transformed chirp operator

We study the sparsification technique to each row ¢, of the operator
¢ preserving the energy E;"" = (1—10"") x E® with ngpuse
e {—6, -5, —4.5, —4, —3.5, —3, —2} denoting the sparsifica-
tion level. Since the chirp kernel is a norm-preserving modulation,
E = 1, ¥¢. We consider various w-rates within five different
ranges, such that V1 < £ < M, |w,| < wy x w*, with wy € {0.1,
0.2,0.3,0.4, 0.5}. To quantify the sparsity of an operator, we adopt
the sparsity ratio (SR) metric that is defined as the ratio between the
cardinality of an operator R and the total number of its elements;
SR = card(R)/(N" x M).

In Fig. 3, we show the SR of the operator € as a function of the
sparsification levels 7. It is clear that increasing the sparsifica-
tion levels results in a significant decrease of the operator’s SR for
all the considered ranges of the w-rates, even though the studied
energy loss is, at most, two orders of magnitude smaller than the
original energy. Naturally, the SR of the w-projection G is of the
same order as that of the chirp operator ¢, given that the de-gridding
kernels are of fixed small support P =4 x 4.

In Fig. 4, we display the reconstruction quality of the estimated
images ¥ in terms of SNR and MR as functions of the sparsifica-
tion levels ngparse. Results are shown for different wy considered,
describing the different amplitudes of the w values. For additive
noise on the generated visibilities characterized by iSNR = 30dB,
the SNR is not affected up to the sparsification level smaller than

Niurse = —3, independently of the w range. Similar behaviour is
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Figure 4. Results of the operator ¢ sparsification tests for different spar-
sification levels ngparse (x-axis) and iSNRs 30 and 40 dB. Top: SNR metric,
bottom: MR metric (y-axis). Different colours indicate the fraction wy¢ char-
acterizing the range of the w-rates. Data points correspond to the average
over 10 noise realizations, error bars indicate their corresponding standard
deviation.

observed by the MR metric. Note that with respect to the sparsity
of the w-projection operator obtained with the least energy loss
corresponding to ngparse = —6, the SR up to the level ngpare = —3
has decreased by at least 50 per cent for wy = 0.5 and 83 per cent for
we = 0.1. This constitutes a significant decrease in memory require-
ments, leading to a fast application of the measurement operators.
For the sparsification level ngy. = —2 and energy loss on each
row El*' = 1072, both SNR and MR decrease significantly. This is
due to the fact that model errors of radio interferometric measure-
ments introduced by the sparsification of the operator € hence the
w-projection operator G are larger than the noise level on the mea-
surements. For iSNR = 40dB, the sparsification does not hamper

the reconstruction quality up to sparsification level ng,, .. = —3.5.
Note that while this effect is not reflected in the SNR plot (Fig. 4,
upper panel), as the metric is also stable up to rgparse = —3, the MR
metric (Fig. 4, lower panel) is however stable up ton? . = —3.5,

sparse
for higher levels a significant decrease is observed (e.g. 50 per cent

decrease for wy = 0.1).

We have also considered the sparsification of the chirp operator
€ for the natural w-rates of the ASKAP uv-coverage. Most of the
w values are extremely small, resulting in flat chirps. Nevertheless,
the reconstruction quality is affected for high sparsification levels
(see Fig. 5). In fact, for iSNR = 30 and 40dB a decrease of the SNR
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Figure 5. Results of the operator ¢ sparsification tests using the natural w-
rates with iSNRs 30 and 40dB. Left: SNR metric, right: MR metric (y-axis)
as functions of the sparsification level ngparse (x-axis).

by almost 2 and 4dB, respectively, is observed for the sparsification
level ngparse = —2, where 83 per cent decrease of the SR of the w-
projection operator G is reached. This is consistent with our finding
at the smallest simulated w-rates (e.g. wy = 0.1). The drop in the
image quality is mainly exhibited as artefacts surrounding the faint
diffuse central structure.

Large errors on the model of radio interferometric measurements
introduced by applying the sparsification of the operator € and con-
sequently the w-projection operator G result in estimated images
with high artefacts. In fact, the convolution kernels of G, being
compact and hence not taking into account energy coming from
distant Fourier modes, give rise to overfitting of the probed Fourier
modes. This effect can be shown through the inspection of Fig. 6,
where for the sparsification level ng,ue = —3, the recovered im-
ages present strong artefacts consisting a large number of spurious
point sources around the faint diffuse central structure. The effect
is also reflected on the residual images when inspecting their his-
tograms. More precisely, through the measures of skewness (this
measures the lack of symmetry of the histogram) and kurtosis (this
quantifies if the distribution is heavy-tailed or light-tailed relative
to a normal distribution, in the latter case kurtosis = 3), we found
that the residual images with high sparsification level depart from
a Gaussian noise. Moreover, for such high sparsification levels, we
noticed that ADMM did not reach the bound € on the £, ball that
is set with respect to the noise statistics. Naturally, when model
errors are larger than the noise level, solving the constraint version
of the minimization problem (5) results in data overfitting due to
the inaccurate bound on the data fidelity term.

In terms of computational time, the sparsification of the chirp
kernels resulting in sparse measurement operators leads to signifi-
cant acceleration of the image reconstruction step while preserving
its quality. For instance, almost 45 per cent drop of the computa-
tional time is observed for tests with wy = 0.5 when consider-
ing a sparsification level ny, . = —3.5, i.e. a preserved energy
EPa¢ =(.9997 with respect to the computational time for sparsifi-
cation level ngy,re = —6 with energy EP**¢ = 0.999 999. In general,
for all the studied w ranges, a decrease of at least 40 per cent of the
computational time is observed for the same sparsification level
n* .. =—3.5.

sparse

4.3 Direct sparsification of the w-projection operator

Adopting similar settings to the previous section, we study the
sparsification technique to each row g, of the operator G preserving
the energy E;"" = (1 — 10"<) x EP with nypse € { — 6, =5,
—4, —3.5, =3, —2.5, —2} denoting the sparsification level. We
consider various w-rates within five different ranges, such that V 1
<l <M, |w| < wr x w*, with w € {0.1,0.2,0.3,0.4, 0.5}. We
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Figure 6. Results of the sparsification of the chirp operator € for iSNR = 40dB. Top: reconstructed images ¥, bottom: residual images <i>Jr( y — ®¥) obtained
by applying their corresponding sparse measurement operator ®. From left to right, reconstructed and residual images for wy = 0.3; ngparse = —6 (estimated
image quality: SNR = 32.54dB, MR = 0.55, residual gaussianity: skewness = —0.13, kurtosis = 5.08), w¢ = 0.3 ; ngpase = —3 (estimated image quality:
SNR = 32.86dB, MR = 0.46, residual gaussianity: skewness = —1.09, kurtosis = 5.72), w¢ = 0.1; ngparse = —6 (estimated image quality: SNR = 30.58dB,
MR = 0.54, residual gaussianity: skewness = —0.11, kurtosis = 4.67) and w¢ = 0.1; ngparse = —3 (estimated image quality: SNR = 30.53dB, MR = 0.27,

residual gaussianity: skewness = —2.07, kurtosis = 7.98).
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Figure 7. SR (y-axis) of the w-projection operator G, to which sparsifica-
tion is directly applied using different sparsification levels ngparse (x-axis).

also consider the original, unscaled w values given by the baseline
distribution.

In Fig. 7, we show the SR of the operator G, where a drop
is clearly visible for increasing sparsification levels. For instance,
considering wy = 0.5, the SR for ngye = —6 is 0.38 and de-
creases by 57 per cent for ngpae = —3. Also in the case wy = 0.1,
the SR for ngpae = —6 is 0.08, and decreases by 87 per cent for
Ngparse = —3. In Fig. 8, first and second panels, the results are ob-
tained with iSNR = 30dB. For the w ranges considered, the SNR
values are unaffected by the sparsification of the operator G up to
Nyparse = —2.5. The MR is however stable up to ng,, . = —3. Note
that the values of the SNR at level ngpyse > —2.5 are biased by
the reconstruction of the brightest sources in the GC image. In this
case, the MR metric allows for a better judgement of the reconstruc-
tion quality. For high sparsification level ngpae = —2, a significant
drop of both SNR and MR is observed. It is worth mentioning that
the high SNR values obtained with ng, = —2.5 with respect to
smaller levels are promoted by the overfitting effect due to sparsifi-
cation. In fact, this effect allows for a better recovery of the higher
spacial-frequency content in the image coming from the brightest
compact sources. Yet, this comes at the expense of the recovery of

the faint extended emission, which is mainly contributing to the low
spacial-frequency content. Results of the sparsification with noise
level on the visibilities of iSNR = 40dB are shown in Fig. 8, third
and fourth panels. Similar behaviour is obtained and the quality of
the image reconstruction is preserved up to the sparsification level
n:parse = -3.5.

We apply this sparsification strategy for the natural w-rates.
In this test case, the sparsification of the operator G can also
act on the de-gridding kernels; for extremely small w values
where the chirp kernel is reduced to a Dirac. Note that sparsi-
fying the chirp operator € as described in the previous section
preserves the de-gridding kernels as it is performed before the
convolution of the two kernels. Interestingly, when it is the case,
we notice that the reconstruction quality is not prone to degra-
dation up to sparsity levels n} . = —4 for iSNR = 40dB and
n;‘pme = —3 for iSNR = 30dB while decreasing the SR of the op-
erator G by 37 percent and 48 per cent, respectively (see Fig. 9).
For higher sparsification levels, a significant drop in the recon-
struction quality is observed, which is translated in the image as
large artefacts hampering the recovery of the faint structures, and
in particular the non-recovery of the faint and extended central
emission.

Regarding the computational time, it is generally significantly
reduced with respect to the tests corresponding to the minimal spar-
sification level ngyue = —6. A decrease by around 30 per cent is
noticed for wy = 0.1 and at least 40 per cent for wy > 0.1 when
adopting the sparsification level ny,, .. = —3.5. No noticeable in-
crease for the test case adopting the original w-rates.

When compared with the previous sparsification strategy applied
on the chirp operator, the direct sparsification of the w-projection
operator leads to lower SR of its sparse approximation obtained by
the highest and quality preserving sparsification levels; n3,, ... = —3
for iSNR = 30dB and ng,, = —3.5 for iSNR = 40dB. We also

notice a decrease in the computational time for these levels. This
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Figure 8. Results of the operator G sparsification tests for different spar-
sification levels ngparse (x-axis) and iSNRs 30 and 40dB. Top: SNR metric,
bottom: MR metric (y-axis). Different colours indicate the fraction w¢ char-
acterizing the range of the w-rates. Data points correspond to the average
over 10 noise realizations, error bars indicate their corresponding standard
deviation.
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Figure 9. Results of the operator G sparsification tests using the natural w-
rates with iSNRs 30 and 40dB. Left: SNR metric, right: MR metric (y-axis)
as functions of the sparsification level ngparse (x-axis).

suggests that the direct sparsification strategy not only lowers mem-
ory requirements but also the computational time as well. In particu-
lar, direct sparsification of the w-projection operator G with energy
loss fraction y = 10~*> has shown to preserve image reconstruction
quality for iSNR up to 40dB on simulated visibilities. Therefore, we
consider this case as our fiducial setting for a sparse measurement
operator in the next section.
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Figure 10. Left: adopted MeerKAT uv-coverage, having M = 6048 mea-
surements coloured in red; the other half of the coverage, coloured in blue,
is obtained with hermitian symmetry. Right: the galaxy image M31 of size
128 x 128 pixels, displayed in log10 scale.
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Figure 11. SNR of the reconstructed images as a function of w; for
the iSNRs = 30 and 40dB and two different uv-coverages of ASKAP and
MeerKAT. Left: M31 image, right: GC galaxy cluster image. Data points
correspond to the average over 10 noise realizations, and the error bars are
derived from the standard deviation of this set of runs.

4.4 Revisiting the spread spectrum effect on image
reconstruction quality

We highlight the general quality enhancement of the reconstructed
images by adopting the w-projection algorithm in the framework of
convex optimization for increased w-rates. To demonstrate the ver-
satility of our study, we have extended our simulation settings by fur-
ther adopting the image of the galaxy M31 of size 128 x 128 pixels.
We have also considered a simulated uv-coverage from the antenna
configuration of the Karoo Array Telescope (MeerKAT),® a precur-
sor of the SKA. The coverage is obtained, 1 h observation time and
time interval 8t = 20 min, pointing at declination 0°0™0° and right-
ascension —1090™0°. The total number of u points is M = 6048.
Both the image of M31 and the MeerKAT coverage are displayed in
Fig. 10. We apply direct sparsification of the w-projection operator
with a sparsification level ngpas = —3.5 in the backward model.
Results are displayed in Fig. 11, where the evolution of SNR of
the reconstructed M31 (left-hand panel) and GC (right-hand panel)
images are shown as a function of the w-rates characterized by wy.
The output SNR improves with the increasing ranges of w-rates for
all settings, which is in agreement with the previous studies of the
spread spectrum effect.

5 SUPERRESOLUTION PROMOTED BY THE
w-TERM

In absence of w-modulation, the new imaging approaches based
on compressive sensing and sparse representations have shown

8 http://www.ska.ac.za/gallery/meerkat/
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Figure 12. SNR results of the superresolution tests (y-axis) on the GC image in the Fourier domain non-probed by the sampling as a function of the wy (x-axis)
that is characterizing the range of the generated w values. Different colours indicate the scaling factor By of the adopted uv-coverage. Data points correspond
to the average over 10 different realizations of the w-rates and the noise, and the error bars are derived from its standard deviation.

remarkable improvement of the angular resolution of the recon-
structed images when compared to the output restored images of
CLEAN, these are limited by the instrumental PSF. Thanks to the
sparsity-based prior and positivity imposed on the image to be re-
covered, this class of approaches has shown the ability to go beyond
the instrument resolution limit. In the presence of w-modulation,
the resulting spread spectrum effect (Wiaux et al. 2009b; Wolz
et al. 2013) allows for probing radio interferometric measurements
containing not only information on the sensed Fourier modes of
the imaged sky but also information coming from the surround-
ing Fourier modes induced by the convolution effect of the w-
modulation. In other words, this means that a radio interferometric
measurement at a probed spacial-frequency u contains energy that
consists not only of the Fourier component of the imaged sky at that
specific spacial-frequency u, but also of a linear combination of
the Fourier components of the imaged sky from the neighbouring
spacial frequencies. This suggests that high-frequency content of
the signal, which is beyond the band limit of the interferometer, can
be probed. Intuitively, this might yield to the recovery of superre-
solved images, with bandwidth B, larger than the bandwidth of
the array, which is given by the maximum projected baseline (see
Section 2.2).

In this section, we study the potential of the w-term to allow
for superresolution on two test cases; the first consists of the study
of superresolution on the GC image and the second the study of
superresolution allowing for the detection of separated point sources
below confusion noise. The latter is a direct effect of the band
limit of the radio interferometer. We re-emphasize that the spread
spectrum effect is not exclusive to the w-modulations; in fact, it
is fundamentally induced by DDEs as they are modelled through
convolutional kernels in the Fourier domain, similar to the w-term.
Yet, unlike the w-terms, they are unknown. Therefore, they need
to be estimated along with the unknown radio image, resulting in
non-convex blind deconvolution problem.

5.1 Superresolution on the GC image

We simulate observations using the GC image of size N = 128 x 128
as a ground-truth image and a realistic simulated uv-coverage of
ASKAP antenna configuration for a total observation time of 1h,
pointing at declination —10%0™0° and right-ascension 0°0™0° with
time spacing §t = 10 min, leading to M = 3780 visibilities. Ob-
tained visibilities are contaminated with additive white Gaussian
noise with iSNR = 40dB following equation (10). Note that in this
study, we consider simulations of the ground-truth image sensed

with a radio interferometric configuration characterized with a band

limit smaller than its full bandwidth B. Therefore, we generate

w-modulations so that B/ == 1rr}axM B,, + || u; |l> does not ex-
<{< B

max
ceed B, hence no up-sampling operator is required.

We perform a family of tests by downscaling the simulated uv-
coverage with factors By € {0.1, 0.2, 0.3, 0.4, 0.5}. For every test,
we set the probed bandwidth B = B; x B, where B is the image full
bandwidth. We also generate random w values within ranges char-
acterized by wr € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1} x
wi x w*, where w* is the maximum w-rate inducing a chirp mod-
ulation with a bandwidth B, = B. The value wy is the w-fraction
allowing us to probe the non-sensed band of the Fourier plane by the
down-scaled uv-coverage with a factor By. In this case, w; induces
a chirp modulation with a bandwidth B, = (1 — By) x B.

Let z denote the Fourier components of the sky x at the non-
sensed high-frequency modes such that z = [R(MFx); J(MFx)].
M € RV¥ is a diagonal matrix with binary entries selecting the
Fourier modes that are part of the non-probed band and z € R*V*V
is the concatenation of the real and imaginary parts of the selected
Fourier components MFx. To quantify the superresolution effect
promoted by the w-modulation, we use the SNR metric on z as
follows:

l1z]l2

SNR = 201log,, z—zlh

where Z = [N(MFx); 3(MFx)] and x is the reconstructed image of
the sky.

In Fig. 12, we display the evolution of the SNR for the Fourier
components z belonging to the non-sensed band in the Fourier
domain as a function of the range wy characterizing the w-rates.
Clearly, the increase of the values of w results in the improve-
ment of the SNR for the various sensed bandwidths characterized
by By € {0.1, 0.2, 0.3, 0.4, 0.5}; more than 5dB increase of the
SNR is observed with the highest wy = w{ x w*, which is allow-
ing us to probe the full bandwidth of the image, when compared
to no w-modulation (w; = 0). Moreover, the visual inspection of
Fig. 13 confirms the superresolution effect promoted by large w-
modulations, in particular when inspecting compact sources present
in the GC image. In general, the SNR improvement is more notice-
able for smaller sensed bandwidths. Note that, for By > 0.4, the
frequency content of the image under scrutiny at the non-sensed
Fourier modes is very small. Interestingly, in the absence of the
w-modulation, the positivity and sparsity priors allow for a small
superresolution effect, which is reflected in the obtained SNRs; 3.3
and 4.96dB for By = 0.4 and 0.5, respectively.
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Figure 13. Reconstructed images of the adopted uv-coverage with down-
scaling factor By = 0.3, displayed in loglO scale. From top to bottom,
ground-truth image and estimated images for w ranges characterized, re-
spectively, with wg = 0, 0.5, 1. Left: zoom on two sources of the images
(note that different scale range is adopted for a better visualization). When
inspecting the bright galaxy in the GC image presenting a faint tail, it is
clear that in the absence of w-modulation the tail is unresolved within the
halo structure, while incorporating the w-modulation with large rates, a very
good recovery of the tail is achieved. Same behaviour for the point source
above it, which in absence of w-modulation is completely unresolved.

MNRAS 471, 43004313 (2017)

5.2 Point-source confusion limit

Radio measurements are prone to point-source confusion due to the
band limit of the radio interferometer. This can be reflected in the so-
called confusion noise, which is a noise-like background consisting
of large number of very faint and slightly above the noise level point-
like sources and that are below the resolution limit, thus unresolved.
The confusion can also occur in the case of bright unresolved point
sources lying on a diffuse background, such case can represent a
supernova remnant or protostars in a nebula environment. In this sec-
tion, we study the ability of the w-term to promote superresolution in
particular the ability to separate two unresolved point sources, hence
decreasing the confusion limit due to the band limit of the radio
interferometer.

To do so, as a ground-truth image, we simulate an image of
size N = 128 x 128 consisting of two Gaussian sources with
o = l.5pixels on a diffuse background (see Fig. 15, top left).
The diffuse background is modelled as a 2D Gaussian source with
o = 50 pixels multiplied with a random Gaussian field and con-
volved with a highly asymmetric filter. Observations are generated
using ASKAP antenna configuration for the same total observation
time and direction in the sky described in Section 4 and with var-
ious time intervals 6t = 10, 20 and 30 min yielding uv-coverages
with number of measurements M = 3780, 1890 and 1260, respec-
tively, and which are denoted by settings A, B and C, respectively.
Note that the three uv-coverages present the same bandwidth, the
difference consists in the lower sampling rates for the higher time
intervals.

We vary the distance separating the peaks of the two Gaus-
sian sources of interest and adopt distances d € {6, 8, 10, 12,
14} pixels. To produce the band limit confusion scenario, we choose
to down-sample the coverages with a factor By = 0.2. Hence, in the-
ory, the resolution obtained by such sampling is 6 ~ 6 pixels at
half width maximum of the PSF’s primary lobe. The diffuse ad-
ditive background adds complexity to resolve the two Gaussian
sources since it mainly consists of low spacial-frequency content,
hence its energy dominates the sensed low Fourier modes. We
also consider additive white Gaussian noise with iSNR = 40dB
on the visibility data. Given this setting, we perform a set of
tests while generating random w values within the ranges wy €
{0, 0.1, 0.2, 0.5, 1}. Note that, while wy = 1 is not a realis-
tic setting, the objective of the study is to show the potential of
the spread spectrum effect in promoting superresolution. Measure-
ments are simulated with the three different coverages explained
above.

Results are shown in Fig. 14, where we display the cross-section
of the reconstructed images at the central column in order to show
the separability of the two Gaussian sources. For each plot, the
cross-section is displayed for the three settings. In the absence of w-
modulation (w¢ = 0), for the separating distances d = 6, 8, 10 pixels,
the two sources are completely unresolved for all the adopted cover-
ages. For distance d = 12 pixels, the coverages A and B, having the
largest number of measurements, allow for slightly resolving the
two sources. For distance d = 6 pixels, in all settings, including
the presence of w-modulations, the two sources are unresolved, yet
the higher the w-modulation, the more the energy coming from the
two sources is concentrated. Furthermore, we notice that for the
distances d = 8, 10, 12 pixels, the two sources are resolved starting
from w-modulations with wy = 1, 0.5, 0.1, respectively. In general,
the more important the w-rates, the better is the resolution, this is
also highlighted in the reconstructed images in Fig. 15, where esti-
mated images are displayed for d = 12 pixels and coverage A with
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Figure 14. Plots of the cross-section of the reconstructed images at the central column containing the peaks of the two Gaussian sources. From top to bottom,
plots for the different separating distances between the two sources. From right to left, plots of the three considered settings of uv-coverages (A: §t = 10 min,
B: §¢ =20 min, C: 67 = 30 min). In each plot is displayed the cross-section of the reconstructed images for the w-rates, characterized by wr € {0, 0.1, 0.2, 0.5,

1.
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Figure 15. Top left: ground-truth simulated image. From middle to right, reconstructed images from measurements simulated using the uv-coverage with
8t = 10min M = 3780. From top to bottom, images reconstructed from measurements with no w-modulation, and measurements with w-modulations

characterized, respectively, by the fractions wy = 0.2, 0.5, 1.

M = 3780 measurements. For separating distance d = 14 pixels, the
two sources are resolved in all the settings.

Increasing the number of measurements can allow for slightly
better resolution as seen in the cross-section plots for d = 12 pixels
and w = 0 (Fig. 14: fourth row); both coverages A and B with the
high number of points allow us to slightly resolve the two sources
w.r.t the coverage C. Yet, the w-modulation promotes higher reso-
lution for relatively small w-rates, more significantly, as shown in
the plot of the same distance with w; = 0.1 even with small num-
ber of measurements (coverage C). In this case, for all the adopted
coverages, the two sources under scrutiny are well resolved. Gen-
erally, this test case of point-source confusion limit demonstrates
how powerful the w-term is in terms of small-scale reconstruction
as it allows us to resolve sources with much higher resolution from
fewer visibilities.

6 SUMMARY AND CONCLUSIONS

In this study, we have revisited the w-modulation in the context
of convex optimization, where it is incorporated in the measure-
ment equation as a sparse thus fast measurement operator. We
employ adaptive sparsification strategies on the w-projection op-
erator based on the energy of its convolution kernels, and study
their effects on the image reconstruction quality. Two main strate-
gies have been investigated. The first consists in the sparsification
of the Fourier-transformed chirp kernels prior to the convolution
with the de-gridding kernels. The second consists in the direct spar-
sification of the rows of w-projection operator G, these are the
convolution kernels coupling the exact chirp kernels and the de-
gridding kernels. We find that the latter strategy is prone to more
sparsity of the measurement operator while preserving the image
reconstruction quality. Furthermore, it is robust when no or neg-
ligible w-modulations are considered. This suggests that a sparser
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variant of the de-gridding matrix can be adopted. In general, as long
as errors in the model of the visibilities introduced by the sparse ap-
proximation of the measurement operator are below the noise level,
the reconstruction quality is preserved. In particular, for iSNR up to
40dB, sparsification of the measurement operator (following both
strategies) with energy loss fraction per row of order y = 107*
is robust. Moreover, the SR of the sparse measurement operator is
reduced by at least a factor 2 in most cases, resulting in significantly
lower memory requirements and computational time.

Our c++ code is available online on GitHub, http://basp-
group.github.io/purity/. As a future work, we plan to apply these
sparsification schemes to real radio interferometric data; where we
take advantage of the recent block splitting algorithmic structure
proposed in Onose et al. (2016). The ability to split the data and the
measurement operator into blocks and process them in a distributed
manner is very promising for the applicability of w-projection in
the context of large-scale data. Therefore, we plan to investigate
efficient data block splitting strategies taking into account the w-
terms. We also consider investigating non-constrained formulation
of the radio interferometric imaging problem when adopting very
sparse w-projection operators, yielding large errors on the backward
model, possibly up to the noise level.

We have presented the first study of a very interesting potential
of the spread spectrum effect that is superresolution. We show-
cased superresolution through simulated band-limited observations
and point-source confusion limit experiments. Inaccessible infor-
mation on the images to be recovered are resolved by adding the
w-component into the imaging process. We demonstrate how the
w-term accesses Fourier modes beyond the band limit of the instru-
ment. Important w-modulations allow the resolution of small-scale
structures inaccessible by the band limit of the radio interferometer,
in addition to an extensive enhancement of the image quality. Since
the bandwidth of the w-modulation depends on the w amplitude
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and the probed FoV, such a potential is highly expected for radio-
interferometers characterized with very long baselines and probing
large FoVs, namely the SKA. On the other hand, it is not restricted
to the w-term. It is inherent to all DDEs, independent of their ori-
gin, thanks to their convolution nature in the imaging process. This
suggests that our study is relevant for future software developments
considering multiple DDEs.
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