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One Sentence Summary:  Mapping genome-wide association studies (GWAS) findings to an 

updated set of genes encoding drug (and druggable) targets, revealed new development and 

repurposing opportunities: these could be extended by deployment of genotyping arrays that ensure 

comprehensive capture of variation in the druggable genome, in larger samples with a broader set of 

disease data. 

 

Abstract: Target identification (identifying the correct drug targets for each disease) and target 

validation (demonstrating the effect of target perturbation on disease biomarkers and disease end-

points) are essential steps in drug development.  We showed previously that biomarker and disease 

endpoint associations of single nucleotide polymorphisms (SNPs) in a gene encoding a drug target 

accurately depict the effect of modifying the same target with a pharmacological agent; others have 

shown that genomic support for a target is associated with a higher rate of drug development success.  

To delineate drug development (including repurposing) opportunities arising from this paradigm, we 
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connected complex disease- and biomarker-associated loci from genome wide association studies 

(GWAS) to an updated set of genes encoding druggable human proteins, to compounds with 

bioactivity against these targets and, where these were licensed drugs, to clinical indications.  We 

used this set of genes to inform the design of a new genotyping array, to enable druggable genome-

wide association studies for drug target selection and validation in human disease.  

 

Introduction 

Only 4% of drug development programmes yield licensed drugs (1, 2), largely because of two 

unresolved systemic flaws: (1) preclinical experiments in cells, tissues and animal models and early 

phase clinical testing to support drug target identification and validation are poorly predictive of 

eventual therapeutic efficacy; and (2) definitive evidence on the validity of a new drug target for a 

disease is delayed until late phase development (in phase II or III randomised controlled trials; 

RCTs). Reasons for poor reliability of preclinical studies include suboptimal experimental design 

with infrequent use of randomisation and blinding (3); species differences; inaccuracy of animal 

models of human disease (4, 5); and over-interpretation of nominally significant experimental results 

(6–8). Human observational studies can mislead for reasons of confounding and reverse causation.  

Evidence on target validity from phase I clinical studies can also be inadequate (since phase I studies 

primarily investigate pharmacokinetics and tolerability, are typically small in size, of short duration 

and measure a narrow range of surrogate outcomes, often of uncertain relevance to perturbation of 

the target of interest) (9). Since the target hypothesis advanced by preclinical and early phase clinical 

studies is all too frequently false, expensive late-stage failure in RCTs from lack of efficacy is a 

common problem affecting many therapeutic areas (10), posing a threat to the economic 

sustainability of the current model of drug development.  

 

Genetic studies in human populations imitate the design of an RCT without requiring a drug 

intervention (11–13).  This is because genotype is determined by a random allocation at conception 

according to Mendel’s second law (Mendelian randomisation - MR) (12, 14).  Single nucleotide 

polymorphisms (SNPs) acting in cis (i.e. variants in or near a gene that associate with the activity or 

level of the encoded protein) can therefore be used as a tool to deduce the effect of pharmacological 

action on the same protein in an RCT.  Numerous proof of concept examples have now been reported 

(15, 16, 11, 17, 13, 18, 19), including the striking correlation between the association of 80 

circulating metabolites with a SNP in the HMGCR gene that encodes the target for statin drugs, and 

the effect of statin treatment on the same set of metabolites (20). SNPs acting in cis are a general 
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feature of the human genome (21); and population and patient datasets with stored DNA and 

genotypes linked to biological phenotypes and disease outcome measures are now widely available 

for this type of study. 

 

By extension, disease-associated SNPs identified by GWAS could be re-interpreted as an under-

utilised source of randomised human evidence to aid drug target identification and validation. For 

example, loci for type-2 diabetes identified by GWAS include genes encoding targets for the 

glitazone and sulphonylurea drug classes already used to treat diabetes (22, 23).  Apparently sporadic 

observations such as this suggest that numerous, currently unexploited disease-specific drug targets 

should exist among the thousands of other loci identified by GWAS and similar high quality genetic 

association studies.  Recent studies of advanced or completed drug development programmes 

(mostly based on established approaches to target identification) have also indicated that those with 

incidental genomic support had a higher rate of developmental success (24–27).   

 

Fulfilling the potential of GWAS (and studies using disease-focused genotyping arrays) for drug 

development requires mapping disease- or biomarker-associated SNPs to genes encoding druggable 

proteins and to any allied drugs and drug-like compounds.  The set of proteins with potential to be 

modulated by a drug-like small molecule has been predicted on the basis of sequence and structural 

similarity to the targets of existing drugs, the set of encoding genes being referred to as the druggable 

genome. Hopkins and Groom identified 130 protein families and domains found in targets of drug-

like small molecules known at the time, and over 3000 potentially druggable proteins containing 

these domains (28). A similar estimate was made by Russ and Lampel, using a later human genome 

build (29). Kumar et al. utilized these privileged protein families (plus other families of particular 

relevance to cancer) to manually curate lists of druggable proteins for inclusion in the dGene data set 

(30). More recently, the Drug-Gene Interaction database (DGIdb) has been developed (31), which 

integrates data from each of the previous efforts together with a recently compiled list of drug 

candidates and targets in clinical development (32) as well as information from the PharmGKB (33), 

Therapeutic Target Database (TTD) (34) and DrugBank (35) databases.  

  

However, earlier estimates of the druggable genome predated contemporary genome builds and gene 

annotations, and also did not explicitly include the targets of bio-therapeutics, which formed more 

than a quarter of the 45 new drugs approved by the FDA’s Center for Drug Evaluation and Research 



4 

 

in 2015 (36), reflecting their increasing importance in pharmaceutical development.  We therefore 

updated the set of genes comprising the druggable genome. We then linked GWAS findings curated 

by the National Human Genome Research Institute (NHGRI) and European Molecular Biology 

Laboratory–European Bioinformatics Institute (EMBL-EBI) GWAS catalog (37) to this updated 

gene set, and also to encoded proteins and associated drugs or drug-like compounds curated in the 

ChEMBL (38) and First Databank (39) databases. We used the linkage to explore the potential for 

genetic associations with complex diseases and traits to inform drug target identification and 

validation, as well as to repurpose drugs effective in one indication for another.  Additionally, to 

better support future genetic studies for disease-specific drug target identification and validation, we 

assembled the marker content of a new genotyping array designed for high-density coverage of the 

druggable genome and compared this focussed array with genotyping arrays previously used in 

GWAS.    

 

Results 

 

Re-defining the druggable genome 

We estimated 4,479 (22%) of the 20,300 protein coding genes annotated in Ensembl v.73, to be 

drugged or druggable.  This adds 2,402 genes to previous estimates made by Hopkins and Groom or 

Russ and Lampel by inclusion of novel targets of first-in-class drugs licensed since 2005; the targets 

of drugs currently in late phase clinical development; information on the growing number of pre-

clinical phase small molecules with protein binding measurements reported in the ChEMBL 

database; as well as genes encoding secreted or plasma membrane proteins that form potential targets 

of monoclonal antibodies and other bio-therapeutics. A set of 680 genes that was included in earlier 

estimates but not our data set consists mainly of olfactory receptors and phosphatases; both protein 

families have significant limitations for future exploitation as drug targets (40, 41) (see Figure 1  and 

Methods section). We stratified the druggable gene set into 3 tiers corresponding to position in the 

drug-development pipeline. Tier 1 (1,427 genes) included efficacy targets of approved small 

molecules and biotherapeutic drugs as well as clinical-phase drug candidates.  Tier 2 comprised 682 

genes encoding targets with known bioactive drug-like small molecule binding partners as well as 

those with significant sequence similarity to approved drug targets.  Tier 3 contained 2,370 genes 

encoding secreted or extracellular proteins, proteins with more distant similarity to approved drug 

targets, and members of key druggable gene families not already included in Tiers 1 or 2 (GPCRs, 

nuclear hormone receptors, ion channels, kinases and phosphodiesterases). A full list of genes is 

provided in Supplementary File S1. An overview of the 15 most frequently occurring protein domain 
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types for each tier can be found in Supplementary Table 1, based on the Pfam-A database of protein 

families (see Methods section Pfam-A domain content).   

 

Connecting loci identified by GWAS to the druggable genome 

We retrieved 21,406 associations from 2,155 GWAS, of which 9,178 surpassed the significance 

threshold of p≤5×10-8 (see Methods section). The retrieved associations spanned 315 Medical 

Subject Heading (MeSH) disease terms, which can be stratified into twenty-four MeSH root disease 

areas and three MeSH Psychiatry and Psychology areas (Table 1). Variants associated with common 

diseases and biomarkers had median minor allele frequency 0.29 (interquartile range, IQR 0.21) 

based on 7,387 GWAS-significant records with risk allele frequency data, reflecting the 

preponderance of common variants on widely used genotyping arrays.  The median odds ratio (OR) 

for GWAS significant studies of disease end-points was 1.24 (IQR 0.31) (based on 3,367 GWAS 

significant results with effect size data).  We examined sequence ontology consequence types (42) of 

disease and biomarker-associated variants and found most to be non-coding, mainly intronic, 

presumably altering or marking variants that alter mRNA expression or availability, or marking 

variants that alter structure or activity of encoded proteins (Supplementary Figure S1C).   

 

Of the 9,178 GWAS significant associations, 8,879 mapped to 5,084 unique intervals defined as 

containing all SNPs in linkage disequilibrium (LD) (with an r2 ≥ 0.5) with the SNP exhibiting the 

most significant association, applying an upper physical bound of 1Mb either side of this variant (see 

Methods section). The remaining 299 associations were either not in LD with any other variants, or 

not present in the 1000 genomes phase 3 panel.  Such associations were assigned a nominal interval 

of 2.5kbp either side of the most significantly associated SNP.  The frequency distribution of unique 

genes (and druggable genes) in LD intervals corresponding to unique significant associations were 

both right skewed (Figure 2), and there was a correlation between LD interval size and the number of 

resident genes (Supplementary Figure 3).  

 

Of the 5,084 unique LD intervals, 1,533 (30.2%) contained a single gene. Of these, 532 also 

contained a single gene from the druggable set: 233 from Tier 1, 76 from Tier 2 and 223 from Tier 3.  

Of the remaining genomic intervals, 17.3% (880) mapped to intervals containing two genes, 10.1% 

(511) contained three genes 6.7% (343) contained four genes and 25.2% (1281) contained five or 

more genes. Additionally, 536 (10.5%) of regions had no gene in the LD interval.  For the 1624 LD 

intervals containing two or more genes at least one of which was druggable, the median distance of 

the closest druggable gene to the reported GWAS variant was 4.98 kbp (IQR 37.7 kbp), where the 
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distance was set to 0 bp for GWAS variants lying within a gene, and a druggable gene was among 

the two most proximal genes in 67.1 % of these LD intervals (1089) (Figure 3).  We identified a total 

of 3052 genes in the druggable set that were not represented in any of the LD intervals corresponding 

to a GWAS association; 62.7%, 69.2% and 71.6% of Tier 1,2 and 3 genes respectively.  

 

Linking GWAS associations to licensed drug targets 

We found that 1,291 GWAS associations defined 1,072 LD intervals containing 532 druggable genes 

from Tier 1, which includes the targets of licensed drugs.  479 of the intervals contained a single 

drug target and 593 contained two or more targets.  For the set of LD intervals containing genes 

encoding the targets of licensed drugs, two clinically qualified curators blinded to the identity of the 

genes, independently evaluated the correspondence between the disease association from the GWAS 

and the treatment indication(s) for drug(s) acting on the target(s) encoded by a druggable gene in the 

interval. The curation process is described in the Methods section.  Our curators identified 56 unique 

associations (30 unique drug targets) where the treatment indication and genetic association were 

precisely concordant and 13 associations (9 targets) where the indication and association came from 

the same disease area (e.g. a GWAS in one form of epilepsy identifying a drug target for a different 

form of epilepsy). 97 associations (mapping to 37 licensed drug targets) corresponded to a biomarker 

known to be altered by treatment with the corresponding drug (e.g. an LD interval containing the 

gene encoding the interleukin-6 receptor was identified in a GWAS of C-reactive protein, a 

biomarker known to be altered by the action of the interleukin-6 receptor blocker, tocilizumab). A 

further 76 associations (27 licensed drug targets) were identified through a genetic association with a 

mechanism-based adverse effect, e.g. in a GWAS of heart rate, the SNP rs3143709  defined an LD 

interval containing the gene ACHE (acetylcholinesterase) encoding the target of cholinesterase 

inhibitors used in the treatment of myasthenia gravis, which have the side effect of lowering heart 

rate (43).  A further 32 genetic associations (corresponding to 8 targets) were with a quantitative trait 

that could be either a marker of therapeutic efficacy or a mechanism-based side effect, as in the case 

of QT interval in the context of anti-arrhythmic drug therapy.  In all, GWAS ‘rediscovered’ 74 

licenced drug targets through disease indications, mechanism of action or via mechanism-based 

adverse effects (the numbers for the categories above are non-additive because some targets overlap 

categories).  Illustrative examples of the curation are shown in Table 3.  

 

Manual curation identified 1,523 discordant pairings of drug indications and disease associations, 

corresponding to 144 drug targets that were interpreted as plausible repurposing opportunities 

(Figure 4).  After manual curation, uncertainty remained for 108 associations (52 targets) as to 
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whether discordance represented a repurposing opportunity, or an unrecognised mechanism-based 

side effect. The remaining targets of licensed drugs mapped to LD intervals corresponding to GWAS 

traits unlikely to be of therapeutic interest (e.g. hair colour); or to a genetic association with a novel 

biomarker of uncertain biological function (e.g. a novel metabolite measured by a new metabolomics 

platform).  Curators disagreed on the coding for GWAS associations corresponding to 4 licensed 

targets. For LD intervals corresponding to GWAS rediscoveries, the interval length was smaller, 

contained fewer genes, and the druggable gene was closer to the lead SNP than for those LD 

intervals where the indication and genetic association were discordant (Supplementary Table S2).  

 

Translational opportunities unveiled by the data linkage 

Figure 5 and Supplementary Figures S6 and S7 illustrate the result of mapping disease associations 

in the GWAS catalogue to the full set of druggable genes, the encoded proteins and allied 

compounds exhibiting binding affinity to these targets, regardless of development phase.  For 

example, 84 studies in the GWAS catalogue reported findings pertaining to cardiovascular system 

diseases (39 disease sub categories), reporting 388 GWAS associations, mapping to 228 unique LD 

intervals containing 670 genes, of which 135 were in the druggable set. Of these, 29 genes were 

either the solitary occupant or one of only a pair of genes in the LD interval. We linked all 135 

druggable genes identified in the cardiovascular category to 19,844 compounds with measured 

activities in ChEMBL (see Methods section Linking GWAS and drug target data), of which 512 had 

a United States Adopted Name (USAN) International Non-Proprietary Name (INN) or which were in 

late phase development, and 168 of which were previously licensed drugs.  Based on comparisons 

between GWAS phenotype terms and treatment indications in the cardiovascular category, 8 drug 

target indications and genetic associations were concordant (target ‘rediscovery’) and 19 were 

discordant. Figure 6 illustrates the results of a similar mapping exercise for seven specific diseases 

(type 2 diabetes, hypertension, inflammatory bowel disease, asthma, coronary heart disease, 

schizophrenia, and Alzheimer’s disease).    

 

The proportion of druggable genes in LD intervals defined by GWAS SNPs for digestive system 

diseases (0.20, 95% CI: 0.12-0.27), neoplasms (0.15, 95%CI: 0.10-0.20), nervous system diseases 

(0.17, 95%CI: 0.10-0.24), cardiovascular diseases (0.20, 95%CI: 0.12-0.29), respiratory diseases 

(0.19, 95%CI: 0.08-0.31), skin and connective tissue diseases (0.17, 95%CI: 0.10-0.24), immune 

system diseases (0.19, 95%CI: 0.12-0.26) and mental health (0.16, 95%CI: 0.08-0.24) was similar to 

the proportion of druggable genes in the genome overall (4479/20,300 = 0.22). 
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Coverage of the druggable genome by Illumina DrugDev and other widely used genotyping arrays 

Capture of variation in druggable genes by the widely used genotyping arrays is illustrated in Figure 

7, with reference to the 1000 genome European super population ancestry panels (44). Disease-

focused genotyping arrays and whole genome arrays with fewer than 600,000 SNPs used for many of 

the discoveries curated in the GWAS catalogue provided less comprehensive capture of variation in 

the druggable genome than the more recently developed arrays with several million SNPs (e.g. the 

Illumina Human Omni 2.5 Exome 8 and Illumina Omni 5).  However, since no array to date has been 

designed specifically to ensure capture of variation in genes encoding druggable targets, we designed 

the content for an array (the Illumina DrugDev array) utilising the Illumina Infinium platform, that 

combines genome-wide tag SNP content of the Illumina Human Core array with 182,375 bespoke 

markers in 4479 druggable genes (see Methods).   The median number of variants captured per kb of 

the druggable genome was very similar to that of the Illumina Human Omni 2.5 Exome 8 and 

Illumina Omni 5 (Figure 7 and Supplementary Figures S8 and S9) with an average of around 2.5 

SNPs per kbp of the druggable genome, at an average of nearly 50 variants per gene array wide, with 

even denser coverage of Tier 1 and 2 genes.  

 

All available genotyping arrays captured druggable genome variation most efficiently among 

European descent populations and most poorly among African descent populations (Figure 7 and 

Supplementary Figures S8 and S9).   Outside of the European populations the high density Illumina 

Omni arrays gave superior coverage (for both directly genotyped variants and tagged variants) to all 

other genotyping arrays.  The Affymetrix UK Biobank array displayed similar coverage to the 

Illumina DrugDev array in EUR populations but less complete coverage in non-European 

populations.  A heat map summarising the coverage for each druggable gene, stratified by tier and 

1000 genomes population groups, is shown in Figure 8. Results for tagged and directly typed 

variants in 1000 genomes sub-populations are shown in Supplementary Figure S10. 

 

Discussion  

 

By first re-estimating the boundaries of the druggable genome, and then mapping biomarker and 

disease associated loci from GWAS to genes encoding druggable targets, we demonstrate the extent 

to which GWAS have already rediscovered target-disease indications or mechanism-based adverse 

effects of licensed drugs. These findings indicate the potential of genetic association studies to 

systematically and accurately identify disease-specific drug targets across the spectrum of human 

diseases, addressing one of the key productivity limiting steps in drug development.  
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For example we found substantial potential for repurposing of drugs with licensed indications from 

one disease area to another (Figure 4), in keeping with previous analyses from the GWAS catalog 

that indicated that 17% of genes exhibit associations with more than one phenotype (45).  We also 

identified potential to progress or reposition compounds at earlier developmental stages, by mapping 

drug target loci implicated GWAS to the ChEMBL drug target annotations (Figure 5).   

 

Despite the many novel therapeutic opportunities already arising from the mapping of existing 

genetic association findings to drug targets and compounds, there are strong reasons to suspect that 

the potential of this approach has yet to be maximised. Our analysis identified target-disease 

indication pairings (defined as a gene encoding a druggable target mapping to an LD interval 

containing a lead SNP from a GWAS) for 1,427 of the 4,479 druggable genes and 240 of the 652 

genes encoding targets of licensed drugs.  We might not have discovered associations for all genes in 

our druggable set because targets of drugs in development may truly play no role in any disease. 

However, alternative explanations are that only a fraction of diseases have been subjected to GWAS 

(451 out of 3022 conditions (the denominator is based on the number of bottom level MeSH disease 

areas)); that for many of the diseases that have been investigated by GWAS the sample sizes have 

been too small to detect all the responsible genes; or that there may have been incomplete coverage 

of certain druggable genes by the arrays most widely deployed in GWAS.  

 

Genome wide association analyses continue to be published in new disease areas, and in new ethnic 

groups. Additional genetic discoveries are also being made with other types of array e.g. dense, 

locus-centric SNP arrays following up on GWAS findings that are currently not systematically 

captured by the GWAS catalog, eg. Cardiochip (46), CardioMetabochip (47), and Immunochip (48), 

and by increases in sample size. Exome-arrays analyses are also unveiling rare, disease-associated 

variants under-represented in whole-genome arrays. Therefore, we anticipate that the current gap 

between druggable genes and GWAS findings will be reduced over time, particularly if such studies 

are extended to electronic health record datasets which form rich repositories of phenotypic traits and 

diagnostic codes.   

 

Genetic profiling of a promising target against a range of outcomes can help evaluate the efficacy 

and safety of a target for the primary indication as well as the identification of additional disease 

indications to help plan drug development priorities.  In order to stimulate the wider use of genetic 

association studies in drug development, and to ensure that such studies have comprehensive 
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coverage of the druggable genome, we designed the content of a new array that combines focused 

coverage of the druggable genome within a whole genome scaffold.  This array could be deployed to 

boost sample size and power in diseases already studied by GWAS to identify additional 

susceptibility loci and druggable targets. It could also help stimulate new druggable GWAS 

prioritised according to unmet therapeutic need. This would automatically lead to an abundance of 

target profiling information encompassing both efficacy and safety outcomes. This will need to be 

captured systematically, and curated consistently to help develop a repository of human drug targets 

linked to the predicted consequences of their pharmacological modification.   

 

Some limitations of our analysis are noteworthy.  The identification of repurposing opportunities in 

the current dataset relied on detecting discordance between a gene-disease association and the 

corresponding target-disease indication for a licensed drug, and excluding instances where this was 

likely to be due to a mechanism-based adverse effect. However, the lack of standardised vocabulary 

in licensing agency approval documents, and the scientific literature currently hampers this effort. 

We therefore used a combination of EFO and MeSH terms to harmonise nomenclature.  Two 

qualified physicians then compared the annotations using a pre-specified classification system 

developed in a pilot study involving one fifth of the dataset.  Greater efforts to harmonise terms both 

from the different ontologies (e.g. EFO, MeSH terms, the Disease Ontology (DO) and the Human 

Phenotype Ontology (HPO)) (49–51), as well as from vocabularies for drug indications from the 

Anatomical Therapeutic Chemical (ATC) classification, electronic BNF and eMC+ terms would help 

generate standardised terminology to improve the efficiency of similar efforts in the future.  

 

Where several genes occupy the same LD interval as a GWAS SNP, it may be difficult to determine 

which is causative. We took a pragmatic approach to this problem by classifying LD intervals 

containing druggable genes according to the total number of genes in the interval and the number and 

proximity of any druggable gene to the associated SNP.  Approximately 529 unique LD intervals 

containing a variant with a significant association from a GWAS contained a single druggable gene. 

Such genes are strong positional candidates for the association. For the remainder, the LD interval 

included 2-146 genes (median 4 genes; excluding the 536 regions containing 0 genes, Figure 3), but 

a druggable gene was first or next most proximal gene to the association signal in 36.1% of these 

cases.  The rediscovery of 183 target-indication or mechanism-based adverse pairings for licensed 

drugs using this indicates its validity of this approach.  Previous Mendelian randomisation studies 

also provide reassurance that associations of SNPs in proximity to genes encoding druggable targets 

recapitulate the effects of drugs modifying the encoded protein pharmacologically (13, 52, 18). 
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Nevertheless, we recognize that some misclassification is possible, for example when a causal signal 

arising from a gene encoding non-druggable protein occupies the same LD interval as a gene 

encoding a druggable target (confounding by linkage disequilibrium).  Integrating information from 

feature annotation databases such as ENCODE (53) NIH Roadmap (54) and the Single Amino Acid 

Polymorphism Database (SAAP) (55) could help reduce misclassification.  Localisation of causal 

genes could also be aided by evidence on the effect of genetic variants on the RNA transcription, on 

the activity or concentration of proteins and metabolites, combining new proteomic and 

metabolomics technologies that are scalable to large population studies (56, 57) with statistical 

approaches to assess whether association signals from the same region are consistent with the same 

causal variant (58).   

 

The Mendelian randomisation paradigm that underpins this strategy validates targets (within a 

defined disease context) and not compounds, although comparing the profile of effects of a genetic 

variant with those of a drug or developmental compound can help distinguish on- from off-target 

effects (13, 18).  For this reason RCTs will not be superseded by the approach we describe because 

any new molecule developed for a target of interest could have off-target actions that cannot be 

modelled genetically.  Additionally, the effect of altering the level or function of a target may only 

be seen beyond some threshold, so that a weak genetic effect may not adequately model the effect of 

modifying the target pharmacologically (26).  Genetic evidence of a causal mechanism also does not 

guarantee its reversibility through pharmacological modification. For example, immune system 

related genetic variants associate with the risk of developing type I diabetes, but useful therapies 

arising from this knowledge may be difficult to realise because by the time the disease is diagnosed, 

immune mediated damage to the pancreatic beta-cells may be too advanced (26). Despite these 

theoretical limitations, evidence is emerging that Mendelian randomisation studies have wide-

ranging potential to improve the efficiency of drug development and reduce the risk of expensive 

late-stage failure. 

 

In summary, we have shown an approach to focus and catalyse the use of genomic information to 

support drug target validation and which can be used to accurately match targets to disease 

indications and to identify rational repurposing opportunities for licensed drugs. The approach aligns 

well with proposals to ‘re-engineer’ translational science (59).  It could help address the efficiency 

and innovation problem and could serve as a basis for reinvigorating drug development through new 

academic-industry partnerships. 
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Materials and Methods 
 

Assembly of a druggable gene set  

The reference set of genes used to redefine the druggable genome comprised gene annotations from 

Ensembl v.73 with a biotype of ‘protein coding’. To this were added T-cell receptor and 

immunoglobulin genes, polymorphic pseudogenes, plus a number of additional genes that were 

annotated in Ensembl v.73 as non-protein coding but which were nevertheless believed to encode 

important proteins (e.g., SRD5A2, CYP4F8). Data were extracted via Biomart 

(http://www.ensembl.org/biomart).  The content was assembled in three tiers: 

 

Tier 1 - This tier incorporated the targets of approved drugs and drugs in clinical development.  

Proteins that are targets of approved small molecule and biotherapeutics drugs were identified using 

manually curated efficacy target information from release 17 of the ChEMBL database (60). An 

efficacy target was defined as the intended target for the drug as opposed to any other potential 

targets for which the drug shows high affinity binding. Where binding site information was available 

in ChEMBL, a non-drug-binding subunit of a protein complex were assigned to Tier 3, whereas the 

drug-binding subunit was included in Tier 1. Drugs in clinical development were identified from a 

number of sources: investor pipeline information from a number of large pharmaceutical companies 

(including Pfizer, Roche, GlaxoSmithKline, Novartis (oncology only), AstraZeneca, Sanofi, Lilly, 

Merck, Bayer and Johnson & Johnson – accessed June-August 2013) monoclonal antibody 

candidates and USAN applications from the ChEMBL database (release 17), and drugs in active 

clinical trials from clinicaltrials.gov (61). Targets for these drug candidates were assigned from 

company pipeline information and scientific literature, where available. Where no reported target 

information could be found, a potential target was assigned through analysis of bioactivity data in 

ChEMBL, with the target having the highest dose-response measurement ≤ 100nM for the compound 

being assigned. All other human targets having an IC50/EC50/GI50/XC50/AC50/Kd/Ki/potency 

≤100nM for an approved drug or USAN compound were also included in Tier1. Genes involved in 

ADME/drug disposition (phase I and II metabolic enzymes, transporters and modifiers) were 

identified from the PharmaADME.org extended set (62). 

 

Tier 2 - This tier incorporated proteins closely related to drug targets or with associated drug-like 

compounds.  Proteins closely related to targets of approved drugs were identified through a BLAST 

search (blastp) of Ensembl peptide sequences against the set of approved drug efficacy targets 

identified from ChEMBL previously (38). Any genes where one or more Ensembl peptide sequences 
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shared ≥50% identity (over ≥75% of the sequence) with an approved drug target were included. 

Putative targets with drug-like (Lipinski rule-of-five compliant) compounds having an 

IC50/EC50/GI50/XC50/AC50/Kd/Ki/potency ≤1µM were identified from ChEMBL and were also 

included in Tier 2. 

 

Tier 3 - This tier incorporated extracellular proteins and members of key drug-target families. 

Proteins distantly related to drug targets were identified through a BLAST search against the set of 

approved drug targets (as above), with any proteins sharing ≥25% identity over ≥75% of the 

sequence and with E-value ≤0.001 being included in the set. Members of five major ‘druggable’ 

protein families (GPCRs, kinases, ion channels, nuclear hormone receptors and phosphodiesterases) 

were extracted from KinaseSarfari (63), GPCRSarfari (64) and IUPHARdb (65) and included in the 

Tier 3. Extracellular proteins were identified using annotation in UniProt (66) and Gene Ontology 

(GO) (67). Since the potential size of the secreted/extracellular portion of the proteome (i.e., 

potential targets for monoclonal antibodies) is large, and the available number of markers for 

inclusion on the array was limited, this dataset was restricted to those proteins for which higher 

confidence annotations of extracellular localisation were available (not solely prediction of a signal 

peptide). Proteins annotated in UniProt as having a ‘secreted’ subcellular location, those containing a 

signal peptide, or those annotated as ‘Extracellular’ (where these annotations were supported by the 

following evidence types: experimental, probable, by_similarity) were included in Tier 3. Proteins 

annotated in GO with Cellular Component terms: GO:0005576 : extracellular region, GO:0005615 : 

extracellular space, GO:0005578 : proteinaceous extracellular matrix, GO:0031233 : intrinsic to 

external side of plasma membrane, GO:0031232 : extrinsic to external side of plasma membrane, 

GO:0071575 : integral to external side of plasma membrane, GO:0031362 : anchored to external side 

of plasma membrane, GO:0009897 : external side of plasma membrane, GO:0044214 : fully 

spanning plasma membrane, and supported by strong evidence (EXP, IDA, TAS), were also included 

in the tier. Finally, proteins known to be cluster of differentiation antigens (CD antigens), according 

to UniProt were also added to Tier 3. Since the final set of genes included in Tier 3 was large (2370 

genes), this Tier was further subdivided to prioritise those genes that were in proximity (+/- 50Kb) to 

a GWAS SNP and had an extracellular location (Tier 3A). The remainder of the genes were assigned 

to Tier 3B.  

 

Pfam-A domain content 

To evaluate the Pfam-A domain content for druggable genes, gene identifiers were converted to 

UniProt accession keys using the the UniProt web services (66). Only UniProt accessions matching 
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the regular expression pattern ‘[OPQ][0-9][A-Z0-9]{3}[0-9]’ were retained for further analysis. 

Pfam-A domains were extracted using the Xfam API (68). For genes mapping to multiple UniProt 

accessions, we retained domain annotations for the UniProt accession mapping to the highest number 

of unique Pfam-A domains. 

   

Comparison of druggable gene sets 

For comparison with genes covered on the Illumina DrugDev array, sets of druggable genes defined 

by Hopkins and Groom in 2002 and Russ and Lampel in 2005 were obtained from DGIdb. Gene 

names were converted to Ensembl gene identifiers using the Ensembl REST API (69). The overlap 

between the three sets was determined and visualised using the Python module matplotlib_venn. 

 

Compilation of GWAS results 

The GWAS catalog was downloaded from 

(http://www.ebi.ac.uk/gwas/api/search/downloads/alternative) on 21/07/2015. Several quality control 

and further post processing steps were then taken. The identifiers of associated variants were 

validated against Ensembl (version 79, build 37) using the perl API. This step returned the latest 

identifier and the build 37 coordinates; 707 associated variants could not be validated and were 

excluded. The GWAS catalog provides numerical effect estimates but does not specify the type of 

effect e.g odds ratio (OR) or beta co-efficient. Attempts were then made to resolve by utilising data 

in other fields (e.g. the presence of case or control in the discovery population fields) to classify the 

effect type as OR, beta or unknown. The discovery population field was also processed using a set of 

regular expressions to determine the sample size and populations used. The populations were then 

mapped to an appropriate 1000 genomes super population. Where no population name could be 

identified, EUR was used as a default as the majority of studies in the GWAS catalog were 

performed on Europeans. The pubmed identifier field was used to search pubmed using the 

Biopython API. MeSH terms for the publications were mapped to the association to provide 

structured phenotype descriptions. However, these study level descriptions may not apply to every 

association reported by the study, therefore the MeSH terms were manually curated for each 

association. These supplemented the experimental factor ontology terms (EFO) that are already 

present in the GWAS catalogue. Finally, the associations were filtered for those that are ≤ 5×10-8 so 

all data using in this study exceeded genome-wide significance.  

 

Assignment of LD intervals 
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The complete 1000 genomes phase 3 data (release 5) was downloaded from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502. BCFTools (v1.2 using HTSlib 1.2.1) and 

used to subset the vcf files into sub- and super- population files (70). For each population group, 

Plink v1.90b3d (71) was used to perform pairwise LD (r2) calculations between all variants in the 

processed GWAS catalog and bi-allelic 1000 genomes variants within a 1Mb flank either side of the 

GWAS variant having a maf ≥ 0.005. To reduce file size only r2 values ≥ 0.2 were output. The 

extremities of the LD region surrounding each GWAS SNP were defined by the positions of the 

variants furthest upstream and downstream of this SNP with an r2 value ≥ 0.5. Associated variants 

that were not present in the 1000 genomes panel that were not in LD with any other variants were 

given a nominal flank of 2.5Kb either size of the association. 

 

Linking GWAS and drug target data 

Gene annotations were extracted from Ensembl version 79. After filtering out pseudogenes 38,352 

genes remained. The set of genes was further reduced to those that overlapped an LD region 

surrounding an association. Within each associated LD region the absolute base pair distance of the 

closest point of a gene from the associated variant was calculated. Variants located within a gene 

were given a distance of 0bp. Genes were given a distance rank value according to their base pair 

distance. In the event of a distance rank tie, the gene with the oldest annotation date was assigned the 

lower rank. 

 

Drug targets in ChEMBL 20 are annotated with UniProt accessions. The accessions were converted 

to Ensembl gene identifiers using the UniProt ID mapper (http://www.uniprot.org/uploadlists/). Drug 

target Ensembl gene IDs were then intersected with the IDs of genes within LD regions to give a set 

of drug targets in the proximity of associated variants.  

 

Evaluation of consistency between licensed drug indications and GWAS disease/biomarker traits 

We evaluated the concordance between drug indication and disease association for those LD 

intervals defined by a GWAS SNP containing one or more genes encoding the target or targets of 

licensed drugs (Supplementary Figure S4). Two experienced clinicians used a pre-specified 

classification system developed in a pilot study of one-fifth of the total data set. Each physician was 

blinded to the identity of the gene encoding the druggable target within each LD interval. The 

outputs from the two physician-curators were then compared, any coding errors corrected, and 

inconsistencies between curators resolved by consensus, where agreement could be reached. 
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Category 0 referred to a situation where coding could not be completed because of missing data; 1 to 

a precise drug indication-target gene-disease association match; 2 to a drug indication-target gene-

disease area association match; and 3 to a drug indication-target gene- mechanism-of-action 

association match. Categories 1 to 3 were defined as ‘concordant’. Category 4 referred to a drug 

mechanism based adverse effect-target gene-disease-association match; 5 to a drug indication-target 

gene-disease association mismatch with prior biological plausibility and 6 without prior biological 

plausibility; 7 to a trait unlikely to be of therapeutic interest (e.g. hair colour); and 8 to a genetic 

association with a novel biomarker of uncertain biological function (e.g. a metabolite measured by a 

metabolomics platform). For certain drug targets/genes, a 34 code was used to indicating that the 

genetic association finding could reflect both a mechanism of action and mechanism based adverse 

effect rediscovery. For example, the modification of certain electrocardiographic parameters by 

variants in the targets of certain antiarrhythmic drugs could reflect both their mechanism of action 

and the mechanism by such drugs produce their adverse effects.  A 54 code was used when there was 

uncertainty about the direction of effect.  A 9 code was assigned to the four cases where consensus 

could not be reached between the two curators. Categories 4, 5, 54, and 6 were referred to as 

discordant. Categories 1-4 and 34 were referred to collectively as ‘GWAS rediscoveries’ of known 

drug effects.  

 

Estimates of and confidence interval for the proportion of druggable genes in LD intervals 

The proportion of druggable genes in LD intervals specified by GWAS associations in each MeSH 

disease or MeSH psychiatry category was calculated by dividing the number of druggable genes by 

the number of all genes with. 95% confidence intervals calculated assuming a binomial distribution, 

on the assumption that each study was independent.  

 

Design of the Illumina DrugDev Array and comparative analysis of coverage of variation in the 

druggable genome 

Selection of custom SNP content 

The design was based on three tiers, corresponding to the level of evidence for druggability of the 

encoded proteins, with highest priority given to genes in Tiers 1 and 2. Tag SNPs were selected from 

the 1000 genomes European ancestry populations (CEU/GBR/FIN/TSI). Associations (tagging) 

between SNPs were identified based on linkage disequilibrium (r2 >0.8). SNPs already covered, or 

tagged by the Human Core base content were not duplicated. Only SNPs with a minor allele 

frequency ≥1.5% were considered for inclusion. The tagging threshold was defined as the number of 

variants a SNP tags (including itself) and was varied according to the tier. For Tiers 1 and 2 a tagging 
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threshold of 1 was applied, meaning that all SNPs were considered for inclusion, even if they only 

tag themselves. For Tier 3A a tagging threshold of 3, and for Tier 3B a threshold of 4 was used. 

SNPs were selected only if they were positioned within +/-2.5Kb of the druggable genes selected in 

the three tiers (defined as a region of 2.5Kb upstream of the Ensembl gene start position to 2.5Kb 

downstream of the Ensembl gene end position). SNPs from the Illumina Exome array were also 

included in the custom content where these were found within genes in Tiers 1, 2 and 3A. Again, any 

redundancy with the Human Core and selected tag SNP content was eliminated. A collection of 

mitochondrial tag SNPs from the Broad Institute, designed to capture common variation within the 

mitochondrial genome, were also included in the custom content 

((http://www.broadinstitute.org/mpg/tagger/mito.html).  This set comprises 64 SNPs, however only 

56 of these loci were designable and included in the array.  Finally, remaining space was filled with 

lead SNPs for any disease or trait association from the GWAS catalog, prioritising SNPs located 

within 50kb of a druggable gene, or within the gene boundaries of any protein-coding gene.  

 

For Tier 1 genes, 99,102 custom markers were selected, including tag SNPs and HumanExome 

content. A further 17,944 of the HumanCore markers also fell within Tier 1 gene regions, giving 

117,046 markers in total.  Tier 2 included 40,943 custom markers and an additional 6,270 markers 

from the HumanCore fell within Tier 2 gene regions, resulting in a total of 47,213 markers.  Genes in 

Tier 3 were represented by 38,858 custom markers. A further 21,626 HumanCore markers fell within 

Tier 3 gene regions, yielding 60,484 markers in total. In addition to coverage of genes encoding 

druggable targets, 6,400 SNPs associated with complex diseases or traits identified from the GWAS 

catalog and from selected gene-centric studies were also incorporated in the array content. Of these 

SNPs, 2,996 were already covered in the Human Core, or previously included in the custom content 

leaving 3,410 variants to be added (of which 1,395 were within Tier 1-3 gene regions). Finally, 53 

mitochrondrial genome tag SNPs were also included, along with 9 mitochondrial genome exome 

SNPs. Considering all content, 226,138 markers were located in, or within +/-2.5 kb of, genes in the 

selected drugged, druggable and ADME sets. For the array as a whole, 78,175 markers were exonic, 

286,577 intronic, and 27,393 located in 5’-, and 41,171 in 3’-untranslated regions respectively.   

 

We used variants in the 1000 genomes phase 3 reference panel populations to compare coverage of 

the druggable genome by the new array and other commonly used genotyping arrays (see previous 

section).  For this analysis, the variants on each array were first mapped to the 1000 genomes phase 3 

reference panel and coverage then compared using two metrics: variant density (per kbp of the 

druggable gene) and the proportion of the variants in the druggable genome that were captured. We 
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defined complete coverage of druggable genome as capture of all the bi-alleilic variants in a 1000 

genomes phase 3 reference panel population with a minor allele frequency  0.005 (representing low 

frequency to common variants).  Because of differences in variant content reported in successive 

genome builds, not all the content of the genotyping arrays could be mapped back to the 1000 

genomes phase 3 reference set. However, the proportion of variants captured by each array that could 

be mapped to the 1000 genomes reference panel was very similar (Supplementary Figure S5). 

 

Evaluating genotyping array coverage of the DrugDev array 

The build 37 genotyping array content for the Illumina arrays was downloaded from Will Rayner's 

array strand website (http://www.well.ox.ac.uk/~wrayner/strand).Where multiple versions of an 

array exists the latest version number was downloaded. The Affymetrix array annotations were 

downloaded as SQLite databases from the Affymetrix website. 1000 genomes data was processed as 

described in the method for creating LD regions. Variants present on the genotyping arrays were 

mapped to 1000 genomes phase 3 using the following sequence: variants with rs identifiers were 

searched against the 1000 genomes sites file, if no match was obtained then synonyms of the rs 

identifier (obtained from Ensembl version 79 build 37) were searched. Variants not mapping by rs 

identifier were then mapped by chromosome, position and alleles (flipping the strand of the alleles 

where appropriate). Allele frequencies and variant tagging for each sub-population group were 

calculated using Plink(v1.90b3d (72)), tagging was restricted to bi-allielic low-frequency and 

common variants (maf ≥ 0.005) within 1Mb of the source SNP. Baseline 1000 genomes coverage of 

the druggable genome in the different sub-populations was ascertained using Bedtools (v2.22.1) to 

intersect 1000 genomes variants with a maf ≥ 0.005 against the druggable gene list (including 2.5 

kbp up/down stream). Proportional coverage of the druggable genome by the different genotyping 

arrays was then ascertained by intersecting the baseline coverage with the 1000 genomes mapped 

array content. 

 

Indication and adverse effects of licensed therapies  

Drug indication data was obtained from several sources. The primary source was the First Databank 

database (FDB, http://www.fdbhealth.co.uk/). This is a commercial database used by University 

College London Hospitals (UCLH) and a one off single release was kindly provided for research 

purposes by First Databank Europe  Ltd. As FDB is used clinically this was regarded as the “gold 

standard” indication set used for the manual categorization of concordant/discordant drug/GWAS 

links (see above). FDB drug indications are tagged with Universal Medical Language System  
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concept identifiers (CUIs) and could be mapped into MeSH and other ontologies within the UMLS 

meta-thesaurus (49, 73). Drug indication data was obtained from ChEMBL 21. This was obtained by 

manual curation and mapping of data from FDA drug labels 

(https://dailymed.nlm.nih.gov/dailymed/), WHO ATC classification 

(http://www.whocc.no/atc_ddd_index/) and ClinicalTrials.gov (https://clinicaltrials.gov) This was 

used to supplement the FDB data and fill in indication data for drugs that were not present the FDB 

release. 

 

Side effect data was obtained from the Side Effect Resource (SIDER) database (74). The drug 

identifiers used in SIDER were mapped back to Chembl identifiers using a mapping file provided by 

SIDER. The side effects are provided as MedRA terms and UMLS CUIs and were mapped to MeSH 

terms using the UMLS. 
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Figures:  

 

 

Fig. 1. Overlap between 3 sets of druggable genes. The Venn diagram shows overlapping and 

distinct elements of the druggable gene sets defined by Hopkins and Groon, Russ and 

Lampel, and the set of druggable genes presented in this publication (DrugDev). 
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Fig. 2. LD region summary. Part A shows the numbers of unique significant associations in the 

GWAS catalogue that have 0 or more genes in their LD regions. Note that there are 299 associations 

that had no LD region or were not present in the 1000 genomes, which are not shown in this figure. 

Part B, shows the number of unique genes that occupy LD regions with at least 1 gene. The counts 

are partitioned into genes that are not predicted to be druggable or the various druggable tiers 
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Fig. 3. Proximity and distance rank of druggable genes to GWAS SNPs.  Each point in the 

scatterplot corresponds to a GWAS signal located in an interval containing a druggable gene. 

The position on the x-axis indicates the distance of the SNP from the druggable gene. 

Position in the y-axis indicates the number of genes in the same interval that are closer to the 

signal than the druggable gene. The top panel indicates the signal density for all such SNPs, 

while the side panel provides the counts of signals by the distance rank of the druggable gene 

divided by Tier (see Methods for further details).  
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Fig. 4. Potential repurposing opportunities from the discordant GWAS phenotype/drug indication 

matches (curation categories 5 and 6; see Methods). The disease categories on the 

circumference are MeSH root disease areas for drug indications and each unit on the scale 

represents a drug target gene. The chords connecting the disease areas represent drug targets 

for one disease area that are potential therapeutic targets in a different disease area. For this 

plot, only genes that overlapped a 50kbp flank surrounding the GWAS association are 

displayed to reduce the possibility discordance due to confounding by linkage disequilibrium.  
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Fig. 5. Translational potential for the top 8 most studied MeSH root disease areas (also see 

supplementary figure S1B. For each disease area, the figure illustrates the estimated number 

of GWAS, the number of associations (p≤5×10-8), the number of LD regions corresponding 

to those associations, the number of genes in those regions, and the number of those genes 

that encode druggable targets. Subsequent rows quantify the number of druggable genes by 

tier, and by distance rank from the GWAS SNP.  The total number of compounds, 

compounds with an ISAN/INN and drugs corresponding to the druggable targets is also 

listed.  In the penultimate row the numbers of drugs that that have an indication that is 

concordant (C) or discordant (D) with the GWAS phenotype are displayed. In the final row 
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the number of cognate targets that for the concordant or discordant drugs are shown. Note 

that for the purposes of the figure a drug target is a single gene even if it is part of a complex 

that is targeted by the drug. Within each column the values are unique, i.e. number of unique 

associations (rsids). However, some values can be replicated across the figure, i.e. a GWAS 

study may have researched several of the disease areas. Additionally, there is some non-

additivity between consecutive rows, namely Druggable Gene Priority - Distance Rank and 

Drugs - Drug indication/Disease Phenotypes. In the case of the former this is due to the same 

gene being further away from the associated variant in different studies, so falls into a 

different partition. For the later, this is due to missing indications for some of the drugs, so 

concordance or discordance could not be assigned. The values in the row labels represent the 

unique number of items across the row. The estimated number of samples is the sum of all 

the cases involved in the respective studies.  

 

 

Fig. 6. Translational potential for 5 specific diseases. Refer to Figure 5 legend for detailed 

explanation. 

 

 

 



32 

 

 

Fig. 7. Tagged coverage of druggable genes in the 1000 genomes super populations. Coverage of the 

druggable gene set is represented as the median number of directly typed variants and 

variants in LD of r2 ≥ 0.8 per kbp of druggable gene sequence. EUR – European, AMR - 

American, EAS – East Asian, SAS – South Asian, AFR – African. 
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Fig. 8. Tagged coverage of druggable genes in the 1000 genomes super populations. Coverage of the 

druggable gene set is represented as a proportion of 1000 genomes phase 3 variants (bialleilic 

with maf ≥ 0.005) that are either directly typed or in LD with r2 ≥ 0.8 (tagged). Each column 

represents a druggable gene and each row a genotyping array. The druggable genes a grouped 

according to their druggability tier which is indicated by the colour bar at the base of each 

plot. To aid visualisation the druggable genes further are sorted within each tier on their 

median coverage across all the arrays and the genotyping arrays are sorted based on their 

median coverage of the druggable genome across all the 1000 genomes super populations. 

Note that all of the arrays contained some content that could not be mapped to the 1000 

genomes phase 3 (see supplementary Figure S5). EUR – European, AMR - American, EAS – 

East Asian, SAS – South Asian, AFR – African. 
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Mesh term Count 

neoplasms  187  

immune system diseases  130 

skin and connective tissue diseases  107 

digestive system diseases  106 

nervous system diseases  104 

mental disorders  85 

cardiovascular diseases  84 

nutritional and metabolic diseases  83 

endocrine diseases  77 

musculoskeletal diseases  57 

male urogenital disorders  52 

eye diseases  50 

respiratory diseases  47 

haematological diseases  43 

female urogenital diseases and pregnancy 

complications  

41 

pathological signs and symptoms  34 

congenital disorders  29 

viral diseases  19 

oral diseases  17 

substance-related disorders  11 

diseases of the ear, nose or throat  8 

parasitic diseases  4  

bacterial and fungal infections  2 

behavioural disorders  1 

wounds and injuries  1 

psychological phenomena and processes  1 

occupational diseases 1 

 

Table 1. Count of GWAS published per disease area. 

 
Category # Associations # drug targets 
Disease association and treatment 

indication precisely concordant* 

56 30 

Disease association and treatment 

indication concordant within the same 

disease area* 

13 9 

Disease association concordant with a 

biomarker of therapeutic efficacy 

97 37 
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Disease association corresponding to a 

mechanism-based adverse effect* 

76 27 

Disease association with a known 

biomarker of therapeutic efficacy that 

can also be responsible for a 

mechanism-based side effect* 

32 8 

Discordant disease association and 

target indication considered to imply a 

potential repurposing opportunity  

1523 144 

Discordant disease association and 

target indication considered to imply 

either a repurposing opportunity or 

mechanism-based side effect 

depending on the direction  

108 52 

Curators unable to agree   4 
*Refers to a target effect rediscovery (see text) 

 

Table 2. Number of unique GWAS associations mapping to drug targets for licensed drugs curated 

according to the correspondence between the GWAS association and drug indication.   
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Gene Drug  
Molecule 
type 

Curation 
code 

GWAS EFO term Drug Indication (FDB) Variant Reference 
(pmid) 

Minimun 
distance from 
druggable gene 
(bp) 

Distance rank of 
druggable gene 

Genes 
In LD 
interval 

 
 
Druggable  
genes in LD 
interval 

ALDH2 DISULFIRAM Small molecule 1 alcohol drinking | 
drinking behavior 

Alcoholism (adjunctive treatment) rs11066280| 
rs12229654| 
rs2074356 | 
rs671 

21270382| 
21372407| 
23364009| 
24277619 

6016 - 790230 1 -18 22 - 33 2 - 4 

PDE4D AMINOPHYLLINE Small molecule 1 asthma Acute asthma | Acute exacerbation of chronic 
obstructive airways disease | Bronchial 
asthma | Chronic obstructive pulmonary 
disease | Left ventricular failure - cardiac 
failure - cardiac asthma | Reversible airways 
obstruction | Routine maintenance therapy in 
chronic bronchitis and asthma  

rs1588265 19426955 448153 1 2 1 

IGF1R MECASERMIN Protein 1 body height Growth failure due to primary IGF-1 deficiency rs2871865 20881960| 
25429064 

2696 1 2 1 

TNFSF11 DENOSUMAB Antibody 1 bone density Prevention of skeletal related events in 
advanced malignancy involving bone | 
Treatment of bone loss associated with 
hormone ablation in prostate cancer | 
Treatment of osteoporosis in postmenopausal 
women to prevent fractures 

rs17536328| 
rs9525638 

24945404 6157 - 8295 1 1 1 

ESR1 TAMOXIFEN CITRATE Small molecule 1 breast carcinoma Carcinoma of breast | Infertility - female - 
anovulatory  

rs140068132| 
rs3757318 | 
rs9383938 

22976474| 
23535729| 
25327703 

9531 - 63713 1 - 2 2 1 

PLG ALTEPLASE Enzyme 1 coronary heart 
disease | large 
artery stroke | 
stroke 

Acute ischaemic stroke: fibrinolytic 
treatment| Thrombolysis in acute myocardial 
infarction| Thrombolysis of occluded central 
venous access devices | Thrombolytic 
treatment in acute massive pulmonary 
embolism 

rs10455872 24262325 113152 3 3 2 

TNF ADALIMUMAB Antibody 1 Crohn's disease Active polyarticular juvenile chronic arthritis-
inadequate response to MTX | Active 
progressive rheumatoid arthritis | Moderate 
to severe plaque psoriasis: when other 
treatment is inappropriate | Moderate/severe 
ulcerative colitis: when other treatment is 
inappropriate | Rheumatoid arthritis when 
inadequate response to DMARDs incl. 
methotrexate | Severe active rheumatoid 
arthritis | Severe ankylosing spondylitis in 
adults if conventional therapy inadequate | 
Treatment of active & progressive psoriatic 
arthritis when DMARD inadequate | 
Treatment of active Crohn's disease 

rs1799964 21102463 1036 2 13 4 

CACNA1D AMLODIPINE Small molecule 1 diastolic blood 
pressure 

Essential hypertension when stabilised on 
same ingreds.in same proportions | 
Hypertension-not adequately controlled by 
individual components | Prinzmetal's angina | 
Prophylaxis of chronic stable angina pectoris | 
Treatment of essential hypertension |  

rs9810888 25249183 106912 1 1 1 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/066027doi: bioRxiv preprint first posted online Jul. 26, 2016; 



37 

 

GUCY1A3 ISOSORBIDE 
DINITRATE 

Small molecule 1 diastolic blood 
pressure 

Angina | Angina pectoris - prophylaxis of 
acute attacks | Angina pectoris - treatment of 
acute attacks | Congestive heart failure 
(adjunct) | Intracoronary use during 
angioplasty and to prevent/relieve coronary 
spasm | Left ventricular failure | Prophylaxis 
of angina pectoris | Treatment of angina 
pectoris | Treatment of unresponsive LVF, 
either post MI or of various aetiology | 
Treatment severe/unstable angina  

rs13139571 21909115 7988 1 2 1 

NPC1L1 EZETIMIBE Small molecule 1 LDL cholesterol | low 
density lipoprotein 
cholesterol 
measurement | total 
cholesterol 
measurement 

Combined hyperlipidaemia: lipid lowering 
therapy adjunct to diet | Homozygous familial 
hypercholesterolaemia (adjunct to statin 
therapy) | Homozygous familial 
hypercholesterolaemia: Adjunct to diet | 
Homozygous sitosterolaemia 
(phytosterolaemia) | Primary 
hypercholesterolaemia (hyperlipidaemia type 
IIa): Adjunct to diet | Primary 
hypercholesterolaemia: lipid lowering therapy 
adjunct to diet 

rs2072183 20686565| 
24097068 

1734 1 1 1 

PPARA GEMFIBROZIL Small molecule 1 LDL cholesterol | low 
density lipoprotein 
cholesterol 
measurement | total 
cholesterol 
measurement 

Mixed hyperlipidaemia when statin is 
contraindicated or not tolerated | Primary 
hypercholesterolaemia: lipid lowering therapy 
adjunct to diet | Reduction of cardiac events 
in hypercholesterolaemia | Severe 
hypertriglyceridaemia with or without low 
HDL cholesterol 

rs4253772 24097068 12050 1 7 2 

CASR CINACALCET 
HYDROCHLORIDE 

Small molecule 1 calcuim measurment Homoeopathic | Hypercalcaemia due to 
malignant disease | Hypercalcaemia in 
primary HPT when parathyroidectomy 
contraindicated | Secondary 
hyperparathyroidism in end stage renal 
disease: treatment 

rs17251221| 
rs1801725 

20661308| 
20705733| 
24068962 

1585 - 12095 1 5 1 

IL6R TOCILIZUMAB Antibody 1 rheumatoid arthritis Active juvenile idiopathic arthritis (unresp to 
NSAIDs) in comb with MTX | Active juvenile 
idiopathic arthritis when inadequate response 
to NSAIDs | Rheumatoid arthritis (unresp to 
DMARD/TNF inhib.) in comb with 
methotrexate | Rheumatoid arthritis when 
inadequate response to DMARDs incl. 
methotrexate 

rs2228145 24390342 14956 1 1 1 

TNF ADALIMUMAB Antibody 1 rheumatoid arthritis Active polyarticular juvenile chronic arthritis-
inadequate response to MTX | Active 
progressive rheumatoid arthritis | Moderate 
to severe plaque psoriasis: when other 
treatment is inappropriate | Moderate/severe 
ulcerative colitis: when other treatment is 
inappropriate | Rheumatoid arthritis when 

rs2596565 24532677 190015 24 145 27 
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inadequate response to DMARDs incl. 
methotrexate | Severe active rheumatoid 
arthritis | Severe ankylosing spondylitis in 
adults if conventional therapy inadequate | 
Treatment of active & progressive psoriatic 
arthritis when DMARD inadequate | 
Treatment of active Crohn's disease 

ABCC8 GLIMEPIRIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 4860 - 5802 3 5 3 

ABCC8 GLIPIZIDE Small molecule 1 type II diabetes 
mellitus 

Non insulin dependent diabetes mellitus 
when diet has failed 

rs5219 19056611 4860 - 5802 3 5 3 

ABCC8 GLYBURIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone  

rs5215 | 
rs5219 

17463248| 
17463249| 
19056611| 
24509480 

4860 - 5802 3 5 3 

ABCC8 NATEGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate 

rs5219 19056611 4860 - 5802 3 5 3 

ABCC8 REPAGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate | Type 2 
diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 4860 - 5802 3 5 3 

KCNJ11 GLIMEPIRIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 1224 - 1306 1 5 3 

KCNJ11 GLIPIZIDE Small molecule 1 type II diabetes 
mellitus 

Non insulin dependent diabetes mellitus 
when diet has failed 

rs5219 19056611 1224 - 1306 1 5 3 

KCNJ11 GLYBURIDE Small molecule 1 type II diabetes 
mellitus 

Type 2 diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone  

rs5215 | 
rs5219 

17463248| 
17463249| 
19056611| 
24509480 

1224 - 1306 1 5 3 

KCNJ11 NATEGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate 

rs5219 19056611 1224 - 1306 1 5 3 

KCNJ11 REPAGLINIDE Small molecule 1 type II diabetes 
mellitus 

Control of type-2 diabetes (NIDDM) with 
metformin if metformin inadequate | Type 2 
diabetes (NIDDM) not controlled by 
diet,weight loss & exercise alone 

rs5219 19056611 1224 - 1306 1 5 3 

PPARG PIOGLITAZONE 
HYDROCHLORIDE 

Small molecule 1 type II diabetes 
mellitus 

Combination treatment of Type 2 diabetes 
with insulin | Control of type-2 diabetes if 
metformin+sulphonylurea therapy is 
inadequate | Monotherapy for type2 diabetes 
if overweight and metformin inappropriate | 
Oral combination treatment of type 2 
diabetes  

rs1801282 24509480 64258 1 1 1 

SCN1A OXCARBAZEPINE Small molecule 1 Mesial temporal 
lobe epilepsy with 
hippocampal 
sclerosis | febrile 
seizures 

Epilepsy - combination of both partial and 
tonic-clonic seizures | Epilepsy - partial 
seizures  

rs7587026 24014518 5773 - 52194 1 3 1 
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GRIN3B MEMANTINE 
HYDROCHLORIDE 

Small molecule 1 Alzheimers disease Moderate to severe Alzheimer's disease | No 
information available 

rs115550680 23571587 40689 8 8 2 

SLC22A12 SULFINPYRAZONE Small molecule 1 urate measurement Gout   (prophylaxis) | Gouty arthritis | 
Hyperuricaemia 

rs2078267 | 
rs478607 

20884846| 
23263486 

23999 - 108243 2 -3 2 -3 2 

SLC22A11 PROBENECID Small molecule 1 urate measurement 
| uric acid 
measurement 

 rs17300741 | 
rs2078267 

19503597| 
20884846| 
23263486 

6233 - 8364 1 1 - 2 1 - 2 

PDE4D ROFLUMILAST Small molecule 2 asthma Chronic obstructive pulmonary disease rs1588265 19426955 448153 1 2 1 

SCN2A CARBAMAZEPINE Small molecule 2 febrile seizures Epilepsy - grand mal | Epilepsy - partial 
seizures | Epilepsy - tonic-clonic seizures | 
Prophylaxis of manic-depressive illness 
unresponsive to lithium | Trigeminal neuralgia 

rs3769955 25344690 14186 1 1 1 

FSHR MENOTROPINS Unknown 2 polycystic ovary 
syndrome 

Anovulation unresponsive to clomifene citrate 
| Ovarian stimulation before in vitro 
fertilisation | Stimulation of spermatogenesis 
with concomitant hCG therapy in 
hypogonadism 

rs2268361 22885925 12316 1 1 1 

PLG ALTEPLASE Enzyme 3 plasma plasminogen 
measurement 

Acute ischaemic stroke: fibrinolytic 
treatment| Thrombolysis in acute myocardial 
infarction | Thrombolysis of occluded central 
venous access devices | Thrombolytic 
treatment in acute massive pulmonary 
embolism 

rs4252129 25208887 21442 1 1 1 

DIO1 PROPYLTHIOURACIL Small molecule 3 thyroxine | 
thyroxine 
measurement 

Hyperthyroidism | Thyrotoxic crisis | 
Unlicensed product 

rs2235544 23408906 1189 1 4 1 

PDE4D DIPYRIDAMOLE Small molecule 4 asthma Alternative to exercise stress in thallium-201 
myocardial imaging | Ischemic stroke: 
Secondary prevention (with/without aspirin) | 
Secondary prevention of ischaemic stroke | 
Secondary prevention of transient ischaemic 
attacks | Thromboembolism+prosthetic heart 
valve: prophylaxis (+oral anticoagulant) | 
Transient ischemic attacks: Secondary 
prevention (with/without aspirin)  

rs1588265 19426955 448153 1 2 1 

ACHE RIVASTIGMINE Small molecule 4 resting heart rate Mild - moderate dementia in Alzheimer's 
disease | Mild - moderate dementia in 
idiopathic Parkinson's disease 

rs12666989 | 
rs314370 

20639392 861 - 34407 3 - 7 9 4 

ACHE NEOSTIGMINE 
METHYLSULFATE 

Small molecule 4 heart rate Myasthenia gravis | Paralytic ileus | 
Paroxysmal supra-ventricular 
tachyarrhythmias | Post operative distention| 
Post operative urinary retention | Reversal of 
residual competitive neuromuscular block | 
Unlicensed product 

rs13245899 23583979 861 - 34407 1 - 7l 9 4 

CHRM2 TOLTERODINE 
TARTRATE 

Small molecule 4 heart rate Symptomatic treatment of urinary urgency, 
frequency or urge incontinence 

rs2350782 23583979 62368 1 3 1 
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Table 3. Illustrative examples of mapping SNPs curated in the GWAS catalogue to LD intervals containing targets of licensed and clinically 

used drugs. The gene encoding the drug target is listed using Human Genome Nomenclature Catalogue designation. Drug names and indications 

are from First Data bank. GWAS SNPs are listed according to Refseq number and physical distances are in base pairs (bp). Curation code refers 

to the correspondence between the treatment indication and GWAS disease or trait association (see Text). Examples are shown of treatment 

indication rediscoveries (Curation codes 1 and 2). For many of these the drug target gene is the sole occupant of the LD interval defined by the 

GWAS SNP. Examples come from a variety of disease areas and, for some diseases (e.g. type 2 diabetes and rheumatoid arthritis), multiple 

target rediscoveries are noted.  Examples of rediscoveries of mechanism of action (curation code 3) and mechanism-based side effects are also 

seen (curation code 4) 
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