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[11 In the early 1990s a cluster of extreme flood events occurred in the south Galway
region of western Ireland, and this led to speculation of changing rainfall patterns in the
area. In this paper we illustrate the use of generalized linear models (GLMs) to test for
such changes and quantify their structure. GLMs, long established in the statistical
literature, provide a flexible and rigorous formal framework within which to distinguish
between possible climate change scenarios and are able to deal with high levels of
variability, such as those typically associated with daily rainfall sequences. The study
indicates that the GLM approach provides a powerful tool for interpreting historical

rainfall records.
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1. Background

[2] The area around Gort, to the south of Galway in
western Ireland (see Figure 1) has historically been subject
to large flood events. The area affected is a low-lying Karst
system, fed by rivers draining the Slieve Aughty mountains
to the east. Under extreme conditions (associated with
extended wet periods) ephemeral lakes, known as turloughs,
overflow and coalesce, causing widespread flooding involv-
ing inundation of property and damage to livestock and
roads. In the past such widespread flooding occurred in
1924 and in 1959; then in early 1990, 1991, 1994 and 1995.

[3] A preliminary report after the 1991 event [Daly, 1992]
identified changing rainfall patterns as a possible cause of
the increased flooding frequency. Subsequently an inves-
tigation, funded by the Irish Office of Public Works, was
carried out to suggest and evaluate possible flood alleviation
measures. This paper extends some of the work carried out
during that study, which is reported by Office of Public
Works (OPW) [1998]. We use generalized linear models
(GLMs) to examine the rainfall record, with a view to
quantifying the nature and extent of changes in rainfall
patterns over the area. A particular aim is to demonstrate the
power of GLMs for interpreting historical climate records.
We also present a variety of straightforward methods for
checking models whose structure is potentially complex.

[4] In the next section we briefly review the data avail-
able, and summarize their properties. Section 3 gives an
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overview of the modeling strategy. Results are presented in
section 4, and the work is summarized in section 5.

2. Data and Preliminary Analysis

[5] Two separate sources of data were used in the work
reported here: daily rainfall data from a network of 23
gauges run by the Irish Meteorological Office, and monthly
data from gauges at Birr and Sligo. Figure 1 shows the
gauge locations and periods of record. The daily data span
the period 1941-1996, although not all gauges have con-
temporary records. On average, there are §8.47 observations
per day. For these gauges, any nonzero amount below 0.1
mm has been recorded as a “trace” amount.

[6] Various exercises were carried out to ascertain the
quality of the data; for details, see Chandler and Wheater
[1998a]. To summarize: all records had previously been
quality-controlled by the Irish Meteorological Service, and
any value flagged by them as dubious was discarded. The
study area was visited to inspect all currently operational
gauges. In addition, simple exploratory analyses were
carried out to highlight unusual features of the data. The
main conclusions were that some of the daily gauge records
may be a little unreliable, and that over-detailed interpreta-
tions of any analyses should be avoided. A couple of
particularly suspect gauges were discarded from any sub-
sequent analysis.

[7] The monthly records, which both extend for over a
century, were tested to ensure that they could be regarded as
representative of rainfall patterns within the study region.
Again, Chandler and Wheater [1998a] give details. These
records have been used to suggest the nature of possible
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Detail of the study area, showing positions of daily rain gauges.

trends, but have not been incorporated formally into the
analyses reported here.

[8] To investigate the extent to which recent flooding is
associated with abnormal rainfall (rather than, for example,
changes in land use), time series plots of various summary
statistics were examined, at monthly and annual timescales,
for individual gauges and for the whole area. In general,
records from individual gauges are too variable for any clear
pattern to emerge, as are areal statistics at monthly time-
scales. However, the annual series of areal mean rainfalls
indicates that during the 1960s, rainfall amounts tended to
be rather lower than either before or since. This is most
pronounced in the winter months (December—February),
and can be seen in the top plot of Figure 2. To determine
whether this apparent trend is part of a longer-term pattern,
the long records from Birr and Sligo were examined. The
bottom plot in Figure 2 shows the mean winter rainfall,
averaged over 5-year time periods, at Birr from 1875 to
1995. The pattern is similar to that in the top plot, for the
period where the records overlap. However, the longer
record also shows possible periodicity (lows in the 1890s,
1960s and possibly the 1930s, and highs around 1920, 1990
and possibly 1950).

[o9] These results are in broad agreement with other
studies of climatic trends in Northern Europe. For example,
the 1996 report of the UK Climate Change Impacts Review
Group [Department of the Environment (DOE), 1996]
indicates that the decade from 1984—1995 was unusual
relative to a baseline climate defined over the period
1961-1990. Our results agree with this, but also suggest
that this choice of baseline period is unrepresentative.
There are other regions where this period has been reported

as atypical; for example, Pfister [1992] found that in
central Europe, winters between 1965 and 1979 were
25% wetter than the long-term average of the previous
60 years.

[10] To complete the preliminary analysis, an analysis of
variance (ANOVA) was used to indicate the predict-
ability of the daily rainfall sequence. ANOVA decomposes
the variation into “systematic” and “random” components.
The magnitude of the systematic component’s contribution to
the total variation is a measure of intrinsic predictability
in the sequence. Here, the strength of seasonal and
regional signals in wet-day rainfall amounts has been
investigated using a 2-way ANOVA, with interaction, by
site and calendar month. This can be regarded as fitting a
regression model with a separate parameter for every
possible month/site combination; see, for example, Dob-
son [1990]. Zeroes were excluded from this analysis. The
ANOVA shows that systematic seasonal and regional
variation accounts for only 2.86% of the variance in daily
amounts, indicating that the rainfall sequence is dominated
by noise at a daily timescale. However, at longer time-
scales the structure becomes clearer (for example, fitting
the same ANOVA model to monthly data explains 24.0%
of the variance).

3. Modeling Strategy

[11] The high level of noise in the data dictates that any
model for daily rainfall in this area must be stochastic. The
modeling task could be simplified by working at a monthly
timescale to filter out some of the noise. However, if a daily
analysis is feasible then it offers clear benefits. For example,
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Figure 2. December—February rainfall time series in Ireland. (top) Galway Bay areal average, 1941—

1996. (bottom) Birr 5-year mean, 1875-1995.

an analysis of monthly totals cannot discriminate between
numbers of wet days and precipitation amounts when wet.
Although it is possible to carry out separate monthly
analyses (e.g., of rainfall amounts and proportions of wet
days) to investigate different properties, a single daily
model has the potential to provide a detailed understanding
of many different aspects of the rainfall process. Moreover,
for many hydrological applications it is daily or subdaily,
rather than monthly, structure which is of interest. A good
daily rainfall model can subsequently be used, for example,
to provide simulated sequences for input into hydrological
models. Therefore we seek a modeling strategy that is able
to identify weak signals in the daily records, and simulta-
neously to provide a realistic representation of day-to-day
variability. In addition, we would like to be able to inves-
tigate rigorously the apparent long-term changes in the
area’s rainfall patterns.

[12] Generalized linear models [McCullagh and Nelder,
1989] meet all of our requirements. The basic idea is to
predict a probability distribution for some quantity of
interest, using observations of various other related quanti-
ties. In our case the quantity of interest is the daily rainfall
amount at a site; possible predictors include previous days’
rainfall amounts, the time of year and variables representing
topographic effects.

3.1.

[13] Formally, a GLM for a n x 1 vector of random
variables Y = (Y},...,Y,,), each dependent on p predictors
(whose values can be assembled into a » X p matrix X
whose (i, j)th element is the value of the jth predictor for V;),

Generalized Linear Modeling Framework

consists of specifying a probability distribution for Y, with
vector mean . = (ji1,. . .,|1,) such that

g(n) = XB. (1)

Here, g(.) is a monotonic function (the link function) and 3
isap x 1 vector of coefficients (by g(p) we mean the n x 1
vector whose ith element is given by g(j1;)). Model (1) is a
natural extension of the simple linear regression model. A
constant term in the model can be defined by including a
column of 1s in the matrix X. When, as here, the Ys arise as
one or more time series and we wish to include previous
values of the series as predictors, we are implicitly studying
the conditional distributions of each Y given the past, and
the usual GLM methodology carries over straightforwardly;
see, for example, Fahrmeir and Tutz [1994, chap. 6].

[14] In implementation, we broadly follow Coe and Stern
[1982] and Stern and Coe [1984]. They adopted a two-stage
approach, as follows.

1. For stage 1 (occurrence model), model the pattern of
wet and dry days at a site using logistic regression. If we
denote by p; the probability of rain for the ith case in the
data set, conditional on a predictor vector X;, then the model

is given by
ln(1 ljipi) =x.0. (2)

2. For stage 2 (amounts model), fit gamma distributions
to the amount of rain on wet days. The rainfall amount for
the ith wet day in the database is taken, conditional on a
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predictor vector &;, to have a gamma distribution with mean
p; where

1“:':&;? 3)

for some coefficient vector y. The shape parameter of the
gamma distributions is taken to be the same for all cases in
the data set, and is denoted by v. This is equivalent to
assuming that daily rainfall values have a constant
coefficient of variation.

[15] To fix ideas, consider a simple hypothetical example
of an area in which rainfall occurrence follows a seasonal
cycle, with western sites being wetter than eastern ones;
moreover, whenever it rains at any site the probability of
rain there the following day is increased. To represent such
behavior using logistic regression, we might define predic-
tors Xy = 1, X; = 1 if a site was wet on the previous day and
0 otherwise, X, = cos[2w X (day of year)/365], X5 = sin[2w
X (day of year)/365] and X, = site eastings. Writing x;; for
the value taken by X; for the ith case in the data set, the
structure described can be represented plausibly by setting
the right-hand side of (2) to 3! x;8; for appropriately-
chosen (s.

3.2.

[16] A common feature of climate processes is that
predictors interact with each other, by which we mean that
the effect of one predictor may depend on the values of
others. For example, in midlatitudes we expect dependence
between successive days’ rainfalls to be weaker in summer
than in winter, because there are fewer long-lasting frontal
weather systems in summer. Hence there should be seasonal
variation in any coefficients associated with previous days’
rainfalls in (2) and (3). This can be achieved by representing
the coefficients themselves as linear combinations of other
predictors. Mathematically, this is equivalent to adding an
extra predictor to the model, whose value is the product of
the interacting predictors. Hence interactions can be incor-
porated straightforwardly within the overall framework.

[17] The presence or absence of interactions within a
GLM can tell us a lot about the mechanisms driving the
rainfall process. For example, if significant interactions are
found between a long-term trend and predictors represent-
ing seasonality, one of the effects of the trend may be to
induce wetter winters and drier summers. An interaction
with previous days’ rainfalls indicates a shift in weather
types (since it implies a changing autocorrelation structure).
The interpretation of interactions is illustrated in section 4
below.

Interactions

3.3. Model Fitting

[18] Fitting a GLM involves choosing an appropriate set
of predictors (x in (2) and & in (3)) and estimating the
corresponding parameter vectors 3 and vy. In each case, if
the responses are conditionally independent given the
predictors, maximum likelihood estimates of parameters
can be obtained using iterative weighted least squares
[McCullagh and Nelder, 1989], and standard techniques
such as likelihood ratio tests (see, for example, Cox and
Hinkley [1974, section 9.3]) can be used to assess the
significance of individual predictors. For example, if a
single extra predictor is added to a model and the resulting
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log likelihood increase is greater than 1.92 (3.32), it is
formally considered to be significant at the 5% (1%) level.
However, in general it is necessary to fit models to data
from several sites, and simultaneous responses at different
sites are not conditionally independent given the predictors
because of intersite dependence. Chandler and Wheater
[1998a] review available methods for dealing with such
dependence when fitting models, and argue that 3 and 7y
may still be estimated as though sites were conditionally
independent if individual sites have long records. The
properties of this working independence approach are
summarized in section 2 of Liang and Zeger [1986]; in
particular, it yields consistent parameter estimates (so that
B and vy will be well estimated). However, standard
methods for assessing the uncertainty of such parameter
estimates (e.g., confidence intervals and likelihood ratio
tests) will tend to under-represent the true uncertainty
unless some adjustment is made to account for depend-
ence. As a result there is a danger of overfitting if the
nominal “independence” log likelihoods are interpreted
too literally.

[19] In the work reported here we have used these
nominal log likelihoods to guide, rather than dictate, our
modeling. Equal or greater importance has been attached to
residual analyses, which have been used to highlight the
deficiencies of individual models (see section 4.1 below).
Nonetheless, it is useful to check that the final models are
not overfitted as a result of intersite dependence. A quick
check, involving the nominal log likelihoods, is to consider
a worst-case scenario whereby all sites yield identical series.
In this case, when there are S sites the nominal log like-
lihood is a sum of terms, each of which is duplicated S
times. The correct and nominal log likelihoods therefore
differ by a factor of S and, if tests are to be based on the
nominal log likelihood, the independence critical values
should be multiplied by S. In practice, sites do not yield
identical series so the correct critical values lie somewhere
between these two limits. When S varies over time, it seems
reasonable to approximate the upper limit using the mean
number of active sites. For example, in this study there 8.47
observations per day on average (see section 2) so, when
adding a single extra predictor to a model and comparing
nominal log likelihoods, the true critical value for a 5% test
lies between 1.92 and approximately 8.47 x 1.92 = 16.26.
Bounds on the true p-values for any test can be constructed
using the same argument.

3.4. Nonlinearities

[20] In rainfall modeling applications, the response (rain-
fall occurrence or amount) is often associated with a
particular predictor in such a way that the relationship is
best thought of as between the response and some non-
linear transformation of the predictor. Examples include
the investigation of possible long-term cycles in the
climate of an area (where the fundamental predictor for
any day’s rainfall is the year in which it occurs, but a
cyclical pattern implies that the relationship is really with a
sine wave derived from the year), and the realistic model-
ing of orographic variability (typically, the underlying
predictors might be site eastings and northings, but any
structure is unlikely to be well represented by putting these
into equation (1) directly).
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[21] Such nonlinear transformations may be divided into
two categories, depending on whether there is an obvious
parametric form for the transformation. For example, a
cyclical trend function represents a parametric transforma-
tion of time; however, it is unlikely that realistic parametric
representations of orographic variability can be found.

[22] Parametric transformations can be treated using
extensions of the standard methods. The component of X;,
to be included in the model (1), takes the form

/(1,6) (4)

for some known function f(.), where ¢ is the value of the
underlying predictor and 0 is a vector of parameters in the
transformation. If 0 is unknown then it can be estimated
simultaneously with all the other parameters, using an
extension of the usual iterative weighted least squares
algorithm as described by Green [1984]. Stability of the
algorithm is assured by making some small modifications,
as described by Wei [1997, section 2.3].

[23] When there is no obvious parameterization for a
nonlinear transformation, our approach is to represent
effects over a fixed range of the underlying predictor, using
orthogonal series. Any well-behaved function can be rep-
resented over a finite interval as a linear combination of
orthogonal basis functions; see, for example, Priestley
[1981, section 4.2.2]. Instead of using the underlying
predictor directly as one of the Xs in (1) then, we use the
corresponding values of the basis functions as predictors in
their own right. The problem is thereby reduced to linearity.
Providing the data points are scattered approximately uni-
formly over the range of the underlying predictor, the
orthogonal basis functions will be approximately uncorre-
lated. As a consequence, the model will be robust against
mis-specification of any of the individual terms (see, for
example, Chandler [1998b]).

[24] The disadvantage of orthogonal series representation
is that it may be parameter-intensive. This problem can be
minimized by careful selection of basis functions. For
example, if a transformation is likely to be essentially
monotonic, it might be represented efficiently using a
polynomial basis such as Legendre polynomials [4bramo-
witz and Stegun, 1965]. Oscillatory patterns may be repre-
sented more parsimoniously using Fourier series.

[25] The main use of orthogonal series in this work has
been to represent regional variability as a bivariate function
of site eastings and northings. If {1y : j =0, 1, 2,...} and
{0 k=0, 1, 2,...} form orthogonal bases for eastings and
northings effects respectively, then the collection {1;dy : j, k
=0, 1, 2,...} forms an orthogonal basis for regional effects.
But within the GLM framework, this collection consists
simply of interactions between the s and ¢s (see section
3.2 above), and so representation of regional variability is
straightforward.

[26] There is one potential pitfall when using orthogonal
series in a GLM to model regional effects. The total number
of predictors (including interactions) should be kept below
the number of sites available. Otherwise there is a danger of
overfitting the model to match exactly the observed pattern
of rainfall at all sites. This would not be a problem if site
data were totally reliable, since it would be detected by
likelihood ratio tests. However, such tests can only assess
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the quality of fit to the available data and, if there is a small
but systematic bias at one or more sites, overfitting is a
potential problem. There is a particular danger when data
are only available from a few sites.

3.5. Trace Values

[27] Trace values (i.e., values recorded as “less than 0.1
mm”’) represent a substantial portion of the available data
(accounting for around 11% of wet days), whence it is
important to deal with them appropriately in a model for
rainfall amounts. Fitting a GLM by iterative weighted least
squares involves, for each case in the data record (and at
each iteration), computing both the observed response y and
the values of the various predictors. In general, some of the
predictors will involve previous days’ rainfall values and
therefore trace values will be encountered in both the xs and
the ys. Trace values in x are straightforward to deal with: we
simply define an extra predictor taking the value 1 for cases
when x is a trace and 0 otherwise. The trace indicator is
orthogonal to x if trace values of x are set to zero.

[28] Trace values in the ys are harder to deal with. In
principle, it would be possible to treat the problem as a
standard “censored data” situation and reformulate the
likelihood function to take account of the fact that some
of the observations are not recorded exactly. However, for
the gamma family of distributions, this involves awkward
integrals which cannot be handled analytically. Moreover, it
is not clear that the standard algorithm for fitting GLMs
would work in this case. A simpler working solution is to
replace each censored y value with its conditional expect-
ation under the current model parameterization. Even this
requires numerical evaluation of integrals, which is compu-
tationally costly in view of the large data sets involved.
However, a good approximation to the conditional mean
can be obtained as

he(r) ~ e+ vr) . (5)

Here p(T) is the conditional expectation of a trace value
where the trace threshold is T, and p and v are, respectively,
the overall mean and shape parameter of the gamma
distribution under the current model parameterization. The
derivation of this result is given by Chandler and Wheater
[1998D].

4. Modeling Results

[29] We now illustrate the application of the above theory
to the Irish daily rainfall record. Models were fitted sequen-
tially, starting with “obvious” predictors and successively
adding extra predictors and interactions. The value of add-
ing successive predictors was assessed by examining the
nominal log likelihood, predictive performance and resid-
uals (see section 4.1 below) for each model. Initially, basic
models corresponding to a stationary climate were fitted. To
examine the evidence for changing rainfall patterns, these
basic models were then augmented by adding predictors
representing trends, together with their interactions.

[30] In selecting predictors to represent trends over time,
four basic alternatives have been considered here. The first
three are deterministic functions of time corresponding to
trends that are linear, stationary before time #, and then
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Table 1. Summary of Models for the Daily Rainfall Record in the
Galway Bay Area®

Model Trend Number of Log RMSE
Number Scenario Parameters in likelihood
Model
Rainfall Occurrence
1 none 35 —67994.843  0.3910
2 linear 42 —67810.377  0.3905
3 linear after ¢, 43 —67810.377  0.3905
4 cyclical 44 —67809.182  0.3905
5 NAO 41 —67589.354  0.3900
6  NAO plus linear 49 —67476.438  0.3896
Rainfall Amounts
1 none 30 —194096.248 5.580 mm
2 linear 45 —194032.842 5.579 mm
3 linear after ¢, 46 —194032.842 5.579 mm
4 cyclical 43 —194004.322 5.579 mm
5 2cycles 48 —193949.886 5.577 mm
6 NAO 38 —193868.461 5.568 mm
7 NAO plus cycle 42 —193827.610 5.567 mm
8  NAO plus two cycles 51 —193767.540 5.566 mm

#For each trend scenario, the summary refers to the best model that was
found. Log likelihoods are calculated as though data from different sites are
independent. There were 143,682 observations for the occurrence models
and 101,448 for the amounts.

linear, and cyclical, respectively. Although it is implausible
to extrapolate the first of these indefinitely outside the range
of the data, it may well provide a good approximation to
any monotonic trend over the period of record. The second
is intended as a crude representation of anthropogenic
climate change (7, being the year in which the change
started to occur). The cyclical trend was suggested by the
Birr and Sligo records (see Figure 2).

[31] These trends are all essentially descriptive in nature.
It is natural to ask whether there is a physical explanation
for changing rainfall patterns, and to this end we have
investigated the impact of the North Atlantic Oscillation
(NAO) in addition to the deterministic trends. The NAO is
known to be associated with European precipitation pat-
terns, and its evolution since 1940 is not dissimilar to that of
the winter rainfalls in Figure 2 [Hurrell, 1995]. The NAO
index used in this study is the normalized monthly pressure
difference between stations in Iceland and Gibraltar, defined
by Jones et al. [1997].

[32] Table 1 gives the number of parameters, nominal log
likelihoods and root mean squared errors (RMSEs) for
models incorporating various different trend scenarios. For
the occurrence models the RMSE is defined as

. 12
S oeni] ©
i=1

where y; takes the value 1 if the ith case in the data set is a
wet day and zero otherwise, and p; is the probability of rain
under the model. As an error measure for binary data, this
may be difficult to interpret; however, it is the square root of
the mean Brier score which is commonly used for the
evaluation of probability forecasts [Dawid, 1986].

[33] The log likelihoods clearly distinguish between the
different models, and indicate that the best fits are obtained
by occurrence model 6 and amounts model 8. For both
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occurrence and amounts, the NAO emerges as dominant
among the trend scenarios considered. However, it does not
account for all the trends in the data, since the likelihoods
for occurrence model 5 and amounts model 6 are both
significantly increased by adding extra terms corresponding
to linear and cyclical trends respectively. For example, the
nominal log likelihood for occurrence models 5 and 6 differ
by 112.92; model 6 contains 8 additional parameters. If all
sites were independent, a likelihood ratio test would com-
pare 2 x 112.92 = 225.84 to tables of a x? distribution with
8 degrees of freedom; the p-value for the test would be
0.000 to 3 decimal places. Under complete dependence (see
section 3.3), since there are 8.47 observations per day on
average we would refer 225.84/8.47 = 26.66 to tables of the
same distribution and obtain a p-value of 0.001. Hence there
is strong evidence that model 6 improves upon model 5,
even after accounting for intersite dependence. Similarly,
the p-value for comparing amounts models 6 and 8 lies
between 0.000 and 0.048. The evidence here is less com-
pelling, but model 6 is certainly rejected in favor of model 8
at the 5% level.

[34] The standard deviation of rainfall amounts on wet
days is 5.758mm: hence amounts model 8 explains 6.6% of
the variance. This is actually quite impressive; recall from
section 2 that seasonality and site effects account for only
2.86% of the variance. The improvement is due to the
inclusion of previous days’ rainfalls, and the NAO, as
predictors in the models.

4.1. Model Checking

[35] Before attempting to interpret the results of any
modeling exercise, it is necessary to carry out thorough
checks. For a statistical model, such checks fall broadly into
three categories: assessment of predictive ability, checks on
probability structure and checks for unexplained systematic
structure. The literature on statistical model checking is
extensive; relevant overviews are given by McCullagh and
Nelder [1989] and Chandler [1998a]. For the GLMs con-
sidered here, several simple but informative techniques are
available. More details are given by Wheater et al. [2000,
chap. 4].

[36] Throughout this modeling exercise, a variety of
simple diagnostics have been used to check models and
suggest possible extensions. For example, to check that
systematic structure has been captured by a model, we
define Pearson residuals for each case in the data set:

=
G

Y —
(P) 1y (7)

where Y; is the observed response for the ith case, and p; and
o0, are the modeled mean and standard deviation. If the fitted
model is correct, all of the Pearson residuals have
expectation zero and variance 1. In particular, the mean
Pearson residual for any subset of the data should be close
to zero, and the root mean squared residual should be close
to 1. By appropriate selection of subsets, we can therefore
use the residuals to check for unexplained structure. An
example is given in Figure 3. The top plots here show the
mean and root mean square of Pearson residuals in each
year from occurrence model 5 in Table 1, which includes
the NAO as a predictor. The dashed lines on the mean plot
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Figure 3. Annual structure of Pearson residuals from occurrence models 5 (incorporating NAO) and 6
(NAO plus a linear trend). Dotted lines on mean plots show approximate 95% confidence limits under the
assumption that the model is correct, adjusted for spatial dependence between sites.

are approximate 95% confidence bands about zero; if the
model is correct, around 95% of mean residuals should lie
within these bands. The bands are adjusted for dependence
between sites, as described by Wheater et al. [2000, chap.
4]. Their increased width in 1941 and 1997 is due to
incomplete records for these years (there are only 22
observations from 1941, and 342 from 1997; recall that on
average there are 8.47 observations per day). It is clear from
this plot that there is a systematic downward trend in mean
residuals between 1940 and 1990. This motivated the
addition of a linear trend, and its interactions, to obtain
model 6. The annual residual structure for model 6 is shown
in the bottom plots of Figure 3. The trend is no longer
evident, and by and large the mean residuals lie within the
confidence bands. Some lack of fit is evident in the 1950s,
which may bear further investigation; apart from this, the
only problem is an unusually large mean residual for 1994.
No structure is apparent in the root mean square plots.

[37] Pearson residuals are also used to check that seasonal
structure is captured by the models (splitting the data set by
month) and that regional effects are adequately represented
(splitting by site). Seasonality is well represented by all of
the models; site-by-site analyses reveal some problems,
however. In occurrence model 6, for example, one third of
the sites have mean residuals that differ from zero by more
than 4 standard errors. However, there does not seem to be
any organization in the mean residual pattern; it is therefore
likely that the discrepancies here are due to gauge position-
ing or observer practice, rather than to any deficiency in the
model. For example, the mean residuals at sites G3 and G18
are —0.0385 and 0.1559 respectively; the associated stand-
ard errors are 0.0082 and 0.0239. Figure 1 shows that the
two sites are almost identically located and that their periods

of record overlap. A closer examination of the data at these
sites reveals that G3 has no trace values, but 17% of wet day
values at G18 are traces. It is clear that trace days are being
counted as dry at G3 but wet at G18: hence the model, in
trying to fit to the average of the two sites, is overpredicting
at G3 and underpredicting at G18. Similar explanations can
be found for other apparent site-by-site discrepancies.

[38] As well as checking for systematic residual variation,
it is necessary to ensure that the probability structure of the
fitted models is correct, since this is used to compute the
likelihoods upon which inferences are based. For the
amounts model, the simplest check is via quantile-quantile
plots of residuals defined in such a way that, if the model is
correct, all residuals have the same distribution. The meas-
ure used here is the Anscombe residual which, for the
gamma distribution, takes the form

1/3
(4) Yf)
= . 8
' (Mi ®)

If the gamma assumption is correct, all Anscombe residuals
have the same distribution which is approximately Gaus-
sian; see, for example, Hougaard [1982]. A normal
probability plot of Anscombe residuals can therefore be
used to test this assumption. For amounts model 8, this plot
is shown in Figure 4. The plot shows a good fit except in the
lower tail of the distribution, where there are not as many
small values as expected under a normal distribution. There
are two reasons for this. The first is the presence of trace
values, which account for almost all of the points in the
lower tail and for which the exact rainfall amounts have
been estimated as described in section 3.5 above. The
second is that for highly skewed gamma distributions, the
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Figure 4. Normal probability plot of Anscombe residuals
from amounts model 8. The dotted line shows the expected
relationship if the gamma assumption is correct.

Gaussian approximation breaks down in the lower tail since
the normal distribution can yield negative values whereas
the gamma cannot. To investigate the adequacy of the
Gaussian approximation, the dashed line in Figure 4 shows
the expected behavior if the gamma assumption is correct.
This shows that a substantial part of the discrepancy can be
attributed to a breakdown in the approximation. It also
shows that the approximation is excellent elsewhere, and
reveals some lack of fit in the upper tail of the distribution.
However, this discrepancy is slight and there are few data
points involved (around 0.6% of the sample), so that for the
purposes of our analysis it is not a problem.

[39] For the occurrence model, we cannot use a proba-
bility plot to check the forecast probabilities. However,
checks can be based on the idea that, if we collect together
all of the days when the forecast probability of rain is close to
some preassigned value p*, then the overall proportion of
these days experiencing rain should be close to p*; see
Dawid [1986]. For practical implementation, we collect
together groups of days for which forecast probabilities are
in the intervals (0.0,0.1),(0.1,0.2),...,(0.9,1.0) and com-
pute observed and expected proportions of rainy days within
each of these groups (the expected proportion for a subset of
M cases with probabilities py,. . .,py is M~ 'S p,). Unless
there is agreement within each forecast decile, there is
something wrong with the probability structure of the
model. The results, for occurrence model 6, are given in
Table 2. This shows good agreement between observed and
expected rain day proportions, throughout the range of the
forecasts.
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4.2. Model Interpretation

[40] Table 1 indicates that the best fitting models are
occurrence model 6 and amounts model 8. According to the
checks above these both provide a good representation of
the structure in the data, and their distributional assumptions
are satisfied. The basic predictors in the two models are
similar, and are summarized in Table 3. As well as describ-
ing the predictors in the model, this shows the maximum
likelihood estimates of the cycle lengths and phases for
amounts model 8. The nominal standard errors for each of
these parameters are small (the highest is 1.60, for the time
at which the second cycle reaches its lowest point). The true
standard errors will be larger however, as a result of spatial
dependence which has not been accounted for here.

[41] Table 3 shows that both models contain a large
number of terms representing ‘‘autocorrelation” structure,
particularly compared to other daily rainfall models in the
literature (for example, Stern and Coe [1984] used just 1
previous day’s rainfall when modeling rainfall occurrence in
West Africa); hence it may appear that our models are
unnecessarily complex. However, the primary reason for
including these terms is to ensure that within-sequence
correlations do not affect inference regarding the effect of
other variables upon rainfall. For this purpose it is better to
include too many autocorrelation terms than too few. In any
case, their inclusion is strongly supported by our analyses.
For example, amounts model 8 contains a “persistence
indicator” taking the value 1 at any site that has experienced
rain on each of the previous 5 days, and zero otherwise. The
effect of this indicator varies with the NAO and with the
seasonal cycle so that, together with its interactions, it
contributes 4 terms to the model. If these terms are dropped,
the nominal log likelihood in Table 1 drops by 57.758. The
corresponding p-value lies between 0.000 (under independ-
ence) and 0.009 (under complete dependence) so that such a
reduction is unlikely to arise by chance.

[42] In each model, seasonal structure is represented by a
sine wave, with adjustments for individual months where
necessary (i.e., for months with large mean Pearson resid-
uals under a sine-wave-only model). The simplest adjust-
ment is an indicator variable taking the value 1 during the
appropriate month, and zero elsewhere. However, a referee
has pointed out that this leads to an unnatural model since
the resulting seasonal cycle contains discontinuities. We
therefore use smooth adjustments based on scaled and
shifted bisquare functions:

22
f(d)—{l—(W” @=1....0, ()

where d is the day of the month and ¢ is the number of days
in the month. These functions decay smoothly to zero at the

Table 2. Observed Versus Expected Proportions of Days With Rain, for Data Grouped According to
Forecast Probability of Rainfall Occurrence (Occurrence Model 6)

Forecast Decile

1 2 3 4 6 7 8 9 10
Observed  0.000  0.178 0254 0358 0456 0531  0.646 0752  0.850  0.938
Expected  0.000  0.178 0249 0347 0449 0546 0656 0759 0856  0.927
N days 0 4975 14454 10423 8934 6444 6564 18108 43754 30026
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Table 3. Summary of Predictors in Best Fitting Occurrence and Amounts Models

Predictor
Category

Model

Occurrence Model 6

Amounts Model 8

Site effects

Interannual variability

Seasonality

Autocorrelation

Two-way interactions

Three-way interactions

site altitude, plus nonparametric Fourier
representation using 1 Fourier frequency
in each direction (E-W and N-S)
NAO, plus linear trend

seasonal cosine wave, plus smooth
adjustment for December

indicators for rain on each of previous
5 days, plus persistence indicators for rain
on both previous 2 days and on all
previous 7 days

autocorrelation with altitude; autocorrelation
with interannual variability;
autocorrelation with seasonality;
seasonality with interannual variability

NAO with seasonality and autocorrelation

nonparametric polynomial representation,
using 3 Legendre polynomials in each
direction (E-W and N-S)

NAO, plus 2 cycles (lengths 21.8 years and
40.1 years, with minima in 1971 and 1963
respectively)

seasonal cosine wave, plus smooth
adjustment for November

Ln(1 + value x days previously), for
x=1,2,3,4; also trace indicators for each
of previous 4 days, and persistence
indicators for preceding 3 and 5 days

autocorrelation with interannual variability;
autocorrelation with seasonality;
seasonality with interannual variability

autocorrelation with seasonality and

10 -9

interannual variability

ends of the month, with a maximum in the middle. The
occurrence and amounts models contain adjustments for
December and November respectively.

[43] To visualize the structure of the modeled site effects,
Figure 5 maps the surfaces defined by the Fourier and
Legendre bases for each of the models. The effect of site
altitude in the occurrence model is not included, so that in
this case the map shows the regional structure after account-
ing for altitude. Bearing in mind that the fitted surfaces will
be most reliable near gauges, both maps show physically
meaningful structures. For the occurrence model the main
features are a gentle west-east gradient, and an area of
increased rainfall occurrence centered upon the end of
Galway Bay. For the amounts model, the pattern is approx-
imately constant except at the western margin, where there
are enhanced intensities close to the sea from whence most
weather systems arrive. The difference between the two

Occurrence model

patterns suggests that the primary mechanisms controlling
rainfall occurrence and amounts are different.

[44] It is of particular interest to try and interpret the
interactions in Table 3. Some are easily interpreted: for
example, the interactions between seasonality and autocor-
relation reflect the fact that temporal dependence in rainfall
sequences is stronger in winter than in summer. This in turn
has a physical interpretation in terms of the relative fre-
quencies of convective and frontal weather systems: homo-
geneous frontal systems account for a greater proportion of
rainfall in winter than summer.

[45] The interactions of most interest, however, are those
involving the trend functions and the NAO, since these give
detailed information about precisely how the rainfall pat-
terns respond to interannual changes. For illustrative pur-
poses, we consider the interaction between the NAO and
seasonality in amounts model 8. For this model the con-

Amounts model

[——
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u

0 0 -0.25 -0.25

/)

—
0 5 10km
VQ
1.2
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Figure 5. Spatial variation of rainfall as represented by (left) occurrence model 6 and (right) amounts
model 8. For the occurrence model, contours represent contributions to the log odds at equation (2). For
the amounts model, contours are multiplicative adjustments to a “baseline” level. Squares are locations

of rain gauges (see Figure 1).
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Figure 6. Effect of the NAO upon seasonal rainfall

structure, according to amounts model 8. Each line represents
a multiplicative adjustment to an overall mean level.

tribution to the linear predictor (equation (3)), from terms
involving just seasonal effects and the NAO, is

27 x day 27 x d

~0.0611 cos ~0.2047 sinTayf 0.0854 oy (day)

2 x d
+(0.0419 x NAO) + (0.0574 x NAO x cos %)

(10)

— 1 0.0112 x NAO x si
( X X sin 365

27 X day)

where day is the “day” of the year (running from 1 to 365),
fuov is an adjustment of the form (9) for November, and
NAO is the current value of the monthly NAO index.

[46] If we put NAO = 0 in (10), we obtain an “average”
seasonal cycle; by putting NAO = 1 we obtain the corre-
sponding cycle for a year in which NAO takes the value 1 in
every month, i.e., in which there is a reasonably strong, and
persistent, positive anomaly. (10) represents the contribution
to the log mean rainfall: this corresponds to a multiplicative
adjustment to the mean rainfall, which is plotted in Figure 6.
According to Figure 6, rainfall amounts on wet days are
highest, on average, in the autumn. The average effect of an
enhanced NAO is to increase rainfall amounts substantially
throughout the autumn and winter periods, with little effect
in the summer. This agrees with our understanding of the
NAO as a phenomenon whose effects are mainly confined
to the Northern Hemisphere winter [Hurrell, 1995].

[47] Other interactions in the models can be studied in a
similar way. Broadly speaking, we find that the effects of
the deterministic trends in each model are to induce wetter
winters and drier summers. Moreover, the 3-way interac-
tions involving the NAO suggest that, as well as increasing
autumn and winter rainfall amounts, a positive anomaly is
associated with decreased autocorrelation in winter rainfall
sequences. A physical interpretation is that positive NAO
anomalies are associated with weakened organisation in
weather systems. The dynamics of this are unclear, but it
may be linked to enhanced convective activity.

[48] Combining all of these results, we find that the
extended period of unusually high NAO values in the
1990s is undoubtedly responsible, to some extent, for
the high winter rainfalls in our study area. The NAO does
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not explain all of the trends in rainfall patterns, however:
there are other changes, which we have approximated by
linear and cyclical trend functions, that have also tended to
increase winter rainfalls.

5. Summary and Conclusions

[49] In this work, we have attempted to demonstrate the
potential of GLMs for interpreting historical rainfall
records. Because the daily data are so noisy, a more
conventional approach may have focused on analyses of
monthly data; however, it is unlikely that such an approach
would have highlighted features such as the seasonally
varying impact of the NAO upon the autocorrelation struc-
ture of rainfall sequences. Despite the noise levels, the GLM
methodology has detected a number of physically convinc-
ing signals. The ability to model changing effects via
interactions is an appealing feature, since it allows complex
structures to be represented directly using relatively few
parameters.

[s0] It is often of particular interest to identify associa-
tions between large-scale climate indices, such as the NAO,
and rainfall. For this type of problem, GLMs have the
advantage over simpler methods (e.g., those based on
correlations) that they implicitly allow us to account for
other factors when testing for such associations. This is
because inference is based on a comparison of likelihoods
between a simple model (e.g., our occurrence model 1 and
amounts model 1) and an extended model containing the
effects of interest. The simple model effectively adjusts for
all of the factors which it represents; the procedure therefore
represents an elegant alternative to the common practice of
standardization of all data prior to analysis, and allows us to
work directly with the variable of interest rather than with
anomalies.

[s1] As well as illustrating how GLMs can be used to
model rainfall, we have demonstrated the use of simple but
informative model checking techniques. In this study for
example, residual analyses suggested that the NAO was not
solely responsible for changes in rainfall patterns, and also
highlighted a problem with the data at one of the sites; it is
unlikely that this would have been spotted without the use
of such techniques.

[52] In this paper, we have not exploited the idea that a
GLM is a probability model. For hydrological applica-
tions, this is useful since it allows us to simulate daily
rainfall sequences (this was one of the arguments for
choosing to work with daily, rather than monthly, data).
Many existing simulation techniques produce stationary
sequences: a GLM is not restricted in this way, since
GLM simulations will be conditioned upon the values of
external predictors which may vary in both space and
time. However, before using GLM simulations for hydro-
logical applications it is necessary to carry out further
checks. Our results indicate that systematic structure in
day-to-day rainfall distributions has been captured; how-
ever, it is possible that small errors in the models may be
magnified when it comes to the reproduction of features
of hydrological interest, such as extremes of areal average
rainfall at monthly or longer timescales. Further details
and some results indicating that the models are indeed
able to reproduce such features are given by Wheater et
al. [2000].
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[53] There is one theoretical issue that has not been
addressed here: this is the effect of intersite dependence
upon likelihood-based inference. This is the subject of
ongoing research, both in our own work and in the wider
statistical community. In particular, the generalized estimat-
ing equation (GEE) approach introduced by Liang and
Zeger [1986] is gaining in popularity. However, there is
some evidence that the use of an incorrect dependence
structure within a GEE approach can actually produce
worse results than using an independence structure [McDo-
nald, 1993; Crowder, 1995; Sutradhar and Das, 1999].
Ultimately, any technique must be judged on the plausibility
of the results it produces. In this paper, informal interpre-
tation of nominal log likelihoods has been combined with
careful residual analysis to guide the model-building proc-
ess. The results (along with those from similar studies in the
UK and elsewhere) are, we believe, convincing.
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