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ABSTRACT
We propose a simple model selection test for choosing among two parametric likelihoods, which can be
applied in the most general setting without any assumptions on the relation between the candidate mod-
els and the true distribution. That is, both, one or neither is allowed to be correctly specified ormisspecified,
they may be nested, nonnested, strictly nonnested, or overlapping. Unlike in previous testing approaches,
no pretesting is needed, since in each case, the same test statistic together with a standard normal crit-
ical value can be used. The new procedure controls asymptotic size uniformly over a large class of data-
generating processes. We demonstrate its finite sample properties in a Monte Carlo experiment and its
practical relevance in an empirical application comparing Keynesian versus new classical macroeconomic
models. Supplementary materials for this article are available online.

1. Introduction

Model selection is an important step in most empirical work
and, accordingly, there exists a vast literature devoted to this
issue (Cox 1961, 1962; Atkinson 1970; Zellner 1971; Leamer
1983; Mizon and Richard 1986; Smith 1992; Gourieroux and
Monfort 1994; Sin and White 1996; Andrews 1997, 1999;
Chesher and Smith 1997; Smith 1997; Andrews and Lu 2001;
Ramalho and Smith 2002; Hong, Preston, and Shum 2003; Kita-
mura 2003). Since Akaike (1973, 1974), the Kullback–Leibler
(KL) information criterion has become a popular measure for
descriminating among models taking the form of parametric
likelihoods, especially in the context of nested generalized linear
models (“analysis of deviance;” e.g., Nelder and Wedderburn
1972; McCullagh and Nelder 1989). One strand of the literature
(Nishii 1988; Vuong 1989; Sin andWhite 1996; Inoue and Kilian
2006 among others) uses this criterion together with earlier
ideas about embedding the model selection problem into a
classical hypothesis testing framework (e.g., Hotelling 1940;
Chow 1980). In essence, this approach uses the maximum of
the likelihood function as a goodness-of-fit measure. If model
A is found to have a statistically significantly larger maximum
likelihood than model B, then model A is to be preferred.

In an influential article, Vuong (1989) established that, unfor-
tunately, the difference between the KL information criterion
(KLIC) of two competing models exhibits a wide variety of
limiting distributions (normal, χ2, or even mixtures of χ2),
depending on whether the two models are overlapping or not,
or whether one of the models is correctly specified or not. As a
result, using the KLIC typically requires pretesting to establish
which distribution to use for the computation of critical values
for the tests. There are two reasons why the resulting two-step
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Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.
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model selection test exhibits nonuniform behavior under the
null and thusmay suffer from size distortions: first, the existence
of different asymptotic distributions of the test statistic implies
that size distortions can occur when models are nonnested but
“close” to each other. Second, the use of a pretest induces the
well-knownnonuniformity of two-step testing procedures (Leeb
and Pötscher 2005) that may also lead to size distortions. Shi
(2015) sought to address this issue by proposing a modified
Vuong test for nonnested models that uniformly controls size
but involves solving potentially high-dimensional optimization
problems to find the appropriate critical values from a nonstan-
dard limiting distribution.

In this article, we instead propose a simple method that
delivers a model selection criterion based on the KL discrep-
ancy and yet only involves a test statistic that is asymptotically
N(0, 1)-distributed in all cases (nested, nonnested, or overlap-
ping), under the null that the twomodels fit the data equallywell.
Therefore, no pretesting is required, complicated limiting distri-
butions are entirely avoided, the test uniformly controls size, and
we show in simulations that it may be significantly more pow-
erful than Vuong’s test. In fact, we provide simulation results in
which the Vuong test’s power is close to the test’s nominal size
while our test has power close to one. These advantages do come
at the expense of some power loss relative to Vuong’s test when
the models are nested. However, our simulations suggest that
this effect is small and therefore insufficient to offset the advan-
tages of the method. In addition, our simulations suggest that
neither Shi’s nor our test generally dominates the other in terms
of power or its ability to control size.

We test the hypothesis that two models have the same KL
discrepancy to the true distribution versus one of them being

©  Susanne M. Schennach and Daniel Wilhelm. Published with License by Taylor & Francis
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2 S. M. SCHENNACH AND D. WILHELM

smaller. In case of a rejection, the model with the smaller
discrepancy is retained, otherwise the criterion suggests both
models fit the data equally well. Our approach remains valid
even if both models are misspecified and enables the selection
of the least misspecified of the two, that is, the model with the
smallest KL discrepancy from the truth. This capability fits
nicely within the context of valid likelihood inference under
potential model misspecification (White 1982). We handle
the possibility of overlapping models by devising an estimator
of the KLIC that smoothly interpolates between a conven-
tional sample-splitting scheme (e.g., Yatchew 1992; Whang
and Andrews 1993) when the competing models overlap and
a conventional full-sample estimator when the models do not
overlap. In this fashion, the statistic of interest is never degener-
ate. The relative weights of the split-sample and the full-sample
statistics are governed by a regularization parameter that we
choose so as to trade off power and size of the test. The optimal
regularization parameter requires only estimates of variance
terms and therefore is very easy to compute from a given sample.
In this fashion, we avoid having to consider higher-order terms
of the test’s asymptotic expansion (as in Vuong 1989, or, in a
different hypothesis testing context, Fan and Li 1996). Although
higher-order expansions (such as Edgeworth expansions) can,
in principle, be used to address the degeneracy problem, such an
approach may pose significant practical problems. For instance,
a higher-order analysis of likelihood functions may involve
quantities that are difficult to calculate for complex forms of
likelihood functions (such as when it is obtained via numerical
methods and/or simulations).

Besides deriving the local asymptotic power of our test we
also show that it is of correct asymptotic level uniformly over a
large class of data-generating processes. This is a very desirable
property of a test, particularly in the model selection context,
as it may be difficult to judge a priori whether competing
models are “close” to each other—a case in which the Vuong
test exhibits potentially very large finite sample distortions due
to its nonuniform behavior under the null. We also demonstrate
our procedure’s small sample properties in a Monte Carlo study
and illustrate its practical usefulness in testing Keynesian versus
new classical macroeconomic models. Finally, we discuss how
our approach may be extended in various directions such as
time series data or models defined by moment conditions.
Importantly, we can also apply our sample-splitting idea to
tests comparing the accuracy of forecasts (such as those made
popular by Diebold and Mariano 1995) to gain asymptotic
uniform size control.

Model selection is an important step in empirical research as
indicated by its vast coverage in standard statistical textbooks
and in statistics courses, and the large citation count of seminal
articles such as Vuong (1989). In many applications such as the
one we discuss in Section 9, testing which of two models pos-
sesses a smaller KL discrepancy to the truth may be of direct
interest. This is, for example, the case when the two models are
observable implications from competing economic theories and
themodel selection test then speaks to the question which of the
two theories (jointly with some distributional assumptions) is a
better description of the economy. Another example is that of
distinguishing different theories of voter behavior as described
by Shi (2015). The outcome ofDiebold andMariano (1995)-type

tests of which forecastingmodel ismore accurate is also of direct
interest. In all of these examples, the model selection step is not
necessarily followed by another estimation or inference step.

The proofs of all results in this article can be found in the
supplementary materials.

2. Setup

In this article, we define a model to consist of a set of proba-
bility distributions over the sample space of observed variables,
indexed by a finite-dimensional parameter. For example, we sub-
sequently use models A and B defined as

PA := {PθA ∈ P : θA ∈ �A},
PB := {PθB ∈ P : θB ∈ �B},

where P denotes the set of all probability measures and �A
and �B are some finite-dimensional parameter sets. Such a
set of distributions could, for example, be the set of all normal
distributions indexed by their means and variances. An integral
part in any model selection procedure consists of choosing a
criterion that measures “closeness” of two models. We consider
the KLIC here because it has a variety of convenient properties
one of which being that maximum likelihood estimators of θA
in model A, say, are known to minimize the KL distance (even
though the KL discrepancy is not a distance metric, we will
use the two terms interchangeably) between model A and the
true data-generating process (White 1982). Consequently, the
so-called pseudo-true parameter value θ∗

A that maximizes the
population likelihood of model A delivers a distribution Pθ∗

A

equal to the true distribution P0 if model A is correctly specified,
and can be interpreted as the best approximating model (in
terms of KL distance) in the case that model A is misspecified.

More formally, define the KL distance between two distribu-
tions P and Q, or if they possess densities p and q, respectively,
as

K(P : Q) :=
∫

ln
(
dP
dQ

)
dP = EP

[
ln
(
p(X )

q(X )

)]
.

Here we assume that P is absolutely continuous with respect
to Q. Otherwise, we define the KL distance to equal +∞. The
pseudo-true value θ∗

A of a model A is then defined as the one
that minimizes the KL distance between model A and the
true distribution P0, viz., θ∗

A := argminθA∈�A K(P0 : PθA ), and
similarly for model B, θ∗

B := argminθB∈�B K(P0 : PθB ). Under
standard conditions, (quasi-) maximum likelihood estimators
consistently estimate this parameter (Akaike 1973; Sawa 1978).
If model A is correctly specified, defined as P0 ∈ PA, then there
is a true parameter θ0 ∈ �A such that P0 = Pθ∗

A
= Pθ0 . We call

model B nested in model A if PB ⊂ PA, nonnested if neither
model is nested in the other, overlapping if PB ∩ PA �= ∅ and
nonoverlapping (or strictly nonnested) otherwise.

The goal of this article is to propose a model selection test
for determining the model that fits the data “better.” We define a
model to be better if it is closer to the true distribution in the KL
sense. Pθ∗

A
and Pθ∗

B
are the distributions in PA and PB, which are

closest to the truth,P0, respectively. Formally,model A is defined
to be better than model B if model A’s KL distance to the truth is
smaller than that of model B, that is, K(P0 : Pθ∗

A
) < K(P0 : Pθ∗

B
).
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If the two KL distances are equal, then we say models A and B
are equivalent. The procedure proposed in the next two sections
selects the better model based on performing a test of

H0 : K(P0 : Pθ∗
A
) = K(P0 : Pθ∗

B
),

that is, models A and B are equivalent, against model A is better,
HA : K(P0 : Pθ∗

A
) < K(P0 : Pθ∗

B
), or model B is better,HB : K(P0 :

Pθ∗
A
) > K(P0 : Pθ∗

B
).

Before proceeding to the actual model selection test, we con-
clude this section with the collection of a few formal definitions.
To that end, let Xi : � 	→ X , i = 1, 2, . . . , be random vectors
on the probability space (�,F ,Q0) with F a σ -algebra and Q0
a probabilitymeasure on�. Further, supposeX is a Polish space
X , that is, a complete separablemetric space, andBx the Borelσ -
algebra onX . Denote byμ some underlying σ -finitemeasure on
(X ,Bx), for example, the Lebesguemeasure onX = R

k. Finally,
letP be the set of all distributions onX , which have ameasurable
density with respect to μ.

3. The Test Statistic

To motivate our proposed test statistic, we first briefly describe
the so-called degeneracy problem that complicates the use of
existing test statistics.

Let θ := (θ ′
A, θ ′

B)
′ ∈ � := �A × �B ⊂ R

p, let ∇θk denote
gradient vectors with respect to θk, k = A,B, and define the
moment conditions

EP0 g(X; θ ) := EP0

[(
∇θA ln fA(X; θA)

∇θB ln fB(X; θB)

)]
= 0, (1)

which are satisfied by the pseudo-true value θ∗ := (θ∗
A

′, θ∗
B

′)′.
Let d∗ := EP0 [ln fA(X, θ∗

A) − ln fB(X, θ∗
B )] be the pseudo-true

log-likelihood ratio of the two models. Assume that we have an
iid sample X1, . . . ,Xn from P0 and let ĝ(θ ) := ∑n

i=1 g(Xi; θ )/n.
We assume that θ̂ := (θ̂ ′

A, θ̂ ′
B)

′ is the maximum likelihood esti-
mator of θ∗, but in principle one could use any estimator that
solves the empirical analog of (1), that is, ĝ(θ̂ ) = op(1), typi-
cally called a “Z-estimator.” (See van der Vaart 1998 chap. 5 for
an introduction.) GMM and GEL estimators of θ∗ are examples
of such estimators.

For k = A,B, define the variances σ 2
k := varP0 (ln fk(X; θ∗

k )),
the covariance σAB := covP0 (ln fA(X; θ∗

A), ln fB(X; θ∗
B )),

and the variance of the likelihood ratio σ 2 := σ 2
A −

2σAB + σ 2
B . Let d̂ be the empirical log-likelihood ratio

d̂ := n−1∑n
i=1 ln( fA(Xi; θ̂A)/ fB(Xi; θ̂B)) and define the sample

variance estimators σ̂ 2
k of σ 2

k , k = A,B, and the covariance esti-
mator σ̂AB ofσAB, that is, σ̂ 2

k := n−1∑n
i=1(ln fk(Xi; θ̂k) − ln fk)2

where ln fk := n−1∑n
i=1 ln fk(Xi; θ̂k) and similarly for σ̂AB. The

variance of the likelihood ratio, σ 2, we then estimate by
σ̂ 2 := σ̂ 2

A − 2σ̂AB + σ̂ 2
B .

Define tn to be the t-statistic for testing H0 : d∗ = 0, that
is, tn :=

√
nd̂/σ̂ . This statistic is equivalent to the one Vuong

(1989) proposed when the two candidate models are known to
be nonnested. The t-statistic possesses a standard normal limit-
ing distribution if σ 2 > 0. The type of degeneracy ruled out by
this assumption, however, poses a standard challenge encoun-
tered in parametric model selection testing. It requires that the
variance of the log-likelihood ratio evaluated at the pseudo-true

values is nonzero. This condition is violated when both mod-
els A and B are observationally equivalent, that is, when both
are correctly specified, which implies that (i) they must be over-
lapping (including the nested case) and (ii) the truth must be
an element of their intersection. Then the pseudo-true densities
are identical, fA(·; θ∗

A) ≡ fB(·; θ∗
B ), which in turn implies that

the variance σ 2 is zero.
The common solution in the literature has been to either

assume this case away or develop a pretest for testing whether
degeneracy holds or not. See Vuong (1989), Kitamura (2000),
and Kitamura (2003) for a discussion of issues related to degen-
eracy and pretests that have been suggested.

We now propose amodified version of the t-statistic that pre-
serves the standard normal limiting distribution even when the
models are observationally equivalent. There are several ways
one could think of regularizing the model selection problem.
The approach we present here is based on reweighting the indi-
vidual log-likelihoods, which is very simple to implement and
results in desirable properties of the resulting test (see Section 5).
Furthermore, the efficiency loss in the “nondegenerate” observa-
tionally distinct case seems to be small in finite samples and is,
in fact, asymptotically negligible under simple conditions.

For simplicity of exposition assume that the sample size
n is an even number. We propose to reweight the individual
log-likelihoods

ˆ̃d := 1
n

n∑
i=1

(
ωi(ε̂n) ln fA(Xi; θ̂A) − ωi+1(ε̂n) ln fB(Xi; θ̂B)

)

with the weights

ωk(ε̂n) :=
{
1, k odd
1 + ε̂n, k even , k = 1, . . . , n + 1 (2)

that depend on a possibly data-dependent, real-valued regu-
larization parameter ε̂n. Straightforward algebra shows that the

asymptotic variance of
√
n ˆ̃d can be estimated by ˆ̃σ 2, where

ˆ̃σ 2 := (
1 + ε̂n

)
σ̂ 2 + ε̂2n

2
(
σ̂ 2
A + σ̂ 2

B
)
.

With the modified estimator of d∗ and its variance estimator, we
can construct a new t-statistic t̃n defined as

t̃n :=
√
n ˆ̃d
ˆ̃σ

.

If ε̂n = 0, then ˆ̃σ = σ̂ and ˆ̃d = d̂, and themodified andunmodi-
fied t-statistics are equivalent, that is, t̃n = tn. Now, suppose ε̂n �=
0. In the observationally distinct models case, the two statis-
tics differ only in that some observations are weighted by 1 + ε̂n
rather than by one. To understand how the weights ωk(ε̂n) reg-
ularize the t-statistic in the equivalent models case, rewrite the
new statistic as

t̃n =
√
n(d̂ + ε̂nd̂split)

ˆ̃σ
with

d̂split := 1
n

n/2∑
i=1

(ln fA(X2i; θ̂A) − ln fB(X2i−1; θ̂B)).
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4 S. M. SCHENNACH AND D. WILHELM

This representation shows that the numerator of t̃n is equal to
a weighted sum of the conventional full-sample log-likelihood
ratio d̂ and the split-sample log-likelihood ratio d̂split, which
computes the log-likelihood of model A from the odd obser-
vations and that of model B from the even observations. As
the data are assumed to be iid, the variance of the split-sample
statistic is always nonzero regardless of whether the models
are observationally distinct or equivalent. The parameter ε̂n
determines how much of the split-sample statistic should be
added to the full-sample counterpart. Equivalent models lead
to identical densities, that is, ln fA(·; θ∗

A) ≡ ln fB(·; θ∗
B ) and,

therefore, tn has a degenerate distribution. The new statistic
t̃n, however, continues to be nondegenerate because of the
split-sample term. When ε̂n →p 0 at a suitable rate (notice
that the assumptions of Theorem 1 do not actually require the
regularization parameter to vanish with the sample size. We
only need it to be bounded in probability), the net effect of the
proposed regularization approach is to reduce to a sample split-
ting device in the observationally equivalent models case, while
smoothly reverting to the conventional full-sample expression
as the models move away from perfect overlap.

There aremultiple alternativeways one couldmodify the full-
sample likelihood ratio statistic so as to obtain some of the desir-
able properties of our proposed test such as uniform asymptotic
size control and the avoidance of a pretest. For example, one
could define a t-statistic based only on the split sample statistic
d̂split, as sample-splitting is a known and effective way to address
degeneracy issues in test statistics (e.g., Yatchew 1992; Whang
and Andrews 1993). However, whenmodels are nonnested such
a statistic may suffer from poor power as it ignores half of
the sample whereas our proposed statistic does not because it
asymptotically equals the full-sample likelihood ratio statistic in
that case.

Another simple alternative that may at first appear attractive
would be to simply pretest whether σ 2 is significantly different
from zero and accordingly use a full sample or a split sample
Vuong statistic based on the result of the pretest. While we leave
the derivation of its theoretical properties for future research,
we conjecture that such a two-step testing procedure is likely to
suffer from similar lack of uniformity and power loss as the two-
step Vuong test.

In general, two-step approaches with a discontinuous change
in the second step’s test statistic likely possess poor uniformity
properties. A practical consequence of this problem is that prac-
titioners could often be in the situation that very small changes
to the data could yield dramatic changes in the test’s p-value,
which would make it hard to access the level of confidence
that the chosen model is the correct one. A smooth transi-
tion between sample splitting and no sample splitting elegantly
avoids this theoretical and practical problem.

The benefit of our regularization scheme is that the strong
nonsingularity condition σ 2 > 0 can be replaced by the follow-
ing very weak condition.

Assumption 1. For k = A,B, σ 2
k > 0, varP0 ((ln fk(X; θ∗

k ))2) >

0, and varP0 (∇θk ln fk(X; θ∗
k )) is nonsingular.

We also need standard conditions for Z-estimators to be
consistent and asymptotically normal. They can be weakened

substantially, but serve as a simple basis to discuss the relevant
issues in our model selection framework.

Assumption 2. � ⊂ R
dθ is compact and ln fk(x; ·), k = A,B, are

twice continuously differentiable.

For k = A,B, let∇2
θk
denote the Hessian matrix of a function

of θk, containing derivatives with respect to elements of θk.

Assumption 3. (i) X1, . . . ,Xn is an iid sequence of random vari-
ables with common distribution P0 ∈ P. (ii) There is a unique
θ∗ ∈ int(�) so that EP0g(X; θ∗) = 0. (iii) EP0 [∇2

θk
ln fk(X; θ∗

k )],
k = A,B, are invertible.

Assumption 3(ii) can be overly restrictive because likelihoods
with a unique globalmaximizermay possessmore than one root
of the corresponding first-order conditions. This means � has
to be chosen sufficiently small so as to exclude roots not corre-
sponding to the global maximum. The assumption is made here
to simplify the exposition. In practice, however, one may simply
estimate θA and θB separately by standard maximum likelihood
assuming that there is a unique global maximizer.

The remainder of Assumption 3, Assumptions 1 and 2 are not
very restrictive and could be termed standard regularity condi-
tions.We also impose somemoment existence conditions on the
individual likelihoods and their derivatives:

Assumption 4. (i) EP0 [‖∇θk ln fk(X, θ∗
k )‖2+δ] < ∞ and

EP0 [| ln fk(X, θ∗
k )|4+δ] < ∞ for k = A,B and some δ > 0.

(ii) There exists a function F̄1(x) such that EP0 F̄1(X ) < ∞
and, for j, k = A,B, for all θ = (θ ′

A, θ ′
B)

′ ∈ �, for all x ∈ X ,
and for h(x; θ ) being any of the functions ln fk(x; θk),
vec(∇2

θk
ln fk(x; θk)) and ln fk(x; θk)∇θ j ln f j(x; θ j), we have

‖h(x; θ )‖ ≤ F̄1(x). (iii) There exists a function F̄2(x) such that
EP0 [|F̄2(X )|2+δ] < ∞ and ‖∇θk ln fk(x; θk)‖ ≤ F̄2(x) for all
x ∈ X and k = A,B.

Finally, we place restrictions on the regularization parameter.
First, we define the set of positive sequences that are O(1) but
converge to zero only at a rate slower than n−1/4.

Definition 1. Let E be the set of sequences {εn} in R such that
εn > 0 for all n ≥ 1, n1/4εn → ∞, and ε := limn→∞ εn < ∞.

Assumption 5. ε̂n is a sequence of real-valued, measurable func-
tions of X1, . . . ,Xn such that there exists a sequence {εn} ∈ E
with |ε̂n − εn| = OP0 (n−1/2).

Notice that this assumption allows for constant (ε̂n ≡ ε �= 0),
deterministic and random sequences of regularization parame-
ters {ε̂n} as long as they do not vanish too quickly and {ε̂n} lies
in the n−1/2-neighborhood of some deterministic sequence {εn}
in E . Intuitively, we need the condition n1/4εn → ∞ to make
sure that the regularization parameter does not tend to zero too
quickly, otherwise it would not have any regularizing effect (at
least asymptotically).

The following theorem establishes that the regularized
t-statistic is asymptotically standard normal regardless of
whether the two models are observationally equivalent or not.

Theorem 1. If Assumptions 1–5 hold, then, under H0, t̃n →d
N(0, 1) and, under HA ∪ HB, |t̃n| →p ∞.
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Remark 1. Conditional densities can be accommodated just as
described by Vuong (1989).

Remark 2. The requirement εn �= 0 (but possibly εn → 0) is nec-
essary only for the limiting distribution of t̃n to be nondegen-
erate in the observationally equivalent case. Therefore, if it is
known a priori that the two models A and B are observationally
distinct (e.g., strictly nonnested), εn ≡ 0 is permitted. However,
Section 5 shows that tests based on sequences that do satisfy the
requirements of E uniformly control size. Since observationally
distinct models can be “close” to observationally equivalent in
finite samples, one may want to employ nonzero sequences {ε̂n}
even in such cases.

Remark 3. The functional form of the weights ωk(ε) in (2) can
be seen as a normalization in the following sense. In Section 6,
we provide a data-driven choice of ε̂n that optimizes a particular
power and size trade-off given the functional form of 1 + ε̂n for
weighting the even observations. For any other functional form
of the weight, say w̄k(ε̂n), the optimal ε̂n would then be such that
w̄k(ε̂n) = 1 + ε̂n as long as the range of the function w̄k is large
enough. On the other hand, consider choosing some constant,
say c, other than 1 for weighting the odd group together with the
appropriate adjustment to the standard deviation in the denom-
inator of t̃n. This modified test statistic is numerically equivalent
to our test statistic when the optimal epsilon, now c(1 + ε̂n) − 1
with ε̂n the optimal choice under c = 1, is employed.

Our test statistic relies on assigning individual observations
to two groups. Clearly, the test statistic is invariant to sample
reorderings that permute observations within the two groups,
but do not reassign observations across the two groups. In the
remainder of this section, we discuss in what sense our statistic
is asymptotically invariant under reassignment of observations
across groups and the impact of such reassignments in finite
samples.

We introduced our test statistic by splitting the sample into
odd and even observations, which was purely for concreteness
and ease of presentation. As Theorem 1 shows, the limiting dis-
tribution of our test statistic does not depend on the definition of
the two groups. In fact, any other partition of the sample into two
groups yields the same asymptotic distribution. In this sense,
reordering has no effect on the test statistic in large samples.
The supplement of this article shows that not only does every
partition of the sample into two groups lead to the same asymp-
totic distribution, but also the random difference between two
test statistics based on different assignment rules is negligible
in large samples. This result requires that one partition into two
groups can be constructed from the other partition by o(n) reas-
signments of observations across groups.

Even though this result provides a sense in which our test
statistic is asymptotically invariant to reassignment of observa-
tions across groups, one may be concerned that, in a finite sam-
ple, the invariance may not hold. One should realize, however,
that our critical values account for fluctuations due to different
sample orderings, so one would have to try about 100 different
reassignments of observations across groups before finding one
leading to a false rejection of the null at the 99% level (and this
is assuming that reassignment is the only source of noise, which
is not the case, so, in reality, even more permutations than this

would have to be tried to stumble on a permutation yielding a
false rejection). The fact that our critical values account for the
reassignment noise is an automatic consequence of the fact that
they account for the usual sampling noise. Indeed, a reordered
sample is just another possible random draw from the popula-
tion distribution.

To check robustness of the model selection results in finite
samples, the user of our test may want to report summary statis-
tics of covariates in the two groups. Balance of such summary
statistics across the two groups ensures that estimates and test
results are not driven by significant (observable) differences
across the two groups. In fact, one could randomly assign obser-
vations to two groups to guarantee balance not only on observ-
able, but also on unobservable characteristics.

Splitting samples of observations into two groups is com-
mon practice in randomized control trials, and the effect of ran-
domization, stratification, and possible imbalance on estimators
and test statistics is well-understood in that literature. The same
advantages and disadvantages carry over to our context ofmodel
specification tests.

4. TheModel Selection Test

The results of the previous section suggest a very simple model
selection procedure based on a two-sided (alternatively, one
could use a one-sided t-test with obvious modifications to
the procedure) t-test: Given a nominal level α ∈ (0, 1) and
some finite ε̂n such as the optimal choice proposed in Section 6,
we compute the test statistic t̃n and compare its absolute value
to the (1 − α/2)-quantile z1−α/2 from the N(0, 1) distribution.
If |t̃n| > z1−α/2, then reject the null that model A and B are
equally close to the truth. The rejection is in favor of model
A if t̃n > z1−α/2 and in favor of model B if t̃n < −z1−α/2. No
pretesting is necessary and, in contrast to available methods, no
complicated asymptotic distributions ever need to be used.

The simulation of critical values from the mixture of χ2

distributions in Vuong’s (1989) test requires the estimation of
eigenvalues of a potentially large matrix, which are then to
be used as the mixture weights. Such estimators may be quite
imprecise in small samples and can induce further distortions.
Shi’s (2015) test, on the other hand, requires some conserva-
tive critical value because the exact limiting critical value cannot
be estimated consistently. The conservative critical value is then
determined as the supremum over a potentially very large space
of nuisance parameters, which can be an expensive numerical
task.

Interestingly, conditional on a given selected model, asymp-
totically valid confidence regions for its parameters can be read-
ily obtained by using the first-order conditions of its likelihood
maximization problem. This scheme automatically recovers the
well-known “sandwich” formula for misspecification-robust
estimation of the asymptotic variance (White 1982; Owen
2001). Of course, model estimation following a model selection
procedure always carries the risk that the model selection step
may influence the significance levels of subsequent tests. As
our approach selects the best model of the two with probability
approaching one, the model selection step has, asymptotically,
no effect on further pointwise inference. Remark 4 discusses
uniformity properties of our procedure.
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6 S. M. SCHENNACH AND D. WILHELM

In the presence of a priori information justifying the exclu-
sion of the observationally equivalent models case, the same
test can be performed using the test statistic tn instead of t̃n.
In certain modeling situations, it might be straightforward to
check whether the condition σ 2 > 0 is satisfied. For example,
one might have reasons to believe that both models are only
crude approximations to the truth so that both are misspecified.
If, in addition, it can be established analytically that the models
do not overlap, then σ 2 > 0 holds and the test without regular-
ization can be used.

5. Large Sample Properties of the Test

5.1. Uniformity

In this section, we define a set P that contains all distributions
under which the moment conditions and some regularity con-
ditions similar to those in the previous section hold. Then we
show that our regularized test controls size uniformly over those
distributions in P that also satisfy the null hypothesis.

In view of the impossibility result by Bahadur and Savage
(1956) and its extensions in Romano (2004), we cannot hope
to gain uniform size control over general nonparametric classes
of distributions. It has been recognized before (see sec. 11.4.2
in Lehmann and Romano 2005, for instance) that Lyapounov’s
condition (see eq. (23.35) inDavidson 1994, for example). places
sufficient restrictions on the space of distributions so that one
can establish uniformity for t-statistics. The following defini-
tion of the set of distributions P follows that route and ensures
that the Lyapounov condition holds for several components of
our test statistic. This can be seen as a strengthening of the
assumptions in Section 3 to allow for asymptotic theory under
sequences of data-generating processes.

Subsequently, we need to be more specific about under
which distribution P certain quantities are computed. Define
θ∗(P) := (θ∗

A(P)′, θ∗
B (P)′)′ to be the parameter value that sat-

isfies EPg(Xi; θ∗(P)) = 0 and d∗(P) := EP[ln fA(X; θ∗
A(P)) −

ln fB(X; θ∗
B (P))]. Let σ 2

k (P) := varP(ln fk(X; θ∗
k (P)), σ̃ 2(θ,

P, ε) := (1 + ε)σ 2(P) + ε2(σ 2
A(P) + σ 2

B (P))/2, abbreviate σ̃ 2

(θ∗(P),P, ε) by σ̃ 2(P, ε), and Hk(P) := EP[∇2
θk
ln fk(X; θ∗

k
(P))]) for k = A,B.

Definition 2. For some fixed δ, κ > 0, 0 < M ≤ M < ∞, and
an increasing, continuous function ε : (0,∞) → (0,∞) with
ε(0) = 0, let P be the set of distributions P on X that sat-
isfy the following conditions for X ∼ P: (i) There exists a
unique θ∗(P) ∈ � such that EPg(X; θ∗(P)) = 0, for all μ >

0, infθ :‖θ−θ∗(P)‖≥μ ‖EPg(X; θ )‖ > ε(μ), and Bκ (θ∗(P)) ⊆ �,
where Bκ (θ ) denotes a ball in R

dθ with radius κ around θ . (ii)
There exists a functionD(x) such that EP[|D(X )|2+δ] ≤ M and,
for all x ∈ X ,∣∣ln fA(x; θ∗

A(P)) − ln fB(x; θ∗
B (P))

∣∣
≤ D(x)

(
EP
[∣∣ln fA(X; θ∗

A(P)) − ln fB(X; θ∗
B (P))

∣∣2])1/2 , (3)

where θ∗(P) := (θ∗
A(P)′, θ∗

B (P)′)′. Further, we have
EP[| ln fk(X; θ∗

k (P))|4+δ] ≤ M and, similarly, EP[‖∇θk ln fk
(X; θ∗

k (P))‖2+δ] ≤ M for k = A,B. (iii) There exists a func-
tion F̄(x) such that EPF̄(X ) ≤ M and, for j, k = A,B, for all

θ = (θ ′
A, θ ′

B)
′ ∈ �, for all x ∈ X , and for h(x; θ ) being any of the

functions ln fk(X; θk), ∇θk ln fk(X; θk), vec(∇2
θk
ln fk(x; θk))

and ln fk(x; θk)∇θ j ln f j(x; θ j), we have ‖h(x; θ )‖ ≤ F̄(x). (iv)
For k = A,B, we have M ≤ λmin(Hk(P)) and λmax(Hk(P)) ≤
M, where λmin(A) and λmax(A), respectively, denote the small-
est and largest eigenvalue of a matrix A. Furthermore, for
h(x; θ ) being any of the functions log fk(x; θk), (log fk(x; θk))

2,
and ∇θk log fk(x; θk), k = A,B, θ := (θ ′

A, θ ′
B)

′, we have
M ≤ λmin(var(h(X; θ∗(P))) ≤ λmax(var(h(X; θ∗(P))) ≤ M.

Before stating the uniformity theorem, we slightly modify
Assumption 5 to hold under sequences of distributions.

Assumption 6. Let ε̂n be a sequence of real-valued, measurable
functions of X1, . . . ,Xn such that, for every sequence {Pn} in P ,
there exists a sequence {εn} ∈ E with |ε̂n − εn| = OPn (n−1/2).

In Section 6, we verify Assumption 6 for our proposed data-
driven regularization parameter selection rule.

Theorem 2. Suppose Assumptions 2 and 6 hold. Let P0 := {P ∈
P : d∗(P) = 0} be the subset of distributions in P that satisfy
the null hypothesis. Then the regularized t-test of nominal level
α is asymptotically of level α uniformly over P0, viz.,

lim
n→∞ sup

P∈P0

P
(|t̃n| > z1−α/2

) = α.

To the best of our knowledge, this uniformity property of
our model selection test is the only result of this kind besides
that by Shi (2015). If the test was only pointwise of correct
asymptotic level, then it could be the case that for any sample
size N there exists a sequence of distributions Pn ∈ P0 such that
for any sample size n ≥ N the rejection probability under Pn is
arbitrarily close to one. This possibility is ruled out when the
test is uniformly of correct asymptotic level, which implies that
for any ε > 0 there is a sample size N such that, for all n ≥ N,
the rejection probability under any sequence Pn ∈ P0 is at most
α + ε. Uniform control of the level over all distributions in P0
is both important and often difficult to establish because the
distributions in the null hypothesis can be nested, nonnested, or
overlapping. In tests such as the Vuong test, for example, these
different cases give rise to different limiting distributions of the
test statistic so that even, in, say, nonnested models that are
“close” to overlapping, substantial finite sample size distortions
can occur. The uniformity of the level over P0 guarantees that
such distortions do not occur or, at least, vanish in large sam-
ples. In the model selection context, this uniformity property
is particularly desirable as it may be difficult to judge a priori
whether competing models are “close” to each other. When they
are “close,” a formal model selection test is arguably the most
valuable as the two models may be difficult to distinguish on
other, say, theoretical grounds.

Remark 4. Our model selection test avoids pretesting as is nec-
essary in Vuong’s two-step procedure and guarantees uniform
asymptotic size control as shown in Theorem 2. However, the
well-knownnonuniformbehavior of post-model selection infer-
ence persists so that researchers should exercise caution when
using the selectedmodel in subsequent estimation and inference
steps. In finite samples, some effect of the model selection step
cannot be completely excluded (see, e.g., White 2000; Leeb and
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Pötscher 2005, 2008, and references therein, for a more detailed
discussion). Fortunately, effectivemethods have been developed
to quantify the effect (White 2000).

5.2. Local Power

Theorem 1 shows that the limiting distribution of our test statis-
tic is independent of the regularization parameter ε̂n. Therefore,
our test controls size (by Theorem 2 even uniformly) and is con-
sistent against fixed alternatives, independently of the specific
choice of the sequence {ε̂n}. However, as we show in this section,
the local asymptotic power of our test depends on the probabil-
ity limit of {ε̂n}.

We consider local alternatives δ ∈ R so that n1/2d∗(Pn) → δ.
The setPδ contains all sequences of distributions that satisfy the
assumptions placed onP and along which n1/2d∗(Pn) converges
to δ.
Definition 3. For some δ ∈ R, let Pδ be the set of sequences
{Pn} in P such that n1/2d∗(Pn) → δ and such that,
for any (θA,∞, θB,∞, σ 2

A, σ 2
B , σAB) ∈ �A × �B × R+ ×

R+ × R, θ∗
A(Pn) → θA,∞, θ∗

B (Pn) → θB,∞, σ 2
A(Pn) → σ 2

A,
σ 2
B (Pn) → σ 2

B , and σAB(Pn) → σAB, where σ 2
A(P) :=

varP(ln fA(X; θ∗
A(P))), σ 2

B (P) := varP(ln fB(X; θ∗
B (P))), and

σAB(P) := covP(ln fA(X; θ∗
A(P)), ln fB(X; θ∗

B (P))).

Importantly, alternatives inPδ are allowed to approach both,
observationally equivalent (σ 2 = 0) or observationally distinct
(σ 2 �= 0) data-generating processes, in the null. The following
theorem presents the power of our test against all local alterna-
tives in Pδ .

Theorem 3. Suppose Assumptions 2 and 6 hold. Let {Pn} ∈
Pδ for some localization parameter δ ∈ R. Denote by {εn} ∈
E a sequence such that |ε̂n − εn| = OPn (n−1/2) and ε :=
plimn→∞ε̂n under Pn. Then, under Pn,

t̃n →d N(λ̃, 1)

with mean

λ̃ := lim
n→∞

√
nd∗(Pn)(1 + εn/2)√

(1 + εn)σ 2(Pn) + ε2n(σ
2
A(Pn) + σ 2

B (Pn))/2
,

and σ 2(P) = σ 2
A(P) − 2σAB(P) + σ 2

B (P).

Consider sequences {Pn} that approach an observationally
distinct models case in the null, that is, σ 2(Pn) → σ 2 > 0. Then
the noncentrality parameter becomes

λ̃ = δ(1 + ε/2)√
(1 + ε)σ 2 + ε2(σ 2

A + σ 2
B )/2

. (4)

If {Pn} approaches an equivalent models case in the null, that is,
σ 2(Pn) → 0, and ε �= 0, then

λ̃ = δ(1 + ε/2)

ε

√
(σ 2

A + σ 2
B )/2

. (5)

In the two cases of (4) and (5), λ̃ as functions of ε is maxi-
mized at ε = 0 or as ε approaches 0, respectively. On the other
hand, when models overlap at the truth, we require a nonzero

sequence of regularization parameters, possibly converging to
zero, to guarantee a nondegenerate limiting distribution of our
test statistic. In finite samples, we typically encounter an inter-
mediate case: we would prefer not to regularize (ε̂n = 0) if we
knew that the two candidate models are “sufficiently far apart”
from each other, but we would choose a positive regularization
parameterwhen the two candidatemodels are “close” to overlap-
ping to minimize size distortions. (Notice that Theorem 2 only
requires a positive value ε̂n for uniform size control, but does not
imply that larger values ε̂n lead to “better” size control in any
sense.) The next section formalizes the trade-off between power
in the distinct models case and size control in the equivalent
models case, and shows how this trade-off determines an opti-
mal regularization parameter that can easily be estimated from
the data.

6. Data-Driven Regularization Parameter

In this section, we provide a data-driven choice of ε̂n that min-
imizes higher-order distortions to size and power of our test.
Specifically, we balance the worse-case size distortion if the
models were overlapping with the worst-case power loss if the
models were not overlapping. The rationale for proceeding in
this way is that, in our approach, size distortion only occurs
for overlapping models while power loss only occurs when the
models are not overlapping. Furthermore, in a finite sample, it
may be difficult to accurately test whether the models are over-
lapping or not (this is the fundamental pretesting problem we
wish to avoid) and hence it is natural to consider both possibili-
ties simultaneously. Such an approach also considerably simpli-
fies the implementation of the method.

In the supplement to this article, we derive an asymptotic
expansion of the size of our test when the two models are over-
lapping, viz., for any distribution P0 such that d∗(P0) = 0 and
σ 2(P0) = 0,

P0(|t̃n| > z1−α/2) ≤ α +CSDε−1
n n−1/2 ln ln n + remainder, (6)

where CSD is some constant. Similarly, we expand the power of
our test when the models are nonnested, viz., we show that for
sequences of local alternatives {Pn} satisfying d∗(Pn) = δn−1/2

for any given δ ∈ R \ {0} and σ 2 := limn→∞ σ 2(Pn) > 0,

Pn
(|t̃n| > z1−α/2

) = �

(
zα/2 + δ

σ

)
+ �

(
zα/2 − δ

σ

)
−C∗

PLε
2
n + remainder, (7)

where C∗
PL is some constant. Size distortion for overlapping

models is decreasing in εn and power loss for distinct models
is increasing in εn. Therefore, we propose a tuning parameter
εn that balances the respective leading terms of the size dis-
tortion, that is, the term CSDε−1

n n−1/2 ln ln n, and power loss,
that is, the term C∗

PLε
2
n. This tuning parameter choice can be

estimated by

ε̂n =
(
ĈSD

Ĉ∗
PL

)1/3

n−1/6(ln ln n)1/3 (8)
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8 S. M. SCHENNACH AND D. WILHELM

with

Ĉ∗
PL := φ

(
zα/2 − δ̂∗

σ̂

)
δ̂∗(σ̂ 2 − 2(σ̂ 2

A + σ̂ 2
B ))

4σ̂ 3

ĈSD := 2φ(zα/2)
max{|tr(Ĥ−1

A V̂A)|, |tr(Ĥ−1
B V̂B)|}√

(σ̂ 2
A + σ̂ 2

B )/2

estimating the constants C∗
PL and CSD. In the expressions

above, δ̂∗ := σ̂ /2(zα/2 −
√
4 + z2α/2), Ĥk and V̂k, k = A,B,

are estimates of Hk := Hk(P0) and Vk := Vk(P0) with
Vk(P) := EP

[∇θk ln fk
(
Xi, θ

∗
k (P)

)
(∇θk ln fk

(
Xi, θ

∗
k (P)

)
)′
]
,

obtained by replacing expectations by sample averages.
The proposed value of ε̂n in (8) can easily be computed from

the data as it requires only estimates of the matrices Hk andVk,
which have to be computed for the “sandwich” variance estima-
tor for potentially misspecified models anyway, and the sample
variances σ̂ , σ̂ 2

A, and σ̂ 2
B .

Remark 5. The tuning parameter ε̂n in (8) depends on whether
the models overlap or not via the dependence ofC∗

PL on σ 2 and
thus on σAB. In addition, some model-overlap-dependence is
built into the test statistic itself. When the models are far from
overlapping, ε̂n is the prefactor of a higher-order term of the
stochastic expansion of the test statistic.Whenmodels approach
overlap, the leading term tends to zero and the term of next
higher order (with ε̂n prefactor) becomes dominant. As men-
tioned in Section 5.2 it is worth emphasizing that Theorem 2
only requires a positive value of ε̂n for any fixed n, but does not
imply that larger values of ε̂n lead to “better” size control in any
sense.
Remark 6. The choice ε̂n in (8) is derived fromaparticular trade-
off between the worst-case size distortion if the models were
overlapping with the worst-case power loss if the models were
not overlapping. In principle, it would be possible to derive data-
driven choices of ε̂n using other criteria, such as weighted size
distortion and power loss or error in rejection probability (e.g.,
as in Calonico, Cattaneo, and Farrell 2016). One attractive fea-
ture of the trade-off presented here is the simplicity of the result-
ing choice in (8).

7. Extensions

To simplify the presentation of our basic model selection proce-
dure, we restrict attention to a simple and stylized framework:
we compare two fully specified parametric models based on the
KL criterion, iid data and a t-statistic. In the supplement, we
argue that our procedure applies much more generally and dis-
cuss some important, but mostly straightforward, extensions.
First, one could use our test based on goodness-of-fit criteria
other than KL distance. An important example would be com-
paring the accuracy of competing forecasts byDiebold andMar-
iano (1995). Second, the limiting distribution of our test statis-
tic requires only asymptotic normality of certain sample aver-
ages, so extensions to stationary data are straightforward. Third,
instead of Z-estimators one could readily extend our test statis-
tic to the comparison of models defined by moment conditions
that can be estimated by GMM. Fourth, we could use our test to
rank more than two models by incorporating it into a multiple

testing framework in the usual way (e.g., Lehmann and Romano
2005; Romano, Shaikh, and Wolf 2010). To see this, notice that
our test for the comparison of two models is simply a t-test for
whether a mean, that is, the KL discrepancy between the two
models, is equal to zero or not. Ranking several models there-
fore requires testing whether multiple means, that is, the KL dis-
crepancies between all possible pairs ofmodels, are equal to zero
or not. A simple procedure that accounts for the multiplicity
of hypotheses by, say, controlling the family-wise error rate, is
based on individual t-tests with adjusted critical values. Exam-
ples of adjustments are Bonferroni’s and Holm (1979)’s proce-
dures, but more sophisticated step-up or step-down procedures
could be used. See, for instance, Lehmann and Romano (2005)
and Romano, Shaikh, and Wolf (2010) for more details.

The idea of altering a test statistic so that it preserves a nor-
mal distribution in all cases can be exploited in other con-
texts. In fact, since this article was first circulated, Hsu and
Shi (2013) have considered the selection among conditional
moment inequality models and argued that an effect similar
to sample splitting can be accomplished by adding a generated
independent normal noise to a nonnormal statistic, to obtain a
test statistic that is always normally distributed.

8. Simulations

This section reportsMonteCarlo simulation results for twopairs
of models (additional models are considered in the supplemen-
tary materials).

All simulations are based on 1000Monte Carlo samples. Our
test based on the regularized statistic t̃n is compared to the two-
step Vuong procedure (see p. 321 in Vuong 1989) and to Shi’s
(2015) modified Vuong test. (Shi (2015) also compared her test
to ours but did not use the optimal regularization parameter
selection rule described in the present version of the article.)
We consider our test statistic for various choices of the regular-
ization parameter: εn = 0 (“no reg”), εn = 0.5, εn = 1, and the
optimal ε̂n as defined in (8). The two-step Vuong procedure for
a level-α test is implemented by setting the level equal to α in
both individual steps.

Example 1 (Joint Normal Location). This example is similar to
one by Shi’s (2015)who constructed it to illustrate the potentially
poor power of Vuong’s test. We let P0 := N((0, μ), (25, 1)I)
where I is the identity matrix, PA := {N((μA, 0), I) : μA ∈
�A}, and PB := {N((0, μB), I) : μB ∈ �B}. The null and alter-
native models are generated by varyingμ in [0, 2.5].μ = 0 cor-
responds to the null hypothesis (d = 0) and values in (0, 2.5] to
alternatives d = μ2/2. Notice that the two models are observa-
tionally equivalent under the null, but misspecified.

Example 2 (Nonnested Regressions). This example is similar to
one by Shi’s (2015) who constructed it to illustrate the poten-
tially poor size control of Vuong’s test. Let the random vec-
tor (Yi,Wi1, . . . ,Wi10), i = 1, . . . , n, satisfy the regression equa-
tion Yi = 1 + τ√

9

∑9
k=1Wik + τWi10 + εi, with εi ∼ N(0, 22)

and (Wi1, . . . ,Wi14) ∼ N(0, I). Consider model A, Yi = α0 +∑9
k=1 αkWik + εi with εi ∼ N(0, σ 2

A), and model B, Yi = β0 +
β1Wi10 + εi with εi ∼ N(0, σ 2

B ). For any value of τ �= 0, the two
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Table . Null rejection probabilities (nominal size .) for Example .

Our test

n No reg εn = 0.5 εn = 1 Optimal Vuong Shi

 . . . . . .
 . . . . . .
 . . . . . .

models have the same distance to the true model, but are both
misspecified. We vary τ in [0, 2].

In Example 1, we estimate means and variances with the
sample means and variances and, in Example 2, we estimate
the regressions by ordinary least squares. Notice that these
estimators are just the maximum-likelihood estimators in the
particular models considered here. In both examples, it is
straightforward to verify the assumptions of our theoretical
results in the preceding sections.

Table 1 reports the finite sample size of the different tests. In
Example 2, we consider a family of null hypotheses whereas,

in Example 1, we study the properties of our test as the true
distance |d∗| increases from zero (the null hypothesis) to a
range of positive values (alternatives). Figure 1 shows the power
curves for Example 1 in panels (a)–(c) and the null rejection
probabilities for Example 2 in panel (d). In both examples, we
report results for 5%-level tests. In addition, we also show power
results at the 1% level in Example 1. The black horizontal lines
in the power and size graphs mark the level of the tests. “no
reg,” “ε̂n = 0.5,” “ε̂n = 1,” and “optimal” refer to our test using
ε̂n = 0, ε̂n = 0.5, ε̂n = 1, and the optimal epsilon defined in (8),
respectively.

The two main findings from this simulation experiment can
be summarized as follows. (i) In Table 1 and Figure 1(d), we see
that all three tests control size well with our test having size very
close to nominal size in most examples. Vuong’s and Shi’s test,
on the other hand,more frequently have size well belownominal
size. (ii) Our new test and Shi’s test can have significantly higher
power thanVuong’s test. Since our test has size closer to nominal
size than Shi’s, ours possesses more power to detect alternatives
close to the null, that is, models that are difficult to distinguish.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

(a) Example 1, n=200, alpha=0.05

d
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Shi
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epsilon= 0.5
epsilon= 1
optimal epsilon

0.0 0.5 1.0 1.5 2.0
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(b) Example 1, n=100, alpha=0.01
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epsilon= 1
optimal epsilon
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0.
5
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(c) Example 1, n=200, alpha=0.01
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(d) Example 2, n=1000, alpha=0.05
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Figure . Comparison of the rejection frequencies of the different tests considered. For Example , panels (a)–(c) report power curves for different confidence levels α and
sample sizes n as function of the alternative model, indexed by d. For Example , panel (d) reports the actual size for a family of model pairs (indexed by τ ) satisfying the
null hypothesis. On all graphs, the nominal level is marked by a black horizontal line.
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For alternatives further away from the null, neither test seems to
dominate the other.

These simulations suggest that our test performs well in
practice, with performance comparable and sometimes supe-
rior to existing methods. These results are especially encour-
aging in light of our method’s conveniently straightforward
implementation.

9. Empirical Application

A major part of the classic debate over (New) Keynesian versus
(new) classical macroeconomic theory has focused on whether
government policies, monetary or fiscal, can have any system-
atic impact on outcomes such as output or unemployment
(Dadkhah (2009) gave a nice general overview of the literature
and how it has evolved more recently). Under the new classical
hypothesis of rational expectations (“RE”) and natural rate of
unemployment (“NR”), it has been shown (Sargent andWallace
1975) that, under certain assumptions, there is no such effect.
Consequently, a lot of effort has been devoted to testing the
joint NR/RE hypothesis. In an influential article, Barro (1977)
proposed such a test based on a two equation system, one for
money growth (DMt),

DMt = Z′
tθ1 + ε1t (9)

and one for unemployment (UNt),

UNt = X′
tθ2 + ε2t, (10)

where Xt and Zt are exogenous explanatory variables
known at time t − 1. Specifically, he suggested the covari-
ates Zt := (1,DMt−1,DMt−2, FEDVt,UNt−1) and Xt :=
(1,DMRt,DMRt−1,DMRt−2,MILt,MINWt) with FEDVt a
measure of federal government expenditure, DMRt := ε1t the
unanticipated part of DMt, MILt a measure of military con-
scription and MINWt a minimum wage variable. (For exact
definitions of the variables involved, see Barro (1977). He also
studied output, but we confine our discussion here to unem-
ployment as the outcome of interest.) The NR/RE hypothesis
implies that unemployment deviates from its so-called natural
level (here proxied by MILt and MINWt) only due to unantic-
ipated changes in money growth (DMRt, DMRt−1, DMRt−2).
Therefore, Equation (10) fitting the data well Barro interpreted
as evidence supporting the NR/RE hypothesis.

Pesaran (1982) criticized this approach arguing that failing to
reject the NR/RE hypothesis in a particular model is necessary,
but not sufficient for failing to reject it against rival hypothe-
ses. Therefore, he proposed to test it against “proper” or “gen-
uine” alternatives, in particular against three different models
with Keynesian features that satisfy (9) and (10) with the fol-
lowing set of covariates:

K1 : Xt := (1,DMt,DMt−1,DGt,MILt,MINWt, t),
K2 : Xt := (1,DMt,DMt−1,DMt−2,DGt,MILt,MINWt, t),
K3 : Xt := (1,DMt,DMt−1,DMRt,DGt,MILt,MINWt, t),

where DGt is a measure of government spending. Subsequently,
we test each of these models against Barro’s new classical model
and a slight variant with a time trend in the unemployment

Table . Value of our regularized model selection test statistic t̃n based on the
optimal ε̂n .

K K K

Both equations B − . − . − .
B . . .

Only unemployment equation B − . − . − .
B . − . .

equation:

B1 : Xt := (1,DMRt,DMRt−1,DMRt−2,MILt,MINWt),

B2 : Xt := (1,DMRt,DMRt−1,DMRt−2,MILt,MINWt, t).

We refer the reader to Pesaran (1982) for specifics about these
five models and their theoretical foundations.

Based on Barro’s (1977) annual data from 1946 to 1973, we
estimate each of the models in two different ways. First, we esti-
mate both Equations (9) and (10) jointly by full-information
maximum likelihood (FIML) assuming that the errors in the
two equations are jointly normal. Second, we estimated only the
unemployment Equation (10) by maximum likelihood, again
assuming normality of the errors and taking the estimated series
{DMRt} from Barro (1977) as given.

The results of the pairwise model selection tests of new clas-
sical models versus Keynesian models are reported in Table 2
and are based on the estimated optimal epsilon-parameters that
ranged from 1.1 to 1.4 across the 12 pairs of models. As a sensi-
tivity analysis we also performed our test for epsilon values in a
range from 0.1 to 2.0 but the conclusions derived from the opti-
mal epsilon do not change. When we compare Keynesian and
new classical models based only on the unemployment equa-
tion, all three tests fail to reject the hypothesis that themodels are
equally distant from the truth. Even adding the money growth
equation does not lead to rejections. The sign of our test static
suggests that the Keynesian models are closer to the truth than
the new classical model B1, but further away from the truth than
B2. However, none of these statements is statistically significant
at reasonable levels of confidence. Since, in the simulations, our
new test tends to reject at a higher rate, both, under the null and
under alternatives, with significantly higher power in some sce-
narios, the fact that our test fails to reject in all 12 model com-
parisons strengthens the findings of the Vuong test, which we
found to also fail to reject in all 12 comparisons. TheVuong test’s
failure to distinguish the two theories is therefore less likely to
be due to it under-rejecting under the null or to its potentially
low power. In conclusion, we interpret the findings as there not
being enough information in the present dataset to discriminate
between the candidate new classical and Keynesian models. A
larger sample or imposing more structure on the models might
lead to different conclusions.

There are some interesting differences in these findings com-
pared to the results reported in Pesaran (1982). He compared
models based only on the unemployment equation employing
an F-test as well as a Cox-type test for nonnested models. In the
latter testing procedure, the null hypothesis is that model A is
the true data-generating process to be tested against the alterna-
tive that model B is the truth. In terms of the F-test, no model in
{B1,B2} is found to be superior to any model in {K1,K2,K3}.
His application of the Cox-type test, however, resulted in
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any model in {B1,B2} being rejected against any alternative
in {K1,K2,K3} and vice versa. The testing outcomes of the
Cox-type procedure are not possible in our test because both
models are treated symmetrically: As soon as our test rejects
equivalence between any two models, the one with the smaller
KL distance to the truth is concluded superior to the other.
Even though the null hypothesis in our test does not assume
correct specification of any model, we still do not reject any
model combination. Small (1979) and Pesaran (1982) criticized
Barro’s specification of the model and argued that the estimates
of the unemployment equation may be sensitive to variations in
the specification of the money growth equation. Our test results
show that, at least based on the present dataset, the inclusion
the money growth equation has no implications on whether the
new classical or the Keynesian theory is superior to the other.

SupplementaryMaterials
This supplement provides the proofs of all results in the main text, addi-
tional results referenced in the main text, and additional simulations.
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