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Abstract1

A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances2

and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over3

previously published MORB data and allow a more detailed discussion of the Li and B systematics of the4

crust-mantle system. Refined estimates for primitive mantle abundances ([Li] = 1.39±0.10µg/g and [B] =5

0.19±0.02µg/g) and depleted mantle abundances ([Li] = 1.20±0.10µg/g and [B] = 0.077±0.010µg/g)6

are presented based on mass balance and on partial melting models that utilise observed element ratios in7

MORB.8

Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high9

Cl/K, causes significant elevation of MORB δ 11B and variable elevation in δ 7Li. The B isotope ratio is,10

hence, identified as a reliable indicator of assimilation in MORB and values higher than −6h are strongly11

indicative of shallow contamination of the magma.12

The global set of samples investigated here were produced at various degrees of partial melting and in-13

clude depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic14

isotope signatures and trace element compositions. Uncontaminated (low-Cl/K) MORB show no significant15

boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic com-16

position of δ 11B = −7.1±0.9h (mean of six ridge segments; 2SD). Boron isotope fractionation during17

mantle melting and basalt fractionation likely is small, and this δ 11B value reflects the B isotopic composi-18

tion of the depleted mantle and the bulk silicate Earth, probably within ±0.4h.19

Our sample set shows a mean δ 7Li =+3.5±1.0h (mean of five ridge segments; 2SD), excluding high-20

Cl/K samples. A significant variation of 1.0−1.5h exists among various ridge segments and among sam-21

ples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle22

source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic frac-23

tionation of Li isotopes during magma extraction, transport and storage may generate δ 7Li excursions in24

MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are25

invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on26

smaller data sets.27

Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element28

mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as29

δ 11B = −9.1±2.4h. Mass balance allows the existence of recycled B reservoirs in the deep mantle, but30

these are not required. However, mass balance among the crust, sediments and seawater shows enrichment31

of 6Li in the surface reservoirs, which requires the existence of 7Li-enriched material in the mantle. This32

may have formed by the subduction of altered oceanic crust since the Archaean.33

Keywords: boron, lithium, chlorine, MORB, assimilation, mantle34
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1 Introduction35

One of the central foci of modern geochemistry is tracing material in the Earth’s mantle that had previously36

been at the surface. This puts constraints on the compositional structure and heterogeneity of the mantle37

and on its long-term and large-scale convection. Geochemical research on the volcanic output at mid-ocean38

ridges, ocean islands and at subduction zones revolves around elemental and isotopic tracers that allow39

estimates on the amount of crustal material that was entrained into the source region of those magmas. Ideal40

tracers for this purpose should possess isotopic signatures that are uniquely produced at the surface and41

concentrations that are high in crustal rocks, sediments or in altered rocks of the seafloor but very low in the42

mantle. The elements lithium and boron fulfil most or all of these criteria better than most other elements43

and their isotope systems have been employed to trace recycling of crustal rocks in the mantle (e.g., Elliott44

et al., 2004; Ryan & Chauvel, 2014; Tomascak et al., 2016b).45

Boron is a quintessentially crustal element with high concentrations in rocks of continental affinity and46

in rocks that interacted with the hydrosphere. Oceanic sediments and altered oceanic basalts and peridotites47

show very high B abundances (10−200µg/g), whereas the depleted mantle is characterised by very low48

B contents (< 0.1µg/g; Leeman & Sisson, 1996). Fractionation of the two stable isotopes of boron (10B49

and 11B) at low temperatures is responsible for surface reservoirs that are strongly enriched in the heavy50

isotope, with δ 11B of seawater at the high end of the scale (+39.6h; Foster et al., 2010). Entrainment51

of seawater-altered material into the mantle via subduction should, therefore, potentially be detectable by52

anomalous-δ 11B domains in the mantle. However, the key to establishing this tracer critically depends53

on a well-defined geochemical baseline, i.e., the isotopic composition of the mantle that does not contain54

recycled components; yet, this value has so far been afflicted with large uncertainties. In this paper we55

present a study on a global set of mid-ocean ridge basalt (MORB) glasses to evaluate the absolute value and56

the variability of the B isotopic composition of these mantle-derived magmatic products and, by inference,57

that of the depleted mantle itself.58

Boron isotope analyses of silicate materials with low B concentrations are not trivial, and the very low59

abundances of B in pristine, unmetasomatised mantle samples are not accessible with current analytical60

techniques at the level of precision required for a geologically meaningful interpretation. Alternatively,61

however, MORB glasses have been used to indirectly determine the elemental and isotopic composition62

of the convecting mantle. Attempts to determine the B isotopic composition of unaltered basalts and, by63

inference, the primitive and depleted mantle were made in a number of previous studies (e.g., Spivack &64

Edmond, 1987; Chaussidon & Jambon, 1994; Moriguti & Nakamura, 1998). The results are based on a65

restricted number of samples and span a wide range of δ 11B values from approximately −10 to 0h (e.g.,66

Ishikawa & Nakamura, 1992; Roy-Barman et al., 1998; Chaussidon & Marty, 1995). In addition, it is not67

clear to what degree the lack of suitable B isotope reference materials and the limited analytical capabilities68

for B isotope analysis in the 1980s and early 1990s may have caused the discrepancy among the published69

studies (see Gonfiantini et al., 2003). International reference materials for micro analysis are available today,70

and an improved mass spectrometric method was recently developed for the determination of the B isotopic71

composition of volcanic glasses with boron concentrations of as low as 0.4−2.5µg/g, as is typical for72

MORB glasses (Marschall & Monteleone, 2015).73

The light alkali metal lithium with its two stable isotopes, 6Li and 7Li, has gained similar attention in74

geochemistry to boron, with a similar range of possible applications. Yet, there are also some notable75

differences between these two trace elements that could lead to a combined geochemical application of the76

two isotope systems for a complementary approach (e.g., Gurenko & Schmincke, 2002; Kobayashi et al.,77

2004; Genske et al., 2014). Lithium is less incompatible than boron in mantle minerals and during partial78

melting of the mantle, and its enrichment in the continental crust and altered oceanic crust compared to79

the depleted mantle is much less extreme (Tomascak, 2004; Elliott et al., 2004; Sauzéat et al., 2015). Both80

elements show a high mobility in hydrous fluids and silicate melts, show a strong enrichment of the heavy81

isotope in seawater (δ 7Li = +30.8h; Rosner et al., 2007) and are enriched in low-temperature altered82
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crust. Yet, lithium diffusivities are high in minerals and melts, second only to H, and a strong kinetic isotope83

fractionation has been documented for many high-temperature systems, producing much greater isotopic84

excursions than any equilibrium fractionation process (e.g.; Richter et al., 2003; Lundstrom et al., 2005;85

Teng et al., 2006; Parkinson et al., 2007; Jeffcoate et al., 2007).86

The lithium isotopic composition of MORB and the mantle has been addressed in a number of stud-87

ies. Published analyses for fresh MORB samples range from δ 7Li = +1.5 to +5.6h (Chan et al., 1992;88

Moriguti & Nakamura, 1998; Elliott et al., 2006; Nishio et al., 2007; Tomascak et al., 2008). The majority89

of analyses, however, fall between +3.0 and +4.0h. The same range with a mean value close to +3.5h90

has been found for equilibrated peridotites (Seitz et al., 2004; Jeffcoate et al., 2007; Pogge von Strandmann91

et al., 2011; Lai et al., 2015), and for mantle-derived carbonatites from the late Archaean to the present92

(Halama et al., 2008). There is general agreement that this value is representative of normal MORB and the93

depleted upper mantle. However, it is unclear how much of the > 4h range in δ 7Li observed for MORB94

is the result of limited analytical precision, accuracy and interlaboratory comparability, and how much of it95

is an actual isotopic variability in these rocks. Furthermore, if real variability exists, it is a matter of debate96

by what process it was generated: does it reflect Li isotopic variability in the MORB-source mantle, or is it97

introduced by magmatic and metasomatic processes at the mid-ocean ridges?98

In this study we analysed B and Li concentrations and isotopic compositions of a selection of 56 global99

MORB glasses, which had been well characterised in previous studies for their major, minor and trace100

element contents, as well as their radiogenic isotope compositions. They are fresh, unaltered basaltic glasses,101

ranging from depleted to enriched compositions. Halogen concentrations (F, Cl) were analysed for samples102

for which these had not previously been published to monitor assimilation of seawater-altered materials103

or brines by the MORB magma beneath the ridge (Michael & Schilling, 1989; Michael & Cornell, 1998;104

le Roux et al., 2006; Kendrick et al., 2013). The B and Li isotopic variability of mid-ocean ridge basalts105

is evaluated based on this new dataset, and effects of partial melting, fractionation and assimilation of106

seawater-altered materials by the MORB magmas at the ridge are addressed. Estimates for the abundances107

of Li and B and the B and Li isotopic compositions of the primitive and depleted mantle are presented,108

as well as estimates for the B isotopic composition of the continental crust, based on global mass balance.109

Mass balance among the surface reservoirs for Li argues for the enrichment of 7Li in at least part of the110

mantle.111

2 Investigated samples112

Fifty-six mid-ocean ridge glass samples were selected for this study. All samples are natural glasses from113

pillow basalt margins that have been investigated previously in a number of studies (see references in Ta-114

ble 1). Their major element, trace element and isotopic compositions were reported by various authors115

and are listed in the PetDB database (http://www.earthchem.org/petdb). In this study, we present new data116

for glasses from three different sections of the East-Pacific Rise (EPR), two localities on the Mid-Atlantic117

Ridge (MAR) and from one locality on the South-West Indian Ridge (SWIR). Samples were selected from118

well-investigated ridge segments far from the possible influence of hot spots (with the exception of two sam-119

ples from the Kolbeinsey Ridge, which are close to Iceland). The samples represent depleted and enriched120

MORB having experienced various degrees of partial melting and fractionation, and they represent a range121

in radiogenic isotope space. All samples are listed in Table 1.122

2.1 Mid-Atlantic Ridge, 26◦S123

The 26◦S segment of the MAR is bounded by two transform fracture zones (see map in Supplement) and124

comprises depleted MOR basalts (N-MORB) that show a small degree of low-pressure differentiation with125

MgO contents of 8.9−6.6wt% and Mg# of 63−51 (Niu & Batiza, 1994). Pieces of glass from 16 samples126

were selected that cover the full range in MgO content and the full length of the segment from dredges127
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D12 to D27 near the two bounding transform faults, respectively (see map in Supplement). Nine of these128

samples have Mg# > 60 with MgO = 7.8−8.9wt%. All dredges sampled on-axis basalts at approximately129

equal spacing along the∼ 100km long section. Spreading in this section is slow and slightly asymmetrical at130

19.3mm/a to the west and 16.3mm/a to the east (Carbotte et al., 1991). The segment shows an intermediate131

high of the ridge axis (the “26◦ axial swell”; see map in Supplement) with a depth of 2500m, whereas the132

depth of the ridge north and south of that swell is close to 4000m (Table 1). Samples from off-axis seamounts133

were not analysed. There is no hot-spot volcanism within 1300km of this ridge segment.134

Incompatible trace elements in the basalts are depleted, and radiogenic isotopes show a depleted mantle135

source (Fig. 1; Table 2; Castillo & Batiza, 1989; Graham et al., 1996; Regelous et al., 2009). The Mid-136

Atlantic Ridge 26◦S samples best represent depleted N-MORB from a slow-spreading ridge.137

2.2 Kolbeinsey Ridge (Atlantic, 67◦N)138

The Kolbeinsey Ridge is located north of Iceland and is a very shallow ridge (< 1000m). It stretches from139

the Tjörnes Fracture Zone in the south that separates it from northern Iceland to the Jan Mayen Fracture140

Zone at 71◦N (Devey et al., 1994). The spreading rate of the ridge is 20mm/a (Devey et al., 1994). The141

two samples investigated here were dredged in 1989 during Polarstern cruise ARKV/Ib from a locality near142

67◦N at a depth of < 200m (Table 1; Devey et al., 1994).143

The two samples investigated have high MgO contents (Table 2). Their radiogenic isotopes show high144

87Sr/86Sr, but the lowest 207Pb/204Pb among all samples investigated, and they have depleted incompatible145

trace elements (Fig. 1; Table 2; Mertz et al., 1991). The Kolbeinsey Ridge samples represent depleted146

MORB produced by high degrees of partial melting at a very shallow ridge segment. The ridge is located147

adjacent to the Iceland plume.148

2.3 South-West Indian Ridge, 57◦E149

The 57◦E segment of the South-West Indian Ridge is located directly to the east of the Atlantis-II Frac-150

ture Zone, north of the Atlantis Bank core complex (see map in Supplement). It comprises MOR basalts151

that are less depleted in incompatible elements than typical N-MORB and are interpreted as the product of152

lower degrees of partial melting compared to most other MORB as a result of the very low total spreading153

rate of 13−16mm/a (Jestin et al., 1994; Robinson et al., 2001). The samples were dredged from a depth154

of 4325−4800m below sea level (Table 1). The chemistry of the glasses shows evidence of a small de-155

gree of differentiation by low-pressure fractional crystallisation to various degrees with MgO contents of156

7.5−5.9wt% and Mg# of 58− 49 (Robinson et al., 1996). Five samples were selected for this study that157

cover the full range in composition.158

Incompatible trace elements in the basalts are only moderately depleted, and radiogenic isotopes show159

a depleted mantle source very unradiogenic Pb that plots to the left of the Geochron (Table 2; Robinson,160

1998). There is no hot-spot volcanism within 1000km of this ridge segment. The samples from the South-161

West Indian Ridge 57◦E best represent depleted MORB generated by low-degree melting at a very-slow162

spreading ridge.163

2.4 East-Pacific Rise, 10.5◦N and 11.4◦N164

The segment of EPR between the Clipperton Fault Zone (10.3◦N) and the overlapping spreading center165

(OSC) at 11.8◦N (see map in Supplement) was subject to a number of geophysical and geochemical studies166

(e.g., Thompson et al., 1989; Regelous et al., 1999; Pan & Batiza, 2003; Elliott et al., 2006; White et al.,167

2006). In particular, two sample series taken at 10.5◦N and 11.4◦N, respectively, were subject to geochemi-168

cal studies. The section at 10.5◦N was sampled by dredging and rock coring, and it covers an across-ridge169

traverse out to 50km on the Pacific and Cocos Plates, representing a history of on-axis volcanism over the170

past 800ka (Batiza et al., 1996; Regelous et al., 1999). The section was previously used to demonstrate the171
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temporal evolution of the axial magma chamber, and it was demonstrated that this section of the EPR has172

relatively low magma supply rates producing more differentiated (low-Mg) magmas over certain periods173

(Regelous et al., 1999). Six samples were selected from the 10.5◦N across-ridge section (Table 1). It has174

been speculated that the magma chamber beneath this segment of the EPR between the Clipperton Fault175

Zone and the OSC at 11.8◦N may be built from one elongated magma chamber that is supplied from the176

area near 11.4◦N (Regelous et al., 1999). This, however, would require extensive horizontal dyking and177

magma transport and may not be physically feasible. The possibility of smaller magma-chamber sections178

with more local magma supply, therefore, seems more likely. Five samples were selected from the 11.4◦N179

across-ridge section (Table 1).180

The 10.5◦N samples show very little variation in Sr, Nd and Pb isotopes, and there is no correlation181

among Sr, Nd and Pb isotopes (Table 2; Regelous et al., 1999; Niu et al., 1999). The 11.4◦N samples show182

a much larger variation in Sr, Nd and Pb isotopes, and Nd isotopes shows a weak correlation with Sr isotopes183

(R2 = 0.59) for the set of 24 samples reported by Niu et al. (1999). In particular, two high-87Sr/86Sr, low-184

143Nd/144Nd samples from near the active ridge define this correlation and the large spread. One of these185

samples (PH108-1) was investigated in this study. No correlation exists between Nd isotopes and any of the186

Pb isotope ratios (R2 < 0.1).187

Incompatible trace elements in these samples range from moderately depleted to enriched (Fig. 1a; Ta-188

ble 2; Supplement). The samples are differentiated to various degrees with MgO contents of 7.49−3.90wt%189

(Mg# = 58−32) that correlate with the magnitude of Eu/Eu∗ (1.0−0.8), i.e., negative Eu anomalies in the190

more differentiated samples.191

2.5 East-Pacific Rise, 9–10◦N192

The 9−10◦N segment of the East Pacific Rise is probably the best investigated section of oceanic crust193

on the planet and has seen numerous geophysical, petrological and geochemical studies (e.g., Carbotte &194

Macdonald, 1992; Fornari et al., 1998; Von Damm, 2004; Soule et al., 2007; Key et al., 2013). It is bounded195

by the Siqueiros Fault Zone (8.3◦N) to the south and the Clipperton Fault Zone (10.2◦N) to the north (see196

map in Supplement). The samples investigated here were collected by the submersible Alvin during various197

cruises between 1991 and 1994 from within the axial summit trough of the EPR (Sims et al., 2002). They198

were all sampled from young lava flows that were erupted in the twentieth century, some of them within199

only a few years of sampling (Sims et al., 2002). Eighteen samples were selected from this segment for200

this study. The selected samples show a relatively narrow compositional range with relatively high MgO201

contents (Table 2; Sims et al., 2002). Eight of these samples have MgO > 8wt% with Mg# = 59−64.202

Incompatible trace elements in the basalts are depleted, and their radiogenic isotopes show a depleted203

mantle source with the lowest 87Sr/86Sr, the highest 143Nd/144Nd among all samples (Fig. 1; Table 2; Sims204

et al., 2002). The samples from the East-Pacific Rise 9.5◦N best represent depleted MORB generated by205

on-axis volcanism at a fast-spreading ridge.206

2.6 East-Pacific Rise, Siqueiros Fracture Zone (8.3◦N)207

The Siqueiros transform fault zone located at 8.3◦N is approximately 20km wide and offsets the EPR by208

140km in a left-lateral sense (see map in Supplement; Crane, 1976; Perfit et al., 1996). Three of the four209

samples were collected by the submersible Alvin, whereas the fourth (sample D20-2) was dredged. Two210

of the Alvin samples and the dredge sample are picritic basalt from a relatively fresh lava flow (< 100a),211

whereas the remaining Alvin sample (2390-5) is an older and more differentiated basalt (Sims et al., 2002).212

The three depleted MORB samples from the Siqueiros Fault Zone show radiogenic isotopes typical of213

a depleted mantle source (Fig. 1; Table 2; Sims et al., 2002). These picritic basalts are primitive with214

9.6−10.1wt% MgO and Mg# of 67− 69, and they are highly depleted in incompatible trace elements215

(Fig. 1a; Table 2; Sims et al., 2002). These samples are among the most incompatible-element depleted216

samples reported from the global mid-ocean ridges. They best represent highly depleted, undifferentiated217
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MORB produced by relatively high degrees of partial melting (Perfit et al., 1996; Saal et al., 2002; Sims218

et al., 2002).219

The fourth sample from the Siqueiros Fault Zone (sample 2390-5) is strongly enriched in incompati-220

ble trace elements and shows radiogenic isotopes that clearly reflect an enriched mantle source with high221

87Sr/86Sr, the lowest 143Nd/144Nd and the most radiogenic Pb of all samples investigated here (Fig. 1;222

Table 2; Sims et al., 2002). This glass sample best represents Pacific E-MORB.223

3 Methods224

New data for the samples investigated here include boron concentrations and boron isotopic compositions,225

lithium concentrations and lithium isotopic compositions, trace metal concentrations including those of226

beryllium, potassium, rare earth elements and a selection of other metals, and chlorine and fluorine contents.227

Lithium isotope compositions were determined using a multi-collector inductively coupled plasma mass-228

spectrometer (MC-ICP-MS) following lithium purification through chemical exchange columns after disso-229

lution of powdered glass chips. Glass chips were hand picked and cleaned by ultrasonication in methanol230

and MilliQ H2O. Powdered samples were dissolved in concentrated HF−HNO3−HClO4, followed by231

stages of concentrated (∼ 15M) HNO3 and 6M HCl. For each sample, ∼ 10ng Li were purified by a two-232

step cation column (AG50W X12) separation method using dilute HCl as an eluant, as described elsewhere233

(James & Palmer, 2000; Marschall et al., 2007b; Pogge von Strandmann et al., 2011). Li isotope measure-234

ments were performed on a Thermo-Finnigan Neptune MC-ICP-MS at the University of Bristol, as detailed235

in Jeffcoate et al. (2004). Multiple analyses of several international basalt reference materials over a pe-236

riod of nine years yielded a 2σ SD external reproducibility of ±0.3h (see Supplement), in keeping with237

previously cited reproducibility (Elliott et al., 2006; Jeffcoate et al., 2007; Pogge von Strandmann et al.,238

2011). Results are presented as δ 7Li, namely the deviation in per mil from the standard NIST RM 8545 (=239

L-SVEC; Flesch et al., 1973): δ 7Li = [(7Li/6Lisample)/(
7Li/6LiL-SVEC)−1] ·1000. Reported errors are two240

standard deviations of triplicate mass-spectrometer analyses (i.e., “internal precision”).241

Boron isotopic compositions, and boron and halogen concentrations were determined by secondary-ion242

mass spectrometry (SIMS) on mounted and polished glass fragments using the Cameca ims1280 ion mi-243

croprobe at the North-Eastern National Ionmicroprobe Facility (NENIMF) at the Woods Hole Oceano-244

graphic Institution (WHOI). Fragments of clean glass, 0.5−2mm in diameter, were mounted in epoxy245

(Buehler Epothin) together with fragments of Herasil-102 pure silica glass and the reference materials B6246

and GOR132 (Jochum et al., 2000; Gonfiantini et al., 2003; Marschall & Ludwig, 2004). All samples were247

located within a distance of 8mm of the center of the 12.7mm radius sample mount. Polishing was com-248

pleted using a Buehler MiniMet 1000 polishing machine (1µm diamond paste), which was set to produce249

a flat and even surface throughout the epoxy and glass samples. Alumina polish (0.3µm) was used for the250

final polish. All analysis were completed at a distance of at least 100µm from the edge of the samples. This251

includes the reference materials and MORB glasses. Prior to gold coating, the grain mounts were cleaned252

using 96% ethanol followed by an ultrasound bath using distilled water from a Millipore ultrapure water253

system (18MΩ). Samples were always cleaned and coated immediately before introducing them into the254

airlock of the mass spectrometer to reduce the possible deposition of contamination on the sample surfaces.255

Surface contamination was monitored by analyses of silica glass Herasil-102 (≤ 1ng/g B; Marschall &256

Ludwig, 2004) and was found to be below 8ng/g. The contribution of contamination to the boron signal257

was, thus, only 0.3−2%, introducing a potential systematic error of < 0.1 to 0.6h to the measured boron258

isotope ratios of the MORB glass samples (Marschall & Monteleone, 2015).259

The SIMS method for boron isotope analysis was recently improved at NENIMF to enable precise and260

accurate analyses of MORB samples, and is described in detail in Marschall & Monteleone (2015). Accu-261

racy and reproducibility are estimated from analyses of glass reference materials to be ±1.5h (Marschall262

& Monteleone, 2015). Boron isotope ratios are reported in the delta notation relative to NIST SRM 951263

(Catanzaro et al., 1970): δ 11B = [(11B/10Bsample)/(
11B/10BSRM 951)−1] ·1000. The reported B isotope ra-264
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tios are mean values of between three and eleven SIMS spot analyses. The error bars displayed in the figures265

for individual samples are two standard errors of the mean, i.e., 2SE = 2SD/
√

n, where n is the number of266

analysed spots.267

Chlorine and fluorine were analysed following methods established at NENIMF for volatile analyses in268

volcanic glasses (e.g., Shaw et al., 2010; Wanless & Shaw, 2012), building on methods established earlier269

by Hauri et al. (2002). Boron concentrations were determined using the Cameca ims1280 with the same270

setup for raster sizes and aperture, mass resolution, 40nA 16O− primary beam, and size of energy window271

with zero offset. Pre-sputtering lasted for 2min. Ten analytical cycles were analysed including masses272

11B+ and 28Si2+. Reference glass GOR132-G (Jochum et al., 2000) was used to determine 11B+/28Si2+273

relative ion yields (Marschall & Monteleone, 2015). Precision of B concentration analyses ranged from274

0.3 to 1.6% (2σ ), with an average of 0.9% for all samples. Reproducibility ranged from 0.2% to 4.4%275

on the reference materials, and was 2% on average for the MORB glass samples. Two samples showed276

worse reproducibility of 7% and 13%, respectively, whereas reproducibility for all other samples was 5%277

or better. Matrix effects between the komatiite reference glass (GOR132-G) and the basalt glass samples278

are negligible, as is demonstrated by indistinguishable relative ion yields for GOR132-G and the rhyolitic279

glass B6 (Marschall & Monteleone, 2015). Our B concentration data are, therefore, estimated to be accurate280

within 4.4% or better, with a precision of typically 0.9% (2σ ).281

Lithium and beryllium concentrations were analysed using the newly refurbished Cameca ims3f at NEN-282

IMF. Analyses were performed using a nominally 10kV/20nA 16O− primary ion beam. Positive secondary283

ions were accelerated through a nominal 4.5kV. The energy window was set to 40eV and an offset of284

75eV. The mass resolution m/∆m (10%) was set to ∼ 1170. Ten analytical cycles were analysed with285

integration times of 5s for Li, 10s for Be, and 3s for Si. A 5min presputtering time was applied to each286

spot. The internal precision (2 times relative standard error) of the Li and Be analyses was 2−6% and287

4−17%, respectively. Two to three spots were analysed per sample with a reproducibility of < 6% for Li288

and < 12% for Be for most samples. NIST reference glass SRM612 was used to determine 7Li+/30Si+289

and 9Be+/30Si+ relative ion yields using published concentrations (41.54µg/g Li; 37.73µg/g Be; Pearce290

et al., 1997). International reference glasses were used to monitor Li and Be concentration analyses and the291

following concentrations were measured: 7.70±0.25µg/g Li and 0.07±0.02µg/g Be (n = 8) in GOR-292

132-G; 20.6±0.5µg/g Li and 1.38±0.01µg/g Be (n = 2) in StHs6/80-G; and 147.9±0.7µg/g Li and293

8.5±0.2µg/g Be (n = 2) in IAEA-B6. These values agree with the recommended values (Tonarini et al.,294

2003; Jochum et al., 2006).295

First row transition metals, rare earth elements (REE), and a range of other trace elements were analysed296

by laser-ablation inductively-coupled mass spectrometry (LA-ICP-MS) using a NewWave Ar-excimer laser297

(193nm) coupled to a ThermoScientific Element-2 single-collector magnetic sector-field mass spectrometer298

at WHOI. The instrument was operated at low mass resolution (m/∆m ≥ 300). A laser spot diameter of299

150µm was used, pulsed at 5Hz. Masses 43Ca, 51V, 52Cr, 59Co, 60Ni, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 133Cs,300

138Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu,301

208Pb, 232Th, and 238U were measured and concentrations were quantified using 43Ca as internal reference302

based on published CaO contents for the sample glasses. Reference glass NIST-SRM612 was used as the303

external reference material (Pearce et al., 1997). A range of natural glasses (BHVO-2G, BCR-2G, BIR-1G,304

GOR132G) was used to check accuracy, and it was found that oxide interferences affected the heavy REE305

to between 0.5 and 3% of the total signal of any analysed isotope. The heavy REE concentrations were306

corrected accordingly. Sensitivity drift of the ICP-MS was monitored by analysing two spots on BHVO-2G307

at the start and end of the day, as well as after each ten to fifteen samples. All samples were analysed within308

a timeframe of eleven hours on the same day. The sensitivity drift for all trace elements was found to be309

linear at 0 to +1.6%/h, and the analyses were corrected for this drift. Two spots were analysed per sample,310

and reproducibility and internal precision for all elements in all samples except Rb, Cs, Pb, Th and U was311

typically between 1.0 and 2.5% (2 standard deviations; Supplement). For Rb, Pb, Th and U they were312

on average 3.0 to 6.0%, and for Cs they were ∼ 20% (Supplement). Statistical detection limits (3 SD of313
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background signal) were typically better than 10ng/g for most elements, and better than 2ng/g in many314

cases (Supplement). Exceptions were V, Zr, Sr, Ba, and Pb for which detection limits were 20−30ng/g,315

and Ni and Cr for which they were 150−660ng/g. The signal for all analyses of all elements were at least316

three times above the detection limits, except for Cs, which was below the detection limit in the depleted317

MORB samples from the Siqueiros Fault Zone. All trace-element data including uncertainties and detection318

limits of all analysed samples and reference materials are provided in the Supplement.319

Potassium contents of all samples were also analysed by LA-ICP-MS using the same setup as described320

for trace-element analyses, but operating the spectrometer at high mass resolution (m/∆m ≥ 10,000) to321

suppress oxide and hydride interferences, and natural basalt glasses (BHVO-2G, BIR-1G, BCR-2G) were322

used as external reference materials. The sensitivity drift for K was found to be linear at +0.4%/h, and323

the analyses were corrected for this drift. Masses 39K and 43Ca were analysed and the latter was used as324

internal reference mass for quantification. Internal precision was on average 1.1%, but ranged from 0.8325

to 4% (Supplement). Reproducibility for the two analysed spots was 2.5% on average, and better than326

6% in all cases except for two glass samples, which showed 20% discrepancy between the two respective327

spot analyses. The detection limit was 2.4µg/g on average, and less than 23µg/g in all cases. The lowest328

analysed K contents were 203±3µg/g in one sample glass and∼ 60µg/g in NIST-SRM612 (Supplement).329

The analytical sequence for each spot analysis of the LA-ICP-MS started in low mass resolution with330

a measurement of the background (10 cycles), followed by integration of the trace-element isotopes (23331

cycles). Thereafter, the ICP-MS was switched to high mass resolution during continuing ablation, and K332

was analysed (∼ 35 cycles), followed by wash-out time (∼ 40 cycles) and analysis of the background (∼ 30333

cycles). Data reduction and conversion of count rates to concentrations was completed using an off-line334

spreadsheet provided by Cin-Ty Lee (Rice University).335

4 Results336

4.1 Trace metal concentrations337

A set of trace-element analyses for all samples were available from the literature, but they comprised an338

incomplete collection of analyses completed over several decades by various methods and laboratories by339

a number of different authors. This increased the uncertainty on accuracy of the published data and led340

to a data set with highly variable accuracy and precision. Below, we compare the geochemical behaviour341

of Li and B with that of other trace metals, and in order to reduce uncertainties, we use the trace-element342

abundances of the glasses determined in our study in one analytical session using a single method (i.e.,343

single collector, sector-field LA-ICP-MS). Our analyses provide a complete data set and are used in the344

discussion below; our data are generally in good agreement with the published data.345

In particular K2O contents available from the literature were afflicted with large uncertainties, because346

of the abundances in the MORB glasses that are close to or below the detection limit of the electron probe347

analytical methods employed several decades ago in some cases. The high-resolution LA-ICP-MS analyses348

completed here provide precise and accurate K2O contents even for the most depleted MORB samples and349

enable a meaningful evaluation of B/K and Cl/K ratios.350

4.2 Light element and halogen concentrations351

Concentrations of Li in the glasses vary by a factor of 4 ranging from 3.1 to 13.1µg/g Li (Table 1), with352

a negative correlation of Li and MgO. The majority of the samples have between 7 and 9wt% MgO and353

between 4 and 6µg/g Li (Fig. 2). Samples exceeding 9wt% MgO, such as the depleted-MORB samples354

from the Siqueiros Fracture Zone, have Li abundances of less than 4µg/g, whereas differentiated, low-MgO355

glasses (< 7wt% MgO; EPR 10−12◦N and SWIR) show higher Li contents (> 6.8µg/g). Li/Yb ratios of356

samples with Cl/K < 0.08 vary in a narrow range between 1.4 and 2.1 (1.3−2.3 including all 56 samples).357

9



No correlation is observed with Mg#, Li contents, nor with La/Sm ratios (Fig. 3a–c). The mean Li/Yb ratio358

is 1.64±0.30 (2SD; n=40).359

Concentrations of Be and B show a slightly larger variation than those of Li, both varying by a factor of360

∼ 7 with a constant B/Be ratio of ∼ 2 (range 1.4−2.7; mean 2.0±0.4, 2SD; n = 56; Supplement). Boron361

and Be concentrations show a negative correlation with MgO. Concentrations of boron range from 0.40µg/g362

in depleted high-Mg samples from the Siqueiros Fracture Zone to 2.0−2.5µg/g in more differentiated,363

lower-Mg samples from the SWIR and the EPR 10−12◦N section, and in the enriched-MORB sample364

from the Siqueiros Fracture Zone (Fig. 2). Beryllium contents vary from 0.18 to 1.39µg/g (Table 1). The365

SWIR samples and the Siqueiros enriched-MORB sample show a higher B (and Be) content at a given MgO366

content compared to the remaining samples.367

Boron and Be contents show a positive correlation with incompatible trace elements, and ratios of B368

(and Be) over a range of trace elements show different systematic variations. Ratios of B over highly in-369

compatible elements, such as Ba, Nb or K show large variabilities among various ridge sections, but much370

smaller variations within the sets of samples from particular ridge sections (Fig. 3d). For any given sam-371

ple group from a particular locality, B/K is near-constant and does not correlate strongly with B content372

nor with Mg# (Fig. 3d,e). However, the global collection of the various sample groups shows a systematic373

deacrease of B/K with increasing La/Sm (Fig. 3f). The most depleted members of our sample collec-374

tion with primitive-mantle normalised (La/Sm)N = 0.3 to 0.5 have B/K = 0.0020, and the most enriched375

MORB with (La/Sm)N = 1.8 has B/K = 0.0004 (Fig. 3f). The array crosses the primitive mantle value376

((La/Sm)N ≡ 1) at B/K = 0.0006±0.0002 (Fig. 3f).377

Ratios of B over moderately incompatible trace elements, such as the middle and heavy rare earth ele-378

ments increase with increasing B content. Finally, ratios of B/Ce, B/Pr, B/P, and B/Be ratios show very379

little variation in the sample set and do not vary with B content. There is no variation of B/Ce or B/Pr380

with B content, nor Mg#, nor La/Sm (Fig. 3g–i; Supplement). The mean B/Pr of all low-Cl/K samples is381

0.57±0.09, and their mean B/Ce is 0.10±0.02.382

The variability of Cl contents are by far the greatest among all elements with variation by a factor of 1200383

(2.9−3525µg/g), which is one to two orders of magnitude more than even the most incompatible trace384

metals (e.g., Rb, Ba, Th, Nb). Concentrations of F vary only by a factor of 17 and F/Cl ratios (0.19− 32)385

vary by a factor of ∼ 170. F/Cl ratios show a weak positive correlation with MgO contents and a negative386

correlation with [Cl]. F/Cl > 3 were only found in samples with < 60µg/g Cl.387

4.3 Lithium and boron isotope ratios388

Lithium isotope ratios range from δ 7Li = +2.6 to +5.1h (Table 1). Low δ 7Li ≤ +3h were found in all389

investigated areas and are not restricted to one particular location or subset of samples. High δ 7Li≥+4h390

are restricted to samples from the EPR. In particular, only two investigated localities show δ 7Li≥+4h: (1)391

samples from recent lava flows at 9.85◦N, and (2) three on-axis samples at 11.35◦N of the EPR (Fig. 4a,b).392

All of these high-δ 7Li samples were erupted on axis at relatively shallow water depths of approximately393

2500m. No correlation was found between Li isotope composition and Li concentration or Li/Yb ratio, or394

between δ 7Li and other geochemical parameters, such as La/Sm, Zr/Y, or MgO content.395

Lithium isotopes also do not show any systematic variation with radiogenic isotope ratios, such as those396

of Sr, Nd or Pb (Fig. 4a,b; Supplement). However, the highest δ 7Li values were found in samples from the397

EPR (11.35◦N), which show elevated 87Sr/86Sr (Fig. 4a). Yet, these samples do not differ from lower-δ 7Li398

samples of the EPR in Nd or Pb isotopes (Fig. 4b; Supplement). Instead they show highly elevated chlorine399

contents and Cl/K ratios (open symbols in Fig. 5). The other group of high-δ 7Li samples (EPR 9.85◦N) are400

not enriched in chlorine and have very low 87Sr/86Sr (Fig. 4a).401

Mean δ 7Li for individual sections of the investigated ridges, excluding samples with high Cl/K (>0.08),402

show resolvable variations (Fig. 6). Mean δ 7Li values range from +2.9±0.2h (2 SD) and +3.0±1.0h403

for the lavas erupted before 1980 at the EPR 9.5◦N section and the depleted Siqueiros samples, respectivley,404

to +4.3±0.5h for the lavas erupted after 1980 at EPR 9.5◦N (Fig. 6; Table 3). The mean of all investigated405
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samples with Cl/K < 0.08 is +3.6±1.2h (n=25), and the mean of the five different investigated ridge406

sections (Cl/K < 0.08 only) is +3.5±0.9h (Table 3). No correlations exist between lithium isotopic407

composition and Li concentrations among individual samples (not shown) nor among the mean values of408

the various ridge sections (Fig. 6).409

Boron isotope ratios range from δ 11B =−9.8±1.1 to −2.2±1.7h (Table 1), with the majority of sam-410

ples ranging from −9 to −5h (42 of the 53 analysed samples). Only four samples show δ 11B values411

lower than −9h, but none of them are significantly below −9h within their two standard error uncer-412

tainties (Fig. 5). These low-δ 11B samples are not restricted to one particular location or subset of samples.413

High δ 11B ≥ −6h values were found for most of the samples from the EPR 10−12◦N section and for414

the Kolbeinsey Ridge samples. Three samples from the MAR 26◦S section and two samples from the EPR415

9−10◦N section also show elevated δ 11B values, but these are not significantly above −6h within their416

two standard error uncertainties (Fig. 5).417

The samples from the SWIR (57◦E) show a range of B concentrations from 1.5 to 2.5µg/g, but only an418

insignificant and unsystematic variation in their B isotopic compositions from −8.8±1.6 to −7.0±1.2h,419

not related to B concentrations or other geochemical indicators of differentiation (Table 3; Fig. 5). The error-420

weighted mean of the five SWIR samples is δ 11B = −7.6±1.5h (2SD; Table 3). The enriched-MORB421

sample from the Siqueiros Fault Zone shows an equally high B content to the SWIR samples, and also an422

indistinguishable B isotopic composition to those samples of δ 11B =−6.6±1.6h (Table 3).423

The on- and off-axis samples from the EPR 10−12◦N section show a trend of increasing δ 11B with424

increasing B content (Fig. 5a) and other incompatible trace elements and with decreasing MgO content.425

Some of the highest δ 11B samples also show the highest δ 7Li values (Fig. 5b). Furthermore, the enrichment426

of isotopically heavy boron is connected to a strong enrichment in chlorine (Fig. 5c) and elevated Cl/K427

(Fig. 5d). The same combination of isotopically heavy boron, high [Cl], and high Cl/K was found in the428

Kolbeinsey Ridge samples (Fig. 5). Only one sample from the EPR 10−12◦N section was found to have429

Cl/K < 0.08 and it has a δ 11B = −7.0±3.4h (Table 3; Fig. 7). The two Kolbeinsey Ridge samples both430

have very high Cl/K (Table 1).431

All remaining samples show boron contents below 1.2µg/g (Fig. 5a). Among these, the lowest B contents432

were found in the depleted MORB samples from the Siqueiros Fault Zone with 0.40−0.43µg/g B and a433

mean δ 11B value of −7.0±3.3h for the low-Cl/K samples (Table 3; Fig. 7). The MAR 26◦S section434

samples all have Cl/K < 0.08, 0.6−1.1µg/g B and a mean δ 11B value of −7.0±2.5h (Table 3; Fig. 7).435

Most of the EPR 9−10◦N section samples show Cl/K < 0.08 and B contents of 0.7−1.0µg/g with a mean436

δ 11B value of −7.8±3.1h, excluding three high-Cl/K samples (Table 3; Fig. 7).437

The mean of all investigated samples with Cl/K < 0.08 is−7.3±2.6h (2SD; n=41; Table 3). The mean438

does not change significantly if only samples with very low Cl/K < 0.025 are considered, resulting in a439

mean of δ 11B = −7.6±2.5h (n=13; Table 3). The mean of the six different investigated ridge sections440

(Cl/K < 0.08 only) is −7.1±0.9h (2SD; Table 3; Fig. 7).441

No correlation was found between δ 11B and geochemical parameters that indicate the degree of depletion442

or enrichment of the mantle source of the MORB magmas, such as La/Sm, Ba/TiO2, or Zr/Y. Boron443

isotopes also do not show any systematic variation with radiogenic isotope ratios, such as those of Sr, Nd or444

Pb (Fig. 4c,d; Supplement). Yet equivalent to the Li isotopes discussed above, the highest δ 11B values were445

found in samples, which show elevated 87Sr/86Sr and significantly elevated Cl and Cl/K (Fig. 4c,d, 5). And446

as discussed above, these samples do not differ from lower-δ 11B samples in Nd or Pb isotopes (Fig. 4d;447

Supplement).448

The positive correlation between the boron and lithium isotopic compositions of the full dataset is very449

weak (R2 = 0.09; Fig. 5b). Samples from EPR 9−10◦N show a range of δ 11B values (−9.3 to −3.3h),450

but have dominantly high δ 7Li above +4h. Also, most of the high-Cl/K samples from all localities are451

enriched in isotopically heavy B, but show highly variable Li isotopic compositions (Fig. 5b).452
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5 Discussion453

Magma contamination through assimilation, as well as isotope fractionation among various Earth reservoirs454

can only be quantified with good knowledge of the elemental distribution that determines mass balance455

and flux, and therefore impacts the magnitude by which various differentiation mechanisms affect isotope456

fractionation. Unfortunately, elemental abundances of Li and B in the bulk silicate earth and the depleted457

mantle are still a matter of debate and require further evaluation, which we address first, followed by a458

discussion of the isotopic composition of the MORB source mantle.459

5.1 Abundances of Li in MORB and the depleted mantle460

Lithium, as well as B and Be, shows incompatible behaviour during mantle melting and fractional crystalli-461

sation of basaltic magmas (e.g., Ryan & Langmuir, 1987, 1988, 1993; Brenan et al., 1998). This is expressed462

in the positive correlation of light element concentrations with the concentrations of other incompatible el-463

ements in MORB glasses, and their negative correlation with MgO content, as discussed above. The set of464

MORB glasses investigated here shows a relatively constant Li/Yb ratio (1.64± 0.30, 2SD; Cl/K < 0.08465

only) that does not vary systematically with Li concentration, nor with MgO content, nor with La/Sm.466

Ryan & Langmuir (1987) showed that Li/Yb is relatively constant among MORB at approximately 1.7 and467

suggested that fractional crystallization at mid-ocean ridges does not fractionate this ratio. However, they468

demonstrated that Li/Yb shows some fractionation during MORB melting. Gale et al. (2013) determined469

average abundances of MORB from the large global data set published for basalt samples from all ridges470

and derived a value of Li/Yb = 1.79 ([Li] = 6.5µg/g) for ’all MORB’, which included all samples apart471

from back-arc centres.472

Salters & Stracke (2004) used Li/Yb = 1.75 and the established Yb abundances to determine a depleted-473

MORB mantle (DMM) abundance of [Li] = 0.70µg/g. However, the constant Li/Yb observed in MORB474

does not necessarily mean that Li and Yb have the same compatibility during mantle melting; it may be475

a fortuitous result of a limited range in the degree of melting and the distribution of the elements among476

various mineral hosts. It has, in fact, been established that Li and Yb are respectively hosted by different477

minerals in peridotites: Li shows the highest abundances in olivine, followed by clinopyroxene and orthopy-478

roxene and is low in spinel and garnet (Ryan & Langmuir, 1987; Seitz et al., 2003; Ottolini et al., 2004;479

Paquin et al., 2004). The major host of Li in mantle rocks is, therefore, olivine independent of pressure480

and the degree of melt extraction. Ytterbium, in contrast, is most compatible in garnet and clinopyroxene481

(e.g, McDade et al., 2003). Its compatibility will, therefore, vary with the degree and depth of melting.482

MOR melting appears to produce a relatively constant Li/Yb in MORB, whereas ocean island basalts that483

show lower-degree melt extraction from garnet peridotites show a more compatible behaviour of Yb and484

relatively constant Li/Dy instead (Ryan & Langmuir, 1987). Extraction of some magmas, such as the ocean485

island basalts, from the mantle may occur by smaller degrees of melting compared to a MOR scenario, with486

a contribution of melts that coexisted with garnet and, therefore, produced higher-Li/Yb melts. This may487

have contributed to the elevated Li/Yb = 8.2 of the continental crust. However, the major contribution to488

the Li enrichment of the continental crust probably occurred in geological processes that involve material489

transport by hydrous fluids, such as in subduction zones. Here, preferential extraction of Li from the slab490

results in very high Li/Yb of arc magmas (Ryan & Langmuir, 1987).491

MORB is generated from the depleted mantle by partial melting, and the best estimate for [Li] in the492

depleted mantle may be determined through modelling of this partial melting process. The model employed493

here uses experimentally determined mineral/melt partition coefficients for Li and Yb, the established REE494

abundances for the depleted mantle (Salters & Stracke, 2004), and it is anchored on the relatively constant495

Li/Yb ratios of MORB. Little variability is seen among the large set of MORB analyses now available,496

with an estimated Li/Yb = 1.64 for our samples. This value is close to previous estimates of 1.7 (Ryan &497

Langmuir, 1987), 1.75 (Salters & Stracke, 2004), and 1.79 (Gale et al., 2013).498

A number of studies have determined partition coefficients for lithium between peridotite minerals or499
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phenocrysts and basaltic melt (summarised in Tomascak et al., 2016a). These partition coefficients (i.e.,500

c(Li)mineral/c(Li)melt) range widely from 0.01− 1 for olivine, clinopyroxene, orthopyroxene and plagio-501

clase, depending on temperature, mineral and melt composition and other parameters. However, studies502

that investigated all three major mantle minerals consistently found the highest Li partition coefficients for503

olivine, followed by clinopyroxene and orthopyroxene (Brenan et al., 1998; McDade et al., 2003; Ottolini504

et al., 2009, see Supplement). A simple model is employed here to provide an estimate of the effects of505

peridotite partial melting and fractional crystallisation of basaltic melt on Li abundances and Li isotopic506

composition.507

Low-pressure partial melting of depleted spinel peridotite was modelled to estimate the abundances of508

Li (and B) in the depleted mantle, using batch melting models and Rayleigh fractional melting with ac-509

cumulation of the extracted melt batches (see Supplement). Published experimental mineral-melt partition510

coefficients are used (listed in Supplement) together with the REE contents (Yb and Pr) of the depleted511

mantle from Salters & Stracke (2004), which serve as the initial composition of the mantle source prior to512

melting. Lithium and B contents of the initial mantle composition (= depleted mantle) are adjusted such513

that the Li/Yb and B/Pr ratios of the resulting melts generated by approximately 2 to 20% partial melting514

are close to the target values of Li/Yb = 1.64± 0.30 and B/Pr = 0.57± 0.09 (Fig. 8; see Supplement for515

details). Batch and Rayleigh models both require that the Li abundance of the MORB-source mantle is516

[Li] = 1.20±0.10µg/g and [B] = 0.077±0.010µg/g (Fig. 8). This estimate does not rely on the assump-517

tion of similar compatibility of light elements and REE nor on unfractionated element ratios during mantle518

melting; in fact, it rejects this notion and is instead based on non-modal melting models and experimentally519

determined partition coefficients, which contrast strongly between Li and Yb and between B and Pr among520

the major mantle phases (see Supplement). We, therefore, argue against the depleted mantle [Li] value521

proposed by Salters & Stracke (2004) and suggest the new estimate of [Li] = 1.20±0.10µg/g determined522

through partial melting models.523

The Li abundances predicted for highly depleted mantle after extraction of 2 to 20% MORB ranges from524

1.1 to 0.7µg/g depending on model and degree of melting. The Li/Yb ratio of the mantle residues range525

from 3.2 to 9.1, and increase with the degree of melt depletion. This is consistent with the record of Li/Yb526

in unmetasomatised mantle rocks (see Supplement), and it is approximately twice to five times as high as527

the ratio observed in MORB.528

5.2 Abundance of Li in the primitive mantle529

Estimates of element abundances in the bulk silicate earth (BSE; =primitive mantle) are generally based530

on four different approaches: (1) through a crust–mantle mass balance calculation, (2) through a cosmo-531

chemical approach, (3) through direct analyses of mantle rocks, and (4) by using trace-element ratios in532

mantle-derived basalts and elements of similar compatibility with well-established mantle abundances.533

Here, we estimate the Li abundance in the BSE through mass balance of all the components of the mantle,534

crust and hydrosphere. Uncertainties in this method arise mainly from uncertainties in abundances in the535

individual components and in the possibility of unaccounted (hidden) reservoirs. In a simple model, we use536

the abundances of Li in the continental crust (18µg/g; Rudnick & Gao, 2003; Teng et al., 2008), oceanic537

crust (4µg/g; Ryan & Langmuir, 1987), altered oceanic crust (7.6µg/g; Chan et al., 1992), pelagic sedi-538

ments (50µg/g; Bouman et al., 2004), seawater (0.18µg/g; Broecker & Peng, 1982; Jeffcoate et al., 2004),539

and the depleted mantle (1.2µg/g; this study, see above). In addition, a portion of ancient subducted altered540

oceanic crust is required to balance the Earth’s Li isotope budget (see below). The mass proportions for541

most reservoirs are well constrained, with the exceptions of the ancient subducted crust and the portion of542

mantle that is depleted. The Li abundance for the MORB-source mantle can be estimated with reasonable543

uncertainty, but no agreement exists on what proportion of the mantle shows a level of trace-element deple-544

tion similar to this MORB source. The crust is thought to represent the material extracted from the depleted545

mantle, and reintegration of these complimentary reservoirs will result in the composition of the BSE (Hof-546

mann, 1988). Estimates for the mass fraction of the mantle that is depleted range from 0.27 (Chaussidon547
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& Jambon, 1994) to 0.62 (Yanagi, 2011) to 1 (Hofmann, 1997), representing depletion of only the upper548

mantle, upper mantle and half of the lower mantle, or of the entire mantle, respectively. These three propor-549

tions of mantle depletion lead to estimates for Li abundances of the BSE (or primitive mantle) of 1.62, 1.39550

and 1.32µg/g, respectively. Values exceeding 2µg/g could only be reached by assuming unrealistically551

high abundances in the bulk continental crust (> 40µg/g), or through further unaccounted reservoirs with552

very-high Li concentrations.553

Our preferred estimate for the primitive mantle is [Li] = 1.39±0.10µg/g, which is derived from mass554

balance assuming extraction of the crust from depletion of 62% of the mantle, i.e. the depletion proportion555

of Yanagi (2011). We recommend that these values for the depleted mantle ([Li] = 1.20±0.10µg/g) and556

primitive mantle ([Li] = 1.39±0.10µg/g) should be used in the geochemical reference frame (Table 4).557

The cosmochemical approach derives the BSE Li abundances from the moderately volatile character of558

Li during condensation of the solar nebular. The primitive-mantle abundances of the moderately volatile,559

lithophile elements (e.g., alkali metals, Zn) relative to their abundances in CI chondrites show an exponential560

correlation to their 50% condensation temperature, T50 (e.g., McDonough & Sun, 1995). The abundances561

of the moderately volatile elements (Mn, K, Na, Rb, Cs, Zn), Mg and Si in CI chondrites and the primitive562

mantle relative to Mg (Palme & O’Neill, 2003) and their T50 values (Lodders, 2003) define a calibration line,563

which can be used to estimate the primitive-mantle abundance of the moderately volatile Li from its T50 and564

its abundance in CI chondrites. This method has large uncertainties that stem from the scatter of the elements565

along the calibration line, and from uncertainties in the CI abundance and the T50 of Li (e.g., Wasson, 1985;566

Lodders, 2003). Lithium abundances in CI chondrites have been estimated between 1.45 and 1.57µg/g567

(e.g., Palme, 1988; Wasson & Kallemeyn, 1988; Anders & Grevesse, 1989; Palme & Jones, 2003). Recent568

analyses of the Orgueil CI chondrite have revealed Li abundances that are generally consistent with these569

estimates (1.2−1.6µg/g; James & Palmer, 2000; Seitz et al., 2007; Pogge von Strandmann et al., 2011). We570

use a value of [Li] = 1.49µg/g here (Palme & Jones, 2003). The T50 of Li has been estimated to 1142K (at571

10Pa) assuming that it substituted for Mg in olivine and pyroxene during condensation of the solar nebular572

(Lodders, 2003). A primitive-mantle abundance of 1.27µg/g would be consistent with this condensation573

temperature. Our preferred primitive mantle value of [Li] = 1.39µg/g converts to a depletion factor of 0.40574

relative to Mg and CI chondrites. The T50 consistent with this Li abundance would be 1145±15K, which575

is indistinguishable from the independent volatility estimate of 1142K listed by Lodders (2003).576

Jagoutz et al. (1979) analysed six peridotite xenoliths from kimberlites and alkali basalts and used them577

to derive abundances of major and trace elements for the primitive mantle by extrapolating Mg/Si and Al/Si578

ratios to their intersection with the cosmochemical fractionation line. However, this method does not work579

well for Li, as Li abundances vary from 1.20−2.07µg/g among the six samples, but do not correlate with580

any of the partial melting indicators, such as Ca, Al or Cr content or Mg number. Jagoutz et al. (1979)581

tentatively used the Li concentration of their San Carlos peridotite sample (2.07µg/g) as their estimate for582

the primitive mantle. This would result in a relatively high Li/Yb of 4.9 for the primitive mantle.583

The abundance of Li given by McDonough & Sun (1995) for the primitive mantle is 1.6µg/g based on584

the range of Li abundances in the six samples of Jagoutz et al. (1979). However, it is a ’preferred value’ that585

represents neither the mean (1.52µg/g) nor the median (1.48µg/g), and it is lower than the value preferred586

by the authors of the original work. McDonough & Sun (1995) argue for Li partitioning behaviour similar587

to the heavy REE during melt extraction from the mantle following Ryan & Langmuir (1987), but their [Li]588

and [Yb] estimates result in a Li/Yb of 3.6 for the primitive mantle, which is approximately twice as high589

as the MORB value.590

More recently, the detailed investigation of Li abundances and distribution in mantle xenoliths, as well591

as Li isotope studies on these rocks have revealed a complex behaviour of Li at high temperatures and592

during eruption and cooling (e.g., Nishio et al., 2004; Rudnick & Ionov, 2007; Magna et al., 2008; Ionov593

& Seitz, 2008; Aulbach et al., 2008; Aulbach & Rudnick, 2009; Pogge von Strandmann et al., 2011). It is594

now clear that the high diffusivity of Li and its mobility in fluids and melts commonly lead to enrichment595

or depletion of Li in bulk xenoliths, individual minerals or zones and domains of minerals in the xenoliths596
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without necessarily affecting the abundance of major elements or the REE (e.g., Seitz et al., 2004; Wagner597

& Deloule, 2007; Rudnick & Ionov, 2007; Pogge von Strandmann et al., 2011). In particular, the xenoliths598

from San Carlos (Arizona), from which sample SC1 was taken by Jagoutz et al. (1979) to best represent the599

Li content of the primitive mantle, show extreme disturbance in Li isotopes together with Li intra-mineral600

zonation and disequilibrium inter-mineral partitioning (Jeffcoate et al., 2007). Sample SC1 itself has an601

unusual Li isotopic composition (see Supplement; Seitz et al., 2004). These observations suggest that Li is602

influenced strongly by metasomatic effects in these xenoliths, including an influence of the host magma on603

Li abundances and distribution. Thus, they discredit most kimberlite and alkali-basalt hosted xenoliths as604

providers of useful information on the Li abundance in the primitive or depleted mantle. A more detailed605

summary of Li abundances in mantle rocks is given in the Supplement.606

Li/Yb ratios of 1.6− 2.0 applied to the primitive mantle in combination with the established Yb abun-607

dances would result in a very low estimate of [Li] = 0.7−0.9µg/g for the primitive mantle, and the as-608

sumption of constant Li/Yb ratios during mantle melting has to be rejected, as discussed above. For mass609

balance reasons, the high Li/Yb of the continental crust compared to the depleted mantle requires that the610

primitive mantle had a higher Li/Yb than the depleted mantle has today, and the depleted mantle has a much611

higher Li/Yb (≈ 3.0) than MORB, as discussed above.612

5.3 Boron compatibility during MORB generation613

The compatibility of boron during mantle melting and crystallisation of basaltic magmas relative to other614

trace elements has been discussed previously, but the historic development of analytical capabilities has615

to be kept in mind when evaluating data from studies that were conducted several decades ago. Earlier616

workers had no access to in-situ analyses of REE and many other trace elements in small glass samples.617

K2O analyses by EPMA were afflicted with larger uncertainties, and boron analyses suffered from relatively618

large analytical blank contributions, in particular for data from depleted MORB samples. Evaluation of the619

relative compatibility of B and other incompatible elements at today’s level of precision and accuracy were,620

therefore, not accessible in the early 1990s.621

Most previous studies have employed a ratio of B/K = 0.0010 to estimate the B abundances of the de-622

pleted and primitive mantle based on the better established K contents of these reservoirs. It was initially as-623

sumed that B/K is not fractionated during peridotite partial melting and fractional crystallisation of basalts,624

and that the MORB-source mantle (=depleted mantle) and the primitive mantle all had B/K = 0.0010 (Ryan625

& Langmuir, 1993; Chaussidon & Jambon, 1994). The use of this ratio was proposed by Ryan & Langmuir626

(1993) and Chaussidon & Jambon (1994), who found that B/K in N-MORB (MORB with (La/Sm)N < 1)627

ranged from 0.0005 to 0.0018 with averages estimated by the two studies of 0.0008 and 0.0012, respectively.628

Yet they also found significantly lower values in enriched-type MORB and ocean-island basalts.629

Salters & Stracke (2004) estimated [B] of depleted-MORB mantle (DMM) from B/K = 0.0010, resulting630

in a DMM abundance of [B] = 0.060µg/g. Ryan & Langmuir (1993) estimated [B] = 0.085−0.170µg/g631

for the deleted mantle using models of partial melting and their MORB boron data in comparison with the632

more incompatible Ba. Chaussidon & Marty (1995) estimated very low depleted mantle abundances of633

[B] = 0.010−0.015µg/g from crust–mantle mass balance, assuming that their estimate for the ocean island634

basalt source ([B] = 0.090−0.110µg/g) represented primitive mantle abundances and that a fraction of635

0.27 of the mantle was depleted to form the continental crust.636

Trace-element ratios in MORB may be influenced by variable abundances of the elements in the mantle637

source, by fractionation during partial melting due to contrasting compatibilities, and by fractionation during638

magma differentiation, again due to contrasting partition behaviour of the trace elements. Fractionation639

during magma differentiation can be monitored by investigating sets of samples that show ranges of Mg/Fe640

ratios. Our low-Cl/K sample sets from the SWIR 57◦E, the MAR 26◦S and from the EPR 9.5◦N all show641

ranges of Mg numbers of approximately ten units and can thus be used to monitor the evolution of trace-642

element ratios as a result of magma differentiation. B/Ce and B/Pr ratios are both constant, and B/K shows643

only small variation within these individual sample sets (see Fig. 3e,h; Supplement). This demonstrates644
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that these trace-element ratios are not fractionated during MORB differentiation, at least for magmas with645

Mg#≥ 48. Hence, variations in B/K as observed among the set of global MORB has to be a result of B/K646

fractionation during the partial melting event that produced these basalts, or has to reflect heterogeneities in647

B/K among the various mantle sources, or both.648

Variations in B/K in our set of MORB glasses arise from the large differences in K together with other649

highly-incompatible element abundances (e.g., Ba, Nb, U) that characterise the different MORB types,650

which contrasts with their relatively small variation in B concentrations. No variability exists in B/Ce and651

B/Pr, which are constant among all low-Cl/K samples from all investigated localities.652

Our data set shows a systematic variation of B/K with (La/Sm)N in global MORB, ranging from B/K =653

0.0020 in N-MORB with (La/Sm)N = 0.3−0.5 to B/K = 0.0004 in E-MORB with (La/Sm)N = 1.8. The654

array of La/Sm in the global MORB array arguably reflects variable degrees of depletion in the mantle655

sources of these basalts, with high La/Sm in the mantle source of enriched MORB and low La/Sm in the656

depleted MORB mantle. The negative correlation of B/K with La/Sm, therefore, shows that variations657

in B/K (and B/Nb) in the global MORB array also reflect variability of B/K (and B/Nb) in the mantle.658

These mantle heterogeneities could reflect the addition of recycled materials to the enriched mantle source.659

However, this would require addition of materials that were enriched in K and all other highly incompatible660

trace elements, but depleted in boron, so that melt generated from these enriched domains would show661

anomalously low B/K (and B/Nb, etc.). Also, at the same time the global set of samples shows near-662

constant B/Pr (and B/Ce), which is very difficult to reconcile with a disturbance of trace-element ratios by663

recycling processes. It is, hence, more likely that the heterogeneities reflect ancient melt extraction and melt664

impregnation processes in the depleted and enriched mantle sources, respectively, rather than enrichment665

through recycling of fractionated material. The observed global variability in B/K and the lack of variability666

in B/LREE is thus best explained by a much higher incompatibility of K (and Nb) compared to B during667

partial melting in the upper mantle, and similar compatibility of B and Pr (or Ce) in the same process.668

The evaluation of element compatibility from global MORB trends is, nonetheless, afflicted with uncer-669

tainties, because variations in element abundance ratios among mantle domains may be caused by processes670

other than melt extraction or impregnation. It would, therefore, be ideal to focus the evaluation only on melts671

extracted from a single mantle domain with a homogeneous composition. In such an ideal case, variations672

in trace-element contents would strictly reflect the degree of partial melting, and trace-element ratios would673

be governed by relative peridotite–melt partitioning. Initially, models of such “cogenetic MORB melting674

suites” were thought to be represented by high-Mg samples from individual mid-ocean ridge segments that675

show little variation in their radiogenic isotope compositions (e.g., Ryan & Langmuir, 1993). Today, mod-676

els of magma transport and storage at mid-ocean ridges include a multitude of interaction processes, such677

as porous melt flow, replenishment and tapping, diffusional exchange between phenocrysts and melt, and678

combined assimilation–fractional crystallisation (O’Neill & Jenner, 2012; Lissenberg et al., 2013; Coogan679

& O’Hara, 2015). These processes all lead to the fractionation of trace elements and of trace-element ra-680

tios that deviate from the simple-model predictions. The conclusions drawn from sets of MORB samples681

are, therefore, generalised and simplify the processes that may occur in nature, even if they are relatively682

undifferentiated and come from one ridge section. Nonetheless, the influence of processes other than man-683

tle melting that influence trace-element ratios is reduced, if only high-Mg samples from individual ridge684

sections are considered. Our sets of samples also include low-Cl/K Mg-rich glasses with Mg# ≥ 60 or685

MgO > 8wt% in three different ridge sections: two highly-depleted samples form the Siqueiros Transform686

Fault, a set of eight samples from the EPR 9−10◦N section, and a set of nine samples from the MAR 26◦S687

section. The Siqueiros samples are too few and the spread in trace-element contents in the EPR 9−10◦N688

is too restricted for a meaningful evaluation of geochemical trends from these sets. We, therefore, focus on689

the sample set of high-Mg, low-Cl/K samples from the MAR.690

The relative compatibility of boron during mantle melting can be established from plots showing the691

logarithm of [B] versus the logarithms of the abundances of other trace elements (Fig. 9), as has been692

established by Hémond et al. (2006) based on earlier work (e.g., Jochum et al., 1983; Niu & Batiza, 1997).693
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The slopes of the linear regression lines of the low-Cl/K, high-Mg samples from the MAR 26◦S (red lines694

in Fig. 9b,d) indicate that B is more compatible than K (slope < 1; Fig. 9b), but similar in compatibility to695

Ce, Pb, Pr, P, and Be (slopes ≈ 1; Fig. 9d,f; Supplement). The slope in log[B]–log[Nd] and log[B]–log[Sm]696

plots are significantly larger than 1, showing that B is more incompatible than Nd and Sm (Supplement).697

The slopes of a large range of trace elements can be used to place B on a multi-element plot (‘spidergram’;698

see Supplement), and the sample set investigated here shows that B compatibility is similar to the light REE699

(Ce, Pr) and to Pb, Be, and P (Fig. 9f). Interestingly, the selected MAR samples also show a relatively large700

scatter on the log[B]–log[K] plot (R2 = 0.36; Fig. 9b) and the log[B]–log[Nb] plot (R2 = 0.56; Supplement),701

whereas the linear correlations are well defined for log[B]–log[Pr] (R2 = 0.95; Fig. 9d) and log[B]–log[Ce]702

plot (R2 = 0.93; Supplement). A third observation concerns the relative variation among the three ridge703

sections with high-Mg samples: they show a large scatter for log[B]–log[K] and log[B]–log[Nb], but all fall704

on the same correlation line for log[B]–log[Pr] and log[B]–log[Ce] (Fig. 9b,d; Supplement). These three705

observations together show that (i) K and Nb are more incompatible than B during MORB melting, (ii)706

that B is similar in incompatibility to the light REE, Pb, P and Be, and (iii) that the mantle heterogeneities707

that exist among different ridge sections did not fractionate B from the light REE and are, thus, consistent708

with generation by melt extraction and impregnation events that followed the same partition behaviour than709

modern MORB melting.710

For the global data set, variations in trace-elements and trace-element ratios may arise for various reasons,711

such as fractional crystallisation, partial melting, and variations in element abundances in the mantle sources712

of the basalts. The high-Cl/K samples are excluded from the discussion, because their trace-element abun-713

dances are likely affected by assimilation of seawater-altered materials. Fractional crystallisation does not714

significantly fractionate incompatible trace elements from one another until high degrees of fractionation715

are reached, and it did not affect B/K nor B/Pr in our sample set, as discussed above. Low to moderate716

degrees of fractional crystallisation will mostly lead to a translation of data points towards the upper right717

corner of the Hémond diagrams, more or less parallel to the 1:1 line. It will, thus, lead to stronger apparent718

similarities in compatibility than would be reflected by partial melting alone. For mantle heterogeneities,719

the Hémond diagrams still accurately reflect relative element compatibilities, if the heterogeneities were720

caused by previous melt depletion, as argued above (see also discussion in Hémond et al., 2006). Only721

in cases where mantle heterogeneities were caused by a process other than melt extraction or melt infiltra-722

tion would the data points be scattered around the diagrams for such elements that were affected by that723

particular process. Hence, elements that show large scatter in concentration with random anomalies on724

multi-element plots (“spidergrams”; see Supplement) are not likely to accurately reflect compatibility dur-725

ing melting. Boron, Be, Li and the REE, however, are not outliers of this type. The light elements and726

the REE show very systematic patterns on all plots, supporting the idea that the Hémond plots accurately727

reflect the relative compatibility of boron and many other trace elements during mantle melting and MORB728

generation, even if the global data set is evaluated. The plots including the global data set show the same729

results as the plots for the high-Mg MAR 26◦S samples. The linear correlations are weak and show slopes730

< 1 for log[B]–log[K] and log[B]–log[Nb], but are strong and show slopes close to 1 for log[B]–log[Pr] and731

log[B]–log[Ce] (Fig. 9a,c; Supplement).732

We conclude that the compatibility of B is close to that of Ce, Pr, Pb, P and Be (see Supplement). It has733

previously been established that Be behaves similarly to the light REE and to Zr during MORB melting and734

fractional crystallisation (Ryan & Langmuir, 1988; Brenan et al., 1998; Ryan, 2002). Be/Nd and Be/Zr735

ratios have been reported to be nearly constant in mantle-derived magmatic rocks (Ryan & Langmuir, 1988;736

Ryan, 2002). The element ratios established from our dataset are B/Ce = 0.10±0.02, B/Pr = 0.57±0.09737

and B/Be = 2.0±0.4 for the mean and 2SD of the low-Cl/K (< 0.08) samples.738

Models that uphold the notion of a highly incompatible behaviour of B and constant B/K during partial739

melting would need to account for the formation of the systematic global MORB array with its negative740

correlation of B/K and La/Sm, and they would need to explain how ratios of B over allegedly more com-741

patible trace elements (e.g., B/Pr, B/Be, B/Pb) do not show any variability among the global MORB array.742
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The latter would require that relative partitioning of B and the other trace elements during MORB gener-743

ation would have to exactly compensate the pre-existing mantle heterogeneities in each and every locality744

investigated here. This would seem highly fortuitous and unlikely.745

5.4 Abundances of B in MORB and the depleted mantle746

The partial melting models applied here to determine the Li abundance of the depleted mantle (see above)747

are also applied to B, based on partition coefficients for boron between peridotite minerals and basaltic748

melt (e.g., Chaussidon & Libourel, 1993; Brenan et al., 1998; Ottolini et al., 2009, see Supplement). The749

B abundance for the depleted mantle is adjusted, such that the B/Pr ratios of the melts extracted from750

approximately 2 to 20% partial melting are close to the target values of B/Pr = 0.57± 0.09, as observed751

in MORB. For the same fraction of melting the melts show Li/Yb = 1.64±0.30, if the depleted-mantle Li752

content of 1.20µg/g is used (Fig. 8; Supplement). A boron abundance of 0.077±0.010µg/g is established753

here for the depleted mantle (Table 4; Fig. 8). This value is close to the estimate of 0.060µg/g given by754

Salters & Stracke (2004) and to the estimate of 0.063µg/g of Kamenetsky & Eggins (2012), but in contrast755

to these models, our estimate does not rely on the assumption of unfractionated trace-element ratios. Indeed,756

the B/Pr ratio of the mantle residues modelled here are very different from the values observed in MORB757

and range from 0.61 to 13 (see Supplement).758

The constant B/Pr of MORB allows us to provide B abundance estimates for existing MORB models.759

For example, [B] in the N-MORB model of Hofmann (1988) is computed here as 1.19µg/g, and the esti-760

mate for the average MORB of Gale et al. (2013) is set here to [B] = 1.28µg/g (Table 4) based on the Pr761

concentrations given in these models. These models comprise basalts that underwent a certain degree of762

fractional crystallisation and have higher B contents then many of our samples.763

5.5 Abundance of B in the primitive mantle764

Estimates of B abundances have been derived by the same methods as described for Li above. For the mass765

balance calculation we use the abundances of B in the continental crust (11µg/g; Taylor & McLennan,766

1995; Rudnick & Gao, 2003), oceanic crust (1µg/g; Ryan & Langmuir, 1993; Chaussidon & Jambon,767

1994), altered oceanic crust (26µg/g in the top 500m; Smith et al., 1995), pelagic sediments (53µg/g; You768

et al., 1995; Smith et al., 1995), seawater (4.4µg/g; Broecker & Peng, 1982; Spivack & Edmond, 1987),769

and the depleted mantle (0.077µg/g; this study, see above). Ancient subduction is assumed to not efficiently770

recycle boron into the mantle, and the B mass fraction of this component is small (see below). The mass771

fractions of depleted mantle of 0.27, 0.62 and 1 discussed above result in estimates for B abundances of the772

BSE (or primitive mantle) of 0.32, 0.19 and 0.15µg/g, respectively.773

The global MORB array depicted in Fig. 3f crosses the primitive mantle La/Sm value at B/K = 0.0006±774

0.0002. Boron is less incompatible than K, as established above, and partial melting will hence produce775

melts with lower B/K ratios compared to their mantle source. The global-MORB-array value of B/K at776

primitive-mantle La/Sm may thus be used in combination with the established K abundance of the primitive777

mantle (240µg/g; McDonough & Sun, 1995) to provide a minimum estimate for the B abundance of the778

primitive mantle of 0.14±0.05µg/g.779

Our preferred estimate for the primitive mantle is [B] = 0.19±0.02µg/g, which is derived from mass780

balance assuming extraction of the crust from depletion of the upper and part of the lower mantle, favour-781

ing the fraction of depleted mantle of Yanagi (2011). We recommend that these values for the depleted782

mantle ([B] = 0.077±0.010µg/g) and primitive mantle ([Li] = 0.19±0.02µg/g) should be used in the783

geochemical reference frame (Table 4).784

Boron, like Li, is a moderately volatile, lithophile element, and Cameron et al. (1973) completed ther-785

modynamic calculations on the main boron species that would condense in the solar nebular. Formation of786

these borides and borates result in a T50 of ∼ 750K (Cameron et al., 1973). The primitive-mantle abun-787

dance predicted for this temperature is [B] = 0.103µg/g from the calibration discussed above and a CI788

18



abundance of [B] = 0.690µg/g (estimate from Zhai & Shaw, 1994; Palme & Jones, 2003). However, higher789

condensation temperatures of 908−910K were estimated subsequently (Zhai, 1995; Lodders, 2003), which790

would be consistent with [B] = 0.207µg/g in the primitive mantle. Chaussidon & Robert (1995, 1997)791

stated that the concept of a single condensation temperature is not meaningful for B. They argue that B792

in chondrites presents a mix of isotopically heavy boron from pre-solar grains and isotopically light boron793

produced by spallation in the solar nebular (Chaussidon & Robert, 1995, 1997). In addition, estimates for794

the boron abundances in CI chondrites vary widely and range from 0.27 to 1.2µg/g (e.g., Palme, 1988;795

Wasson & Kallemeyn, 1988; Anders & Grevesse, 1989; Palme & Jones, 2003). We use a reference value of796

[B] = 0.69µg/g here (Palme & Jones, 2003).797

A primitive mantle value of [B] = 0.19±0.02µg/g as preferred here (Table 4) converts to a depletion798

factor of 0.12 relative to Mg and CI chondrites. The T50 for B consistent with this primitive-mantle abun-799

dance of B is 898±20K, which is indistinguishable from the independent volatility estimate of 908K listed800

by Lodders (2003).801

Higgins & Shaw (1984) estimated primitive mantle abundances of B by analyses of what were considered802

‘fertile’ peridotite samples. They used the same six samples from Jagoutz et al. (1979) described above and803

found abundances of [B] = 0.44−0.64µg/g, yet with no correlation to any chemical indicator of partial804

melting or fertility. Their primitive mantle value of [B] = 0.5µg/g would require a much more refractory805

character of B and would translate to a T50 of 1095K. Higgins & Shaw (1984) suggested that the bulk806

of the B may have condensed as a solid-solution component in major silicates, mostly anorthite, at high807

temperatures. However, this is unlikely given the incompatible behaviour and low abundance of B in the808

relevant silicates, and the hypothesis was dismissed by others (Chaussidon & Jambon, 1994). It seems809

likely that the abundances measured by Higgins & Shaw (1984) suffered from contamination in the lab,810

from B-rich secondary phases, or from metasomatic enrichment of boron in the samples.811

More recently, Menard et al. (2013) analysed a suite of mantle xenoliths (spinel and garnet lherzolites812

and harzburgites) and compared estimates of whole-rock boron abundances derived from analyses of the813

constituent minerals with measured bulk-rock concentrations. They found that the bulk-rock analyses typi-814

cally have 300−600% of the B estimated from the mineral content, and analyses of some samples showed815

extreme B enrichment (0.6−10µg/g) that far exceeded the mineral-based estimates and were discarded as816

not representative of abundances present in any mantle domain (Menard et al., 2013). The authors estimated817

primitive mantle abundances of B from the most fertile, least contaminated, least metasomatised xenoliths818

and derived two different estimates: based on the mean concentrations calculated from the mineral separates819

of three samples, a primitive mantle estimate of 0.14±0.05µg/g is given, whereas the measured whole-820

rock analyses of three samples resulted in an estimate of 0.26±0.04µg/g, which is favoured by the authors821

(Menard et al., 2013). In-situ measurements of B abundances in orogenic mantle peridotites by Ottolini822

et al. (2004) have revealed lower values for estimated whole-rock abundances and led to an estimate for the823

primitive mantle of [B] = 0.07−0.10µg/g by these authors.824

Primitive-mantle estimates for B based on canonical element ratios include those of Lyubetskaya & Kore-825

naga (2007), who averaged estimates from the ratios B/K = 0.0010 and B/Rb = 0.4, resulting in a primitive826

mantle abundance of [B] = 0.17µg/g. Palme & Jones (2003) estimated [B] = 0.260µg/g for the primitive827

mantle from B/K = 0.0010. McDonough & Sun (1995) pointed to the large variations in B/K observed828

among mantle-derived magmas and in estimates for the crust, and they tentatively estimated [B] = 0.30µg/g829

for the primitive mantle. Chaussidon & Marty (1995) estimated [B] = 0.090µg/g for the primitive mantle830

from B/K = 0.00024 in their ocean island basalt samples ([B] = 1.1µg/g) based on the idea that ocean831

island basalts would be sourced from an undepleted (primitive) source. Kamenetsky & Eggins (2012) es-832

tablished a B abundance of 0.12µg/g for the primitive mantle from constant B/Nd = 0.09 and the [Nd]833

estimate of 1.25µg/g of McDonough & Sun (1995). As discussed above, the assumption of constant B/K834

or B/Nd ratios among MORB and any mantle source does not appear robust, weakening the premise of all835

of these estimates. Instead, a primitive mantle value of [B] = 0.19±0.02µg/g is suggested here.836
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5.6 Lithium isotopic composition of MORB837

The Li isotopic composition of MORB was investigated by Tomascak et al. (2008), who also investigated838

samples from the EPR 9.5◦N section, in addition to samples from 15.5◦N on the EPR, from the MAR near839

the Azores hot-spot, and from the South-East Indian Ridge (SEIR). These authors found that the mean840

δ 7Li value for MORB was +3.4±1.4h (2σ ), but that measurable differences existed in their sample841

set between different localities. However, no global correlation was found between δ 7Li and radiogenic842

isotopes or trace-element indicators of mantle depletion. The results from this study confirm these findings,843

but at an improved analytical precision. Tomascak et al. (2008) presented data with a precision of ±1.1h844

(2σ ), whereas most of the data presented here have a precision of better than ±0.3h (Table 1).845

In contrast to the lack of global correlations between Li isotopic composition and other geochemical trac-846

ers, there exist certain correlations on the local scale that have also been observed in previous studies (Elliott847

et al., 2006; Tomascak et al., 2008). For example, Elliott et al. (2006) observed a correlation between the848

Li isotopic composition and Sr and Nd isotopic compositions and with La/Sm in the sample set collected at849

the EPR north of the Clipperton Fault Zone. Their set of samples was also investigated here, and the major-850

ity of their samples were re-analysed in order to check for possible effects of analysts and methods biases851

(see Supplement for details). Elliott et al. (2006) argued that the isotopically heavy Li was derived from852

a recycled mantle component that was ultimately generated in the mantle wedge of an ancient subduction853

zone. Tomascak et al. (2008) tentatively followed this interpretation for the samples from the EPR 15.5◦N854

section, whereas they argue for shallow assimilation of a seawater component for their EPR 9.5◦N samples.855

The distinction between these two contrasting processes – melting of ancient mantle heterogeneities856

vs. shallow contamination of the magma at the ridge – is important, but not easy to demonstrate. The857

best geochemical tools to distinguish these two possible processes may be chlorine contents and Nd and Pb858

isotopes. Chlorine abundances are elevated by assimilation of seawater, brines, or seawater-altered oceanic859

crust (Michael & Schilling, 1989; Michael & Cornell, 1998; le Roux et al., 2006; Kendrick et al., 2013).860

There may also be some Cl enrichment expected from recycled subduction-zone components, but not as861

severe as in an assimilation scenario beneath the ridge (Tomascak et al., 2008). Enrichments in radiogenic862

Sr may be expected from assimilation of seawater or altered oceanic crust, as well as from recycling of863

ancient subducted components, so that this parameter may not be diagnostic. The isotopic compositions864

of Nd and Pb, however, are not easily influenced by seawater alteration, and may thus be used to identify865

recycled materials or, more generally, heterogeneities in the mantle source of the MORB magmas.866

The correlations of δ 7Li with 87Sr/86Sr at the EPR 10−12◦N section observed by Elliott et al. (2006)867

was also observed here through repeat δ 7Li analyses of their samples. Yet, the correlation is weak (R2 =868

0.49), no significant correlations exist with Nd isotopes (R2 = 0.18) nor any systematic of the Pb isotope869

ratios. Moreover, the existing correlations are not defined by a continuous array, but by two more or less870

distinct sub-groups (Fig. 4): (1) three on-axis samples from 11.4◦N with high δ 7Li (+4.2 to +5.1h), high871

87Sr/86Sr (0.70266–0.70282), and lower 143Nd/144Nd (0.513053–0.513138), and (2) all other samples from872

this section including off-axis samples from 11.4◦N and on- and off-axis samples from 10.5◦N with low873

δ 7Li (+2.8 to +3.7h), low 87Sr/86Sr (0.70247–0.70255), and higher 143Nd/144Nd (0.513105–0.513180).874

The two groups overlap in their Nd and Pb isotope ratios, and the samples from this section are more875

differentiated than the other samples investigated here, with MgO contents of 3.90−7.49wt%. Cl contents876

are relatively high, and the highest Cl contents in excess of 1000µg/g are found in the on-axis samples877

at 11.4◦N that define the isotopically heavy-Li end of the correlations. This suggests that contamination878

of the EPR 11.4◦N lavas by a seawater component occurred at the ridge during the differentiation of these879

magmas. The only two samples from the EPR 10−12◦N section with MgO contents above 7wt% have low880

δ 7Li values (+2.8 and +3.2h).881

Heterogeneities perpendicular to the ridge represent different ages of on-axis volcanism, as well as882

younger off-axis volcanism. The latter shows more enriched-type mantle sources, but also higher propor-883

tions of assimilation, and it would take a more focused effort to investigate the Li and B isotope systematics884

of this particular section of ocean floor.885
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No correlation between Li isotopes and any radiogenic isotopes were observed for the MAR segment886

samples (Fig. 4a,b), and no such correlation was observed by Tomascak et al. (2008) in their sample sets887

from the MAR or from the SEIR. Our relatively large sample set from the EPR 9.5◦N section shows a large888

range in δ 7Li values (+2.9 to +4.7h), but again does not show any correlation of the Li isotopes and889

the radiogenic isotopes. The fact that correlations of Li isotopes and other geochemical parameters are only890

observed in some parts of the EPR, but are absent in most other places, and the fact that no global correlation891

exists, suggests that large-scale long-lived heterogeneities of the depleted mantle are probably not the cause892

of the observed variation in Li isotopes. Instead, Li isotopes seem to be decoupled from other elemental and893

isotopic tracers, and may, therefore, be related to processes operating beneath the ridge. These processes894

may include assimilation of seawater-altered materials that would lead to elevated δ 7Li values coupled895

with variable enrichments in Cl, high Cl/K, and elevated 87Sr/86Sr, depending on the amount and type of896

assimilated material (see below; Tomascak et al., 2008). Assimilation at the ridge was interpreted to be the897

cause of elevated δ 7Li values of some EPR 9.5◦N samples investigated by Tomascak et al. (2008), and is898

our preferred interpretation for the EPR 11.4◦N samples. There is no requirement to invoke the involvement899

of mantle heterogeneities, such as old recycled components, to explain the Li isotope data set from these900

sites. This conclusion is in contrast to the findings of Elliott et al. (2006), a study that was completed on a901

much smaller sample set.902

The indicators of combined assimilation and fractional crystallisation (high [Cl], low MgO), are strong903

in the EPR 11.4◦N samples. However, assimilation cannot explain the observed range of δ 7Li values in all904

samples investigated here. A group of samples from very recent lava flows (erupted between 1991 and 2002)905

from the EPR 9.5◦N section shows very high δ 7Li values (+3.9 to +4.7h), but low [Cl] (≤ 62µg/g), low906

87Sr/86Sr (0.70244–0.70250), and high MgO (7.9−8.9wt%). These features render it unlikely that these907

glasses were affected by assimilation–differentiation processes. Instead, it has to be considered that the908

mantle source of these lavas may be isotopically different in its Li isotopic composition, but without being909

distinct in its trace-element composition or radiogenic isotope composition. Two samples investigated from910

the same ridge section have much lower δ 7Li values (+2.9 and +3.0h), but overlap with the high-δ 7Li911

group in their radiogenic isotope ratios. These two samples are from slightly older lavas that erupted earlier912

in the twentieth century (Sims et al., 2002). This shows that Li isotopic heterogeneities at opposite ends of913

the total variation observed in the global MORB data set are preserved in lavas erupted at the same ridge914

section within a few decades from each other without any changes in other geochemical parameters.915

The above observations lead to the conclusion that some process must have generated diverse Li isotopic916

excursions in lavas extracted from a possibly homogenous mantle source without affecting their radiogenic917

or trace element compositions. Kinetic fractionation of Li isotopes during melt-rock interaction would be918

a possible process of this type (Lundstrom et al., 2005; Jeffcoate et al., 2007; Tomascak et al., 2008). It919

has been demonstrated in peridotite xenoliths and in orogenic peridotites that diffusive enrichment of Li920

in mantle rocks during interaction with basaltic melt has the capacity to strongly alter their Li isotopic921

composition and induce very low δ 7Li values in the peridotites (Lundstrom et al., 2005; Rudnick & Ionov,922

2007; Tang et al., 2007; Kaliwoda et al., 2008; Lai et al., 2015). The diffusive fractionation that leads to the923

enrichment of the peridotites in isotopically light Li correspondingly has to deplete the passing magmas in924

this component and consequently drive these magmas to higher δ 7Li values (see Supplement for details).925

This fractionation mechanism could be responsible for a shift of the erupted basalts to higher δ 7Li values926

(Supplement; Jeffcoate et al., 2007) that would not correlate with indicators of mantle source depletion or927

degree of melting. Kinetic Li isotope fractionation may also affect the magmas as they pass through the928

crust and during storage in the crustal magma lens; this is where Li could diffusively exchange with the host929

rock, leading to further isotopic excursions. The multistage interaction between magma and host rock and930

the complex mixing and replenishment processes now envisaged for mid-ocean ridge magma chambers and931

conduit systems (O’Neill & Jenner, 2012; Lissenberg et al., 2013; Coogan & O’Hara, 2015) provide a range932

of scenarios that would create Li chemical potential gradients in a number of ways and, hence, are expected933

to induce diffusional fractionation.934
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Tomascak et al. (2008) argued that the homogenisation of magmas in the plumbing system beneath the935

ridge would erase isotopic excursions produced by kinetic processes, and these authors, therefore, dismissed936

the possibility that the∼ 1.5h spread in δ 7Li values observed in lavas at the seafloor would be preserved if937

it was generated by diffusion processes during melt–rock interaction in the mantle. However, such isotopic938

excursions would only be levelled out and erased, if the different magma batches had excursions in opposite939

directions of the mean MORB value. Yet, in cases in which the rising magmas are too rich in Li to be in940

equilibrium with the surrounding mantle, all these magma batches would be diffusively driven towards high941

δ 7Li values, resulting in a high mean δ 7Li value that may be preserved in the erupted lavas. This signature942

could be further enhanced in the crustal magma lens, if more Li is diffusively lost to the host rock. The high943

δ 7Li values of the very recent EPR 9.5◦N lavas investigated here may be the result of such a process. They944

are not distinct in their radiogenic isotopic composition, their trace-element patterns, are not enriched in945

Cl, and they do not show elevated δ 11B values (see below). These features together argue against seawater946

assimilation and against geochemical heterogeneities in the mantle, leaving kinetic processes as the most947

likely cause of the high δ 7Li values in these samples.948

5.7 Assimilation and the boron isotopic composition of MORB949

The B isotopic composition of unaltered MORB glasses has been investigated in several studies starting950

with Spivack & Edmond (1987). These authors analysed two samples from the EPR resulting in a δ 11B951

of −3.0±2.0h. Ishikawa & Nakamura (1992) investigated a number of altered basaltic rocks from ODP952

Hole 504B (Galapagos Spreading Center). They extrapolated the alteration trend back to the least altered953

sample and argued that δ 11B =+0.2h was representative of fresh MORB.954

The largest number of samples of any previously published study have been investigated by Chaussidon955

& Jambon (1994), who analysed 17 MORB glasses from the EPR, MAR and the Red Sea and found δ 11B956

to range from −6.5 to −1.2h with a mean of −3.9±3.3h. These author observed a similar range of957

values in back-arc basin basalts and OIB. Based on a number of geochemical parameters, they argued that958

the range observed in the oceanic basalts did not reflect mantle source heterogeneities, but was due to the959

assimilation of seawater-altered materials by the magmas prior to eruption. Chaussidon & Jambon (1994)960

argued that δ 11B =−7.0±1.0h is most representative of the upper mantle. However, the authors discuss961

the possibility that the MORB-source mantle could contain recycled materials derived from subducted al-962

tered oceanic crust enriched in isotopically heavy boron, and that the higher δ 11B observed in MORB may963

be derived from this recycled component in the mantle. In a subsequent study, Chaussidon & Marty (1995)964

have argued that the primitive mantle and uncontaminated mantle-derived basalts really have a δ 11B value965

of −10±2h, and that higher values were generated by the assimilation of altered oceanic materials into966

the magma during ascent.967

Other studies with more restricted numbers of samples include Moriguti & Nakamura (1998) with two968

samples from ODP Hole 648B (MAR) with δ 11B = −5.3±0.2h, and le Roux et al. (2004) with four969

samples from the EPR resulting in δ 11B = −7.3±0.8h. Roy-Barman et al. (1998) investigated Os and970

B isotopes of six MORB glasses from the MAR, Central Indian Ridge and the EPR, and three OIB glasses971

from Lo’ihi. They showed that radiogenic Os is found in samples that also show isotopically heavy B, most972

likely introduced by assimilation of altered crust. Their two MORB samples with 187Os/188Os < 0.135 have973

a δ 11B value of −10.3±2.2h, which they take as representative of the uncontaminated mantle, following974

Chaussidon & Marty (1995).975

Any comparison of all these δ 11B values published by a number of authors from different laboratories976

and determined by various analytical techniques need to take the historic analytical limitations into account.977

Well-established silicate reference materials for B isotope analysis only became available relatively recently978

(e.g., Jochum et al., 2006), and analytical protocols have been improved over the past two decades (e.g.,979

Aggarwal et al., 2009; Foster et al., 2013; Marschall & Monteleone, 2015). Discrepancies at the level of980

5h or less among the different studies from the 1980s and 1990s cited above are not significant, given the981

level of accuracy, inter-laboratory comparability and lack of internationally distributed B isotope reference982
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materials. Nonetheless, these studies established that the δ 11B value of fresh, uncontaminated MORB had to983

be between−12 and 0h, most likely between−10 and−5h, and that assimilation of seawater or seawater-984

altered materials could explain elevated δ 11B values observed in some MORB samples (Chaussidon &985

Jambon, 1994; Roy-Barman et al., 1998).986

The availability of well-characterised international reference materials and the advancement in analyti-987

cal methods provides the tools to determine the B isotopic composition of MORB with a much improved988

accuracy and precision (see method section, and Marschall & Monteleone, 2015). The data presented here989

will, therefore, be used to discuss the influence of crustal assimilation and fractional crystallisation on the B990

isotopic composition of MORB, and to deduct an accurate δ 11B value for uncontaminated MORB.991

The lack of a global correlation between B isotopes and any trace element or radiogenic isotope composi-992

tions, and the indistinguishable δ 11B value of all investigated ridge sections (low-Cl/K samples only) show993

that pristine MORB has a homogenous B isotopic composition. Mantle heterogeneities that were identi-994

fied through radiogenic isotopes and an enrichment in incompatible trace elements do not appear to possess995

anomalous B isotope compositions. The subset of samples from EPR 9.5◦N that show high δ 7Li values996

(+3.9 to +4.7h) do not have elevated δ 11B values (−6.8±0.9h); however, it should be noted that the997

analytical precision in this study is much better for Li isotopes (±0.3h) than for B isotopes (±2h), and998

that a possible excursion by approximately 1h, as seen in δ 7Li, may still go undetected in δ 11B.999

Boron diffuses slower than Li, and kinetic fractionation of boron isotopes by diffusion in melts (or fluids)1000

is insignificant (Chakraborty et al., 1993), in contrast to Li. However, B and B isotopes are very sensitive1001

to assimilation of seawater, brines, serpentinite, sediment, and low-T altered oceanic crust. All of these1002

components are highly enriched in B compared to pristine mantle-derived basalt, and they all show highly1003

elevated δ 11B values (Table 5). It has also been suggested that stoping in MOR magma chambers may lead1004

to the assimilation of brine-rich roof rocks (Michael & Schilling, 1989), which would lead to a combined1005

assimilation of brine and altered oceanic crust. High-temperature altered oceanic crust, although it also1006

shows elevated δ 11B values, is depleted in B relative to MORB (Ishikawa & Nakamura, 1992). The effects1007

of fractional crystallisation and of assimilation of various components on the Li and B isotopic composition1008

and the Li, B and Cl abundance of MORB is quantified here assuming bulk mixing (Fig. 10). Fractional1009

crystallisation has a negligible effect on the Li and B isotopic composition of the magma (Fig. 10), due to1010

the incompatible behaviour of both elements and the small isotope fractionation between solids and liquid1011

at magmatic temperatures (also see discussion below). In contrast, Li, B and Cl contents will increase with1012

fractional crystallisation (Fig. 10).1013

The geochemical effects of assimilation are displayed in Fig. 10 in comparison to the samples from the1014

EPR 10.5◦N and 11.4◦N section, which show the largest isotopic and elemental variability. Assimilation1015

of only 2−3% of either seawater, brine, serpentinite or low-T altered crust would be sufficient to produce1016

the observed elevation in δ 11B from the sample with the lowest Cl/K to the most Cl-rich sample with1017

the highest δ 11B value (Fig. 10a,c). In combination with some degree of fractional crystallisation (which1018

is evident in these samples from their low MgO content), this would also produce the range in Li and B1019

contents. However, the elevated Cl contents require assimilation of either seawater or brine in all samples1020

with elevated δ 11B (Fig. 10c). Elevated δ 7Li values are only expected from the assimilation of low-T altered1021

crust, since seawater, brine and serpentinites all have very low Li contents (Table 5; Fig. 10b,d). The model1022

results show that the 10.4◦N samples may have assimilated seawater or brine, leading to an enrichment in Cl1023

and isotopically heavy B without affecting their Li isotopic composition. The three samples collected from1024

the volcanic axis at 11.4◦N may have been affected by assimilation of low-T altered oceanic crust, leading1025

to an enrichment in Li, B and Cl and elevated δ 7Li and δ 11B values. Alternatively, the elevated δ 7Li in1026

these samples may have been produced independently from the B and Cl signatures, for example through1027

kinetic fractionation, as discussed above for the recent EPR 9.5◦N lavas.1028

Unravelling the effects of assimilation is a prerequisite for the determining the composition of the uncon-1029

taminated mantle. The composition of the uncontaminated mantle is required in order to identify contami-1030

nation signals, but the uncontaminated mantle value can only be determined, if the contamination trend can1031
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be identified and traced back to the composition of pristine MORB. This partially circular problem can only1032

be resolved by including additional tracers into the investigation, such as Li, B and Cl abundances and the1033

Li isotopic composition. Assimilation of seawater or brine leads to a strong increase in Cl abundances and1034

high Cl/K ratios in MORB glasses, even at very small amounts of assimilation (Fig. 10c). Consequently,1035

samples with elevated Cl/K are likely to have experienced brine or seawater assimilation and are excluded1036

from the set of samples used to determine the isotopic composition of pristine MORB.1037

Assimilation of small amounts of low-T altered oceanic crust is predicted to lead to a strong increase in1038

MORB δ 11B without significant changes in Cl contents (Fig. 10c). However, this type of contamination1039

would also lead to elevated δ 7Li values. Samples that show co-enrichment in isotopically heavy Li and1040

heavy B are, therefore, likely to have experienced assimilation of low-T altered oceanic crust (Fig. 10b).1041

This applies to the three samples from the EPR 11.4◦N discussed above and to one sample (ALV2351-002)1042

from the EPR 9−10◦N section (Fig. 5b).1043

Serpentinite assimilation would lead to a strong elevation of δ 11B values, but would be undetectable1044

through Li isotopes and through B, Li or Cl abundances, at least at small mass fractions of assimilation1045

(Fig. 10). However, serpentinite formation is not common in magmatic sections of fast-spreading ridges1046

away from transform faults. It is more abundant along slow-spreading ridges, where some of the spreading1047

is amagmatic and accommodated by normal faults or detachment faults. Consequently, serpentinite assim-1048

ilation would be expected for the samples from the MAR and SWIR, but not for the EPR, and a systematic1049

off-set of the MAR and SWIR samples to higher δ 11B values would be expected. This is not observed, as1050

low-Cl/K samples from all investigated ridge sections are indistinguishable in δ 11B (Fig. 7).1051

The assimilation hyperbolae displayed in Fig. 10 further highlight the difficulty in identifying the B1052

isotopic composition of uncontaminated MORB. Small amounts of assimilation at the level of 2% or less1053

are able to increase the δ 11B value of MORB magmas by several per mil. The correlation of δ 11B values1054

and Cl abundances, as well as elevated δ 11B in combination with elevated δ 7Li suggests that any samples1055

with δ 11B > −6h have been affected by assimilation and do not represent pristine mantle-derived melts.1056

The remaining samples reach values as low as −9.4h, but values at the low end of the range are rare and1057

only six low-Cl/K samples showed δ 11B <−8.5h. None of them were significantly below−8.5h within1058

their 2SE precision (Table 1).1059

The majority of low-Cl/K samples show δ 11B values between −8.5 and −6.0h with no significant1060

difference among the various investigated ridge sections, and without any correlation with Cl, Li or B1061

contents. Samples from diverse localities, such as the southern MAR, the SWIR and the various sections1062

of the EPR all show an indistinguishable distribution around the mean value of −7.1h (Fig. 11). These1063

observations taken together render it unlikely that pristine, uncontaminated MORB has a δ 11B lower than1064

−8h. For example, if pristine MORB had a δ 11B value of −10h, it would require that all analysed1065

low-Cl/K samples had assimilated the same amount of high-δ 11B material, i.e., approximately 2% low-T1066

altered oceanic crust or 0.1% serpentinite. Assimilation of identical amounts of serpentinite to each sample,1067

independent of spreading rate and magma supply rates is highly unlikely, as discussed above. Assimilation1068

of identical amounts of low-T altered crust would be fortuitous, but not impossible. However, it would1069

not just lead to enrichment in isotopically heavy B, but also to an enrichment in isotopically heavy Li1070

(Fig. 10b,d). The consequence of a pristine MORB δ 11B value of −10h would be that its δ 7Li value1071

would need to be between +2.5 and +2.8h, values that have not been observed in equilibrated peridotites1072

and are rarely observed in MORB glass, and which would be in contradiction to all published estimates of1073

the Li isotopic composition of the Earth’s mantle (Tomascak et al., 2016a). This possibility is, therefore,1074

also highly unlikely and is rejected here. Assimilation of seawater or brine can be excluded based on the1075

low Cl contents of the samples (Fig. 5c,d).1076

It is, therefore, concluded here that pristine MORB that has not experienced assimilation of seawater-1077

altered materials is homogenous in boron isotopes on the level of current analytical precision and accuracy,1078

and has a δ 11B of −7.1±0.9h (2SD; Table 3).1079
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5.8 The lithium and boron isotopic composition of the mantle1080

Basalts and basaltic glasses have been used in the past to unravel the B and Li isotopic composition of the1081

mantle (e.g., Chaussidon & Jambon, 1994; Tomascak et al., 2008). It is argued in these studies that the1082

isotope fractionation between rocks and silicate melt is negligible at the high temperatures at which basaltic1083

melts are generated in the mantle, and that the basalts, therefore, faithfully record the unfractionated isotopic1084

composition of their mantle sources.1085

The degree to which this assumption is justified can be estimated from equilibrium isotope fractionation1086

and element partition coefficients between basaltic liquid and the restitic peridotite. Isotope fractionation1087

factors for Li and B are not well constrained for magmatic processes (see supplement for discussion), but1088

based on the available data it can be estimated that MORB accurately reflects the δ 7Li (+3.5±1.0h) and1089

δ 11B (−7.1±0.9h) values of its mantle source within 0.4h (see Supplement).1090

Nevertheless, MORB is heterogeneous in radiogenic isotopes and trace elements with levels of depletion1091

that vary strongly among the global data set (e.g., Salters, 1996; O’Neill & Jenner, 2012; Gale et al., 2013).1092

Some of the MORB variability is generated during magmatic processes beneath the ridge, but some of it has1093

to reflect heterogeneity of the MORB-source mantle. It is still a matter of debate how much of the variation1094

in mantle composition is generated by melt fractionation processes within the mantle at various times in the1095

past, and how much is due to recycling of subducted materials into the upper mantle (e.g., Allègre et al.,1096

1984; Workman & Hart, 2005; Iwamori et al., 2010).1097

Boron isotope fractionation is unlikely to occur during internal differentiation processes within the man-1098

tle, as stated above (and discussed in the Supplement), so that any variations in the mantle would be strong1099

evidence for input of surface materials into the mantle, most likely by ancient subduction. It could, therefore,1100

be hypothesised that the depleted mantle as a whole has been slowly contaminated by subducted materials1101

over time, and that the δ 11B value derived here for the depleted mantle reflects an intermediate composition1102

between the primitive mantle and the recycled material (Chaussidon & Marty, 1995). However, the homo-1103

geneity of the relatively large sample set presented here with a lack of correlation to established indicators1104

of mantle source enrichment and heterogeneity render this hypothesis highly unlikely. It would require that1105

boron was stirred into the entire upper mantle on a global scale to homogenise its isotopic composition,1106

but not its elemental abundance. This hypothetical homogenisation process also did not homogenise trace-1107

element abundances or radiogenic isotope ratios, which clearly show local, regional and global variation,1108

also apparent in the sample set studied here. The hypothesis that the primitive mantle had a lower δ 11B value1109

(e.g., −10h) than the depleted mantle and that the depleted mantle contains a certain portion of recycled1110

isotopically heavy boron is, therefore, not supported. Consequently, the estimate for the δ 11B value of the1111

depleted mantle (−7.1±0.9h) is extended to the primitive mantle ignoring the small possible fractionation1112

effects of partial melting.1113

5.9 The global Li budget and the B isotopic composition of the continental crust1114

The mean Li and B isotopic compositions of the continental crust are important parameters in the global1115

budget of these elements, and have been discussed in a number of studies based on the analysis of crustal1116

materials that were thought to represent bulk crustal compositions or from which bulk crustal compositions1117

could be reconstructed. Estimates for the B isotopic composition of the bulk continental crust are δ 11B =1118

−8.8h based on a study on metamorphic and magmatic rocks from Argentina (Kasemann et al., 2000),1119

and between δ 11B = −13 and −8h based on a global collection of magmatic tourmalines (Chaussidon1120

& Albarède, 1992). Marschall & Ludwig (2006) also concluded that most tourmaline from granites and1121

pegmatites show δ 11B values of −10±3h, which may be taken as representative of average continental1122

crust. However, it should be noted that magmatic tourmaline is restricted to S-type granites and pegmatites1123

and sampling is, therefore, biased towards metasedimentary sources, which likely show a more extreme1124

influence of weathering than the bulk crust. Weathering preferentially removes the heavy isotopes from the1125

continents, which should lead to sub-mantle δ 11B value of the evolved continental crust consistent with the1126

25



enrichment of isotopically heavy B in rivers and seawater (Lemarchand et al., 2000, 2002). However, the1127

majority of subduction-zone magmas show elevated δ 11B values consistent with a preceding removal of1128

isotopically heavy B from the subducting slab (e.g., Rosner et al., 2003; Marschall et al., 2007a; Ryan &1129

Chauvel, 2014). Subduction-zone volcanism related to apparently deeper inputs from the slab show lower1130

B concentrations and lower δ 11B values consistent with an earlier preferential release of isotopically heavy1131

boron from the slab (Ishikawa & Nakamura, 1994; Ryan & Chauvel, 2014). Deeply subducted slabs may1132

thus be similar or even lower in δ 11B than unmodified mantle, and are likely to have similarly low B contents1133

as the mantle. Newly added continental crust produced at convergent plate margins may have a mean δ 11B1134

value higher than the depleted mantle from the input of high-δ 11B magmas.1135

The investigation of the Li isotopic composition of the continental crust is more advanced than for B1136

isotopes, and studies on shales and loess, as well as granulite terrains, lower-crustal xenoliths, and granites1137

have been used to estimate the Li isotopic composition of the bulk continental crust to δ 7Li = +1.2h1138

and +1.7h (Teng et al., 2004, 2008, 2009; Sauzéat et al., 2015). It should be noted, however, that the1139

granulite, granite and xenolith data cover a wide range in δ 7Li from approximately −18 to +16h (Teng1140

et al., 2008, 2009; Magna et al., 2010). This renders it difficult to provide a precise average Li isotopic1141

composition of the middle and lower crust, whereas the average of the upper continental crust is probably1142

well represented by shale and loess. Nonetheless, the bulk continental crust can be expected to have a1143

δ 7Li lower than the mantle, as isotopically heavy Li is preferentially removed during weathering, leading to1144

low-δ 7Li weathering residues and high-δ 7Li rivers (e.g., Huh et al., 2001; Rudnick et al., 2004; Pogge von1145

Strandmann et al., 2006, 2012; Vigier et al., 2008, 2009; Liu et al., 2013, 2015). Subduction-related magmas1146

do not show strong Li isotopic deviations from MORB (see Tomascak et al., 2016b) and it can, therefore, be1147

assumed that continental crust newly formed at subduction zones has a δ 7Li value similar to that of MORB1148

and the depleted mantle.1149

Uncertainties with the method of determining the bulk composition of the continental crust from a collec-1150

tion of samples arise from the difficulty to select samples that are representative of the crust or of quantifiable1151

parts of it, and from the immense heterogeneity of this reservoir. An alternative way to determine the mean1152

composition of the continents is through mass balance. This requires that all other reservoirs are well defined1153

in terms of their elemental abundances and isotopic composition for the element of interest. The Li and B1154

abundances of the major mantle, crustal and surface reservoirs have been discussed above and are listed in1155

Table 6. The Li and B isotopic compositions of altered oceanic crust, pelagic sediment, and seawater have1156

been previously determined (see Table 6 for values and references), and the fresh oceanic crust is taken from1157

the mean MORB value established above.1158

A mass-balance based estimate for the Li isotopic composition of the continental crust based on these1159

reservoirs would be very close to that of MORB (+3.5h), if no ancient subducted altered oceanic crust is1160

invoked. This is in contrast to the low δ 7Li value estimated by Teng et al. (2008, 2009), and it is in conflict1161

with the effect that weathering has on the extraction of isotopically heavy Li from the continents (Huh et al.,1162

2001). Hence, the bulk continental crust most likely has a δ 7Li value lower than the mantle, and may be best1163

represented by the estimates of Teng et al. (2008, 2009), i.e., δ 7Li =+1.7h (Table 6). The mass fraction of1164

the isotopically heavy-Li reservoirs that counter-balance the isotopically light crust (and marine sediments)1165

are seawater and altered oceanic crust, which together carry less than 0.1% of the total Li of the BSE. This1166

contrasts with 6.7% of the BSE lithium in the continental crust (Fig. 12). Hence, the presence of material1167

enriched in isotopically heavy Li is required to balance the 6Li-enriched surface reservoirs.1168

Subduction of oceanic crust is expected to introduce isotopically heavy Li into the mantle (Marschall1169

et al., 2007b). Ancient subducted altered oceanic crust could be stored in the deep mantle and could be1170

occasionally tapped by deep plumes that feed ocean island volcanism. High δ 7Li values in ocean island1171

basalts are correlated with radiogenic isotope indicators of deep recycling (e.g., Ryan & Kyle, 2004; Nishio1172

et al., 2005; Vlastélic et al., 2009; Chan et al., 2009; Krienitz et al., 2012); although near-surface processes,1173

such as assimilation and kinetic fractionation, may have a similar effect on OIB as they have on MORB,1174

which may complicate their interpretation. The size of this reservoir is estimated here by assuming Li abun-1175
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dances and isotopic composition of present-day average altered oceanic crust for the subducted component1176

(Table 6) and from the Li isotope mass balance required to balance the low-δ 7Li continental crust. A mass1177

fraction of 0.3% of the BSE of such a reservoir would balance the continental crust, containing ∼ 2% of1178

the total Li of the BSE (Fig. 12; Table 6). This mass is equivalent to 33 times the amount of altered oceanic1179

crust present on the surface today (Table 6). The current rate of subduction of oceanic crust is 60×1012 kg/a1180

(Peacock, 1990) and a constant portion of alteration of the upper 500m, as assumed for present-day oceanic1181

crust, requires 3.7 billion years of subduction to build up a reservoir of the size estimated here. Alternative to1182

a distinct reservoir, the subducted isotopically heavy Li may have been homogenised with the upper mantle1183

or with the bulk mantle. These scenarios would have led to an increase in the δ 7Li values of these reservoirs1184

by 0.22 and 0.13h, respectively, i.e., values that would not currently be detectable.1185

The mass balance budget is different for B, which shows much higher concentrations in seawater and1186

altered oceanic crust. Also, pelagic sediments are enriched in the heavy isotope compared to MORB, and1187

these three high-δ 11B reservoirs together contain approximately 4% of the B of the BSE (Table 6). The1188

continental crust is estimated to contain one third of the Earth’s boron, compared to only one quarter in the1189

depleted mantle (Fig. 12; Table 6). Hence, a large portion of B has been extracted from the mantle and has1190

been further fractionated among the surface reservoirs, with preferential enrichment of the lighter isotope1191

in the continental crust (Fig. 12). The B isotopic composition of the continental crust resulting from mass1192

balance is δ 11B =−9.1±2.4h. This estimate for the bulk continental crust agrees with previous estimates1193

(see above), but provides a more robust and precise assessment.1194

The isotopically light B in the continental crust is counter-balanced by isotopically heavy B in the marine1195

realm, with the mantle and the BSE showing intermediate values (Fig. 12; Table 6). No significant sub-1196

duction of B is required to balance the previously estimated composition of the continental crust. This is1197

consistent with estimates of the low efficiency of subduction to return B into the mantle: boron is largely1198

removed from the slab in the fore-arc during dehydration and returned to the overriding plate via fluids1199

and magmas, and only a small fraction is recycled into the deep mantle (Moran et al., 1992; Savov et al.,1200

2005; Marschall et al., 2007a). In addition, strong B isotope fractionation during dehydration is predicted1201

to lead to a loss of isotopically heavy B from the slab, which in turn approaches low δ 11B values close1202

to that of the normal mantle (Peacock & Hervig, 1999; Rosner et al., 2003; Marschall et al., 2007a; Ryan1203

& Chauvel, 2014). The mass balance calculation presented here, therefore, assumes low abundances of B1204

and a MORB-like B isotopic composition in the ancient subducted altered oceanic crust (Table 6) with no1205

influence on the continental crust δ 11B estimate (Fig. 12). Alternatively, much less B isotope fractionation1206

may be assumed during slab dehydration and B loss, and in an extreme case the deep subducted oceanic1207

crust may reflect the unfractionated B isotopic composition of the altered oceanic crust (δ 11B = +0.8h).1208

Still, the low B concentrations of the dehydrated slab will restrict the impact of this component on the mass1209

balance. The predicted δ 11B value of the continental crust would only be 0.5h lower than in the case of1210

dehydration fractionation discussed above. We thus consider our estimate of δ 11B = −9.1±2.4h for the1211

bulk continental crust reliable. However, if evidence for a large, B-rich anomalous-δ 11B reservoirs in the1212

mantle emerged in future studies, the continental crust estimate would have to be adjusted.1213

6 Conclusions1214

Lithium and B isotopic compositions of a selection of global MORB glass samples at improved precision and1215

accuracy compared to previously published data allowed estimates to be made for the Li and B abundances1216

of MORB, depleted and primitive mantle. Mass balance for the bulk silicate Earth was used to estimate the1217

B isotopic compositions of the continental crust and portions of Li and B in ancient subducted oceanic crust1218

that likely reside in the mantle. A number of conclusions are drawn:1219

1. The apparent incompatibility of B during mantle melting and basalt fractional crystallisation is lower1220

than that of K and Nb, and is similar to those of Ce, Pr, Pb, P, Be and Zr, with relatively constant1221
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B/Ce = 0.10± 0.02 and B/Pr = 0.57± 0.09 in MORB. However, the relative partitioning of B and1222

the LREE varies strongly with the modal composition of the mantle, and the constant B/LREE ratio1223

observed in MORB does not reflect the mantle ratio. The abundance of B in the primitive mantle is1224

estimated to be 0.19±0.02µg/g, and that of the depleted MORB-source mantle is estimated to be1225

0.077±0.010µg/g.1226

2. The Li/Yb ratio of the global MORB data set is relatively constant, but it does not reflect the Li/Yb1227

ratio of the primitive or depleted mantle. It is a result of moderate melt extraction and non-modal1228

melting (decrease of clinopyroxene) combined with the relative partitioning among different mantle1229

minerals and basaltic melt. The Li abundance of the depleted MORB-source mantle is estimated here1230

from melting models to be 1.20±0.10µg/g. Mass balance for the bulk silicate Earth leads to an1231

estimate for the abundance of Li in the primitive mantle of 1.39±0.10µg/g,1232

3. Pristine MORB that has not experienced assimilation of seawater-altered materials shows a resolvable1233

heterogeneity in lithium isotopes ranging from δ 7Li =+2.9±0.2h to +4.3±0.5h. This variation1234

does not correlate with radiogenic isotope or trace-element signatures and is most likely not related1235

to assimilation nor mantle heterogeneity. Instead, it may be caused by kinetic fractionation of Li1236

isotopes during melt transport and storage between the mantle and the surface.1237

4. Fractionated, low-MgO MORB glass samples with high δ 7Li > +4h, high Cl contents and high1238

87Sr/86Sr are unlikely to reflect Li isotope heterogeneities of their mantle source, but probably reflect1239

assimilation of low-T altered oceanic crust into the magma chamber beneath the ridge.1240

5. The B isotopic composition of MORB glass is highly sensitive to assimilation of low-T altered oceanic1241

crust, seawater, brine, and serpentinites, which increase the δ 11B value of MORB glass by several per1242

mil even at small (≤ 3%) fractions of assimilation. Values of δ 11B >−6h are interpreted to reflect1243

assimilation processes at the ridge. Boron isotopes could, therefore, be used in combination with Cl1244

contents in future studies to detect and quantify assimilation processes in MORB.1245

6. Pristine MORB that has not experienced assimilation of seawater-altered materials is homogenous in1246

boron isotopes on the level of current analytical precision and accuracy, and has a δ 11B of−7.1±0.9h1247

(2SD). No variation was detected between N-MORB and E-MORB, or as a function of degree of melt-1248

ing or spreading rate.1249

7. Lithium and B equilibrium isotope fractionation during partial melting is very small, and MORB glass1250

from uncontaminated magmas accurately reflect the Li and B isotopic compositions of their mantle1251

source within 0.4h. However, the effects of kinetic fractionation by diffusion possibly caused the1252

δ 7Li of some lavas to shift to higher values by approximately 1h.1253

8. The boron isotopic composition of the bulk continental crust is estimated based on global mass bal-1254

ance and is δ 11B = −9.1±2.4h. No reservoir is invoked in the mantle that contains isotopically1255

fractionated B significantly different from that of the ambient mantle. However, subducted material1256

with a fractionated B isotopic composition could exist in the mantle without significantly affecting the1257

mass balance estimate, as long as its B content is as low as predicted from subduction-zone studies.1258

9. The enrichment of isotopically light lithium in the continental crust is not balanced by the small1259

high-δ 7Li surface reservoirs, such as seawater and altered oceanic crust. The presence of isotopically1260

heavy lithium is, therefore, required in the mantle. Such a reservoir could have formed between the1261

Archaean and the present at the current rate of subduction of altered oceanic crust. It may be present in1262

distinct domains to be tapped by ocean island volcanism, or it may have been homogeneously stirred1263

into the mantle. In the latter case it would have changed the isotopic composition of the bulk mantle1264

by an amount that would not currently be measurable.1265
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Uncertainties in the conclusions presented here arise from the still limited number of investigated sam-1266

ples. Future studies should apply the analytical methods available now to larger sets of MORB glasses to1267

study local variations as a function of differentiation and other magma chamber processes, and to study1268

global variations in more detail with relations to plume activity, spreading rate or ridge depth, for example.1269

Experimental studies should focus on the determination of Li and B equilibrium stable isotope fractionation1270

at magmatic temperatures. These data are needed to better quantify the isotope fractionation during mantle1271

partial melting. Diffusion modelling may be employed in melt extraction, transport, and storage models to1272

investigate the effects of Li isotope kinetic fractionation in more detail.1273

The estimates for Li and B abundances and isotopic compositions of the primitive and depleted mantle1274

presented in this study can be used to detect anomalies in ocean island basalts and island-arc basalts to detect1275

and quantify recycled materials in the mantle source of these rocks and, therefore, provide evidence for deep1276

recycling and the path ways of long-term mantle convection.1277
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localities. The red dots and field show the slopes an uncertainties for the high-Mg, low-Cl/K samples from the MAR 26◦S section.
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Table 3 Data summary

Locality [B] B/Pr B/Be [Li] Li/Yb (La/Sm)N δ 11B δ 7Li n Spreading rate
(µg/g) (µg/g) (h) (h) mm/a

East Pacific Rise; 10.5◦N and 11.4◦N
All samples 1.4 (8) 0.45 1.77 8.4 (41) 1.90 0.88 -5.6 (37) 3.3 (14) 11 104
Cl/K < 0.08 only 0.96 (3) 0.49 1.75 6.3 (3) 2.08 0.91 -7.0 (34) 3.2 (1) 1

East Pacific Rise; 9◦N–10◦N
All samples 0.9 (2) 0.56 1.91 4.5 (8) 1.56 0.64 -6.3 (30) 4.2 (12) 18 112
Cl/K < 0.08 only 0.8 (2) 0.55 1.91 4.5 (8) 1.57 0.64 -7.8 (31) 4.2 (12) 15
Cl/K < 0.08; >1980 0.9 (3) 0.55 1.94 4.7 (13) 1.48 0.65 -7.7 (14) 2.9 (2) 4
Cl/K < 0.08; <1980 0.8 (2) 0.56 1.89 4.4 (5) 1.60 0.64 -7.8 (36) 4.3 (5) 11

East Pacific Rise; Siqueiros Fracture Zone, depleted MORB
All samples 0.41 (3) 0.56 2.02 3.8 (2) 1.85 0.31 -7.2 (24) 3.0 (8) 3
Cl/K < 0.08 only 0.41 (4) 0.57 1.95 3.8 (2) 1.89 0.31 -7.0 (34) 3.0 (10) 2

East Pacific Rise; Siqueiros Fracture Zone, enriched MORB (Cl/K < 0.08)
Enriched MORB 2.24 (0) 0.51 1.81 6.5 (1) 2.02 1.8 -6.6 (16) 3.7 (2) 1

Kolbeinsey Ridge; 67◦N (all have Cl/K > 0.08)
All samples 0.6 (4) 0.86 2.63 3.9 (22) 1.53 0.51 -4.0 (47) 3.1 (1) 2 20

Mid-Atlantic Ridge; 26◦S (all have Cl/K < 0.08)
All samples 0.9 (3) 0.57 1.96 4.7 (10) 1.62 0.55 -7.0 (25) 3.6 (9) 16 26

South-West Indian Ridge; 57◦E (all have Cl/K < 0.08)
All samples 2.1 (8) 0.67 2.19 6.8 (18) 1.62 0.79 -7.6 (15) n.a. 5 13-16

Global sample set
All samples 1.1 (10) 0.56 1.95 5.5 (38) 1.67 0.7 -6.4 (32) 3.5 (12) 56
Cl/K < 0.08 only 1.0 (11) 0.57 1.96 4.9 (20) 1.64 0.6 -7.4 (26) 3.6 (12) 40
Cl/K < 0.025 only 1.3 (15) 0.61 2.02 5.4 (27) 1.66 0.6 -7.6 (25) 3.5 (9) 13

Average of localities
All samples 1.2 (14) 0.60 2.04 5.5 (35) 1.73 0.8 -6.3 (24) 3.5 (9)
Cl/K < 0.08 only 1.2 (15) 0.56 1.93 5.4 (25) 1.80 0.8 -7.1 (9) 3.5 (9)

Data summary showing mean values for each ridge segment investigated here, mean values for the full global sample set, and values
for the average of all investigated localities. For each category, we list mean values of all samples and for the subset of samples
with low Cl/K. Numbers in parentheses give 2SD uncertainties at the last digit.

Table 4 Lithium and boron abundances in MORB and mantle

Geochemical [Li] [B] comment
reservoir (µg/g) (µg/g)

primitive mantle 1.39 (10) 0.19 (2) mass balance estimates
0.75 0.15 calculated from constant ratios with Pr and Yb from McDonough & Sun (1995)

depleted mantle 1.20 (10) 0.077 (10) batch and fractional melting models
0.62 0.061 calculated from constant ratios with Pr and Yb from Workman & Hart (2005)

N-MORB 6.63 1.19 calculated from constant ratios with Pr and Yb from Hofmann (1988)
6.17 1.28 calculated from constant ratios with Pr and Yb from Gale et al. (2013)

Batch and fractional melting models were calculated using experimentally determined partition coefficients and MORB trace ele-
ment ratios (see Supplement for details). Employed ratios for MORB are: Li/Yb = 1.7, and B/Pr = 0.573. Preferred values are
printed in bold font. Numbers in parentheses give 2SD uncertainties at the last digit.
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Table 5 Parameters and composition of assimilated materials used for geochemical modelling of assimilation

[B] δ 11B [Li] δ 7Li [Cl] data
(µg/g) (h) (µg/g) h (µg/g) source

pristine melt 0.96 -7.04 6.27 +3.18 86 [1]
low-T AOC 26 +0.8 27 +20 1000 [2]
high-T AOC 0.3 +0.5 3.0 +2.0 200 [3]
serpentinite 60 +35 0.10 -5.0 1000 [4]
seawater 4.4 +39.61 0.18 +30.8 19350 [5]
brine (15% NaCl) 20.2 +12.5 0.15 +15 91000 [6]

[1] the composition of sample PH94-1 was used for the uncontaminated MORB initial composition; [2] data from Smith et al.
(1995), Chan et al. (2002), and Tomascak et al. (2008); [3] data from Ishikawa & Nakamura (1992), Chan et al. (2002),
and Barnes & Cisneros (2012); [4] data from Bonifacie et al. (2008), and Vils et al. (2009); [5] data from Broecker & Peng
(1982), Spivack & Edmond (1987), Rosner et al. (2007), and Foster et al. (2010); [6] [B] calculated from fluid–mineral parti-
tion data from Marschall et al. (2006), the B abundance in high-T AOC, and an assumed greenschist facies rock composition
(albite+chlorite+actinolite+epidote+quartz), which resulted in a rock/fluid partition coefficient for B of 0.015. Boron isotopic
composition calculated from fluid–mineral B isotope fractionation data of Wunder et al. (2005) for 400◦C and the B isotopic
composition of high-T AOC. [Li] and Li isotope data from Tomascak et al. (2008).
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