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Summary. We propose a method for detecting significant interactions in very large multivariate
spatial point patterns. This methodology thus develops high dimensional data understanding in
the point process setting. The method is based on modelling the patterns by using a flexible
Gibbs point process model to characterize point-to-point interactions at different spatial scales
directly. By using the Gibbs framework significant interactions can also be captured at small
scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approxima-
tion, and we select significant interactions automatically by using the group lasso penalty with
this likelihood approximation. Thus we estimate the multivariate interactions stably even in this
setting. We demonstrate the feasibility of the method with a simulation study and show its power
by applying it to a large and complex rainforest plant population data set of 83 species.
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1. Introduction

Spatial point patterns are a common form of observation in plant ecology (Waagepetersen
et al., 2016), epidemiology (Diggle et al., 2005), astrophysics (Stoica et al., 2007), seismology
(Schoenberg, 2003), social science (Amburgey, 1986), medicine (Olsbo et al., 2013) and crimi-
nology (Mohler et al., 2011). Although understanding single, univariate spatial point patterns
and their generating point processes is important, frequently we observe labelled point processes
or, more precisely, multiple types of points. The prevalence of multivariate point processes is
particularly noticeable in plant ecology where there may be many tens or hundreds of types
(species) (Fliigge et al., 2014; Baldeck et al., 2013a, b; Kanagaraj ef al., 2011; Punchi-Manage
et al., 2013). Such processes have seen much less study in the statistical literature than uni-
variate processes and present some novel challenges, as we shall explain and address in this
paper.

To be able to make sense of multivariate point processes, we focus on addressing three impor-
tant outstanding problems in understanding interactions:

(a) characterizing patterns that are associated with both small and large scales simultane-
ously,

(b) characterizing multiple features spanning more than one variable and

(c) estimating such patterns stably.
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The effect of including these characteristics in our studies of a multivariate point process greatly
increases the number of potential parameters to characterize and naturally leads to difficulties
in arriving at unique and stable parameter estimates.

Early approaches to modelling and analysing more than one point process focused on bivariate
representation and analysis (Diggle and Milne, 1983; Amburgey, 1986; Brix and Maeller, 2001;
Gelfand et al., 2004; Shimatani, 2001; Diggle ez al., 2005), and going much beyond the bivariate
case has proved very challenging. To the best of our knowledge the most diverse model-based
analysis of multivariate point patterns to date is of nine rainforest tree species by Waagepetersen
et al. (2016), who used a multivariate log-Gaussian Cox process model, and fitted the model by
using non-parametric least squares. The reason given for confining studies to only nine species
by them was to limit the computational burden of analysis. This work is inspirational, but our
motivating problem in this paper is to analyse jointly an order of magnitude more species. More
specifically, there are 300 species (types) in the full data set that was used in Waagepetersen
et al. (2016), and we wish to extend analysis to investigate as many of these species as possible.
This brings us into the realm of high dimensional statistics as the number of interactions scales
exponentially in the number of species, whereas the number of points scales only linearly in
the number of species. To deal with this inconvenient scaling we shall need to use shrinkage,
as is commonly done in high dimensional data analysis, and has already been developed for
regression problems and covariance estimation; see for example van der Geer and Bithlmann
(2011). In the context of point processes, because estimation is not implemented with linear
methods, penalization needs to be deployed carefully. Starting from ideas of Baddeley ef al.
(2014) we shall use a generalized regression-based fitting approach, and so we borrow ideas
from second-generation penalized regression rather than from matrix shrinkage, even if we are
estimating co-associations rather than a mean intensity.

A second significant problem in point process modelling is proposing models, and associated
estimation methods, that yield sufficient multiscale behaviour, e.g. variability at fine scales, as
well as over medium to long scales. It is all very well to posit variability for fine scales by using a
log-Gaussian Cox process but, as estimation is normally based on some form of averaging, unless
the random intensity is very high locally, it will be impossible to estimate the log-Gaussian Cox
process’s generating mechanism as we shall not have enough points. For longer spatial scales the
log-Gaussian Cox process is a well-suited modelling framework, but it is not a good framework
for studying small-scale interactions. Instead we shall use the multivariate Gibbs point process
model to discover small-scale point-to-point interactions in the same Barro Colorado Island
(BCI) rainforest data set that was studied by Waagepetersen et al. (2016).

Key to our modelling and estimation is therefore capturing an appropriate degree of sample
heterogeneity. The estimation framework that we shall introduce can take into account variations
that are associated with

(a) habitat associations, i.e. correlation of species presence in the landscape with known
environmental covariates, with

(b) dispersal mechanisms and competition such as seedling clustering or self-thinning, and
with

(c) attraction and repulsion between the small-scale locations between different species.

To demonstrate utility, we shall fit the model to an adult plant community consisting of 83
species, which is an order of magnitude more species than Waagepetersen et al. (2016) analysed.

The analysis of multivariate point patterns of more than a handful of species (usually two,
e.g. Brix and Mogller (2001), Diggle and Milne (1983), Hogmander and Sarkka (1999) and
Funwi-Gabga and Mateu (2012)) has mostly relied on non-parametric estimation techniques.
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Many ecological analyses of large and diverse rainforest data sets have been carried out by
using the K-function or similar non-parametric summaries, either directly by comparing the
summary values under various null model scenarios, or indirectly as part of minimum contrast
model fitting of Cox processes (e.g. Lan et al. (2012), Fliigge et al. (2014), Waagepetersen et al.
(2016), Yang et al. (2016), Velazquez et al. (2016) and Brown et al. (2016)). In the Gibbs model
framework, the three-variate analysis of different size trees by Grabarnik and Sarkka (2009) is
perhaps the most extensive modelling approach and closest in spirit to the work of this paper.
We shall extend their trivariate case to a full multiscale multivariate interaction Gibbs model.

Direct likelihood inference for Gibbs models is not available because of intractable normaliz-
ing constants, but several pseudolikelihood approximations are available, such as the ‘Berman—
Turner machine’ (Baddeley and Turner, 2000) that was used by Grabarnik and Sarkka (2009)
which casts the pseudolikelihood estimation equation as a Poisson regression problem and
subsequently estimates the model with standard statistical software. The Poisson regression
approach is surpassed in accuracy by the logistic regression approach that was developed by
Baddeley et al. (2014), who formulated the pseudolikelihood estimation equation as a logis-
tic regression using auxiliary dummy point configurations. Again, very conveniently, standard
statistical software can be used to fit the model.

With a model and the likelihood approximation at hand, we shall next tackle the issue of
high dimensional variable selection: any reasonable model for a p-variate point pattern will
have a high number of parameters when p>> 3, scaling at least like O(p?). As an illustration,
the model that we present estimates intraspecies interactions and pairwise species-to-species
interactions, on three different spatial scales, and includes six covariates, giving a total of about
11000 parameters, to be compared with the number of observations of 31 650 points, making the
number of parameters and observations of the same order. To discover significant interactions
in such a high dimensional setting, we shall use recent research on penalized optimization.
Several techniques are available, and to show proof of concept we shall be using the group
lasso (Yuan and Lin, 2006; Meier et al., 2008). We shall also perform a limited comparison
with the Bayesian spike-and-slab variable selection approach (Mitchell and Beauchamp, 1988).
Using penalized regression (the group lasso) rather than full posterior inference to compute
a maximum a posteriori estimate yields both simplicity in interpretation and computational
speed. This enables us to study several ‘priors’, or penalization choices, at once and thus this
enables us to make fewer assumptions on the generating mechanism of the data, in fact enabling
us to explore the properties of our modelling framework.

We start in Section 2 by introducing the Gibbs model; then we recall the chosen likelihood
approximation and discuss the chosen variable selection techniques in detail. In Section 3 we
recall for comparison the non-parametric Monte Carlo (MC) technique that is often used for
analysing p-variate patterns when p > 1. In Section 4 we test the method on several increas-
ingly complex simulation scenarios, to obtain a better understanding of the performance of
the method. In Section 5 we apply the method to the BCI rainforest data (Condit, 1998) that
inspired these developments. We conclude in Section 6, and discuss outstanding problems and
future avenues of investigation.

2. The Gibbs model and Gibbs model fitting with variable selection

Let the observed multivariate point pattern be a set of labelled point locations x = { (x, ) } where
x € W are the observed locations inside a known, bounded observation window W c R?, d =
1,2,3,... (for the problems that we shall study, d =2), and r€{1,..., p}, p>1, are categorical
labels (types or, in our case, species) attached to each location. Denote the type i subpattern by
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x; = {x:(x,i) ex}. Write n; (A) =#(x; N A) for the count of points of type i in a set A C R?, and
write n; =n;(W). As is standard let b(u, r) denote a ball of radius r centred at u € R?.

2.1. Gibbs models for point patterns

Our model for multivariate spatial point patterns is part of the Gibbs point process model family;
we refer to van Lieshout (2000), who detailed general properties of Markov point processes
(where Gibbs point processes are a special case), and Illian ez al. (2008) and Chiu et al. (2013),
who discussed general point processes. We shall use a Gibbs model, defined from a set of potential
functions ¢;j, to have a probability density of the form

P
f(X)CXCXP{ > ¢ij(Xi,Xj)}, (hH
i, j=1
with respect to the unit rate Poisson process 111 on W. The normalizing constant for the density,

p
/ exp{ > ¢ij(Xi,Xj)},u1(dX),
X ij=1
with X the space of all locally finite multitype point patterns, is in practice intractable for all

except the homogeneous Poisson models where ¢;; = c; € R. The functions ¢; ; are used to specify
the model class member. We shall use the special form of

> ofzi(+ Y Blgitxxi\x), i=j,
(X0, X)) =4 XEX; o 2
P %) > Bleiinx)), i J.
XEX;

In expression (2) the parameters a; € RXi+! regulate intensity and covariate effects (so-called
first-order effects), and 3;; € RXi are parameters for interactions between the locations (second-
order effects). The ;s give the magnitudes of the interactions, whereas the vector-valued func-
tions g;;, which we specify later in Section 2.2, determine the form, spatial scales and orders of
the interactions. The covariate effects z; (u) = (1 z;1 () zio(w). . . zik; (u))T represent the baseline
effect and any covariate and trend effect values that we have at locations u € W. In this formu-
lation we assume that the covariates are available everywhere in the window W. This is usually
achieved by interpolation from prior data collection efforts.

To obtain a heuristic understanding of the model, assume first that all parameters except
o; € Rare 0 and z; = 1. Then density (1) becomes exp(X/_;n;o;) =11 exp(n;cy), which is the
likelihood of a collection of p independent homogeneous Poisson processes. Now add some non-
constant covariates z;5(u), z;3(u), . .. and set a;2, 3, . .. # 0: the model becomes a collection of
independent and inhomogeneous Poisson processes. We subsequently add intratype interaction
terms by letting 3;; # 0: the independent components are no longer Poisson but exhibit internal,
within-type point-to-point interactions (attraction or repulsion depending on the sign of 3;;).
Finally we can add intertype interaction terms by setting (3;; # 0: the locations of different types
are no longer independent.

Model (1) is log-linear in parameters o and 3. We collect the covariate parameters in the vector

0y = (al T)T the intratype interaction parameters to 6; = (ﬁ ﬁ Tand intertype inter-
action parameters assuming for now that i and j interact symmetrrcally, to 92 = (/6’12 1y
Subsequently we collect them in the vector § = (GT 0T QT)T Then the density in modef (1) can
be written in the form

f(X) = fp(x) cexp(8Tv), 3)

where the vector v=v(x) = (s0 sl )T has components
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(a) sp= (si. .. s;)T with s; = Y ex, Zi (%),
(b) si=(s),...sT YT withs;; =Yyex; i (X, X; \ x) and

(c) sy=(sp,. ..S(IF])p)T with s;; =3yex; 8ij (X, X;), i < J.

The vector v=v(x) is written as a matrix (v) and takes the role of a design matrix in the
standard regression setting. The matrix has only one row when the point process is observed
only once. Independent replicates would result in additional rows in the matrix.

Given data x, covariates z and the interaction functions g; ;, the vector v is fixed and the non-
normalized model (3) is log-linear in the unknown coefficients 6. The model therefore belongs to
the family of exponential Gibbs models, and we can apply inference techniques that are designed
for the exponential Gibbs family.

2.2. The interaction functions

We now define the exact model that we shall use in our examples. Several definitions are available
for the interaction functions g; ; in expression (2). We assume that g; ; are non-negative functions
to remove sign ambiguity when estimating 3;;. The most popular class of models is the pairwise
interacting models with

gij(,x\x)= > ij(lx—ylD,

yex\x

. Kii .. .
for some functions ¢ : Ry +— R ". The most common choice in the case of K;; =1is the Strauss
model

g, x\x)= > 1(lx—yl<n), r>0, “
yex\x
effectively counting the number of r-close pairs in the pattern. In the univariate case the Strauss
model is valid only when the corresponding interaction coefficient 5 < 0 so fewer point pairs
lead to a higher likelihood. Trying to model positive interactions, or clustering, leads to an
unstable model that produces patterns of singular megaclusters, so the case 3> 0 is excluded
for the simple Strauss model (Gates and Westcott, 1986).
To circumvent this limitation Geyer (1999) introduced a model which he called the saturation
model that still defines a locally stable process even with a positive interaction parameter (3> 0.
In the simple univariate case the saturation model is defined via

g(x,x\ x) =min{c, #[(x\ x) N b(x,r)] }, r>0, ceNg, ®)

where the range r is the reach of the Euclidean neighbourhood, and ¢ is a saturation level. In
this model, each point contributes to the likelihood a factor that is relative to the number of
r-neighbours or ¢, whichever is smaller (hence the saturation). In ecological terms, the Geyer
model can capture the fact that individuals may cluster at some distances but are likely to
segregate at shorter distances because of intense competition, and the saturation parameter
reproduces the feature that the neighbourhood must eventually saturate with individuals as
resources are finite. The model belongs to a class of interacting neighbour models (Grabarnik
and Sarkka, 2001), so named because the conditional intensity (8) for this model depends not
just on the local neighbourhood of a point in u (which it does for pairwise models), but also on
the neighbourhoods of the neighbours of u.

To model several types of points and more than one spatial scale, we generalize the models
in two ways by adding

(a) multiple ranges and
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(b) cross-type interactions when p > 2.

Letrjj={rijx:0=rijo<riji <...< rin,-,-} be a fixed increasing vector of ranges for i < j. Let
cij={cijx € N} be the saturation parameters. For a given range vector, write

ne; ji (x,X) :=#{xN [b(x, 7 ) \ b(x, rije—1)]1}

for the number of neighbours of x that a point x has in the annulus between ranges r;;—1), and
rijt. Then the multistep multitype Strauss model is defined by using the interaction function
made of components

9ijk (x,X) :=ne; ji (x, X), (6)
and the multistep multitype saturation model of components
gijk(x,Xx) :==min{c; jx, ne; jx (x,X) } (7

in definitions of g;;. Note that the Strauss model is a special case of the saturation model with
¢ —> 00.

Several other forms of g;  can be used, and multiple forms can be combined as described in
Baddeley et al. (2013). We shall not pursue them here as either

(a) they can be approximated by the Strauss or saturation model as the interaction functions
ﬂiTjgi ; are step functions over spatial scales,

(b) there is not sufficient data available to estimate very fine details over many spatial scales
or

(c) they are computationally costly (e.g. morphological functions).

However, if forms such as the area interaction model (Baddeley and van Lieshout, 1995) seem
more appropriate for a specific application, the framework proposed is still valid and can be
adapted to be used in this setting.

For fitting the model (Section 2.3), we need to define the conditional (or Papangelou) intensity
of the model: at any point u = (x,i) € R? x {1,....p} let

fo(xUu)
SJo(x\ u)

with 0/0:=0. Heuristically, A\gp(u;x)du can be understood as the conditional probability of
observing a point u, given the rest of the pattern x. For the exponential family Gibbs models
the conditional intensity has the quite simple form of

Ao (u;x) =exp[0T {v(x Uu) —v(x \ u) ] =exp{0Tv(u; x)}, )

Ao (u;X) 1= ®

where we use the notation v(u;X) =v(xUu) — v(x \ u). Note that the intractable normalizing
constant cancels out in this expression.
The conditional intensity (8) with the stepwise components (6) and (7) is at any marked point
u=1(x,i)
T p p Ki
log{A\g(u;X)} =z(w) i+ Y > > Bijie wij(u,X;), (10)
i=1 j=ik=1
with

wi {60, X} =gijk X \0) + Y {gijik (v, Xi Ux) — gi e (v, Xi \ x) }.

YEX;
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The functions wj jx € [—c¢;jk, nicijk] track the changes in the neighbourhood inclusion counts
within and between different types. An illustration of the model is given in Appendix C.

For both models the non-canonical parameters r;  and ¢;  cannot be directly inferred by the
pseudolikelihood methods. Thus the parameters need to be fixed as part of the model defini-
tion. In data analysis we usually have a priori information on relevant ranges {r;j } (e.g. Uriarte
et al. (2004)), but the saturation level {c;jx } is more difficult to set. To reduce this complexity we
propose to choose the saturation levels {c; % } automatically depending on the abundances 7.
The idea is that if the abundance n ; is high the neighbourhoods ne; j and therefore w; j; saturate
often even under the independence assumption. Under the full independence assumption, the
expectation of w; j is a function of c=c; j,

tc):=c{l—Fy(c—D}+a{F,(c—1)+ Fy(c—2)},

where a=a;jx = |b(0,rijx) \ b(o,7;jk—1))In;j/IW| and F, is the cuamulative distribution function
of a Poisson(a) random variable (see Appendix B). The function # is non-decreasing and t — 2a
when ¢ — 00, so 1 —t(c)/(2a) is the cumulative distribution function of the event that saturation
occurs under independence. To avoid saturation due to high abundances alone, a sensible choice
of ¢ is a value for which saturation under independence is unlikely. Therefore, we set a small
0 <e< 1 such that

1—1t(c)/(Ra)<e

and, by further using the approximation #(c)/(2a) ~ F,(c — 1), we choose ¢ = ¢; j; to be the (1 —¢)-
quantile of F,. In the examples we use e =0.01. With the modification the interaction functions
g;; become asymmetric, but we shall treat the 3; ;s symmetrically in our examples for simplicity.

2.3. Inference: approximating the likelihood at its mode

The likelihood in equation (1) (or equivalently equation (3)) is not computationally tractable
because of an unspecified normalizing constant. To carry out standard likelihood inference
the constant can be approximated by MC techniques, but these tend to be computationally
costly even for the univariate case. The more commonly used approach is to use pseudo-
likelihood techniques, which replace the function to maximize with something that approx-
imates the likelihood at its mode. We shall use the recent developments that were proposed
by Baddeley et al. (2014), which in practice conveniently lead to a logistic regression formula-
tion.

We have summarized the details of the method in Appendix A. For the discussion, it suffices
to know that the pseudolikelihood function f, is formally a likelihood of a logistic regression
function. It involves additional sets of random dummy points per type, of which construction,
particularly their intensity p;, is an additional user decision. Baddeley et al. (2014) discussed
several potential options to be used for the dummy distributions and intensities. We shall use
the recommended homogeneous stratified uniform distributions and, if not otherwise stated,
intensities that are four times the intensity of data.

To address boundary effects due to censoring near the edges of observation window W, we
shall exclude components of fg, say b(u), for which the distance from u to the border of W is
less than a range ryor > 0, i.e. in the sum in Appendix A, equation (15), the W is replaced by
WS b(o, rpor). The range ryor is taken to be the maximal interaction range in the model and is
determined by the g;;s.
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2.4. Penalized inference for grouped coefficients

Our main goal is the detection and estimation of significant within-type and between-type
interactions in multivariate point pattern data. For this the previous section enables us to estimate
groups of coefficients, such as the intertype interaction vectors 3;; € RXij for type pairs i # j.
Subsequently to that, we need to determine whether 3;; =0 or not.

In a general setting, let the length of an unknown coefficient vector 6 be M, and split 6 into
m smaller groups by using a partition given by {ry,...,m,} of {1,..., M}. For shorthand we
shall write (g) =7y, where g=1,...,m. Write e, =0 when 65 =0 and e, = 1 when at least one
of the coefficients 6, is non-zero. In our case the partition is given by the types and type pairs,
and the eys are connected to the events (3;; #0. Our task is to determine which eys are non-zero
in a given data x, which is a task known as grouped variable selection (Yuan and Lin, 2006).

Variable selection and shrinkage in high dimension, which are usually implemented by using
penalized optimization, have become an important computational statistical technique because
of an increase in high data throughput applications such as genomics and text analytics. Variable
selection has already been applied to point pattern analysis; see for example the work by Yue and
Loh (2014), who applied variable selection in the univariate case for covariate selection. Several
methods exist for the particular problem of group level selection (or penalization) that we are
addressing in this context (see for example Breheny and Huang (2009)). From the available
selection of optimization criteria, we picked the group lasso for logistic regression (Meier et al.,
2008), as a suitable penalized version of Baddeley et al. (2014). The group lasso is an extension of
the original /1 -penalization by Tibshirani (1996) for individual coefficients and has been further
extended to a mixed level penalization by Simon et al. (2013). To be concrete, the group lasso
estimator is defined by

0, =arg n})ax L,(x;0),
with the group penalized likelihood function

Ly(x;0):=log{fy(x)} —7 il (DI 210 112, (11)
=

where v >0 is a penalization parameter and || - ||, is the Euclidean distance. Some groups 6,
are shrunk to exactly 0, depending on the strength of the penalization, so the group lasso does
provide us with binary indicators e, =1( ;) #0).

The penalization parameter v is directly linked to the amount of non-zero e4s that the algo-
rithm outputs and it needs to be chosen by the user. With some extra computational cost, we
compute what is known as the lasso path: a set of estimates for each value of v € I' =[0, Ymax]-
The maximal penalty ymax 1s the penalty level below which the first penalized group is let into
the model. In practice, we shall use by default a 100-step log-linearly decreasing equidistant grid
from ymax to 0.001~max.

Typically when using a lasso-based variable selection analysis one would use cross-validation
(CV) to choose the level of penalization that gives the best balance between model fit and
quality of prediction, or minimizes the expected risk (Giraud (2014), section 5.2), also called
the extra-sample error (Hastie et al. (2001), section 7.1). In the point pattern context, Yue and
Loh (2014) also chose their penalty by using CV, but unfortunately no details were given how
the data were partitioned or what error metric was used for the prediction. Conducting CV by
splitting the constructed data frame that was used in the logistic regression part of the inference
is not justified as the rows are dependent because of spatial correlation. This flaw leads us to
overestimate the complexity of the model. Note also that it has been observed that, as CV is
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aimed at prediction, rather than model selection, too many variables are often retained (van der
Geer and Biithlmann (2011), section 2.5.1).

Let us define a CV procedure for spatial point pattern models that coincides with the CV for
classical regression. Two elements are needed; a way to split the data into meaningful subsets
of independent data, and a way to measure prediction error, or risk, with the already explained
caveats. Let the observation window W be partitioned into disjoint quadrats Wy, ..., Wk, and
write foreachk=1,..., K

A

0., _x=arg meax L (x\ W;0)

for the group lasso estimate using all the data except points inside Wy. For the CV risk we need
to define prediction quality, e.g. the residual sum of squares that are used in linear regression.
Baddeley et al. (2004) introduced the A-residual measure for point patterns which we can use to
define a residual sum of squares. Define the CV /A-residual as

Ryx:=RWi, 0,0

= 3 h(u,x\u,é%,k)—/ h(u,x,@%,k))\é%k(u;x)du
WkX{l,‘..,p} "

uexNWy

(12)
P ~ ~
= ¥ h{(x,i),x\(x,i),é)%,k}—/w {00, 00, 1Ny (i) x b
k

i=1 Lxex;NWy

where / is a non-negative function called the test function. Baddeley ez a/. (2004) and Coeurjolly
and Lavancier (2013) listed four options for the test function, of which we shall look at three. The
raw residuals with 2 =1 assess only the trend part of the model, and the inverse residuals with
h(u;x, 0) = \g(u;x) ! assess the interactions. The Pearson residuals with A (u; x, 0) = \g (u; x) /2
are similar to the inverse but with variance that is in theory independent of X for the Poisson
process.

We define the K-fold CV estimator of the prediction risk as the mean of the squared residuals

R 1 XK .
Rev(y) = X kZI R, i

and we choose the minimizer of the estimated risk,

Jcy :=argmin Rev (7),
~yel’

as the cross-validated penalty level. Note that one can easily weight the residuals by relative
importance of each type or the quadrat size.

Fig. 1 illustrates this approach for an example pattern generated by experiment 1 in Section
4.1. The individual quadrats’ residuals vary—this is not unexpected as the number of data points
per quadrat is small—but the minimum average risk still leads to a reasonable penalization.

In a CV procedure the model needs to be fitted K times so computational cost and CV risk
estimate stability are to be balanced. In the spatial setting an additional problem arises due to
border correction, i.e. we use Wy © b(o, rpor) instead of Wy in equation (12) with some rpq; > 0.
Since each subwindow needs to be reduced by the same border correction range as the original
window to obtain truly independent subsets of data, the loss of data for estimating IAQ%ks limits
the number of splits that can be done on W, as some data are simply lost in the process. For
example, in a square window, a border correction range that is 5% of the window’s side together
with a 3 x 3 partitioning will effectively lead to a 50% loss of data when estimating the risk (Fig.
2). Furthermore, the varying abundances of the types need weighting to account for importances
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Fig. 1. Example of the CV penalty selection: (a) a pattern and the CV partitioning; (b) the squared inverse
residuals ﬁ%,k per quadrat k =1,...,16; (c) the estimated prediction risk Acy(7); (d) true ( ) and false
(— — —) positive rates per v (:, penalty level that would be chosen by the method)

of different types, and heterogeneity of data should be considered as well. It is therefore very
difficult to give general guidelines for partitioning the window that would work in all scenarios.

For comparison with the CV penalty selection, we also include a rule-of-thumb penalty
selection based on the Akaike information criterion (AIC). We computed the AIC for the
group lasso as described by Breheny and Huang (2009). In our experiments, penalties with
the lowest AIC, say vajc, consistently led to too dense solutions. This suggests that either the
pseudolikelihood approximation or the spatial dependence, or both, leads to underestimation
of the effective number of parameters. As a plug-in rule of thumb, initial trials indicate that a
penalty around (ya1c 4+ Ymax)/2 leads to reasonable penalization; we shall report these results
with the label AICO.5.
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We also constructed a Bayesian algorithm for computing approximate posteriors Pr(e, = 1|x).
We call this tailored algorithm the variational Bayes spike-and-slab (VBSS) algorithm. It uses a
quadratic approximation to the logistic function (Jaakkola and Jordan, 2000), selects variables
via the spike-and-slab priors (Mitchell and Beauchamp, 1988) and uses the mean field variational
approximation to infer the maximum a posteriori estimates (Ormerod and Wand, 2010). In
experiment 1 we also checked a non-grouped version of the VBSS algorithm and compared it
with the Markov chain MC based spike-and-slab generalized additive model (SSGAM) (Scheipl,
2011) that has a slightly different implementation of the spike-and-slab priors. All of these
alternatives solve the same optimization problem as the group lasso (equation (11)), but with
different choices of penalization.

3. Alternative approach for multitype interaction detection: non-parametric Monte
Carlo testing

The current state of the art methodology for analysing high dimensional multivariate point
pattern data is based on non-parametric summary statistics and MC testing. This approach
splits the analysis into a set of bivariate tests for no coassociations (second-order interac-
tions). As a reference to our proposed method we apply an MC testing scheme in the BCI
rainforest-like, large inhomogeneous simulation experiment of Section 4.5 and the actual BCI
rainforest data analysis in Section 5. We give here a short description of MC testing but
the interested reader should seek more detailed texts on the topic; see for example Illian
et al. (2008), section 7.5, Baddeley et al. (2014), Velazquez et al. (2016) and Brown et al.
(2016).
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MC-based testing procedures in general, and tests of spatial type-to-type interactions in
particular, are built on three components:

(a) a null hypothesis that describes a counterfactual pattern without the interactions of in-
terest;

(b) a statistical summary that measures the interaction of interest;

(c) astatistical test based on the summary for measuring data’s departure from the distribu-
tion of the summary when the null hypothesis holds.

In the context of potentially inhomogeneous patterns, a popular null model, especially in
ecology, is some form of the inhomogeneous Poisson process (IPP) (Wiegand et al., 2012). A
common asymmetric version can be simulated by keeping type 7 locations fixed while sampling
typej locations from the IPP independently from all other data. The idea is to nullify short-range
interactions but to keep longer-range, environment-related associations via the spatially varying
intensity. The intensity surface that is needed for the IPP simulations of x; is estimated with a
fixed smoothness that reflects understanding of the division between ‘short’ and ‘long’ ranges.
We implement the IPP simulations following Wiegand et al. (2012): foreach typei=1,..., p,an
intensity field n; (u), u € W=[0, 1000] m x [0, 500] m is kernel estimated ona 2 m x 2 m grid using
the border-corrected Epanechnikov kernel with bandwidth fixed to 30 m (this is of course not
optimal for all types; we simply emulate Wiegand et al. (2012)). Then n; points are distributed on
W with density relative to 7;(«), i.e. we use a conditional IPP as is commonly done. We simulate
999 patterns this way for each typei=1,..., p.

For the statistical summary of pattern interaction, a popular choice is the Ripley cross-K;;
function. It describes the number of type j neighbours for an average point of type i, over
different neighbourhood ranges. So, assuming isotropy, for each pair of bivariate patterns the
K;;(r) function estimate is a sampled curve over spatial scales > 0. In our analyses, we estimate
the cross-type K;;(r) curves on a range grid r =r1, ..., max With translation edge correction. For
each species i=1,...,pand j=1,..., p, we estimate the curve K?j = {K?j(rl), e, K?j(rmax)}
from the bivariate data pattern x; Ux;. When i = j we estimate Ripley’s univariate K;; = K.
Subsequently, we estimate the curves Kf’- from the bivariate synthetic patterns x; Ux”? where

x’; is a simulation of the null model for ; as described above, and b=1,...,999. With the set
of curves (K?j,...,K?j”) for all p?> combinations of i and j, we do the variance stabilizing

J{K(r)/m} transform to increase statistical power.

The third component of the MC testing framework is then needed for a proper combined
test for the K j-curves, i.e. to determine whether K, is different from the null model curves. A
family of such tests is called deviation tests or envelope tests (Myllymaki et al., 2017; Baddeley
et al.,2014), and several options are available. We shall use the Studentized deviation test, which
measures the L2-distance of the Studentized curves (scaled with respect to the null model), and
the rank envelope test, which is a multi-dimensional analogue of a rank test (see Myllymaéki et al.
(2017)). Each test leads to a p-value per test, say p; ;. We then report the values ¢;; :=1(p;; <0.05)
as indicators of interaction.

This concludes our description of our methodological framework and explains our automated
approach to the selection of ‘active’ interactions that are important to explain the observed
spatial pattern.

4. Simulation trials

To check the model fitting procedure before data analysis we illustrate its characteristics via
multiple simulation trials. We shall focus on the estimation of the cross-interaction terms, which
we can write as a square matrix
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M =[M;)]], Mij= { Zg(l.j) )
9(@0) 1=
We call M the interaction matrix. Note that the coefficients that are related to each interaction
function BiTjg,- ;j are in groups, meaning that either the whole step function is estimated to be
Bi;=0, or one or more of the components f3; j is estimated to be non-zero. This is an example
of the group lasso (Yuan and Lin, 20006).

The key quality metrics that we shall look at to assess group level performance are the true
positive rate TP and the false positive rate FP, stratified to intratype and intertype interactions
when relevant.

We simulated patterns in either a W =[0, 10]> or W =[0,1000] m x [0, 500] m window with
different settings for interactions. Experiments 1, 2 and 4 study the method under the scenario
of a correctly specified model, i.e. we simulate and estimate the multirange multivariate model.
In experiments 3 and 5 we simulate Cox models to see how general and flexible the step function
(shrinkage) approach can be for interaction discovery. Simulations of our model were carried
out by using the birth-and-death algorithm for Fig. 12 in Appendix C, but for the trials we shall
use a Metropolis—Hastings algorithm with fixed point counts to keep intensities at desired levels
(for more detail we refer to Illian ez al. (2008), pages 147-154).

4.1. Experiment 1: interactions in a small pattern

We first simulated a small (p =4) example to familiarize the reader with our methodology and
to check that the method works as intended. We simulated 100 realizations of the multirange
multivariate saturation model with per-type point counts (100, 100, 50, 150) in a [0, 10]> window.
The saturation levels were all set to ¢ = 1, producing low levels of interaction. Intratype ranges
were set to r; =(0.1,0.2,0.3), and intertype ranges were set to r; = (0.1,0.4). Types 1 and 2
were set to exhibit internally a mixture of short-range repulsion and medium-range clustering
(Bii=(—1,1,0), i=1,2), type 3 had some medium-range clustering (533 = (0, 1,0)) and type 4
had no internal correlation. A positive intertype correlation (3;; = (0.6,0.3)) was set between
types 1 and 2 and types 3 and 4. The true range vectors were used for fitting. A strongly penalizing
hyperprior Pr(e; =1) ~beta(0.1, 10) was chosen for the Bayesian methods. A 4 x 4 partitioning
of W was used for CV to keep the data loss around 50%.

Fig. 3 depicts the average detection rates per coefficient §; . Apart from Pearson residuals, the
rates of the grouped methods are very similar, indicating that the estimated effects do not depend
on the algorithm chosen (the group lasso or spike and slab). The non-zero structure in types 1
and 2 is detected well by the method. The ungrouped SSGAM and VBSS algorithms capture well
the medium-range clustering for types 1 and 2 but not the short-range regularity. This indicates
that the medium-range clustering is the main signal at the group level. The type 3 subpatterns
had interaction only at medium range, and it seems to be difficult to uncover by any of the
methods that were used. We posit that this difficulty is due to a smaller point count and mixed
interaction with type 4. The grouping helps to discover the intertype interactions between the
1-2 and 3-4 pairs, which are evident from the lower detection rates of the ungrouped methods.

A summary of the true and false positive rates at group level for all methods is given in
Table 1. The ungrouped outputs are considered non-zero per group if any of the group members
were estimated non-zero. We used a threshold of 0.5 for the Bayesian posterior probabilities for
classification. The raw and Pearson residuals clearly are too prone to false positive results in
this example to be useful.

We also studied how varying the range vectors and dummy intensities affect the outcome.
The maximum ranges in the simulations were R =0.3 for intratype interactions and R=10.4 for
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Table 1. Experiment 1 true positive and false positive rates, mean and standard deviations (in parentheses)
over 100 simulations

Parameter Result for the following methods:

AIC0.5  CVinverse CV Pearson  CV raw SSGAM  VBSS grouped VBSS ungrouped

TP 0.77(0.18) 0.78(0.26) 0.95(0.15) 0.99(0.08) 0.78(0.17)  0.83(0.17) 0.80 (0.16)
FP 0.03(0.07) 0.10(0.20) 0.51(0.32) 0.94(0.16) 0.02(0.06)  0.21(0.19) 0.12(0.15)
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Fig. 4. Experiment 1 (group lasso with AIC0.5 penalty), how varying the range vectors r =
(rq,---, 'steps = Amax) and dummy intensity factor affects the quality of group lasso interaction detection quality
(in the simulations the intratype interaction maximum range was R = 0.3 and the intertype R =0.4, and the
number of steps was 3 (intratype) and 2 (intertype)) ( , TP intratype; ------ , FP intratype; — — —, TP
intertype; — — —, FP intertype): (a) p=2; (b) p=4;(c) p=8
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intertype interactions. To simulate misspecification of the ranges, we altered these by multiplying
by a factor 0.5 or 1.5 and created range vectors for fitting with one, two, three, four or five
equidistant steps. Then we fitted the model by using the group lasso with the AICO0.5 rule for
the penalty with dummy intensity factor p either 2, 4 or 8.

Two main features emerged from these studies (Fig. 4). First, choosing ranges that are too
short reduces the quality of detection quite markedly. Second, the number of grid steps in the
interaction functions can be misspecified without large variation in the results, giving a type
of numerical robustness. Many small steps in the interactions functions are not recommended,
because of the small number of pairs in the data that hit every annulus. For dummy intensity
factor 2 the joint point configuration did not have enough point pairs to fill every bin in the
range grid of five steps, even after resampling the dummies (10 repeated attempts). As we also
saw in the results for type i =3 above, using many steps may result in lower true positive rates at
group level because the group lasso penalizes the whole group equally over all its members. The
false positive rates are higher for dummy intensity factor p =8 than for p =4, which is a side
effect of the AICO.5 rule of thumb. A check of the AIC curves showed that the minimum was
often achieved with lower penalty when p =8, probably because there are more observations
in the logistic regression design matrix, which is an unsurprising indication that the standard
model selection tools are not to be trusted when using pseudolikelihood. Since we are focusing
on the grouped analysis in this study we continue with the group lasso and VBSS algorithm.

4.2. Experiment 2: finding interactions in blocks

Next, we increased the type count to p =10 and added interactions in two blocks with in-block
pairwise interactions but no interaction between the blocks. The main task was to discover the
two blocks with minimal amount of false positive results in their cross-section.

The ranges for simulating from the multirange saturation model were all set to a two-step
vector r = (0.25,0.50), and saturations fixed to ¢ = 1. The first block of five types had short-
and medium-range clustering, 3; = (1,0.5) fori=1,...,5; the second block of five types had
short-range repulsion with mild medium-range clustering, 5;; = (—1,0.5) for i =6,...,10. The
intertype interaction for each pair in both blocks was positive correlation with 3;;=(0.5,0.25),
with no correlation between blocks. We simulated three intensity scenarios, having point count
per type n; either 50, 100 or 200, so that the total point counts per simulated pattern were either
500, 1000 or 2000. The window was again [0, 10]*.

Fitting was done with the misspecified range vectors r = (0.15,0.3), to increase the challenge
(see experiment 1). CV was conducted with a 5 x 5 partitioning to keep the expected data loss
around 50%. The VBSS algorithm was fitted with three hyperpriors 7; ~ beta(-, -) ranging from
flat (1,1) to medium (0.1, 1) and strong (0.1, 10) preference for no interactions. The choices
correspond to increasing the penalization in the group lasso and facilitate comparisons between
the methods.

The rates of interaction detection are shown in Table 2. The VBSS algorithm produces many
false positive results, even with the strong prior that should penalize towards sparsity. The raw
CV method works well, as does the inverse CV method, but the Pearson CV has a high false
positive rate. AIC0.5 overpenalizes, thereby missing all of the intratype interactions, indicating
that the rule of thumb is not generally useful.

Fig. 5 depicts the interaction matrix estimate for a single realization and the mean interaction
over the simulations when n; = 100, as given by the VBSS algorithm with the strong prior and
inverse CV method. We plot the main diagonal of the interaction matrix from the south-west
corner to the north-east corner, situating the (1, 1) pixel at the south-west corner, as per Fig. 1
in Fliigge et al. (2014). Note that white indicates that the detection rate was 1.
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(a) (b)

(c) (d)

Fig. 5. Results for experiment 2 (shown are an example interaction matrix estimate and the mean inter-
action matrix, for both VBSS and inverse CV methods; the point count per type was 100; each pixel (/, j)
corresponds to M; ;; black means that the interaction detection rate was 0, and white means that it was 1): (a)
first simulation, VBSS(0.1, 10); (b) average, VBSS(0.1, 10); (c) first simulation, inverse; (d) average, inverse

We note that the first block is clear in VBSS matrices but the second block, with intratype
regularity mixing with the intertype clustering, is not so clear and many false positive results
have been detected. The group lasso is not so efficient in detecting the intratype interactions
but the intertype interactions are much better detected, with only a few false positive results on
average.

Further tailoring of ranges will improve quality, as per experiment 1. Adjusting the priors helps
the VBSS algorithm but provides little practical gain over the automatic penalty rules for the
group lasso which work reasonably well on all cases. As the priors lead to varying results, analy-
sis with the VBSS algorithm needs to include a sensitivity analysis, similar to lasso penalization
selection. The major issue is that instead of having one tuning parameter there are several, and
cross-validating the space becomes infeasible as (at least with our implementation) the VBSS al-
gorithm is not much faster for a single prior choice than the group lasso algorithm is for the whole
penalty path. The usual Bayesian benefits such as posterior distributions and variances are not
worth pursuing either because of the likelihood approximation. For these practical reasons we
shall continue with only the group lasso to perform computationally feasible variable selection.
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Table 3. Experiment 3, log-Gaussian Cox processes, intertype interactions, average and standard deviation
over 50 simulations

Method Results for corr 0.6 Results for corr 0.8

ni =50 ni=100 ni=>50 ni =100

TP FP TP FP TP FP TP FP

Raw 0.60 (0.12) 0.16 (0.16) 0.60 (0.16) 0.16(0.20) 0.62(0.13) 0.08 (0.14) 0.65(0.12) 0.07 (0.15)
Inverse  0.60 (0.10) 0.14(0.12) 0.64 (0.10) 0.17(0.11) 0.67(0.08) 0.11(0.13) 0.73(0.13) 0.17(0.15)
Pearson 0.75(0.11) 0.41(0.24) 0.71(0.09) 0.31(0.18) 0.77(0.08) 0.32(0.19) 0.80(0.07) 0.31(0.20)
AIC0.5 0.20 (0.06) 0.00 (0.00) 0.22(0.06) 0.00(0.00) 0.23(0.07) 0.00 (0.00) 0.27(0.08) 0.00 (0.00)

4.3. Experiment 3: detecting blocks of interacting log-Gaussian Cox processes

Next we check whether interactions can be detected in correlated log-Gaussian Cox process data.
We do not expect large power here because of the local Poisson distribution of the patterns, but it
is important to check how flexible the detection is under model misspecification as the rainforest
data potentially exhibit a variety of spatial mechanisms.

We simulated homogeneous, stationary multivariate log-Gaussian Cox processes of p =24
types, structured into three correlated blocks of eight types each. Inside a block the eight latent
Gaussian fields are correlated linear model of co-regionalization fields (Gelfand ez al., 2002),
for which we set the cross-field correlation levels to either 0.6 or 0.8. All fields were driven by a
Matérn covariance function with smoothness v = 10, marginal variance o> =2 and correlation
range 3 (so that corr(r > 3) <0.1). For illustration, four subpatterns from two different blocks
are plotted in Figs 6(a)-6(d) overlaid on their generating fields. We ran the experiment with
constant n; =50 and n; = 100 points per type. The window was [0, 10]%.

Estimation range vectors for intratype and intertype interactions were set to r = (0.25,0.5)
after examining one realization’s cross-pair correlation function. The CVs were carried out using
a 3 x 3 partitioning to keep the expected data loss at 50%.

Table 3 lists the detection rates. The block structure is detected to some extent, with somewhat
elevated false positive rates. The raw residual CV performs the best, Pearson CV resulting in
high false positive rates, and inverse CV landing overall somewhere in between. The AICO0.5 rule
penalizes too much to detect more than approximately 25% of the block structure. As expected,
an increase in interfield correlation improves the detection, as does doubling the point count.
Figs 6(d)-6(g) depict the estimated interaction matrices for the raw CV when point counts were
n; = 100. Even though the intertype interactions are not always detected correctly, the intratype
clusterings are detected quite well.

We noted that improvements are easily achieved by adjusting the range vectors that were used
in the fitting, but eyeballing a single realization’s pair correlation function is obviously not op-
timal for a repeated experiment. A practical solution is to choose the ranges per realization on
the basis of a proper exploration of the data, in which case we expect quite a good performance
considering how misspecified the model is for the generating mechanism. During our develop-
ment of the methods, further improvements in this experiment were also achieved by increasing
the level of clustering in the patterns, either by increasing the variance or by decreasing the
range. For example, setting o2 = 3 (the original level was o = 2) reduced false positive rates and
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Table 4. Experiment 4, detection rates with and without habitat effects and mostly no interactiont

Results for p=10 Results for p=20

Raw Inverse Pearson AICO.5 Raw Inverse Pearson AICO.5

Homogeneous
FPintra 0.44(0.42) 0.07(0.12) 0.08 (0.15)
FPinter 0.47(0.39) 0.06(0.09) 0.12(0.19)

(0.12)  0.19(0.20) 0.02(0.04) 0.04 (0.07) 0.08 (0.06)
(0.07) 0.22(0.19) 0.03(0.04) 0.07 (0.10) 0.10 (0.03)

Homogeneous + 1 interaction

FPintra 0.13(0.27) 0.01(0.03) 0.14(0.17) 0.00 (0.00) 0.08 (0.20) 0.04 (0.10) 0.06 (0.10) 0.00 (0.00)
FPinter 0.07 (0.13) 0.00(0.01) 0.13(0.16) 0.00 (0.00) 0.06 (0.17) 0.02(0.06) 0.06 (0.07) 0.00 (0.00)
TP 1.0 (0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00)

Inhomogeneous
FPintra 0.25(0.36) 0.11(0.13)

19(0.34) 0.14(0.14) 0.13(0.09) 0.00(0.02) 0.02(0.03) 0.10 (0.08)
FPinter 0.22(0.34) 0.08(0.10) 0.18

(0.31) 0.13(0.10) 0.10(0.07) 0.01(0.01) 0.01(0.01) 0.06 (0.03)

Inhomogeneous + 1 interaction

FPintra 0.08 (0.19) 0.02(0.06) 0.13(0.22) 0.00(0.00) 0.12(0.24) 0.00 (0.00) 0.04 (0.05) 0.00 (0.00)
FPinter 0.05(0.08) 0.01(0.02) 0.13(0.20) 0.00(0.00) 0.12(0.21) 0.00 (0.01) 0.04 (0.06) 0.00 (0.00)
TP 1.0 (0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0 (0.00)

+When the type count p is doubled, the interpair count is quadrupled (x 4.22).

increased true positive rates up to 10% across Table 3. The results presented were chosen as a
generic illustration, and, by eye at least, the simulation parameters produced clustering that was
similar to that observed in the rainforest data.

4.4. Experiment 4: rare interactions

To focus more specifically on the false positive rates of the candidate methods, we simulated
patterns where, at most, there is only one pairwise intertype interaction that is non-zero. We
considered four scenarios:

(a) homogeneous multivariate Poisson patterns,

(b) homogeneous multivariate Poisson patterns with an extra intracorrelated pattern,
(¢c) inhomogeneous multivariate Poisson patterns and

(d) inhomogeneous multivariate Poisson patterns with an extra intracorrelated pattern.

For this and the following experiment 5 we used real covariate maps from the BCI data
set. 13 different soil variables (such as soil acidity and magnesium concentration), together
with elevation and elevation gradient maps, are available on a 20 m x 20 m grid covering the
observation window W =[0, 1000] m x [0, 500] m. For this experiment (and the data analysis
later on) we decomposed the 15 covariate maps by using a singular value decomposition of
the pointwise measurement matrix, and kept the six component maps corresponding to the
six largest singular values, capturing approximately 70% of the features. These six pointwise
independent PCA maps were then used as covariates.

To generate trends for the inhomogeneous multivariate Poisson processes, we combined the
principal component analysis (PCA) covariates linearly with random coefficients taking values
—1, 0 or 1, with probabilities 0.25, 0.5 and 0.25 respectively. For each simulation of the multi-
variate process, two trend maps were generated and exponentiated to work as intensity surfaces.
Each of the two intensity surfaces was assigned to half of the p subprocesses. This way each



1258 T Rajala, D. J. Murrell and S. C. Olhede

simulated multivariate pattern has two blocks of types, p/2 each, with very strong intrablock
correlation that is fully explained by the covariates. For each simulation the point counts per
type were set to range from 50 to 300, increasing log-linearly so that lower counts were more
common. We repeated the experiment for p =10, 20.

The extra intracorrelated patterns were generated with the multitype multiscale model with
homogeneous intensity of 100 points and exhibited very short-range repulsion and medium-
range clustering (r=(1,20); 3=(—10, 1); c= (3, 3)). For fitting we set all ranges to r=(7, 15) m.

The results for the four scenarios are given in Table 4. With the Poisson data, the methods
all produce some false positive results. Inverse CV is best, with around 6% false positive rates.
With the exception of Pearson CV, including the extra interacting type sharpens the results
by reducing the false positive rates. Every method discovers the extra interaction perfectly.
Including covariate dependence, and producing correlation, does not increase the false positive
rates overall. Again, the inclusion of a single interacting type reduces the false positive rates
while itself being clearly detected. Doubling the type count roughly quadruples the parameter
count, but it does not seem to affect the quality as false positive rates go down, albeit not always
by a factor of 4.

In the estimation procedure we did not penalize the covariate coefficients, because we found
that penalizing them by using the group lasso leads to underprediction of the trend due to the
shrinkage effects of the lasso, consequently leading to underpenalization by the CV. When the
covariate effects are to be considered more closely we suggest a bias correction step to the lasso
or the use of a less strongly penalizing added term such as smoothly clipped absolute deviation
or the minimax concave penalty (Breheny and Huang, 2009).

4.5. Experiment 5: independent patterns in a rainforest landscape

As a final synthetic example we simulated p =64 =4 x 16 independent, inhomogeneous patterns
ina W=[0, 1000] m x [0, 500] m window with first-order interaction depending on the covariates
in the BCI data. We selected half (2 x 16) of the patterns to come from a Thomas cluster process
(Ilian ez al. (2008), section 6.3.2) with two different dispersal ranges and points-per-cluster rates,
to arrive at an appropriate degree of heterogeneity. We set the first block’s model to generate
patterns with a few large clusters (‘Thomas 1°), and the second block’s model to generate patterns
with many small clusters (‘Thomas 2’). The second half of the patterns was generated by using
the multitype multirange model with either repulsion followed by clustering (‘Geyer 1’) or just
repulsion (‘Geyer 2°). The ranges of the multirange models were inversely dependent on the
target point count: this way small amounts of points could spread out more realistically, and if
the target point count was high then maximal packing density would not be violated (i.e. only
a finite amount of ‘discs’ with certain radius fit inside ).

To simulate habitat effects we connected the patterns to the maps of the four covariates Mn,
P, pH and grad which have been found to be relevant covariates for the rainforest population
(Schreeg et al., 2010). The covariate values were first standardized. Then for each simulated
species we sampled uniformly # € {0, ...,4} of them and summed them pointwise with weights
(t,...,1)/(t+1) to produce a surface. The surface was then used as the unscaled intensity field
for Thomas process generator points, and as first-order field for the multistep multivariate
Geyer models. The covariate choices and the coefficients were kept fixed over the replicates of
the multivariate simulations.

In a single realization of the process, each of the four models were simulated 16 times, with
target intensities within each 16-type block ranging from 50 to 1000 points, median 225. The
realized point counts ranged from 34 to 1024 because of edge effects while simulating the Thomas
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Table 5. Experiment 5, synthetic forest of indepen-
dent species: detection rates for the new approach,
together with results for two MC tests, Studentized de-
viance and rank envelope, with two testing rangest

CVraw  CVinverse CV Pearson AIC0.5

Gibbs model
TP 0.76 (0.34) 0.91(0.06) 0.96 (0.08) 0.35(0.06)
FP 0.01 (0.01) 0.05(0.10) 0.20(0.12) 0.00 (0.00)

Studentized Studentized ~ Rank Rank
deviance deviance  envelopes  envelopes
(0.5-15m) (1-50m) (0.5-15m) (1-50 sm)

MC test
TP 0.74 (0.05) 0.89(0.03) 0.80(0.05) 0.96 (0.01)
FP 0.02 (0.00) 0.00 (0.00) 0.03(0.00) 0.02 (0.00)

1By design, all 64 intratype interactions were non-zero,
and all 2016 intertype interactions were zero; average and
standard deviation over 10 simulations.

process (points outside W were dropped). The point count in a single multivariate realization
was around 20 800.

Fig. 7 depicts eight subpatterns in a typical realization, each overlaid on its inhomogeneity-
generating habitat field. Thomas 1 patterns have about half the number of clusters of the Thomas
2 patterns. Note that it is difficult to see from the plots the very short-scale features operating
at ranges 1-10 m as the area is so large.

For fitting we used ranges r = (10, 20) and 7 x4 partitioning to keep the estimated data loss at
50%. Table 5 shows the detection rates for the proposed methods together with the MC-based
Studentized deviance and rank envelope test, both based on the cross-K functions estimated
over ranges 0.5-15 m and 1-50 m (corresponding to short- and medium-long-range testing
scenarios) with 999 simulations of the IPP null model, as described in Section 3. Apart from the
Pearson CV, and the AICO0.5 rule of thumb which penalizes too much, the detection rates are
good. Around or below 5% of the false intertype interactions are detected whereas 74-96% of
the intratype interactions are detected. The model-based and the MC-based estimates are very
close to each other.

Somewhat surprisingly, the Thomas patterns, for which the model is misspecified, are not
the more difficult of the two families to discover. Fig. 8 shows the averages and examples of
interaction matrix estimates for the MC tests and raw and inverse CV methods. We placed the
(1,1) interaction at the south-west corner of each image. The matrices are ordered by model
(Thomas 1, Thomas 2, Geyer 1 and Geyer 2) and increasing point count from the bottom left
to the top right within the model blocks. For intratype interactions (on the diagonal), the rarer
species’s interaction within the Geyer 2 model seems to be more difficult to discover with the
CV methods. This could be due to the fixed r that was used for estimation when the processes
had varying ranges. The MC null hypothesis design, where the types corresponding to columns
in the interaction matrix were kept fixed and the types corresponding to rows were randomized,
leads to non-symmetric estimates. This is an important feature of the MC method and, as we
return to in the data analysis below, can lead to interpretational issues. The Geyer 1 block,
where there is short-scale repulsion, and medium-scale attraction, is the major source of false
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positive results for the MC tests, and types with higher abundance show generally higher false
positive rates. This is potentially important, because such a mixture of repulsion and attraction
is likely to be common in many plant communities.

4.6. Summary of the simulation trials

The results from the simulation studies are very encouraging despite the sometimes large dimen-
sionality of the underlying problems, especially demonstrated with experiment 5. In experiment
1 we established feasibility of our model, and the agreement between penalization methods
validated the approach. Experiment 2 demonstrated the model’s ability to discover block com-
munity structures in a moderately complicated 10-type pattern. Experiment 3 showed that the
model can detect significant interactions in not just realizations of itself, but also in realizations
of Cox processes. Experiment 4 showed that the false positive rate does not need to be high
for us to be able to discover rare events. Finally in experiment 5 we saw that the method han-
dles rainforest-like patterns with covariate effects, varying point counts and various interaction
mechanisms and models well.

The experiments suggest that CV with Pearson residuals is not reliable in practice. The raw
residuals work well in some cases (experiments 2 and 3) but fail completely in others. The inverse
residuals produced most consistently good detection. When the raw and inverse residuals both
worked well, the variances of the inverse residuals were higher, so computing both is advisable.

As noted in the experiments, we did not specifically tailor the range parameters for each
fitting task per se. Adjusting the model’s range scales according to specific analysis is highly
recommended as they are expected to improve the results in practice.

5. Data example: rainforest interactions

The BCI rainforest data set consists of multivariate point patterns corresponding to censuses of
rainforest plants (shrubs and trees) livingin a W =[0, 1000] m x [0, 500] m area of BCI, Panama.
Censuses have been taken regularly since 1981 (Hubbell ez al., 2005; Condit, 1998; Condit et al.,
1999). In each census, woody plants (shrubs and trees) with diameter at breast height over 1 cm
were catalogued, noting their diameter at breast height, location, species, condition and some
other details that are not relevant to our studies in this paper.

The total number of species is about 300, with slight variation over the years due to immi-
gration and extinctions in W, which is physically an open area allowing for migration. For
the example data analysis we chose the 2005 census and selected some specific species. Recent
studies (Kanagaraj et al., 2011; Yang et al., 2016) suggest that spatial features of the plants vary
with life stage. Normally the distribution of young plants is more clustered because of seed dis-
persal and adult plants’ distribution more regular because of competition-based self-thinning,
and that resource requirements also change with maturation. We therefore selected a subset of
species for which an estimate of reproducible size, which is a surrogate for juvenile or adult life
stage, was available (unpublished data by R. Foster, available as supplements for Fliigge et al.
(2014)). We included only adult plants and excluded species with fewer than 50 adults in the
region, leading to a multivariate pattern of p =83 species. Point counts vary from 50 to 8784,
with a median of 118 and a total of 31 650.

5.1. Interaction detection using the methods introduced
We carried out the interaction estimation with a multirange multivariate saturation model using
group lasso penalization as in experiment 5. Habitat effects were accounted for by including the



1263

Detecting Interactions in Spatial Point Patterns

Ww 0g pue w G| ‘w /Z sabuel (Y) ‘w G| pue w 2 sabuel AD |enpisal asianul (B) ‘w o€ pue w G| ‘w 2 sabuel (}) ‘w G| pue w 2 sabuel ‘AD
[fenpisai meJ (8) ‘w 0g—G 0 sebuel (p) ‘w G1—G 0 sebuel ‘1s8) adojaaus yuel (9) ‘w 0e—5 0 sebuel (q) ‘w G|1—G 0 sebuel ‘}s8) uoneinsp paziuspnis () ‘(b
do} ayy 0} ya| wonoq ay} woly Buiseaour ‘yunoo julod Aq pabuelle ale sa1oads) si10}0an abuel OM} pue ‘Spoyldawl AD [enpISal 8SIaAUl PUB AD [ENPISa) Mel
yum osse| dnoub (y)—(a) ‘sixe-A ayl uo s| sa10ads paziwopuel ay} pue ‘sixe-x 8y} Uo SI 1S9} 8y} Ul paxiy 1day saioads ayl) s10109A abuel [eneds Jualayip om}
pue S}S8} DIN JUSIBHIP OM] UM poyiaw DN dlysweled-uou (p)—(e) :snsusd 00z |Dg 1ueld Jnpe 8y} JO X1jew UoioBIajul 8y} JO Safewsa Juaisyld "6 "Bid

() (1) (P)




T. Rajala, D. J. Murrell and S. C. Olhede

1264

as1anul AD (U) ‘(p) ‘mes AD (B) “(0) ‘sadojenus sjues ‘O (4) ‘(q) ‘eouelrep paziuspnmis ‘N (8) ‘(e) ‘w og 0} dn (y)—(8) pue w Gi
(p)—(e) 01 dn sebuel :@ouepPUNQgE JO UONOUN} B SB Y SBl0ads yoes 1o} suonoelalul (/1) seioadsialul pajoslep Jo Jequinu ‘sisAjeue synpe 500z 109 "0l "B

C) (6) souepunqe 0 (e)
0000+ 000+ 00001} 000+ 00t 0000+ 000+ 00}t 00001} 000+ 00}t
s 00 O . oo nlooucoﬂch ) wQ%M .. ° 0000%00§ -0
°. o °e e ° o H -G
° % o °
° ° -0l
°
°
° [} e i e! -Gl
° -0¢
°® °
-G¢
5
@
(P) () (@) (e) m.
Y ° . © ¢  © ®eoes o coenEmBEED o 08 So ™02 2 -0 S
BRI = v 1 ....M... -
. Qccccﬁncoﬂc ° 0.00 %0 ® o o Qo - S
° o = ® oo "0 ° ® . O
° °,
° ° Gl
L °
° * -0¢
° °
®e -G¢



Detecting Interactions in Spatial Point Patterns 1265

Table 6. Intratype and intertype interaction rates estimated with the
proposed method using raw and inverse CV, and MC tests using the
Studentized deviance and rank envelopest

Results for the following methods.

Studentized ~ Rank envelopes ~ CVraw  CV inverse
deviance

UptolSm
Intratype 0.89 0.88 0.14 0.55
Intertype 0.05 0.06 0.00 0.04
Up to 30 m
Intratype 0.95 0.96 0.33 0.60
Intertype 0.02 0.05 0.00 0.06

TResults for range scales up to 15 m and 30 m are given separately. p =83
species; 3403 distinct pairs.

six PCA maps as covariates as described in experiment 4 (using PCA maps avoids problems with
collinearity of covariates). We set the range vector equal across all 3486 intratype and intertype
interactions and fitted the model twice, with range vector r = (7, 15) m and with range vectorr =
(7,15,30) m, the ranges being concordant with previous results of neighbourhood-dependent
growth models within the BCI forest (Table 4, Uriarte et al. (2004)). We used the dummy
intensity factor 4, with a minimum of 500 dummies per type to avoid singularities. The saturation
parameters are set according to Section 2.3. To correct for edge effects we implemented a 30-m
buffer zone, and, to keep expected data loss below 50%, the CV partitioning was fixed to 6x3.
For comparison, we also implemented the MC tests as described in Section 3.

5.2. Results

The resulting interaction matrices for the two MC tests are depicted in Figs 9(a)-9(d). The group
lasso estimates with raw and inverse residual CV penalty selection are depicted in Figs 9(e)-9(h).
Figs 9(a), 9(c), 9(e) and 9(g) involve two ranges up to 15 m, whereas Figs 9(b), 9(d), 9(f) and 9(h)
involve three ranges up to 30 m. The MC test interaction matrices are not symmetric by design.
For example, according to the rank envelope test at ranges 0.5-30 m, species i = 10 interacts
significantly with one species when the other species in a pair is randomized in the test, but it
interacts significantly with 22 species when itself is the one randomized in the test. Although
biological interactions (competition) can be asymmetric, with one species being a superior com-
petitor to a second species, the spatial correlations that emerge from these interactions should
be symmetric. The non-symmetric spatial interaction matrices that are produced by the MC
method are therefore problematic when it comes to interpretation. In comparison, the inverse
CV model-based method estimates the number of interactions for species i =10 to be 5, of
which four are among the 22 species that are indicated by the MC test. Another difference is
that the MC test outcome suggests that more abundant species interact more. The model-based
results do not indicate such a trend (Fig. 10); so, when the numbers of intertype interactions
are of similar order, the distributions are different. Finally, nearly all species are deemed in-
ternally structured by the MC test, but around or less than half by the model-based approach
(Table 6).
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We have designed a complete analysis pipeline that can be used to answer some specific
ecological questions, and in particular to uncover important processes affecting the forest. For
example, we could now proceed by analysing the covariate effects (Fig. 11) to see how important
environment (soil and elevation) effects are in structuring the forest. Then, to consider structure
caused by second-order effects, we could further study the interaction matrices to discover sub-
communities and interacting groups as was done by Fliigge et al. (2014) and Morueta-Holme
et al. (2016) based on different MC approaches.

6. Discussion

We have developed a flexible model-based method for detecting small-scale interactions in mul-
tivariate spatial point patterns, demonstrated its potential on several synthetic examples and ap-
plied it to a large rainforest data set. This is in contrast with using log-Gaussian Cox processes
for multivariate modelling, as in for example Waagepetersen et al. (2016), where small-scale
interactions are more difficult to capture. In so doing we have greatly extended the potential ap-
plicability of model-based inference for multitype point patterns, allowing both for the analysis
of more interactions and for more complex multiscale behaviour.

In the Thomas cluster process, and in Cox processes in general, the two-stage generation of
‘offspring’ given ‘mothers’ is a natural model for plant regeneration in natural plant populations.
However, as the offspring are assumed mutually independent, the model is suitable for only
a particular type of pattern, such as just germinated individuals. The individual-to-individual
competition and survival over a plant’s lifetime before adulthood is better captured with explicit
pointwise interaction models, such as Gibbs models. Alternative models that emulate natural
thinning in addition to natural clustering can be constructed (Stoyan, 1979; Andersen and Hahn,
2016; Lavancier and Magller, 2016), but fitting such models relies heavily on non-parametric
methods for which simultaneous multivariate analysis is currently not well understood. Our
approach takes a more data analytical approach by including all effects simultaneously and
addressing the high dimensionality with penalized inference.

The model can be tailored for specific applications with relatively low effort since apart from
the point-to-point indicator functions the analysis pipeline is fixed. For example, adding Strauss
components might detect clustering more efficiently as the saturation level of the Geyer com-
ponents caps the clustering tendency. Such a model would not work as a generative model and
simulations would not be stable (singular clusters would form; Gates and Westcott (1986)), but
it could be effective as a statistical interaction discovery tool.

The pipeline is also computationally practical. Group lasso algorithms are very fast and work
well with computational underlying calculations for sparse matrices, which the approximation
design matrices for Gibbs models are by construction. On a regular laptop it took us days to
compute all MC estimates to compare with our model, but it took only hours to estimate the
full model. Of course, one can parallelize the MC estimation since the type-to-type interaction
tests are performed independently.

An advantage of our model-based approach is the explicit treatment of covariates that may
affect the intensity but not the interactions directly. This means that it is possible to infer
which covariates are important for the distributions of the different species. In contrast the
MC approach that predominates in the ecological literature relies on inhomogeneous Poisson
processes to capture the first-order (environmental) processes, and the user needs to deter-
mine or estimate the scale over which these processes are affecting the intensities. The current
trend has been to use one scale for all species, but this is unlikely to be optimal. However,
we note that such covariates are not always available, and the MC method might be prefer-
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able when covariates have not been measured but are thought to be important. The within-
type spatial structure that is commonly found in the data is also broken down when con-
ducting the null model test in the MC approach, and it is not clear what effect this might
have on results. Nonetheless the user must also make important decisions in our model-based
approach, such as the range of scales over which to carry out the analysis, and as we dis-
cuss below the model validation and penalization methods also are an area of future explo-
ration.

The computational burden of model fitting was increased tenfold because we determined
the best penalty level by using CV. To simplify the penalty selection, we tried including a
few extra Poisson ‘noise’ subpatterns in the data to select the penalization so that the noise
stayed independent. The result of this approach was inconclusive and remains an area of fu-
ture investigation. We also tried using CV with the constructed design matrix of the logistic
regression likelihood, as is common for lasso applications but, much like with the AIC, too
many false positive results resulted for this approach. Standard model selection approaches do
not do well because the likelihood is an approximation, rather than the correct form of the
likelihood. Correcting the score and Hessian of the pseudolikelihood while doing penaliza-
tion would be useful in this regard, and some work has already been done in the unpenalized
case by Coeurjolly and Rubak (2013). Using a corrected Hessian would also enable us to do
better inference on the covariates, as (approximate) confidence intervals could then be con-
structed.

Replacing the group lasso with some other penalization could have several benefits. Some
penalizations shrink non-zero coefficients less, which is ideal both for the predictions that are
needed in the CV step and for downstream analysis of the estimated effects. For example, we
suspect that the shrinkage issue prevented the method from working properly when covariates
were penalized and consequently the inhomogeneous trends became too flat. A further limitation
of the group lasso is that all group members were penalized equally; this in turn led to low group
detection with many range steps and a low amount of data per range annuli. A more refined group
penalization method such as sparse group lasso or minimax concave penalty is more sensitive
to individual group members being non-zero (Breheny and Huang, 2009) and would enable
more detailed interaction functions with more steps. Adding steps does, however, require the
use of more dummy points so that each annulus registers something and numerical problems are
avoided. We could also replace the step functions with overlapping components, such as radial
basis functions, and gain not only numerical stability but also smoother interaction function
estimates. Further refinement to the CV optimization penalty grid is also needed in actual
applications. In our high p examples the 100-step grid was often too coarse to include or exclude
individual groups.

The model is constructed via small point-to-point interactions, and any large-scale unob-
served variability is not equally well captured. It might be possible to add spatial random
effects, such as Gaussian processes, to the first-order interaction and still to use the same
pipeline. This would bridge the interface between Gibbs models and log-Gaussian Cox pro-
cesses, which is an exciting area of future investigation. This paper therefore stands as a fur-
ther step to understand general heterogeneous and high dimensional point process observa-
tions.

We would also like to point out that the modular construction of the point-to-point interaction
functions provides a potentially useful connection to dynamic modelling of ecological commu-
nities defined through generations of dispersal-related birth and competition-based death events
(Law and Dieckmann, 2000; Law et al., 2003). If the transition probabilities are modelled log-
linearly, the stationary distribution (if it exists) of the corresponding birth-and-death process
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following the detailed balance condition would be a Gibbs process of the kind that we have
discussed here in the more general, potentially inhomogeneous and highly multivariate setting.

7. Software and data

All computations were implemented in R (version 3.3.1). The random fields for the log-Gaussian
Cox models were simulated by using the R package RandomFields (version 3.1.3), and uni-
form simulation and some utilities were used from the R package spatstat (version 1.46.1).
For the group lasso we adapted the local co-ordinate descent algorithm in the R package grpreg
(version 3.0-2) with the inclusion of the offset terms. The VBSS algorithm was implemented by
hand. For the SSGAM we used the R package spikeSlabGaM (version 1.1-11), with hyperprior
beta distribution settings as for the VBSS algorithm and otherwise using default parameters.
An R package implementing the method pipeline is available from the first author.

The BCI data are available for research purposes fromhttp: //ctfs.si.edu/webatlas/
datasets/bci/.
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Appendix A: Details about the likelihood approximation

Let X be the point process generating the pattern x and let D be a marked dummy point process in
the window W which is independent of X and has known intensity functions p;, i=1,..., p. Baddeley
et al. (2014) proposed to solve the likelihood optimization problem by using the estimating function

b s PONGEX D VXN
uexnow Ag(u; X \u) +pu)  uepnw Ao(us X) + p(u)
where p(u) = p;(x) for u = (x,i). With the help of the Campbell formula and the Georgii-Nguyen—Zessin

theorem (formulas 1.5.10 and 6.6.2 in Illian et al. (2008)), it can be shown that sy is an unbiased estima-
tion function and that finding the root of sy gives an unbiased estimate of the maximum of likelihood

Q).

The sy as a function of 6 is the derivative of

. Mol X\ ) p(w)
1 X = 1 _— 1 [ i AN— 14
BN Og{A9<u;X\u>+p(u>}+ue§w Og{Ae(u;X)w(u)}’ (o

13)

which formally is the likelihood of a logistic regression with variables 7(u) =1(u € X) for u € XU D and

MoGus X\w)  exp[f7Tv(u; X) +log{pu)~'}]
Xous X \u) +p(u) — 1+exp[0Tv(u; X) +log{p@u)~1}]’

P{rw)=1}=

In practice the method works as follows: we sample a set of dummy points 1) = {(x, 1) } = U1); with subpat-
terns v; having a known distribution with constant intensity p; in W, for each type i=1,..., p. We then
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calculate the vectors b(u) :=v(u; x) for each u e xU1). Let N =#(xU). The log-likelihood of the logistic
regression can then be written in a compact vector form corresponding to

log{ fy(x)} = » .); . W(t(u){oTb(u) +o0(u)} —log[1 +exp{f'b(u) + o(u)}]) (15)
=tT(BO+0)— 1} log{1ly +exp(BO+o0)},

where #(u) =1(u € x) indicate the data points, B is a row matrix of b(u)s for each u e x U+ and o(u) =
—log{p:i(u)} are offset terms.

potential
potential

o e ¢ e t W F
. heig *
aeitn TV e ;mt}
a’ e ALy
s

. .

. ot e, +3 &
. .

¢ o og 2 kS

5 ° RARE E NPT IS UL ]

. A L U

+ i . l--‘*ﬂ b &
R DA

°

<
[S)

00 05 10 15 20 25
®

Fig. 12. Potentials (a) 6 =(3,2,1)/3 and (b) § =(—1,0.5) (;, range vector stops), simulations from the
saturation model with ¢ =1 and potentials (c) § = (3,2,1)/3 and (d) # = (—1,0.5) and (e) a joint bivariate
simulation with intrapotentials given by 6 = (3,2, 1)/3 and interpotential given by 6 = (—1,0.5) and (f), (@), (h)
conditional intensities of the saturation model given the simulations in (c), (d) and (e) respectively (in (h) just
for type i = 1) (conditional intensities are on a log-scale; background grey colour means 0 or no potential;
darker colour means negative and lighter colour means positive potential; in the corner [0, 2.5]2)
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Appendix B: Derivation of saturation approximation of the Papangelou terms
under independence

We show how the probability of saturation of the components in the log-Papangelou conditional intensity
can be derived by using the independence assumption. First we note that for a homogeneous Poisson
process neighbour counts in any set depend on only the volume of the set. Thus to simplify from the annuli
notation it suffices to consider only r =r; >r;_; =0. Then

w(u,x)=min{c,ne(u,x)} + > [min{c, ne(x,x Uu)} —min{c, ne(x, x \ u) }] (16)

XEX

=min(c, #[b(u,r) Nx]) + > 1{x€bu, )} 1(#[b(x,r)Nx] €[0,c)) a7

XEX
where 1(-) denotes the indicator function. Assume now that x comes from a Poisson point process with
intensity A. Write a = A|b(o, r)|. The Georgii-Nguyen—Zessin formula (Illian ez al. (2008), page 399) gives

E{w(u, X)} = E{min(c, #[b(u, ) N X))} + E [ S 1{x e b(u, N} {#[b(x, 1) Nx] [0, c)}]

xeX

=[E{min(c, #[b(o, ) N XD} +a E[1{#[b(0o,r) N X]€[0,0)}].

Now, the random variable y:=#[b(o, r) N X] is Poisson(a) distributed. Denote its cumulative distribution
function with F,. Then

c—1 0 c—1
[E{w(u,X)}:I;P(ka)k—FCkZ:.P(y:k) +ak2_%P(y=k)

=aci2 Ply=l)+c{l=F,(c—D}+aF,(c—1)
1=0

ZC{l _Fa(c_ 1)}+G{Fa(c_l)+Fa(C_2)}a

giving the function 7(c) in the text. Note that we also use the fact that A~ n/|W|.

Appendix C: lllustration of the interaction and potential functions

Figs 12(a) and 12(b) depict two particular potential shapes with different rs and (s, to illustrate their
role. The first function corresponds to a decreasing attraction in range, and the second function has both
a repulsion and an attraction component. How the attraction and repulsion impact the point pattern
depends on the choice of the individual g; 4s: in this example we use the saturation model g;;s with ¢; 5 =1.
Figs 12(c) and 12(d) show univariate simulations from each of the two interaction functions. Fig. 12(e)
shows a bivariate simulation with intratype interaction given by the first potential and intertype interaction
given by the second potential. Figs 12(f)-12(h) show the conditional intensity (10) at the window locations
u € W given the simulated patterns.

In the case of the bivariate pattern the conditional intensity is for points of the first type. The conditional
intensities exhibit various features: for the first potential function, high potential locations are near data
points, but only if the data points do not already have neighbours (those data points’ neighbourhoods are
already saturated). With the second potential any location too near the data points has a low potential
(repulsion), but being too far from the data points is not encouraged by the potential either (attraction).
In Fig. 12(h) we see the complex mixture of the first type’s internal potential and the intratype potential:
a point of the first type would be welcome near a point of its own kind (attraction) but unwelcome near a
point of the second kind (repulsion).
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