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1. Introduction

Since the seminal paper of Koenker and Bassett (1978) there
has been substantial development of estimation methods and
algorithms for quantile regression functions (QRF), and gains in
understanding of the properties of QRF estimators.With increasing
interest in econometrics in variation in response amongst individ-
uals, and with the way in which the distribution of responses is
affected by covariates, the use of quantile regression estimation
procedures has become widespread in applied econometric work.

Despite many advances in QRF estimation and inference meth-
ods, and the many applications of quantile regression methods,
some of the econometric issues given substantial attention in the
study of mean regressions have received little attention in the
context of quantile regressions. One of these is measurement error
in explanatory variables, a pervasive feature of econometric data,
and likely a feature in many applications.

Covariate measurement error causes many and subtle changes
to conditional distributions, potentially attenuating mean regres-
sion functions, increasing dispersion, introducing heteroskedastic-
ity in homoskedastic error free models and modifying the form of
heteroskedasticity when it is present in an error free model. There
are significant effects on quantile regression functions.

This paper develops results that improve understanding of
these effects. It does this by developing approximations to QRFs
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in which covariate values are contaminated by measurement er-
ror. These are Taylor series expansions around a point at which
measurement error is absent. The approximations reveal the first
order effect of covariate measurement error on QRFs and lead to
a procedure for investigating the magnitude of this effect when
there are neither instrumental variables nor repeated measure-
ments. The probability distribution of measurement errors does
not feature in the approximation, only its variance. The major first
order influence of measurement error on QRFs is found to be the
shape of the distribution of error free covariates and the way this
interacts with the shape of the error free QRF.

There has been little attention paid tomeasurement error in the
context of quantile regression. Measurement error oriented texts
such as Fuller (1987) and Carroll et al. (2006) have no discussion of
quantile regression. Koenker’s Econometric Society Monograph on
quantile regression, Koenker (2005), has no discussion of covariate
measurement error.

This paper considers error free QRFs for a response Y , con-
ditioned on X , and error contaminated QRFs for Y , conditioned
on Z = X + V where V is distributed independently of X , and
of Y given X . Data on Y and the error contaminated Z provide
information about the way in which the conditional quantiles of Y
given Z vary with Z . Nonparametric quantile regression methods
can give detailed information about this variation. But this bears
only indirectly on the way in which quantiles of Y conditional
on error free X vary with X . In most applications this is what
is of interest because economic theory will be informative about
relationships between error free variates, and policy interventions,
whose impact on the distribution of Y is of interest,will alter values
of error free covariates.
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The first part of the paper gives results that improve under-
standing of the relationship between error contaminated and error
free QRFs. This helps interpret the results of QRF estimation when
measurement error is believed to be present. It helps explain dif-
ferences in estimated QRFs using data sets with different amounts
of measurement error. In cases where a functional form of an error
free QRF is imposed it is informative about the misspecification
that is committed when error contaminated data is used.

The focus of the second part of the paper is on problems in
which error free QRFs are parametrically specified. The possibility
of using information on the relationship between error free and
error contaminated QRFs to retrieve information about the values
of parameters of error free QRFs is investigated. In some circum-
stances this is not possible because the error free QRF cannot be
identified from knowledge of the form of error free QRFs because
measurement error induces no change in that form. The model
in which Y , X and V are jointly normally distributed is a leading
example. Here measurement error changes the separation and
slope of QRFs but they remain linear. But in many other cases
identification is possible, as pointed out in Reiersøl (1950).

The analysis of Reiersøl (1950) is extended in Schennach andHu
(2013), SH13. SH13 considers additive errormodels for an outcome
with parallel QRFs and shows that outside a small class of models
for dependence of an outcome on an error free covariate the error
free QRF can be identified. The approximations developed here
apply to awider class ofmodels which does not require an additive
error. The class includes the SH13 model. The approximations of
this paper could be used to decide whether estimation via SH13
is worthwhile if an additive error model were being considered,
and generally to gain understanding of the potential effect of
measurement error in the context of a specific analysis of data.

The procedure we propose provides a form of sensitivity analy-
sis. It provides a partial answer to the following questions.

Were the error freeQRF to be of a hypothesised formand covari-
ate measurement error to be present, what are the likely values
of the parameters of the error free QRFs? How does our view
of this change as the amount of measurement error allowed
for increases? Are some parameters substantially affected by
measurement error relative to others?

An exact answer to these questions requires a case by case anal-
ysis. The exact impact of measurement error on mean regressions
can be derived in explicit form only in a few special cases.1 Outside
these cases, and in almost all interesting cases for QRFs, the exact
impact of covariate measurement error can only be obtained by
numerical calculation. Such calculations do not give insight into
the generic effects of covariate measurement error and they do
not provide a link between the effects of measurement error and
easily grasped features of the error free QRF and the distributions
of covariates and measurement error.

This paper provides a partial resolution of this problem by pro-
viding an approximation to an error contaminated QRF expressed
in terms of functionals of the error free QRF and the density of
either the error free or the error contaminated covariates. The
approximation is developed using small parameter (variance) ap-
proximationmethods and extends the results of Chesher (1991) to
QRFs.

Section 2 gives the approximation to error contaminated QRFs.
Details of the derivation are given in an appendix. The insights
into the generic effects of measurement error on QRFs provided by
the approximation are discussed in Section 3 where some leading
special cases are examined.

1 A leading example is the model in which Y (with arbitrary distribution) has
polynomial regression on error free X and additive independentmeasurement error
is normally distributed, see Chesher (1998a).

Section 4 reports an investigation into the accuracy of the
approximation in a rich class of models with a single error con-
taminated covariate. An error free covariate (X) and independently
distributed measurement error (V ) are given exponential power
distributions.2 The conditional distribution of the response givenX
(independent of V ) is also specified as amember of the exponential
power family with location parameter depending upon X andwith
scale and shape parameters independent of X . The exact error free
(conditional on X) and error contaminated (conditional on Z =

X + V ) QRFs are calculated and the approximation developed in
Section 2 is calculated. For quite large amounts of measurement
error the approximations are acceptably accurate.

Section 5 considers one possible use of the approximation. It
investigates the use of the approximate QRF to extract information
about the error free QRF from error contaminated data. The results
of Section 2 show that the approximate error contaminated QRF is
determined by the error free QRF and derivatives of it, whose form
is known once the error free QRF is specified, and by a functional of
the density of the error contaminated covariate. This density can be
estimated using realisations of the error contaminated covariate.
Therefore, given a parametric form for the error free QRF, a para-
metric approximate error contaminated QRF can be specified and
estimated. When identification permits, estimates of parameters
of the error free QRF can be retrieved.

The performance of this procedure is investigated in Monte
Carlo experiments. In practice one would likely want to use this
procedure to performa sensitivity analysis. Thus one can ask: given
a specified form for an error free QRF, how are my views about
its parameters changed as I consider the possibility of there being
more or lessmeasurement error. An alternative procedure suitable
when there is no parametric specification of the error free QRF is
proposed. Section 6 concludes.

This section concludes with a brief outline of the few available
results on QRF estimation with covariate measurement error.

Brown (1982), studying robust estimation in errors-in-variables
models, proposes amodified LAD estimator which can be regarded
as an estimator of the slope of themedian regression functionwith
scalar error contaminated covariate, but rejects the estimator as
unsatisfactory. He and Liang (2000) propose a consistent estimator
of the slope of linear error free QRFs based on minimising the sum
across observations of the ‘‘check’’ functions

ρτ (r) = r × (τ − 1[r<0])

applied to orthogonal residuals, r . They assume that the joint
distribution of the response error and the covariate measurement
error is spherically symmetric. Hu and Schennach (2008) and
Schennach (2008) develop identification and estimation results
using instrumental variables or repeated measurements. Wei and
Carroll (2014) propose an estimation procedure for linear quantile
regression models in situations in which one can estimate the
distribution of the error free covariate conditional on its error
contaminated version. Montes-Rojas (2011) applies the misspec-
ification analysis of Angriest et al. (2006) to obtain a formula for
the probability limit of the QRF estimator in a linear model with
parallel QRFs when there is a measurement error contaminated
covariate. Schennach and Hu (2013), considering an additive error
model with parallel QRFs, give conditions on the functional form of
an error free QRF under which it can be identified from knowledge
of the distribution of the outcome variable and the error contam-
inated covariate. Shang (2012) and Shang et al. (2014) apply the
SIMEXmethod of Carroll and Stefanski (1994) to correct estimates
of the distribution of current student test scores conditional on

2 A random variablewith an exponential power distribution has density function
proportional to exp(−λ|w − µ|

2
1+b ). Normal (b = 0) and Laplace (b = 1)

distributions are leading special cases.
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past scores. Galvao and Song (2017) develop an estimator of the
coefficients in an error free linear quantile regression function
when repeated error contaminated measurements of the scalar
error free explanatory variable are available. Hausman et al. (2014)
consider the impact onQRF estimation ofmeasurement error in the
response variable.

2. The approximate effect of measurement error

2.1. Error free and error contaminated QRFs

Consider a scalar response Y , continuously distributed given k
element vector X , and let FY |X (y|x) be the conditional distribution
function of Y given X = x, as follows.

FY |X (y|x) = P[Y ≤ y|X = x].

Let Z = X + V where V = ΨU , U and X are independently
distributed and E[U] = 0, Var[U] = I . The matrix Ψ is lower
triangular and Ψ Ψ ′

= Σ so that Var[V ] = Σ = [σij].
The conditional τ -QRFs, QX (τ , x), in which conditioning is on

error free X , and QZ (τ , z), in which conditioning is on error contam-
inated Z , are defined by the following implicit equations.

FY |X (QX (τ , x)|x) = τ

FY |Z (QZ (τ , z)|z) = τ

2.2. Approximate error contaminated QRFs

We seek an approximation to the error contaminated τ -QRF,
QZ (τ , z). This is a functional of the conditional distribution function
of Y given X and themarginal distribution functions ofU and X and
depends upon τ and Σ , a relationship we express as follows.

QZ (τ , ·) = F(FY |X , FX , FU ; τ , Σ). (1)

Note that the error free QRF is obtained by setting Σ = 0.

QX (τ , ·) = F(FY |X , FX , FU ; τ , 0).

The approximation to the error contaminated QRF is given
in Eq. (6), towhich those not interested in themethod of derivation
can proceed directly.

The approximation is obtained by considering a first order
Taylor series type approximation to QZ (τ , ·) defined in (1) around
Σ = 0. This takes the following form3

QZ (τ , ·) = QX (τ , ·) +

∑
i,j

σij
∂

∂σij
QZ (τ , ·)|Σ=0 + o(Σ) (2)

where σij is the (i, j) element of the measurement error variance
matrix Σ . The leading term is just the τ -QRF of Y given error
free X .

The following approximation to the conditional distribution
function FY |Z (y|z) derived in Chesher (1991) is used. Here condi-
tioning is on error contaminated Z .

FY |Z (y|z) = F̃Y |Z (y|z) + o(Σ) (3)

where

F̃Y |Z (y|z) = FY |X (y|z) +

∑
i,j

σij

(
F i
Y |X (y|z)g

j
X (z) +

1
2
F ij
Y |X (y|z)

)
. (4)

3 Here and later unless indicated
∑

i,j indicates double summation over i and j
both from 1 to k. A term described as o(Σ) has the property that

lim
ω→0

o(Σ)
ω

= 0

where ω = trace(Σ).

Here superscripts i, j indicate differentiationwith respect to the ith
and jth conditioning arguments, for example

F ij
Y |X (y|z) =

∂2

∂xi∂xj
FY |X (y|x)

⏐⏐⏐⏐
x=z

.

The function gX (·), which plays a key role inwhat follows, is the log
probability density function of X ,

gX (z) ≡ log fX (z)

with derivatives as follows.

g j
X (z) ≡

∂

∂xj
gX (x)

⏐⏐⏐⏐
x=z

For the approximation to have an error of the stated order we
require the absolute third own and cross moments of U to be
finite, the existence of bounded third own and cross derivatives of
FY |X (y|x) with respect to x, and that X has a continuous distribution
with twice differentiable density function and support on ℜ

k. The
approximation (4) to the distribution function does not require Y
to be continuously distributed4 given X .

For the moment let QZ be shorthand for QZ (τ , z). Since
FY |Z (QZ |z) = τ we have, from (3),

F̃Y |Z (QZ |z) = τ + o(Σ),

that is:

FY |X (QZ |z) +

∑
i,j

σij

(
F i
Y |X (QZ |z)g

j
X (z) +

1
2
F ij
Y |X (QZ |z)

)
= τ + o(Σ).

Considering variation in QZ andΣ and taking differentials gives

F Y
Y |X (QZ |z)dQZ +

∑
i,j

dσij

(
F i
Y |X (QZ |z)g

j
X (z) +

1
2
F ij
Y |X (QZ |z)

)
+O(Σ) = o(Σ),

where the superscript ‘‘Y ’’ denotes differentiation with respect to
the response variable, that is:

F Y
Y |X (QZ |z) ≡

∂

∂y
FY |X (y|z)

⏐⏐⏐⏐
y=QZ

= fY |X (QZ |z)

which is the conditional density of Y at the τ -quantile under
consideration. Setting Σ = 0, yields the required derivatives,

∂QZ

∂σij

⏐⏐⏐⏐
Σ=0

= −
F i
Y |X (QZ |z)g

j
X (z) +

1
2F

ij
Y |X (QZ |z)

F Y
Y |X (QZ |z)

and, plugging in to (4) there is the following approximation.

QZ (τ , z)

= QX (τ , z) −

∑
i,j

σij
F i
Y |X (QZ |z)g

j
X (z) +

1
2F

ij
Y |X (QZ |z)

F Y
Y |X (QZ |z)

+ o(Σ) (5)

The approximation is more easily interpreted, when expressed
in terms of the error free QRF and its derivatives

Q τ
X (τ , z) =

∂

∂τ
QX (τ , x)

⏐⏐⏐⏐
x=z

Q i
X (τ , z) =

∂

∂xi
QX (τ , x)

⏐⏐⏐⏐
x=z

4 In its application to QRFs we do assume a continuous distribution for Y with
strictly increasing distribution function,
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and so forth, as follows. Details of the derivation of this expression
are given in Appendix A.

QZ (τ , z) = QX (τ , z) +

∑
i,j

σij

(
Q i
X (τ , z)g j

X (z) +
1
2
Q ij
X (τ , z)

)
−

1
2

1
Q τ
X (τ , z)

∑
i,j

σij

(
Q τ i
X (τ , z)Q j

X (τ , z)

+ Q τ j
X (τ , z)Q i

X (τ , z)
)

+
1
2
Q ττ
X (τ , z)

Q τ
X (τ , z)2

∑
i,j

σijQ i
X (τ , z)Q j

X (τ , z) + o(Σ) (6)

2.3. Discussion

Section 3 provides interpretation of the terms in this approxi-
mation and considers some leading special cases. First it is worth
noting that there are elements of generality that may not be obvi-
ous at first sight.

Non-additive measurement error. The approximation has been de-
veloped for the case of additive measurement error, but we have
allowed the error free QRF to be nonlinear, so some other interest-
ing cases can be easily obtained by considering transformations of
the covariates. For example5 consider a scalar covariate X and let

Z = λ−1(λ(X) + λ(V ))

where λ(·) is a strictly monotonic function. Additive and multi-
plicative measurement error arise when λ(·) is respectively the
identity function and the logarithmic function. The approximation
(6) for additivemeasurement error applieswhen the error free QRF
is expressed as a function of λ(X). Then gX (·) must be regarded as
the log density of λ(X). The result is easily ‘‘unbundled’’ to give an
approximation in terms of an error free QRF written as a function
of X and the log density of X . Of course the resulting approximation
will involve the function λ(·) and its derivatives.6

Error free covariates. We have proceeded as if all elements of X
are error contaminated, but in many leading cases of interest we
may expect measurement error to be a serious issue for only one
covariate. For example in considering household demand we may
be confident in the accuracy ofmeasures of household composition
but suspect measurement error in household income. The approx-
imation (6) is easily applied to such cases by setting elements of
Σ to zero. Note that in this case, with XF and XC denoting respec-
tively error free and error contaminated covariates, the log density
derivative g j

X (z) that appears in (6) becomes the derivative of the
log conditional density of XC given XF with respect to elements
of XC .

2.3.1. Alternative forms of the approximation
The log density derivatives g j

X (z) that appear in (6) can be
replaced by derivatives of the log density of Z , g j

Z (z), without
increasing the order of the approximation error. This is proved in
Appendix B. This substitution has two benefits. First, in models
with normal measurement error it can result in increased accu-
racy.7 Second, unlike g j

X (z), the function g j
Z (z) can be estimated

5 I am grateful to Christian Schluter for suggesting this generalised additive
formulation.
6 This is essentially the approach taken in Chesher and Schluter (2002) and in

Chesher et al. (2002) in studying the impact of measurement error on respectively
inequality measures (e.g., the Gini coefficient) and duration analysis. In both cases
multiplicative measurement error is the leading case of interest.
7 When error free mean regressions are linear a substitution of this sort renders

the approximation to mean regressions exact, Chesher (1998a).

— using realisations of error contaminated Z . With an estimate of
g j
Z (z) and knowledge of the form of the error free QRF one then

has information about all aspects of the dependence on z of the
approximate error contaminated QRF, a point that is crucial to our
proposed sensitivity analysis procedure.

3. Interpretation and special cases

First it is interesting to compare the quantile regression ap-
proximation (6) with the approximate mean regression function
given in Chesher (1991). For error free and error contaminated
mean regression functions respectively RX (x) ≡ EY |X [Y |X = x] and
RZ (z) ≡ EY |Z [Y |Z = z], with error contaminated Z = X + V , this
approximation is as follows.

RZ (z) = RX (z) +

∑
i,j

σij

(
Ri
X (z)g

j
X (z) +

1
2
Rij
X (z)

)
+ o(Σ) (7)

This has the same form as the first line of (6).8
The remaining lines in (6) capture (approximately) the variance

and distributional shape distortions produced by measurement
error. Most of the message contained in these approximations can
be uncovered by considering the case in which there is just one
covariate, which is the case considered now.

3.1. Attenuation and curvature damping

Let superscript ‘‘x’’ denote differentiation with respect to the
single covariate and write the scalar measurement error variance
as σ 2. When there is one covariate (6) simplifies as follows.

QZ (τ , z) = QX (τ , z) + σ 2Q x
X (τ , z)gx

X (z) +
σ 2

2
Q xx
X (τ , z)

− σ 2Q
τx
X (τ , z)Q x

X (τ , z)
Q τ
X (τ , z)

+
σ 2

2
Q ττ
X (τ , z)Q x

X (τ , z)2

Q τ
X (τ , z)2

+ o(σ 2) (8)

The leading term is just the error free QRF with argument z.
The next two terms completing the first line of (8) do not involve
derivatives with respect to τ . These are QRF analogues of the only
O(Σ) terms in the mean regression approximation (7).

The term gx
X (z) is zero at every mode of the density of X . To

the left (right) of each mode gx
X (z) is positive (negative). Consider x

and τ where the error free QRF has a positive derivative. There the
effect of the termσ 2Q x

X (τ , z)gx
X (z) is to raise the error contaminated

QRF relative to the error free QRF to the left of each mode of the
density of X and to lower it to the right of each mode. This tends
to ‘‘flatten’’ the QRF and is an expression of the attenuating effect
of measurement error. There is the same attenuation effect where
the error free QRF has a negative derivative.

The effect is clear to see when the error free QRF is linear and is
illustrated for mean regression in Chesher (1991). Then Q x

X (τ , z) is
constant and the term σ2

2 Q xx
X (τ , z) vanishes. When gx

X (z) is linear,
which occurs when X is normally distributed, the approximate
error contaminated QRF is linear, but otherwise the term gx

X (z)
introduces nonlinearity. The nonlinearity induced bymeasurement
error can be seen in Figs. 1–3which show exact error free and error
contaminated QRFs and approximations to the latter for a set up
described in Section 4.2.

8 It also has the same form as (4) because the conditional distribution function
FY |X (y|x) is a regression function, namely the regression of 1[Y≤y] on X . For themean
regression function approximation to have a remainder term that is o(Σ) the third
order derivatives of the error free regression function are required to be bounded.
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Fig. 1. Exact and approximate τ -QRFs: τ ∈ {0.5, 0.75, 0.9}, bw = +0.5.

The opposite effect occurs at each antimode of the density of
X . Near antimodes the error contaminated QRF is ampliated. The
result is that when the distribution of X is multimodal the error
contaminated QRF tends to move sinuously relative to the error
free QRF.

The final term in the first line of (8) is present only when the
error free QRF is nonlinear. It is positive where that QRF is strictly
concave, tending to reduce the degree of concavity, and positive
where the error free QRF is convex, tending to decrease the degree
of convexity. The effect of this term is to dampen the curvature of
the error contaminated QRF relative to the error free QRF.

The terms in the second and third lines of (8) are more complex
andmore easily understood in special cases.We first consider them
in problems in which error free QRFs are parallel.

3.2. Parallel conditional quantiles

Consider parallel error free QRFs

QX (τ , x) = a(τ ) + b(x)

which arise when Y is a location shift of a random variable W , the
latter distributed independently of X , that is

Y = b(X) + W .

With QW (τ ) = a(τ ) denoting the τ -quantile ofW ,

QX (τ , x) = QW (τ ) + b(x).

In this case Q τx
X (τ , z) = 0 which removes the term in the second

line of (8).
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Fig. 2. Exact and approximate τ -QRFs: τ ∈ {0.5, 0.75, 0.9}, bw = 0.0.

In this case, applying (8), the error contaminated quantile is
approximately

QZ (τ , z) = a(τ ) + b(z) + σ 2bx(z)gx
X (z) +

σ 2

2
bxx(z)

+
σ 2

2
aττ (τ )bx(z)2

aτ (τ )2
+ o(σ 2) (9)

where superscripts ‘‘x’’ and ‘‘τ ’’ denote differentiationwith respect
to x and τ respectively. The following points are of interest.9

9 Where statements are made about some manifestation of measurement error
being present or absent it should be taken to mean to the order of approximation
considered in this analysis.

1. Even though the error free quantiles are parallel, the error
contaminated quantiles are not in general parallel, because
in the final term of (9) there are functions of z and τ which
interact.

2. However if the error free quantile functions are linear the
final term in (9) is a function of τ alone and measurement
error does not destroy the parallel quantile property, though
it may render quantile functions non-linear through the
impact of the term σ 2bx(z)gx

X (z) in (9).
3. Regarding a(τ ) as the quantile function of the random vari-

ableW , we have

aττ (τ )
aτ (τ )2

=
Q ττ
W (τ )

Q τ
W (τ )2

= −
∂

∂w
log fW (w)

⏐⏐⏐⏐
w=QW (τ )

= −gw
W (QW (τ ))
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where (A.3) and (A.5) of Appendix A have been used to
obtain the final expression and fW (w) is the density function
ofW .

(a) This term, and so the final term in (9), is zero at each
mode (and antimode) of the density ofW .

(b) When the density of W is unimodal, this final term in
(9) is negative for small τ and positive for large τ , and
captures the impact of measurement error in increas-
ing the dispersion of the conditional distribution of Y .

(c) This dispersion increasing effect is larger for values of
z at which bx(z) is large in magnitude and zero when
bx(z) is zero. In the nonlinear quantile function case
the variations with z in the sensitivity of b(z) to z
induce heteroskedasticity.

In summary, parallel nonlinear quantile regressions contami-
nated bymeasurement error become non-parallel, the effect being
greater at covariate values at which error free QRFs are more non-
linear. The discussion of Section 2.3 implies that this effectwill also
be present in linear error free QRF problems when measurement
error is not additive.

Error contaminated QRFs tend to be more widely separated
then error free QRFs. This expansion effect is larger when the slope
of the error free QRF is large in magnitude. It is larger for τ -QRFs
for which τ corresponds to a quantile on a sharply increasing or
decreasing part of the conditional density, in many cases this will
be away from the mode of this distribution but in the main body
of the distribution.

3.3. Non-parallel conditional quantiles

With non-parallel quantiles there is heteroskedasticity and/or
conditional shape variation in the error free model and these are
altered by the introduction of measurement error. This effect is
captured in the term in (8) involving Q τx

X (τ , z) which is nonzero
only at points where quantile functions are non-parallel. Consider
the simple case in which

QX (τ , z) = a(τ )c(x) + b(x)

which arises when

Y = b(X) + c(X)W

andW is independent ofX with τ -quantileQW (τ ) = a(τ ). The error
free τ -quantile is (c(x) ≥ 0 is assumed)

QX (τ , x) = c(x)QW (τ ) + b(x).

The relevant term in (8) is

Q τx
X (τ , z)Q x

X (τ , z)
Q τ
X (τ , z)

=
cx(z)
c(z)

(
QW (τ )cx(z) + bx(z)

)
.

This term further modifies the τ -free part of the QRF adding the
term cx(z)bx(z)/c(z) and modifies the form of the covariate depen-
dence of shape and dispersion.

4. Accuracy of the approximation

This section examines the accuracy of the approximation to
error contaminated QRFs. Some of the results are obtained using
numerical methods to calculate the exact error contaminated QRF,
but first consider the fully Gaussian model in which the error
contaminated QRF can be obtained in closed form. Here we find
that the approximation is exact so far as capturing the dependence
of the QRF on covariates is concerned.

4.1. Analytic results for a Gaussian model

Let (Y , X, V ) be jointly normally distributed with Y given X = x
and V = v distributed N(x′β, η2) and with[
X
V

]
∼ N

([
µX
0

]
,

[
ΣXX 0
0 Σ

])
.

The joint distribution of (Y , Z) is[
Y
Z

]
∼ N

([
µ′

Xβ

µX

]
,

[
η2

+ β ′ΣXXβ β ′ΣXX
ΣXXβ ΣXX + Σ

])
and the conditional distribution of Y given Z = z isN(µY |Z (z), σ 2

Y |Z )
where

µY |Z (z) ≡ β ′
(
I − ΣXX (ΣXX + Σ)−1)µX + β ′ΣXX (ΣXX + Σ)−1z

σ 2
Y |Z ≡ η2

+ β ′ΣXX
(
Σ−1

XX − (ΣXX + Σ)−1)ΣXXβ.

Let QN (τ ) be the τ -quantile of a N(0, 1) variate. It follows that
the exact error free and error contaminated QRFs of Y are linear
functions of respectively x and z, as follows.

QX (τ , x) = x′β + ηQN (τ )

QZ (τ , z) = β ′
(
I − ΣXX (ΣXX + Σ)−1)µX + β ′ΣXX (ΣXX + Σ)−1z

+ a(β, ΣXX , Σ, η)QN (τ ) (10)

where

a(β, ΣXX , Σ, η)

= σY |Z =
(
η2

+ β ′ΣXX
(
Σ−1

XX − (ΣXX + Σ)−1)ΣXXβ
)1/2

.

Consider the approximation (6) and the expression obtained if
g j
Z (z) in place of g j

X (z) is employed, as suggested in Section 2.3.1.
It is now shown that the coefficients on z in the approximate QRF
calculated thisway are identical to the coefficients on z in the exact
QRF using error contaminated Z .

Since Z ∼ N(µX , ΣXX + Σ) the log density of Z is

gZ (z) = A −
1
2

(
(z − µX )

′(ΣXX + Σ)−1 (z − µX )
)

where A does not depend on z. The z derivative of the log density
is −(ΣXX + Σ)−1 (z − µX ). Plugging g j

Z (z) in place of g j
X (z) into

(6), gives the following approximation to the error contaminated
QRF.10

Q̃Z (τ , z) = β ′
(
I − ΣXX (ΣXX + Σ)−1)µX

+ β ′ΣXX (ΣXX + Σ)−1z + ã(β, Σ)QN (τ ) (11)

ã(β, Σ, η) = η +
β ′Σβ

2η

The first two terms in the approximation Q̃Z (τ , z) given in (11)
are identical to the first two terms in the exact expression for the
error contaminated QRF, QZ (τ , z), given in (10) so the regression
coefficients of this approximate QRF are the same as those of the
exact QRF. Approximation error arises only in the intercept, and
only because of error in ã as an approximation to a.

It follows that when distributions of unobservables are not far
from Gaussian the approximation employed here can be quite
accurate even when the measurement error variance is large.

10 The term Q ij
X (τ , z) on the first line of (6) and the term on the second line of (6)

are zero. On the third line the summation is β ′Σβ and the multiplier of this term is
simply QN (τ )/(2η). The remaining terms in the first line deliver the first two terms
in (11) and the term ηQN (τ ) and hence the term η in ã(β, Σ, η) .
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Fig. 3. Exact and approximate QRFs: τ ∈ {0.5, 0.75, 0.9}, bw = −0.5.

4.2. Numerical calculations for exponential power distributions

It is difficult to find other cases in which exact error contam-
inated QRFs can be obtained in closed form so the accuracy of
the approximation is now examined using numerical methods.
Attention is confined to models with a single covariate.

A particular structure is defined and exact QRFs are calculated
conditioning on an error free covariate and conditioning on an
error contaminated covariate. Approximate QRFs conditioning on
the error contaminated covariate are calculated and the exact error
free and error contaminated and approximate error contaminated
QRF are compared. The calculations are done using numerical inte-
gration procedures. These are notMonte Carlo experiments, rather
exact calculations (within the bounds of computational accuracy)
to show the difference between the error contaminated QRF and

error free QRF and the quality of the approximation to the latter
proposed here.

In the structures studied, Y is determined by a location shift
model in which

Y = β0 + β1X + σWW (12)

Z = X + σU (13)

with Z an error contaminatedmeasure ofX . Unobservedmean zero
W and V ≡ σU and X aremutually independently distributedwith
exponential power (EP) distributions11 with shape parameters bw,
bv and bx.

A random variable S with mean µ and variance λ2 and an
exponential power distribution with shape parameter b ∈ (−1, 1)

11 Box and Tiao (1973) give properties of EP distributions.
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has the following probability density function.

fS(s) = A exp

(
−B
⏐⏐⏐⏐ s − µ

λ

⏐⏐⏐⏐ 2
1+b
)

.

The constants A and B are defined in Appendix C. Setting b equal
to 0 and 1 gives respectively normal and Laplace distributions. As
b → −1 the density approaches the uniform density function on
(µ −

√
3λ, µ +

√
3λ).

LetQbw(τ ) denote the τ -quantile12 of a zeromean unit variance
EP variate with shape parameter bw. Then the error free QRF of Y
is

QX (τ , x) = β0 + β1X + σWQbw(τ ). (14)

To obtain the exact error contaminated QRF the conditional dis-
tribution function of Y given Z is calculated by numerical integra-
tion13 and the value of the QRF at values of z is obtained using a
Newton type method.14

Figs. 1–3 show error free (dotted), exact error contaminated
(solid) and approximate error contaminated (dashed) τ -QRFs
when β0 = 0, β1 = 1, σW = 1, σXX = 3, and σ 2

= 1. At
these settings R2 in the error free mean regression is 0.75, the
signal to noise ratio for the error contaminated covariate is 0.75,
and for mean regression the attenuation of the error contaminated
regression is 25%, that is E[Y |Z = z] = 0.75z compared with
E[Y |X = x] = x.

The graphs show τ -QRFs for τ ∈ {0.5, 0.75, 0.9}. Figs. 1–3
are distinguished by the choice of shape parameter in the EP dis-
tribution forW , with bw equal to 0.5, 0 and −0.5 respectively. The
variance of the error contaminated covariate is 4 and the graphs
show QRFs for z ∈ [−4, 4], that is ±2 standard deviations around
the mean.

In each 3 × 3 array of graphs the shape parameter of the EP
distribution of X varies across rowswith bx equal to−0.5 in the top
row, then 0 and 0.5. The shape parameter of the EP distribution of
measurement error,V , varies across columnswith bv equal to−0.5
in the left column, then 0 and 0.5. Thus the center pane on each
page shows QRFs when both X and V are normally distributed.

First consider the exact error contaminated QRFs (solid lines).
Attenuation (around 25%) is evident in every case. The exact error
contaminated QRFs are nonlinear except when X and V are both
normally distributed although the nonlinearity is very weak when
the error free covariate is normal (center rows).

Varying the shape of the distribution of W (compare graph
arrays) and V (compare columns) has little effect on the error con-
taminated QRFs. Varying the shape of the distribution of the error
free covariate X (compare rows) has a substantial effect. When this
distribution is peaked (bottom rows) attenuation is most marked
at values of Z near the center of the distribution of X . When it is
platykurtic (top rows) attenuation is most marked for values of z
in the tail area of the distribution of X .

The shapes of the error contaminated QRFs vary little as τ is
altered. The additional noise introduced by measurement error
moves the QRFs away from the median QRF.

Now consider the approximate error contaminated QRFs
(dashed lines). These are calculated using (9) with g j

Z (z) in place
of g j

X (z) because it is in this form that the approximation is used
in the sensitivity analysis described in Section 2.3.1. In every case
the approximation accurately captures the attenuation and non-
linearity in the error contaminated QRF. The location of the error
contaminated QRF is very accurately captured by the approximate

12 An easily computed expression for the EP τ -quantiles is given in Appendix C.
13 The R procedure integrate is used , R Core Team (2016).
14 The R procedure uniroot is used, R Core Team (2016).

median regressions (τ = 0.5). The approximate QRFs for τ > 0.5
tend to be located a little above the exact QRFs for τ > 0.5 and
below for τ < 0.5. The quality of the approximations varies only a
little as the three EP shape parameters are altered.

In summary, with linear error free QRFs, in the cases stud-
ied, error contaminated QRFs are significantly nonlinear unless
the error free covariate is normally distributed. The main QRF
deforming impact of measurement error is driven by the shape
of the distribution of the error free covariate. When the variance
of measurement error is not too large, this shape is reflected in
the shape of the distribution of the error contaminated covariate
which is the driving force in the approximation (9). As a result the
approximation captures the nonlinearity in the error contaminated
QRFs well, although there is some error in locating the vertical
location of the extreme QRFs. In the ‘‘bias correction’’ procedure
and sensitivity analysis developed in Section 5 this location error
has little impact because data on Y is used to ‘‘calibrate’’ the
locations of the QRFs.

5. Bias correction and sensitivity analysis

Small variance approximations like that developed here can be
used to gauge the sensitivity of estimators to varying amounts
of measurement error. Examples are provided in Chesher and
Santos Silva (2002), Chesher and Schluter (2002) and Battistin
and Chesher (2014). In this section we examine the potential of
small variance approximations in this regard in the context of QRF
estimation.

Suppose a parametric form of a QRF is specified — here a
simple case is considered in which error free QRFs are linear and
parallel so that Y is generated by the location shift model (12), but
the method is more generally applicable. An alternative approach
suitable when there is a nonparametric specification is proposed
later in this Section. The τ -QRF of Y given X considered now is

QX (τ , x) = β0 + β1x + σWQW (τ )

where QW (τ ) is the τ -quantile ofW .
The results in Section 3.2 give the following expression for the

approximate error contaminated τ -QRF.

Q̃Z (τ , z) = β∗

0 + β1
(
z + σ 2gz

Z (z)
)

(15)

β∗

0 = β0 + σWQW (τ ) −
σ 2

2σW
β2
1g

w
W (QW (τ )).

The function gz
Z (z) is the z-derivative of the log density of the

error contaminated covariate, a function that can be estimated
with the data available. It is used here taking up the suggestion
in Section 2.3.1 where it is noted that substituting this function
for gx

X (z) does not alter the order of the approximation error and
allows realisations of Z to be used to estimate the approximate
error contaminated QRF.

If the variance ofmeasurement errorwere known then the error
contaminated QRF could be estimated using z + σ 2ĝz

Z (z) as the
right hand side variable regarding its estimated coefficient as an
estimator of the slope of the error freeQRF,β1. If the approximation
is accurate thenwe expect the inconsistency of this estimator to be
small. The argument in Chesher and Santos Silva (2002) suggests
that the difference between the pseudo-true value of this estimate
and the error free QRF coefficient, β1, will be of order o(σ 2).

In the absence of knowledge of σ 2 a sensitivity analysis could
be conducted, fixing σ 2 at a sequence of values in some plausible
range, estimating the parameters of (15) at each chosen value of
σ 2.

The method proposed involves two step estimation with a
nonparametric plug-in estimator used at the first stage but that
plug-in estimate is determined entirely by realisations of the error
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Table 1
Means and standard deviations of QRF slope estimates ignoring measurement error.

τ bw bx bv = −0.5 bv = 0.0 bv = +0.5

mean s.d. mean s.d. mean s.d.

−0.5 .738 .029 .755 .031 .772 .033
−0.5 0.0 .734 .031 .750 .033 .769 .034

+0.5 .728 .034 .744 .035 .761 .038
−0.5 .736 .030 .755 .031 .774 .032

0.50 0.0 0.0 .732 .031 0.750 .033 .771 .034
+0.5 .725 .034 .743 .035 .763 .035
−0.5 .736 .028 .756 .029 .778 .032

+0.5 0.0 .730 .030 .750 .032 .772 .033
+0.5 .723 .033 .743 .034 .764 .037

−0.5 .746 .034 .753 .034 .764 .036
−0.5 0.0 .742 .034 .750 .036 .761 .037

+0.5 .739 .038 .747 .038 .757 .040
−0.5 .746 .033 .752 .034 .763 .036

0.75 0.0 0.0 .743 .034 .750 .036 .761 .037
+0.5 .740 .036 .745 .038 .756 .039
−0.5 .747 .032 .753 .034 .763 .036

+0.5 0.0 .743 .034 .750 .035 .760 .037
+0.5 .739 .036 .746 .038 .756 .039

−0.5 .765 .042 .748 .044 .736 .044
−0.5 0.0 .766 .043 .750 .044 .740 .046

+0.5 .769 .045 .754 .047 .743 .048
−0.5 .766 .043 .747 .043 .735 .047

0.90 0.0 0.0 .768 .044 .750 .044 .738 .047
+0.5 .770 .045 .752 .045 .744 .048
−0.5 .770 .045 .746 .044 .733 .046

+0.5 0.0 .771 .044 .750 .045 .737 .047
+0.5 .773 .046 .754 .046 .742 .048

contaminated covariate. The principle of conditionality suggests
that we should make inference conditional on covariate’s realised
values. Following that principle, the impact of variation in the plug
in estimate on the sampling variance of theQRF estimator is carried
into the conditional (on the realised values of Z) standard errors
through the realised values of Z and ĝz

Z (z).
In order to examine the performance of a procedure of this sort

the results of someMonte Carlo experiments are now reported. The
error free QRF is linear with β0 = 0, β1 = 1, σW = 1 and the dis-
tributions ofW , X and V are exponential power distributions with
mean zero and shape parameters bw, bx, bv ∈ {−0.5, 0, +0.5}, a
total of 27 cases in all. The variances of W and V were set to one
and the variance of X was set to 3. At these settings the R2 in an
error free mean regression is 0.75 and the attenuation of the error
contaminated mean regression is 25%, that is the OLS estimator of
β1 using error contaminated Z has probability limit equal to 0.75.
In each experiment a sample size of 400 was used and there were
2000 replications.

Results of two types are shown. In the first the exact function
gz
Z (z) is used in constructing the new right hand side variables. In

the second an estimate the function using an exponential series
estimator is employed.

5.1. Log density derivative gz
Z (z) known

There are three tables of results, each showing means and
standard deviations of estimates across the 2000 Monte Carlo
replications.15 The first, second and third sets of 9 rows show
results for τ equal to respectively 0.5 (median regression), 0.75 and
0.90.

Table 1 shows results for the QRF estimator ignoring measure-
ment error. The attenuation effect of measurement error is plain to
see. In all cases themean of the estimates of β1 is very close to 0.75.
The standard deviation of the estimates increases as τ increases

15 The sampling distributions seem close to symmetric, with means very close to
medians, the latter thus not reported.

as one would expect from the sampling theory of QRF estimators.
There is little variation in the average value of the QRF estimator
across values of the EP distribution shape parameters and across
τ -QRFs.

Table 2 shows results for the QRF estimator with σ 2 ‘‘known’’.
The improvement is substantial. The mean of the estimates of β1
is very close to 1 (the error free QRF value), deviating at most by
3.6%. The accuracy of estimation is slightly impaired— the standard
deviations of the measurement error ‘‘corrected’’ estimates are
around 25% higher than the standard deviations of the naive esti-
mator which ignores measurement error. There is a small amount
of variation as the EP distribution shape parameters are altered. In
the case inwhich themeasurement error distribution is platykurtic
the slope estimates are slightly downward biased at τ = 0.5 and
slightly upward biased at τ = 0.9. There is the opposite effect
when themeasurement error distribution is leptokurticwith slight
upward bias at τ = 0.5 and slight downward bias at τ = 0.9. These
biases are, in all cases, very small.

Table 3 shows results when σ 2 is ‘‘estimated’’. When X is nor-
mally distributed there is extrememulticollinearity between z and
gz
Z (z) and results are not shown for this case. When measurement

error is also normally distributed gz
Z (z) ∝ z and σ 2 cannot be

identified from the approximate QRF, or indeed at all.
Estimating σ 2 brings significant degradation in performance

and now we find that one of the EP distribution shape parameters
has a substantial influence, the shape parameter for the distribu-
tion ofmeasurement error. The results vary only a little as the other
shape parameters and τ are altered. With normal measurement
error (γV = 0) the average of the ‘‘corrected’’ slope estimates is
still very close to 1, deviating at most by 2.9%. With γV = −0.5,
in which case the measurement error distribution is distinctly
platykurtic, the ‘‘corrected estimates’’ are around 15% downward
biased (compared with 25% for the naive estimator). With γV =

+0.5 (leptokurtic) there is around 8% upward bias.
Whenσ 2 is estimated there is degradation in accuracy, standard

deviations of the slope estimates increasing roughly fourfold. This
is an effect that can be driven down by using larger samples. Of
course in situations when gz

Z (z) is highly nonlinear this problem
will be eased, but note that for real benefit to arise, this should be
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Table 2
Means and standard deviations of measurement error corrected QRF slope estimates with σ 2 known and gz

Z (·) known.

τ bw bx bv = −0.5 bv = 0.0 bv = +0.5

mean s.d. mean s.d. mean s.d.

−0.5 0.989 .040 1.011 .040 1.028 .042
−0.5 0.0 0.978 .042 1.000 .044 1.026 .046

+0.5 0.972 .043 0.996 .046 1.021 .050
−0.5 0.986 .041 1.010 .040 1.031 .041

0.50 0.0 0.0 0.976 .041 1.000 .043 1.028 .045
+0.5 0.970 .044 0.995 .046 1.024 .047
−0.5 0.987 .039 1.013 .038 1.036 .041

+0.5 0.0 0.974 .040 1.000 .043 1.030 .044
+0.5 0.966 .042 0.995 .044 1.025 .048

−0.5 0.994 .045 1.007 .044 1.018 .046
−0.5 0.0 0.989 .046 1.000 .047 1.015 .050

+0.5 0.988 .049 0.998 .050 1.011 .053
−0.5 0.992 .044 1.005 .044 1.018 .046

0.75 0.0 0.0 0.990 .046 1.000 .048 1.014 .049
+0.5 0.988 .047 0.996 .049 1.013 .052
−0.5 0.993 .044 1.005 .044 1.018 .046

+0.5 0.0 0.991 .046 1.000 .047 1.014 .049
+0.5 0.989 .047 0.997 .049 1.012 .052

−0.5 1.004 .056 0.994 .058 0.984 .058
−0.5 0.0 1.020 .058 1.000 .059 0.986 .062

+0.5 1.029 .058 1.005 .062 0.984 .064
−0.5 1.005 .056 0.990 .057 0.982 .059

0.90 0.0 0.0 1.023 .059 1.000 .059 0.984 .062
+0.5 1.032 .059 1.003 .059 0.986 .063
−0.5 1.007 .059 0.988 .059 0.978 .059

+0.5 0.0 1.026 .059 1.001 .059 0.981 .062
+0.5 1.036 .059 1.004 .059 0.984 .065

a nonlinearity arising from the distribution of error free X — if it
arises from the distribution of V then the residual bias is likely to
be large.

5.2. Log density derivative gz
z (z) unknown

There are two sets of tables, laid out as described in the previous
section. Table 4 gives results with σ 2 known and Table 5 gives
results with σ 2 unknown.

The estimated log density derivative gz
Z (z) ≡

∂
∂z log fZ (z) is de-

rived from the exponential series density estimator of Barron and
Sheu (1991). The data are mapped by affine transformation onto
the unit interval16 and the unknown density of z is specified as

fZ (z) ∝ f 0Z (z) exp

⎛⎝ m∑
j=1

θjhj(z)

⎞⎠ (16)

where f 0Z (z) = 1 is the uniform kernel density on [0, 1] and the
hj(·) is the jth order Legendre polynomial. The required log density
derivative is simply

gz
Z (z) =

m∑
j=1

θjh′

j(z) (17)

where h′

j(·) is the first derivative of the jth order Legendre polyno-
mial.

The parameters θ are estimated by maximising a likelihood
function inwhich (16) specifies the likelihood contributions up to a
constant of integration found by numerical methods.17 We choose
m = 8 to produce the results given here. In a truly nonparametric

16 The minimum and maximum of the realised values of Z are associated with
respectively 0.1 and 0.9 to avoid end effects.
17 Further details of the implementation of this procedure can be found in Chesher
(1998b). The Monte Carlo experiments were conducted using R (R Core Team
(2016)). In the density estimation, maximum likelihood estimation was done using
the nlm procedure in R. QRFs were estimated using the procedure rq in the R
contributed package quantreg (Koenker 2013).

estimation one would regard m as a smoothing parameter and
determine a data driven appropriate value, for example by cross
validation. In these Monte Carlo experiments m was fixed at a
value which allowed the essential features of the density of Z to
be captured while avoiding excessive roughness in the estimate.

First consider the case in which σ 2 is known and compare
Tables 2 and 4. It is clear that estimating gz

Z (·) has little effect
on the bias of the measurement error corrected slope estimator,
but it does slightly reduce the accuracy of the estimator, standard
deviations across Monte Carlo replications rising by around 20%.

When σ 2 is estimated (compare Tables 3 and 5) the standard
deviations of the slope estimates rise by two to four fold compared
with the case when σ 2 is known and gz

Z (·) is estimated, and by
around 15% compared with the case in which σ 2 is estimated and
gz
Z (·) is known.
There is a significant increase in bias which is downward in

all the cases considered. Since ĝz
Z (z) is gz

Z (z) contaminated with
measurement error, this could itself be ameasurement error effect.
Much smaller bias is found using smaller values of the smoothing
parameter,18 m, but then the variance of the measurement error
corrected estimator is much larger. If an attempt at estimating
the measurement error variance is to be made, then, to avoid
attenuation it seems to be important not to undersmooth when
estimating gz

Z (z), and to have a large sample to hand.

5.3. Discussion

In the simple cases considered, estimation of approximatemea-
surement error contaminated QRFs brings about a substantial re-
duction in bias but with an increase in variance that is small if the
variance of measurement error is known, but sizeable otherwise.
The proposed procedures are likely to work well in real problems
only in large samples. But inmany cases inmicroeconometricwork
inwhichQRF estimationwould be contemplated large sampleswill
be available, so perhaps this is not a great drawback.

18 For example the bias is reduced by around 50% on choosingm = 4.
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Table 3
Means and standard deviations of measurement error corrected QRF slope estimates with σ 2 unknown and gz

Z (·) known.

τ bw bx bv = −0.5 bv = 0.0 bv = +0.5

mean s.d. mean s.d. mean s.d.

−0.5 0.870 0.107 1.024 .127 1.087 .130
−0.5 0.0 – – – – – –

+0.5 1.117 .168 1.017 .161 0.910 .149
−0.5 0.867 .106 1.023 .122 1.095 .129

0.50 0.0 0.0 – – – – – –
+0.5 1.123 .160 1.018 .161 0.909 .152
−0.5 0.874 .105 1.029 .120 1.101 .128

+0.5 0.0 – – – – – –
+0.5 1.122 .164 1.020 .158 0.908 .152

−0.5 0.892 .121 1.013 .137 1.074 .142
−0.5 0.0 – – – – – –

+0.5 1.106 .180 1.008 .180 0.899 .161
−0.5 0.888 .119 1.017 .133 1.078 .146

0.75 0.0 0.0 – – – – – –
+0.5 1.098 .170 1.004 .175 0.903 .161
−0.5 0.890 .116 1.013 .136 1.073 .144

+0.5 0.0 – – – – – –
+0.5 1.102 .178 1.011 .170 0.903 .162

−0.5 0.933 .152 0.988 .181 1.015 .188
−0.5 0.0 – – – – – –

+0.5 1.077 .218 0.988 .216 0.880 .194
−0.5 0.931 .158 0.993 .169 1.020 .192

0.90 0.0 0.0 – – – – – –
+0.5 1.066 .227 0.980 .221 0.886 .194
−0.5 0.934 .158 0.981 .182 1.013 .196

+0.5 0.0 – – – – – –
+0.5 1.064 .227 0.987 .217 0.887 .201

Table 4
Means and standard deviations ofmeasurement error corrected QRF slope estimates with σ 2 known and gz

Z (·) estimated.

τ bw bx bv = −0.5 bv = 0.0 bv = +0.5

mean s.d. mean s.d. mean s.d.

−0.5 0.979 .048 1.002 .049 1.024 .052
−0.5 0.0 0.972 .047 0.994 .050 1.021 .052

+0.5 0.968 .047 0.991 .051 1.017 .056
−0.5 0.977 .049 1.003 .049 1.027 .051

0.50 0.0 0.0 0.969 .046 0.994 .049 1.024 .052
+0.5 0.965 .048 0.991 .051 1.020 .052
−0.5 0.978 .048 1.005 .047 1.032 .051

+0.5 0.0 0.968 .047 0.993 .049 1.024 .052
+0.5 0.963 .046 0.992 .049 1.021 .055

−0.5 0.986 .053 0.999 .053 1.015 .055
−0.5 0.0 0.984 .051 0.993 .053 1.012 .056

+0.5 0.986 .052 0.994 .054 1.008 .060
−0.5 0.984 .052 0.999 .052 1.016 .055

0.75 0.0 0.0 0.985 .051 0.993 .053 1.011 .057
+0.5 0.986 .051 0.994 .053 1.009 .057
−0.5 0.986 .052 0.997 .052 1.015 .054

+0.5 0.0 0.986 .051 0.994 .054 1.010 .057
+0.5 0.985 .051 0.994 .053 1.008 .057

−0.5 0.999 .063 0.987 .064 0.979 .067
−0.5 0.0 1.015 .064 0.994 .064 0.983 .067

+0.5 1.027 .063 1.003 .065 0.983 .068
−0.5 0.999 .064 0.985 .064 0.977 .068

0.90 0.0 0.0 1.019 .063 0.992 .064 0.980 .068
+0.5 1.029 .061 1.002 .064 0.984 .067
−0.5 1.003 .064 0.983 .063 0.975 .067

+0.5 0.0 1.021 .064 0.997 .066 0.977 .069
+0.5 1.032 .063 1.002 .063 0.982 .069

Of more concern are the difficulties that would likely be en-
countered were more flexible forms of the error free QRF to be
entertained. Once the error free QRF is specified as flexible and
nonlinear there is the likelihood of collinearity between the deriva-
tives of the error freeQRF that appear in (6) and gz

Z (z). Another diffi-
culty in nonlinearmodels is that if there are values ofX atwhich the
QRF is highly nonlinear then we can expect the approximation to
have a large remainder term because it depends on the magnitude
of the third derivatives of the error free QRF.

There is a further issue to consider. In practice QRFs are some-
times estimated in order to investigate heteroskedasticity. Depen-
dence on X in the error free QRF that depends upon τ is manifested
in the error contaminated QRF differently from dependence that is
τ independent — see Section 3.3. To use the procedure developed
here onemust be specific about the interaction between X and τ in
determining the error free QRF. In practice arriving at such a speci-
fication might be difficult and the resulting additional functions of
z that arise may be highly collinear.
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Table 5
Means and standard deviations of measurement error corrected QRF slope estimates with σ 2 unknown and gz

Z (·)
estimated.

τ bw bx bv = −0.5 bv = 0.0 bv = +0.5

mean s.d. mean s.d. mean s.d.

−0.5 0.820 .102 0.903 .136 0.972 .169
−0.5 0.0 – – – – – –

+0.5 0.944 .182 0.907 .170 0.863 .148
−0.5 0.818 .101 0.906 .137 0.974 .173

0.50 0.0 0.0 – – – – – –
+0.5 0.947 .181 0.904 .153 0.865 .156
−0.5 0.817 .097 0.908 .128 0.976 .188

+0.5 0.0 – – – – – –
+0.5 0.950 .172 0.906 .150 0.862 .147

−0.5 0.835 .118 0.900 .152 0.958 .183
−0.5 0.0 – – – – – –

+0.5 0.940 .187 0.902 .180 0.845 .162
−0.5 0.830 .116 0.903 .151 0.955 .187

0.75 0.0 0.0 – – – – – –
+0.5 0.939 .187 0.888 .175 0.853 .180
−0.5 0.830 .117 0.896 .136 0.949 .196

+0.5 0.0 – – – – – –
+0.5 0.941 .178 0.896 .165 0.845 .168

−0.5 0.856 .163 0.884 .173 0.906 .220
−0.5 0.0 – – – – – –

+0.5 0.939 .214 0.888 .212 0.824 .199
−0.5 0.859 .158 0.883 .193 0.902 .222

0.90 0.0 0.0 – – – – – –
+0.5 0.933 .218 0.878 .219 0.829 .214
−0.5 0.857 .155 0.878 .173 0.898 .235

+0.5 0.0 – – – – – –
+0.5 0.933 .214 0.883 .203 0.823 .206

In the cases studied here there is a single covariate. Results in
Chesher (1998b) for mean regression suggest that we can expect
similarly good performance inmultiple covariate problems as long
as only one covariate is measured with error and the conditional
density of the error contaminated covariates given the error free
covariates depends on the latter through a single index.

An alternative procedure not investigated here, comes on using
(5) to obtain an approximation for the error free QRF as follows

QX (τ , z) = QZ (τ , z)

+

∑
i,j

σij
F i
Y |Z (QZ (τ , z)|z)g j

Z (z) +
1
2F

ij
Y |Z (QZ (τ , z)|z)

F Y
Y |Z (QZ (τ , z)|z)

+ o(Σ) (18)

where the approximation∑
i,j

σij

(
F i
Y |X (QZ (τ , z)|z)g j

X (z) +
1
2F

ij
Y |X (QZ (τ , z)|z)

F Y
Y |X (QZ (τ , z)|z)

−
F i
Y |Z (QZ (τ , z)|z)g j

Z (z) +
1
2F

ij
Y |Z (QZ (τ , z)|z)

F Y
Y |Z (QZ (τ , z)|z)

)
= o(Σ)

proved as in Appendix B, has been used. Taking this approach
one investigates sensitivity to measurement error by calculating
the right hand side of (18) using nonparametric estimators of
quantile and density functions and of derivatives of distribution
functions at a variety of conjectured values for Σ . This is similar
to the method employed to produce measurement error corrected
poverty indices in Chesher and Schluter (2002).

6. Concluding remarks

Covariate measurement error causes fundamental changes in
conditional quantile regression functions, altering their shape, ori-
entation and location. This paper has provided information about
the generic effects of measurement error by developing a small
measurement error variance approximation to measurement er-
ror contaminated τ -QRFs. The approximation depends upon the

error free QRF and its derivatives up to order two, the variance
of measurement error, and the density of the error contaminated
covariates. It does not depend upon, and to use it one needs no
knowledge of, the specific form of the density of measurement
error.

Exact calculations suggest that the approximation can be accu-
rate when the amount of measurement error is small to moderate,
as long as the error free QRF is not too nonlinear and the measure-
ment error distribution is not too far from normal.

A number of uses of the approximation have been proposed.

1. It allows one to gauge the likely effects of measurement
error on a particular form for an error free QRF that is
proposed for use in analysis of data. With realisations of the
error contaminated covariate one can estimate the terms in
the approximation that depend on the density of this variate
and, with a particular form for the error free QRF to hand,
one can derive the remaining terms.

2. With knowledge of, or an estimate of, the variance of mea-
surement error, it can be used to produce a measurement
error corrected estimate of the parameters of the error free
QRF.

3. It can be used to examine the sensitivity of QRF estimates
to alternative assumed amounts of measurement error by
estimating the approximate error contaminated QRF for a
range of values of the measurement error variance.
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Appendix A. Expressing approximate QRFs as functionals of
error free QRFs

I use an abbreviatednotation and consider conditional quantiles
defined by the following equation

F (Q |x) = τ (A.1)

where Q denotes Q (τ , x) a dependence we make explicit in places
where otherwise there might be confusion.

Considering variations in x, τ and Q subject to (A.1) there is

F Y (Q |x)dQ +

∑
i

F i(Q |x)dxi = dτ (A.2)

where

F Y (Q |x) ≡
∂

∂y
F (y|x)

⏐⏐⏐⏐
y=Q

F i(Q |x) ≡
∂

∂xi
F (y|x)

⏐⏐⏐⏐
y=Q

.

Shortly second partial derivatives appear, denoted F YY , F Yi and
F ij, defined similarly. Eq. (A.2) leads directly to the following ex-
pressions for the first partial derivatives of the conditional quantile
function.

Q τ (τ , x) =
1

F Y (Q |x)
(A.3)

Q i(τ , x) = −
F i(Q |x)
F Y (Q |x)

(A.4)

The second order partial derivatives of the quantile function
follow on differentiating (A.3) and (A.4).

Q ττ (τ , x) = −
F YY (Q |x)
F Y (Q |x)2

Q τ (τ , x) = −
F YY (Q |x)
F Y (Q |x)3

(A.5)

Q τ i(τ , x) = −
1

F Y (Q |x)2
(
F Yi(Q |x) + F YY (Q |x)Q i(τ , x)

)

= −
F Yi(Q |x)
F Y (Q |x)2

+
F YY (Q |x)F i(Q |x)

F Y (Q |x)3
(A.6)

Q ij(τ , x) = −
1

F Y (Q |x)

(
F Yi(Q |x)Q j(τ , x) + F ij(Q |x)

)
+

F i(Q |x)
F Y (Q |x)2

(
F YY (Q |x)Q j(τ , x) + F Yj(Q |x)

)
= −

F ij(Q |x)
F Y (Q |x)

+
F Yi(Q |x)F j(Q |x)

F Y (Q |x)2
+

F Yj(Q |x)F i(Q |x)
F Y (Q |x)2

−
F YY (Q |x)F i(Q |x)F j(Q |x)

F Y (Q |x)3
(A.7)

In the main text we noted that

∂QZ

∂σij

⏐⏐⏐⏐
Σ=0

= −
F i
Y |X (QZ |z)g

j
X (z)

F Y
Y |X (QZ |z)

−
1
2

F ij
Y |X (QZ |z)

F Y
Y |X (QZ |z)

(A.8)

which we now wish to express in terms of the conditional QRF
and its derivatives. The leading term is given directly by (A.4) with
suitable expansion of notation. Now note that, from (A.6),

F Yi(Q |x)F j(Q |x)
F Y (Q |x)2

=
Q τ i(τ , x)Q j(τ , x)

Q τ (τ , x)
−

Q ττ (τ , x)Q i(τ , x)Q j(τ , x)
Q τ (τ , x)2

.

and from (A.7), exploiting (A.3) and (A.4)

F ij(Q |x)
F Y (Q |x)

= −Q ij(τ , x) +
Q τ i(τ , x)Q j(τ , x)

Q τ (τ , x)
+

Q τ j(τ , x)Q i(τ , x)
Q τ (τ , x)

−
Q ττ (τ , x)Q i(τ , x)Q j(τ , x)

Q τ (τ , x)2
.

Substituting this final expression in (A.8) gives Eq. (6) in the main
text.

Appendix B. The effect on the approximation of using the log
density of Z rather than X

Chesher (1991) shows that the densities of Z and X satisfy

fZ (z) = fX (z) +

∑
s,t

σst f stX (z) + o(Σ).

The log densities therefore satisfy

gZ (z) = gX (z) +

∑
s,t

σst
f stX (z)
fX (z)

+ o(Σ)

and their derivatives satisfy

g j
Z (z) = g j

X (z) +

∑
s,t

σst

(
f stjX (z)
fX (z)

−
f stX (z)f jX (z)
fX (z)2

)
+ o(Σ).

It follows immediately that∑
i,j

σijQ i
X (τ , z)g j

X (z) −

∑
i,j

σijQ i
X (τ , z)g j

Z (z) = o(Σ)

and then directly that the order of the approximation error in (6)
is not increased on substituting g j

Z (z) for g
j
X (z).

Appendix C. Exponential power distributions: Quantiles and
random number generation

Let S have an exponential power distribution with mean µ and
variance λ2 and shape parameter b ∈ (−1, 1). The probability
density function of S is as follows.

fS(s) = A exp

(
−B
⏐⏐⏐⏐ s − µ

λ

⏐⏐⏐⏐ 2
1+b
)

A =
1
λ

(
Γ
( 3
2 (1 + b)

)
(1 + b) Γ

( 1
2 (1 + b)

)3/2
)1/2

B =

(
Γ
( 3
2 (1 + b)

)
Γ
( 1
2 (1 + b)

)) 1
1+b

Let G have a Gamma distributionwithmean and variance δ. The
density function of G is

fG(g) = Γ (δ)−1gδ−1 exp(−g), g ∈ (0, ∞]

Quantiles. Fast routines for calculating Gamma quantiles are
easy to find. They can be used to calculate EP quantiles, as follows.

Let QG(τ ; δ) be the τ -quantile of G. Let QS(τ ; µ, λ, b) be the
τ -quantile of exponential power distributed S. Quantiles of S are
related to quantiles of G as follows.

QS(τ ; µ, λ, b) = µ + λsign(τ − 0.5)

×

⎛⎝B−1QG

⎛⎝1 −
2min(τ , 1 − τ )λ1/2

(1 + b)
1
2 Γ
( 1
2 (1 + b)

) 3
4
,
1
2

(1 + b)

⎞⎠⎞⎠ 1+b
2

Pseudo-random number generation. The EP quantile formula
leads directly to fast pseudo-random number generation because,
if K has a uniform distribution on [0, 1], then QS(K ; µ, λ, b) has an
EP distribution with mean µ, variance λ2 and shape parameter b.
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