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ABSTRACT 

The finding of the paper shows the relative effectiveness of the ‘one size fits all’ policy of the 

European Central Bank. The paper provides strong evidence in favour of this by testing 

whether the monetary policy effects (footprints), found in inflation uncertainty converge to a 

common level. These footprints are measured as the fraction of the estimated policy-induced 

reduction in this uncertainty. The testing was conducted by applying a bootstrap-type test in a 

regression of the rate of growth of these fractions on their initial values, computed for 16 euro 

area countries. (JEL codes: C33, E52, E58).  

The paper has an on-line supplementary annex.
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1. INTRODUCTION  

One of the principal arguments for how the European Monetary Union can be economically 

effective in the allocative sense was made in 2005 in the speech by Ottmar Issing, then Chief 

Economist of the European Central Bank (ECB), at the International Research Forum on Monetary 

Policy. In this speech Issing (2005) reinforced his earlier point (Issing, 2001) in favour of the ‘one size 

fits all’ hypothesis for the single interest rate policy of the ECB. His main argument came from a 

reinterpretation of the real interest rate effect on growth when there are regional inflation 

differentials (see e.g. Caporale and Kontonikas, 2009). In the original interpretation, an interest rate 

determined by a single central bank would result in the real interest rate being relatively low in 

countries with high inflation, so stimulating growth, and relatively high in countries with low 

inflation, resulting in divergence in growth rates and increased uncertainty about inflation. Issing’s 

counterargument was that investment decisions are based on ex-ante rather than ex-post real 

interest rates, or expected rather than historical inflation. If expected inflation is not idiosyncratic, 

then its dispersion between countries will not increase and no divergence in growth will occur. 

Ten years after the speech the empirical evidence has been mixed. Some signs of inflation 

convergence were noticed five years after the creation of the euro (Mongelli and Vega, 2006; Busetti 

et al, 2007) and were confirmed later (Lopez and Papell, 2012), but the empirical support of real 

sphere convergence in the euro area is less evident. Although there are signs that there was 

convergence in output and unemployment before 2007, substantial divergence has been observed 

after that date (Estrada, Galí and López Salido, 2013; Monfort, Cuestas and Ordóñez, 2013). This 

makes it difficult either to disprove or to confirm Issing’s hypothesis by evaluating the traditional 

convergence hypothesis. 

However, convergence in levels of inflation does not necessarily imply that inflation 

uncertainty converges as well. This paper attempts to shed new light on the ‘one size fits all’ 

hypothesis and provide empirical evidence of a different type based on an evaluation of the effects 
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of monetary policy on inflation uncertainty. The logic here is that Issing’s (2005) conjecture that 

investment decisions are based on an ex-ante real interest rate reflecting the entire euro area implies 

that there is some uncertainty about future euro inflation. There may be some external factors, fiscal 

or political, which increase inflation uncertainty from its relatively low level. In this context the 

question arises of whether the economic policy of the euro area can successfully reduce the 

uncertainty by a similar proportion across countries. In a way this also relates to the conjecture of 

Arnold and Lemmen (2008) that, within the euro area, ‘inflation uncertainty may increase in 

countries that have a smaller influence on ECB policy’. 

The traditional approach to measuring inflation uncertainty is to calculate a measure of its 

variability and then evaluate changes in it over time (see e.g. Caporale, Onorante and Paesani, 2012; 

Lopez and Papell, 2012). As high inflation usually corresponds to higher dispersion of inflation, ex-

post or ex-ante, periods of high inflation were historically associated with higher uncertainty. Other 

approaches are needed, however, in the current economic realities when the level of inflation is low. 

There is a growing literature discussing different approaches to defining and measuring inflation 

uncertainty and, more generally, macroeconomic uncertainty (see e.g. Giordani and Söderlind, 2003; 

Baker, Bloom and Davis, 2015; Jurado, Ludvigson and Ng, 2015; and Makarova, 2014, for a 

comprehensive discussion and overview). Inflation uncertainty is generally regarded as being 

detrimental to growth, either directly through the effect on long-term interest rates (Golob, 1994), or 

indirectly as a component of macroeconomic uncertainty, where it affects long-term transactional 

insurance and option costs (Bloom, 2014).  

Verification of the hypothesis that ECB monetary policy is creating cross-country convergence 

in reducing inflation uncertainty is the main topic of this paper. It is important to note that 

convergence in reducing uncertainty resulting from a policy action is not the same as convergence in 

uncertainty itself nor, indeed, in levels of inflation. In this paper, inflation uncertainty is expressed by 

the dispersion of inflation forecast errors (see e.g. Clements, 2014). However, following Rossi and 



 3 

Sekhposyan (2015), further inference in this paper is based on the entire distribution of forecast 

errors rather than on its dispersion alone. It adapts the methodology proposed in Charemza, Díaz 

and Makarova (2015), where the weighted skew normal distribution (WSN) is fitted to pseudo ex-

post forecast errors for annual inflation measured monthly. The parameters of the WSN can be 

interpreted as reflecting the monetary policy influence on uncertainty. This allows the relative effect 

of such a policy in reducing uncertainty to be evaluated. One measure of such effects is called the 

uncertainty ratio. If Issing’s arguments are correct, the necessary condition for the ‘one size fits all’ 

hypothesis is that the uncertainty ratios across the euro area countries should converge to a 

common level, called the Common Uncertainty Reduction Effect in this paper (CURE), and 

convergence to the CURE is called CURE-convergence.  

Bloom (2014) provides evidence that macroeconomic uncertainty is countercyclical to growth, 

and this is confirmed further by Henzel and Rengel (2017). Their findings support the real options 

theory (Bernanke, 1983; Brennan and Schwartz, 1985; McDonald and Siegel, 1986) and increasing of 

risk premia in times of uncertainty. As inflation uncertainty represents an essential part of 

macroeconomic uncertainty, divergence in inflation uncertainty in the countries of a currency union 

is likely to result in a divergence in growth in the real sector due to this countercyclicality. Therefore, 

if CURE-convergence exists, it documents the long-run tendency for monetary policy outcomes to be 

unified across countries. 

The empirical model for testing CURE-convergence consists of regressing the rate of growth in 

the uncertainty ratio computed for different forecast horizons on the initial conditions. The 

construction of this is to some extent technically similar to that of fixed effect panel data models. 

However, the model is static by its nature as it has two cross-sectional dimensions, rather than cross-

sectional and time series dimensions. In this case the traditional standard errors of the estimates are 

not valid, as the distributions of the uncertainty ratios for different forecast horizons are usually not 

normal and might be highly interdependent. Consequently, it has been decided to apply the moving 
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blocks bootstrap method here (Gonçalves, 2011). The main message of the paper is that despite the 

obstacles caused by the global financial crisis in 2007-2011 and the euro area debt crisis that has 

been bubbling away since 2009, monetary policy in the euro area provides strong and statistically 

significant support for CURE-convergence. If Issing’s ‘one size fits all’ hypothesis is to be understood 

more broadly as the tendency of the effects of a single monetary policy on inflation forecast 

uncertainty across the euro countries to converge, this is what the CURE-convergence indicates. 

The further structure of the paper is as follows. Section 2 discusses possible reasons for the 

divergence in inflation uncertainty given the convergence in levels. Section 3 applies some simple 

measures of inflation uncertainty and, without formal testing, illustrates the existence of such 

divergence in the euro area. Section 4 proposes a formal model for testing the convergence in 

reducing inflation uncertainty that is due to monetary policy and discusses its stochastic assumptions 

and estimation. Section 5 gives the main empirical results, Section 6 discusses their robustness, and 

Section 7 concludes. 

2. ECB MONETARY POLICY AND INFLATION UNCERTAINTY  

It is generally, albeit not universally, agreed that economic growth benefits from a reduction in 

macroeconomic uncertainty, a substantial component of which is inflation uncertainty (see e.g. 

Bloom, 2014; Vavra, 2014; Jurado, Ludvigson and Ng, 2015). There are numerous factors which cause 

inflation uncertainty to be different across the region. The heterogeneity of inflation uncertainty in a 

cross section of countries can be explained by the following main factors: 

(i) A different level of inflation in each country. The level of inflation is often different 

between countries because of heterogeneous long-run factors like consumers’ 

preferences, tax structures, asynchronous business cycles, employment structure, 

foreign trade diversification, the structure of credit channels and others. According to 

the Friedman-Ball hypothesis (Ball, 1992; Friedman, 1977), countries with a higher 

level of inflation should also have higher inflation uncertainty. The Friedman-Ball 
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hypothesis is an alternative to the Cukierman-Meltzer (1986) hypothesis that positive 

causality goes from inflation uncertainty to inflation. In either case, it would be 

expected that high inflation uncertainty would be observed in times of high inflation and 

low inflation uncertainty in times of low inflation.  

(ii) Various idiosyncratic factors which might not change the level of inflation, and so not 

trigger the Friedman-Ball effect, but may affect uncertainty in a direct way. The factors 

here include political uncertainty (for a theoretical treatment see Davig, Leeper and 

Walker, 2011), a lack of fiscal transparency or discipline, an unclear legal structure for 

long-term investment, unemployment threats, corrupt credit and microfinance channels, 

and others. These factors are predominantly country-specific, affecting uncertainty 

differently in different countries and resulting in heterogeneity in country-relative risk 

regimes (see e.g. Belke and Kronen, 2015; Delrio, 2016).  

Regarding (i), there is strong empirical support for the Friedman-Ball and Cukierman-Meltzer 

hypotheses for the euro countries until 2010 (see e.g. Caporale, Onorante and Paesani, 2012). 

However, there is some econometric evidence suggesting that in at least some euro area countries 

inflation uncertainty has risen in recent years despite the continuously low level of inflation 

(Chowdhury and Sarkar, 2013). From more recent non-econometric accounts of growing 

macroeconomic uncertainty, which indicate inflation uncertainty without any expectation of a 

substantial rise in inflation itself (see e.g. European Commission, 2015), it becomes evident that the 

link between inflation and inflation uncertainty appears to have been broken, particularly between 

October 2011 and October 2013. This period coincides with the efforts of the European Central Bank 

to implement non-conventional monetary policy measures, in particular the credit support policy 

gradually introduced over time and announced in December 2011, and the policy of buying a 

substantial amount of government debt through the Outright Monetary Transactions programme, 

announced in July 2012 and phased out in 2014. This program contradicted, to an extent, the ‘one 

size fits all’ policy. As markets expected that it would be introduced, it stabilised inflation in some 
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euro area countries but did not affect the dynamics of inflation uncertainty, as they were not 

embedded in the historical inflation records. Growing inflation uncertainty with a low level of 

inflation in this period indicates that the factors in (ii) were gaining in importance, particularly the 

political and fiscal uncertainty. 

In the light of this, it might be interesting to find out not just how far inflation uncertainty in 

each country is reduced by ECB policy, but how effective this policy was in balancing uncertainty 

reduction across the euro area countries. Long-term success here should result in some convergence 

of measures for this reduction across countries. 

3. MEASURING UNCERTAINTY 

There are two widely used ways of measuring inflation forecast uncertainty. One, called the 

ex-ante approach, takes data from a panel of forecasts produced by surveys of individual forecasters 

and uses the dispersion between these forecasts as a benchmark measure of uncertainty 

(‘uncertainty by disagreement’; see e.g. Bomberger, 1999; Lahiri and Sheng, 2010). This is sometimes 

accompanied by evaluations of uncertainty expressed by experts on the basis of their subjective 

knowledge (see e.g. Giordani and Söderlind, 2003; Patton and Timmermann, 2010). The other 

approach, known as ex-post, is based on analysis of past forecast errors and is often used by 

practitioners in central banks. Methods combining both the ex-post and ex-ante approaches have 

more recently been proposed (Lahiri, Peng and Sheng, 2014; Rossi, Sekhposyan and Soupre, 2016). 

The main problem with the ex-ante approach is that the survey-based measures often suffer 

from cross-section and time series heterogeneity, time inconsistency and possible herd behaviour 

among individual forecasters (see e.g. Andrade and Bihan, 2013; Makarova, 2014; Clements, 2015; 

and, in the context of the forecasts produced by the ECB panel of forecasters, Abel et al. 2016). The 

concept of inflation uncertainty used here is ex-post forecast uncertainty based on the distribution of 

the past forecast errors of a forecasting model. The ex-post forecast uncertainty is easy to compute, 

and its interpretation is straightforward. It does not depend on the size or quality of the pool of 
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forecasters and is free from political, emotional and sociological bias. However, such uncertainty is 

model-dependent, and quite often the number of observations used for computing the uncertainty 

measure of individual ex-post forecast errors is small. 

To obtain observations on uncertainty, let us first define the concept of a baseline inflation 

forecast for time t h  ( 0h  ) as being publically available to all agents at time t  (inclusive of t). The 

series of such forecasts has been computed in the pseudo out of sample way, so they are obtained in 

continuously expanding windows (Stock and Watson, 2007), as: 

| |
ˆ

t h t t h t h te       ,   0 0, 1, ... ,t t t T h   ,   (1) 

where h  denotes the forecast horizon, 1, ...,h H ; t  is the observed headline HICP 

inflation at time t; 
|

ˆ
t h t 

 is the trend inflation h-step ahead point forecast from the ARIMA-

GARCH model, estimated with data up to time t (inclusive of t); 
|t h te 
 are the trend inflation 

forecast errors of the forecast made in time t for t h ; T  is the total length of the data series; 

and data for the period from 1 to 0t  (inclusive) are used for the initial model estimation. It is 

further assumed that this forecast is a ‘common knowledge’ forecast that does not constitute 

information relevant for monetary policy but can be improved upon by ECB forecasters.  

Evidently the choice of model used for computing the baseline forecast is, to an extent, 

arbitrary, and selecting another model might lead to a different series of baseline forecast errors 

being obtained. It has been decided to use the ARIMA-GARCH model as the forecasting tool, for two 

main reasons. The first is related to its interpretation. In the concept of monetary policy-induced 

uncertainty applied in this paper, the point forecasts for which errors are subsequently computed 

represent a forecasted ‘common knowledge’ (trend) inflation, where the autoregressive models 

perform well (see Clark and Doh, 2014). The underlying assumption is that as such forecasts are 

commonly known, only improvements in them might influence monetary policy decisions. This can 

be supported by Phelps and Taylor (1977), Fisher (1977), and Orphanides and Williams (2005), and 
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on game-theoretical grounds by Morris and Shin, (2002). The second reason for using the ARIMA-

GARCH model is its simplicity, flexibility, low computational costs and, above all, the fact that its 

forecasting properties are comparable with those of more complex multivariate models and 

stochastic volatility models in its forecasting properties (see e.g. Bjørnland et al., 2012; Buelens, 

2012; Clark and Ravazzolo, 2015; Mitchell, Robertson and Wright, 2015). 

A single observation on the h-steps ahead uncertainty in time t is defined as: 

 2 2

, | , |
ˆ/t h t h t t h t h tu e       ,        (2) 

where 
2

|
ˆ

t h t   is the h-step ahead forecast of GARCH conditional variance and 2

,
ˆ

t h  is the 

unconditional variance of 
|t h te 

. Removing the time-dependent second-order effects from the 

forecast errors 
|t h te 

 by scaling them by the conditional variance in (2) is in line with the 

understanding of forecast uncertainty, which does not include the forecastable variation (see 

Clements, 2014). Consequently, the monetary policy affects only the part of total uncertainty 

expressed by forecast errors, which is unforecastable by the first and second moments of the model. 

The ex-post forecast uncertainty at time t ( 0 1, ... ,t t h T   ) for forecast horizon h  is defined 

as the root mean square error (RMSE) of 
,t hu  over the moving time windows of bandwidth   that 

starts from 0t h  and runs to 1T  . 

The baseline forecast errors (1) have been obtained by estimating the ARIMA(p,1,1)-

GARCH(1,1) models by the maximum likelihood method using monthly data on the annual HICP 

inflation. ARIMA-GARCH models with more complex lags structure have also been tried and 

discarded as being not more accurate than simpler models, or due to numerical problems in 

estimation. The computations have been made for 16 of the 18 euro area countries, excluding Cyprus 

and Slovakia, for which there have been convergence problems in the estimation due to the small 

number of observations. Data for all countries and also for the entire euro area have been 
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downloaded from Eurostat. The data series for all the countries end in November 2014 and start 

between January 1991 and January 19961. Detailed data spans and country abbreviations are given in 

Appendix A. Full sample inflation for all the countries has been found to be integrated of order one 

(details of the unit root testing, which allows for the existence of structural breaks, are available in 

On-line Annex, Part C). Therefore the models have been estimated in first differences). The lag length 

of the ARIMA process has been chosen in each recursion as the minimum for which autocorrelation 

of the residuals (up to order 12) is jointly insignificant at the 5% significance level. The first recursion 

uses the first 20% of the observations in each series, but not more than 80. Column 5 in Table A1 (see 

Appendix A) shows the numbers of one-step ahead forecasts made for each country and also 

indicates the date that is associated with the first one-step ahead forecast error for each country. For 

the two-step ahead forecast errors the start date is one month later, and so forth. For each forecast, 

the ex-post forecast errors given by (1) and observations on uncertainty (2) have been calculated. 

Finally, for each set, the RMSE of 
,t hu  has been computed in rolling windows as described above as 

the measure of uncertainty. With identical window bandwidth of 120   for calculating RMSE for 

different countries and different forecast horizons, it gives a different start date for the RMSEs and a 

different number of observations (details are shown in Table A1, column 6).  

Figure 1 compares HICP inflation for Germany and Greece (left panel) and France and Italy 

(right panel), from 2000m01 until 2014m11. Figure 2 plots the corresponding RMSEs of 
,t hu  for these 

countries for h=1. Figure 1 indicates the presence of pairwise inflation convergence in levels of HICP 

inflation for the pairs of countries shown. This is in line with the Monfort, Cuestas and Ordóñez 

(2013) conjecture of the existence of different convergence clubs in the euro area. It appears that 

Germany and Greece are in different convergence clubs and Italy and France are in the same one. 

However, Figure 2 shows that there is an evident divergence in inflation uncertainty for the same 

                                                           
1
 For some of the countries that joined euro area recently, e.g. Estonia and Latvia, the HICP index for the 

beginning of this period was recalculated retrospectively and published by Eurostat. 
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period and the same countries. Similar finding has been made by Rossi and Sekhposyan 

(forthcoming). For Germany and France lower inflation is associated with lower uncertainty, thus 

providing strong evidence in favour of the Friedman-Ball or Cukierman-Meltzer hypotheses. For 

Greece and Italy, however, it is the opposite as low inflation corresponds to increased uncertainty. 

Given the purpose of this paper, there is no need to pursue by formal testing the convergence 

of inflation and inflation uncertainty any further. More evidence in favour of such divergence can be 

drawn from the time series of the RMSEs given in the Supplementary Materials in the On-line Annex, 

Part A (Figures S1.a-S1.c for inflation and Figures S2.a-S2.c and S3.a-S3.d for RMSEs for the forecast 

horizons h=1 and h=12 respectively). While we might observe convergence in levels of inflation in the 

euro area, there is clearly a divergence in inflation uncertainty. Developing from the discussion in 

Section 2 above it can be argued that factors beyond the Friedman-Ball or Cukierman-Meltzer 

hypotheses are responsible for this divergence. It can be conjectured that these factors could be 

related to a lack of fiscal discipline. Detailed analysis of this is, however, outside the scope of this 

paper. 

FIGURE 1 

Annual HICP inflation from 2000m01 until 2014m11 for Germany, Greece, France and Italy (data 

source: Eurostat). 

  

FIGURE 2 
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Forecast uncertainty (RMSE): Germany, Greece France and Italy, forecast horizon h=1.  

  

Comments to Figure 2: The RMSEs are computed in the recursively updated rolling windows of length 

120   as the mean root squared ARIMA-GARCH scaled forecast errors as defined by (1) and (2). (see 

Appendix A for the definition of sample length and initial recursions for each country). 

4. UNCERTAINTY AND MONETARY POLICY  

If monetary policy is to be effective in reducing uncertainty, the RMSEs of the 
,t hu s, should be 

smaller than the RMSEs computed for the hypothetical uncertainty that is free from the effects of 

monetary policy. Unlike the 
,t hu s, this uncertainty is unobservable in the sense that it cannot be 

retrieved from forecast errors. Strictly speaking, it would have been observable if the monetary 

policy had not been implemented, as in that case it would coincide with 
,t hu . However, under the 

additional assumption that for each county and each horizon h, uncertainty 
,t hu  follows the 

weighted skew normal distribution (WSN) it is possible to derive an approximation of the distribution 

of this uncertainty and therefore to estimate the ratio of its variance to 
,RMSE( )t hu . The WSN 

random variable U used for such an approximation is defined by: 

Y m Y kU X a Y I b Y I         ,  

2 2

2 2

0
( , ) ,

0
X Y N

 

 

   
    
    

 ,      

(3) 
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where  I
  is the indicator function of a set   , , , ,a b m k , and 1 1   , while X is the 

random component that is unpredictable from the baseline forecast. As the baseline forecast is made 

using common information that is publically available, X is not predictable if only publically available 

information is used. However, the monetary policy decision makers might have some partial 

knowledge represented by 0  . The random variable Y represents forecasts (strictly speaking, 

corrections to the baseline forecast) made by the ECB forecasters and delivered to the Governing 

Council of the ECB. If these forecasts show that inflation exceeds the thresholds, that is Y>m or Y<k, 

the Governing Council undertakes either an anti-inflationary policy with strength a, or a pro-

inflationary policy with strength b respectively. In this setup the distribution defined by (3) has 

natural economic interpretation if a<0, b<0, m>0 and k<0. This explanation is fairly simplified, 

especially in the context of ECB action based on a set of inflation forecasts from different countries 

rather than a single, homogeneous signal about inflation (for a more detailed explanation see 

Charemza, Díaz and Makarova, 2015). As the WSN distribution is fitted for each country separately, 

its parameters a  and b  correspond to the anti-inflationary and pro-inflationary country effects of 

the single ECB decision. As the variable Y  is not observable, the thresholds m  and k  are also not 

observable. 

Variance of X represents the ‘public’ uncertainty, which is the uncertainty of those agents who 

do not have access to the additional forecasts represented by Y. It seems reasonable to assume that 

the dispersion of the additional forecast represented by Y cannot be greater than the dispersion of 

‘public’ uncertainty, as this would imply that the ECB forecasters are less informed than the agents. It 

can be smaller, but how well the forecasters are ‘informed’ has already been included in the model 

through the correlation coefficient  . That this dispersion might be smaller than the dispersion of 

‘public’ uncertainty is captured to some extent by the magnitude of the coefficient ρ in equation (3) 

which expresses the competence of the ECB forecasters. The smaller the true dispersion of Y is 
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relative to the dispersion of X, the smaller the correlation coefficient ρ is. It was therefore assumed 

that the variances of X and Y are identical and equal to 2 .  

The WSN distribution defined by (3) is parametrised by six parameters. In order to increase the 

efficiency of estimation and to avoid identification problems, it has been decided to reduce the 

number of estimated parameters to three, namely  ,   and  . The ECB forecast signals are seen 

as large enough to act upon if they exceed one standard deviation, so in the estimation, m̂  and k̂  

are set to ̂ , where ̂  denotes the estimate of  . The parameter   reflects how much 

predictability is left in X and at the same time it indicates how accomplished the forecasts in Y are. If 

X is completely unpredictable or if the ECB forecasters who deliver Y are ignorant, then 0  . If X is 

fully predictable by the ECB forecasters, then 1  . Moreover, for the thresholds-symmetric case 

when k m  , the variance of the WSN distribution decreases monotonically up to the point given 

by the constraint 2     . Consequently, low values of   implicitly constrain the strength of 

monetary policy in reducing uncertainty. A sensible choice seems to be 0.75  , which reflects 

reasonable degree of competence of the ECB forecasters and potential policy strength. Other values 

of   have also been tried in the robustness check but without much effect on the outcome.  

The estimates of a , b  and   in (3) are obtained using data on  ,t hu  separately for each 

country and each horizon h, in rolling windows of length 120  . For each country and each 

forecast horizon (with country and forecast horizon indices omitted to simplify the notation) this 

gives the series of estimates ˆ{ ( )}a j , ˆ{ ( )}b j  and ˆ{ ( )}j  where the j -th estimate corresponds to 

the period between 0( 1)t h j    and 0( 2)t h j   , when 01,..., ( 2)j T t h    . For 

clarity of notation, each estimate is assigned to the right end of the interval it corresponds to and is 

re-denoted as ˆ ˆ( )sa a j , ˆ ˆ( )sb b j , ˆ ˆ ( )s j  , where 0 2s t h j     (

0 1,...,s t h T   ). The random variable, which is WSN-distributed with these parameters, is 
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denoted as 
,s hU  (the country index is omitted for simplicity). The estimation method used here is the 

simulated minimum distance estimation (SMDE) method (Charemza et al., 2012). Appendix B 

contains a brief description of the SMDE method. The aggregated results of fitting the WSN 

distribution to one-step ahead uncertainties are in the On-line Annex, Part D. 

The random variable V that approximates the distribution of the hypothetical uncertainty that 

is free from the effects of monetary policy can be recovered from the WSN distribution fitted to ex-

post forecast errors 
,t hu  (separately for each country and each forecast horizon h) by removing from 

U  most of the predictable components, some of which are still left due to the possible monetary 

policy feedback, so that 

( | ) Y m Y kV U E X Y U Y X Y a Y I b Y I               .   (4) 

The random variable V defined by (4) above is also of the WSN type, and its parameters and thus the 

variance of V, Var(V), can be expressed via the parameters of U , meaning via a, b, m, k   and  . 

This is done in rolling windows (again, for each country and each forecast horizon h separately) that 

correspond to the estimates ˆ{ ( )}a j , ˆ{ ( )}b j , ˆ{ ( )}j , where 0 2s t h j    , (

0 1,...,s t h T   ). The ratio of the variance of the corresponding V to the RMSE of the 

observed ex-post errors 
,t hu s can then be computed for each window. This ratio is called the 

uncertainty ratio and is defined as (see Charemza, Díaz and Makarova, 2015): 

 
,UR ( )=Var( ) / RMSE( )i h s V U , 1,2,...,h H ,        (5) 

where i stands for the country (i=1,…,16), and 0 1,...,s t h T   . ,UR ( )i h s , referred further 

simply as UR, represents an approximation of the fraction of uncertainty reduced as the result of 

action taken in response to the forecast signals based on the information in Y. In other words, it 

shows the footprints of monetary policy in the uncertainty. For simplicity of notation, country 
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indicators (i) and the window which the uncertainty ratio corresponds to (s), are omitted from the 

right-hand side of (5). It is also worth noting that there are different numbers of observations on 

inflation for different countries as the data begin at different points in time, which means that the 

first time moment for which the uncertainty ratio can be computed 0 1s t h    is different for 

each country. This is accounted for in the further empirical analysis. 

The uncertainty ratio 
,UR ( )i h s  defined by (5) can be expressed via  , set to 0.75 for each 

country and each forecast horizon, the estimated parameters ˆ{ ( )}a j , ˆ{ ( )}b j  and ˆ{ ( )}j , and the 

thresholds m̂  and k̂ , which are set to ̂ .2 The explicit formula is given in Appendix C. The 

immediate interpretation of the uncertainty ratio, UR, that follows from (5) is that if the policy is 

effective in reducing uncertainty than the UR is greater than unity.  

Table 1 summarises and compares the aggregated URs and RMSEs separately for the countries 

investigated, and also for the entire euro area. Aggregation has been made in the following way for 

each country and for the euro area. First, the discounted sums across forecast horizons were 

obtained with the Samuelson time discount function applied (see Al-Nowaihi and Dhami, 2014, for a 

discussion, behavioural interpretation and comparison with other concepts of time discounting). The 

discount weights were set first in a decaying way, with the higher weights given to short-horizon 

forecasts, and then were reversed, with higher weights for long horizons. These alternative ways of 

aggregating correspond to assigning particular importance to short-run and long-run uncertainty 

respectively, and are analogously called ‘short’ and ‘long’ aggregation. Next, arithmetic averages 

across windows were computed. The table shows that for all countries the averaged and discounted 

URs are greater than one, suggesting the EU monetary policy is effective overall in reducing 

uncertainty. Short-aggregated URs are higher than long-aggregated ones, which means that the URs 

for shorter horizons are generally greater than the corresponding URs for longer horizons, indicating 

                                                           
2
 Other settings have also been used. The results do not differ markedly from those presented here. 
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better policy effects in reducing uncertainty for shorter horizons. The RMSEs for Estonia and Latvia 

are disproportionally higher than those for the other countries, which is clearly a result of the high 

inflation which occurred in these countries in early periods3. There is a positive and significant at the 

10% significance level (or smaller) Spearman and Kendall rank correlation between the URs and 

RMSEs. This correlation is evident regardless of whether the outlier countries, Estonia and Latvia, are 

included or excluded. As this suggests that the URs are increasing faster as the RMSEs increase (see 

(5) above), it can be interpreted as observing better efficiency in reducing inflation uncertainty in 

countries where the levels of uncertainty were high, rather than the opposite. 

TABLE 1 

Aggregated uncertainty ratios (UR) and uncertainty (RMSE of scaled forecast errors).  

 
Short aggregation Long aggregation 

Country UR RMSE UR RMSE 

Austria 1.098 0.3617 1.076 0.5401 

Belgium 1.133 0.7103 1.085 1.0620 

Germany 1.139 0.2932 1.084 0.4297 

Estonia 1.109 2.2260 1.087 3.8060 

Spain 1.111 0.7089 1.080 1.0270 

Finland 1.073 0.3721 1.072 0.5663 

France 1.106 0.3851 1.078 0.5655 

Greece 1.124 0.4792 1.083 0.7077 

Ireland 1.187 0.7202 1.195 1.2260 

                                                           
3
 All countries that are joining the euro area must satisfy the Maastricht criteria and, in particular, have 

coordinated monetary policy and participated in the exchange rate mechanism (ERM II) for at least two years 

prior to joining the euro area. As this gives similarity in monetary policies, countries that joined the common 

currency area relatively late, like Estonia and Latvia, were included in the sample. 
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Italy 1.106 0.3669 1.079 0.5718 

Luxembourg 1.150 0.7101 1.122 0.9760 

Latvia 1.198 3.8680 1.148 7.0740 

Malta 1.123 0.8093 1.083 1.1400 

Netherlands 1.134 0.3481 1.102 0.5550 

Portugal 1.125 0.5500 1.084 0.8468 

Slovenia 1.162 0.7417 1.094 1.1200 

EURO 1.113 0.3456 1.080 0.5366 

Comments to Table 1: The RMSEs are computed separately for each forecast horizon from 1 to 18 in the 

recursively updated rolling windows of length 120    as the mean root squared ARIMA-GARCH scaled 

forecast errors as defined by (1) and (2). These RMSEs are then averaged across windows and aggregated 

across forecast horizons using the Samuelson discount function (short aggregation) and the reverse discount 

function (long aggregation). The individual URs are computed using the WSN estimated parameters from (4), 

(5) and (C1) then aggregated similarly to RMSEs (see Appendix A Table A1 for the description of sample period 

for each country). 

Figure 3 shows the time paths of the development of the uncertainty ratio for h=1 for selected euro 

area countries: Germany and Greece (left panel) and France and Italy (right panel) for the same 

periods as in Figure 2 in Section 3, which is 2010m01 to 2014m11. Apart from two turbulent periods 

for France in the beginning of 2012 and the end of 2013, the URs for all four countries are above 

unity. The dynamics of the URs for the other euro area countries are less clear, indicating periods of 

different gains in the sense of reductions in uncertainty policy. For most of these countries 

substantial volatility and heterogeneity of URs were before 2012. After 2012, there is a general 

tendency of converging towards the level of UR computed for the entire euro area, with the 

exception of Luxembourg, Netherlands and Ireland, which URs have been declining, reaching levels 

close to unity and below for 2014-2015, and Latvia with the opposite trend (see Figures S4.a-S4.c in 

On-line Annex, Part A). 
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FIGURE 3 

Uncertainty ratio (UR) for selected euro area countries, forecast horizon h=1. 

  

Comments to Figure 3: The URs are computed from (5) and (C1) using the WSN parameters estimated by the 

SMDE method with the minimum Hellinger distance criterion using the scaled forecast errors obtained from (1) 

and (2). The computations are made in rolling windows with constant length 120  .  

It can also be noted that periods of relative success in reducing uncertainty for some of the 

countries correspond to periods of ineffectiveness for others. This seems to be quite natural. 

Countries may have different capacity for inflation uncertainty reduction as there are various 

idiosyncratic factors (see Section 2). It is not realistic to expect that the ECB policy will be effective in 

reducing uncertainty in the absolute sense by leading to an increase in the UR in all countries. A more 

plausible hypothesis could therefore be relative policy effectiveness through the convergence of the 

URs to a common level across the euro area countries. 

5. THE CURE-CONVERGENCE TEST 

To test the CURE-convergence hypothesis formally, let us consider a hypothetical level of UR 

that is identical for all the euro area countries. Convergence to such a UR is called the common 

uncertainty reduction effect and is abbreviated as CURE-convergence. In order to test for it, the 

following model has been estimated: 

0

, , , ,URi h i i h i h i hg x          , 1,2,...,i N ,  1,2,...,h H ,   (6) 
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where 
,i hg  is the average rate of growth of 

,UR i h
 for country i and forecast horizon h over the 

period that is common to all countries starting on 2010m12 for h=1, 2011m01 for h=2 etc. All periods 

end in 2014m11. The number of countries is 16N   and the number of forecast horizons is 18H 

.4 0

,UR i h
 is the initial level of 

,UR i h
; 

i s denote country-specific effects resulting from the factors 

discussed in Section 2 that affect the uncertainty ratio in individual countries and are assumed to be 

constant for each forecast horizon h;   is the coefficient which decides the CURE-convergence 

hypothesis, and more specifically, the CURE-convergence hypothesis is confirmed if   is significantly 

negative. Vector 
,i hx  is a 1q  vector of other variables on which the rates of growth of 

,UR i h
 are 

conditioned with the corresponding vector of parameters γ, and 
,i h  is the error term. Other 

specifications that include time-specific effects have also been tried, but these effects turned out to 

be statistically insignificant. In the model discussed below, the variables in 
,i hx  contain products of 

0

,UR i h
 and country dummies for Germany, Spain, France, Greece and Italy or horizon dummies for 

h=1, 2, 3, 6. 

Model (6) resembles the simple fixed-effect panel data growth model (Barro and Sala-i-Martin, 

1995; Islam, 1995). In fact, model (6) is not a panel data model as the dependence is on the forecast 

horizon rather than on time. Hence it is a static cross-section model in its essence. However, the 

possible mutual dependence of multi-level forecasts is expected to be transmitted into the 

dependence of URs for different forecast horizons, which might create effects similar to that of the 

time effect in panel data models with heteroscedasticity and autocorrelation. 

Further difficulties in testing arise because the distributions of 
,i h  are likely to be non-

normal, heteroscedastic and ‘autodependent’, meaning they have dependence on different 

forecast horizons, possibly nonlinear, due to the non-normality of the residuals. This might 

                                                           
4
 It has been decided to limit the forecast horizon to 18 rather than 24 because of numerical problems in 

estimating the WSN parameters using a relatively small sample in rolling windows of 120 (see Appendix B). 
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affect the estimates of the standard errors of 
,i h  and consequently distort the testing results 

for the parameters. To ease this problem, the standard errors and consequently the p-values of 

the significance statistics have been estimated by applying the moving blocks bootstrap, MBB 

(Gonçalves, 2011), for data ordered by forecast horizon.  

Following Gonçalves, the MBB algorithm consists of the following steps: 

(1) For each h, stack observations on 
,i hg  and 

(0)

, , ,[ , ]i h i h i hz UR x   in a ( 2)N p   vector 

1, 1, 2, 2, , ,[ , ' , , ' ,..., , ' ]'h h h h h I h I hg z g z g z  , where p denotes the number of regressors in 

,i hx . 

(2) Define block length /H   such that 1 H   and H is divisible by an integer  . 

Then create a block 
j  of  consecutively stacked vectors of h  as 

1 1[ , ,..., ]j j j j l       , 1,2,... 1j T   . If T  , so if 1 , MBB becomes a 

standard i.i.d. bootstrap on data ordered by forecast horizon. If 1  , so if H , no 

bootstrap is performed. The length recommended by Gonçalves (2011) for the blocks of 

samples with a time dimension close to 25 (in this case the forecast horizon dimension) 

is 2.5 . Because of this, it has been decided to use 2 , as the number of forecast 

horizons is equal to 18. The results for 3 , not reported here, are very similar. 

(3) From a set of 1H    of such overlapping blocks, draw a uniformly distributed 

sample with replacement on {1,2,..., }l  of   of them and, for this pseudo (bootstrapped) 

sample, estimate the parameters in (6). Due to the pseudo-sample nature rather than true 

sample nature of the draws, the ordinary Student-t ratios are not valid, as the OLS 

covariance matrix of the residuals is inconsistent. Gonçalves (2011) provides a formula 

for the long-run asymptotic covariance matrix for MBB pseudo-samples, which can be 

used for computing Student-t ratios in each draw. Such estimates of the covariance 

matrix are robust to cross-sectional and between-forecast horizon dependence of 
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unknown form. The robustness does not depend on the assumption of normality for the 

error terms. 

(4) Repeat (3) many times, collect Gonçalves’ t-ratios, and use them for computing p-

values for particular estimates. Note that the direct estimate of standard errors of the 

parameters obtained across the pseudo-sample is not valid. In the results presented here 

the total number of valid bootstraps, excluding the cases where singularity has been 

obtained, is set at 10,000. 

Table 2 provides a summary of the output for the estimates of model (6) under various 

specifications of 
,i hx . The notation here is as follows. Products of 0

,UR i h
 and country dummies are 

denoted as 0UR *AA , where AA is the two-digit country code explained in Appendix A. Products of 

0

,UR i h
 and horizon dummies are denoted as 0UR * NNh , where NN denotes an integer indicating 

the forecast horizon of between 1 and 18. The HAC p-values for the ordinary non-bootstrapped fixed-

effects OLS estimates and the MBB p-values for 2l   are given beneath the parameter estimates in 

the first and second rows respectively5. Country effects i  are jointly significant in all models, and so 

for clarity of presentation they are not included in Table 2. 

The results given in Table 2 indicate, not surprisingly, that omitting the products of 0

,UR i h
 and 

country/forecast horizon dummies causes substantial underestimation of the speed of the 

convergence parameter  , in comparison with all the other specifications or models. The estimates 

of   for all the other models (except Model 6) are close to each other, negative and significant. This 

suggests the specification is robust in its estimates in models with the 0

,UR i h
 and dummy product 

                                                           
5
 Computations have been made using GAUSS. The procedures for computing the HAC standard errors are 

written by Seung Chen Ahn and available at 

http://www.public.asu.edu/~miniahn/ecn726/ecn_726.htm#syllabus. Other codes used here are available on 

request. 

http://www.public.asu.edu/~miniahn/ecn726/ecn_726.htm#syllabus
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variables and also strongly supports the existence of CURE-convergence in the period between 

December 2010 and November 2014. Throughout the models, the cross-effects of 0

,UR i h
 are stable 

and significant, as are the country effect variables for Germany and Greece, which are two extreme 

countries in the euro area. They are also positive, though smaller than the corresponding ( )  

estimates, which suggests slower convergence in the effects of ECB monetary policy in reducing 

uncertainty at the opposite ends of the spectrum for the euro area. For the middle-ground countries 

like France and Italy, the cross-effects are small and insignificant. This is also true for other countries 

in the euro area (not reported here) except for Spain, which exhibits a strongly positive and 

significant effect in all the specifications reported here. However, the magnitude of the estimated 

coefficient for the cross-effect for Spain is similar to that of ( ) , so its overall effect on the CURE-

convergence is likely to be neutral. 



 23 

TABLE 2 

Summary of models’ estimation. 

Dependent variable: 
,i hg , average growth rate of uncertainty ratio for country i (i=1,…,16) and 

forecast horizon h (h=1,…,18). Total number of observations: 288. 

regressor Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) 

0

,UR i h
 -1.106* 

(0.018) 

(0.330) 

-1.795*+ 

(0.007) 

(0.000) 

-1.778*+ 

(0.007) 

(0.000) 

-1.786*+ 

(0.007) 

(0.000) 

-1.761*+ 

(0.007) 

(0.000) 

-1.357*+ 

(0.006) 

(0.042) 

0UR DE
 

 1.464*+ 

(0.004) 

(0.000) 

1.474*+ 

(0.004) 

(0.000) 

1.479*+ 

(0.008) 

(0.000) 

1.523*+ 

(0.005) 

(0.000) 

1.661*+ 

(0.001) 

(0.003) 

0UR ES   1.871*+ 

(0.010) 

(0.000) 

1.912*+ 

(0.011) 

(0.006) 

1.919*+ 

(0.023) 

(0.011) 

2.010*+ 

(0.012) 

(0.001) 

2.490*+ 

(0.000) 

(0.000) 

0UR FR
 

   0.463 

(0.256) 

(0.119) 

  

0UR GR
 

 1.377*+ 

(0.011) 

(0.042) 

1.385*+ 

(0.011) 

(0.026) 

1.391*+ 

(0.019) 

(0.024) 

1.444*+ 

(0.012) 

(0.000) 

1.671*+ 

(0.001) 

(0.000) 

0UR IT     -0.567 

(0.306) 

(0.283) 

  

0UR 1h   0.210+ 

(0.173) 

(0.000) 

0.202+ 

(0.185) 

(0.000) 

0.203+ 

(0.205) 

(0.002) 

0.180+ 

(0.221) 

(0.002) 

 

0UR 2h   0.146*+ 

(0.001) 

(0.001) 

0.143*+ 

(0.002) 

(0.001) 

0.140*+ 

(0.004) 

(0.002) 

0.133*+ 

(0.004) 

(0.002) 

0.107* 

(0.014) 

(0.379) 
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0UR 3h    -0.037 

(0.163) 

(0.296) 

-0.037 

(0.194) 

(0.305) 

-0.043 

(0.142) 

(0.210) 

 

0UR 6h      -0.030 

(0.132) 

(0.131) 

 

2R  0.342 0.453 0.454 0.456 0.461 0.427 

Comments to Table 2: 

1) HAC p-values and MBB p-values for the two blocks bootstrap are given in brackets beneath the 

parameter estimates in the first and second rows respectively. 

2) * indicates 5% significance according to the OLS HAC standard errors and Student-t ratios. 

3) + indicates 5% significance according to MBB standard errors.  

4) Country effects are jointly significant in all models. Therefore they are not included in the table. 

The relevance of using the MBB covariance matrix for computing the Student-t statistics is 

shown by the results obtained for 0UR 1h , which indicates the individual cross-effect of the one-

step ahead forecast. Although its coefficient is not large and, judging by the HAC estimates of its 

standard error, not significant, it knots together the nonlinear dependencies of the model. Its 

removal in Model 6 changes substantially the estimates of the remaining parameters of the model 

and, most notably, biases the value of   towards zero. It is interesting to note that this is the only 

variable across the specifications which is significant according to the MBB estimates of the 

covariance matrix and not the HAC results. With 0UR * 1h  present, cross effects of other forecast 

horizons and 0

,UR i h
, except 0UR * 2h , are not significant (these results are equally not reported 

here). 

6. SUMMARY OF THE ROBUSTNESS ANALYSIS 

The empirical estimates of the uncertainty distributions and the CURE-convergence model 

have been examined for robustness. In particular, it has been evaluated whether (i) the fact that the 

parameter   in equation (3) has been fixed at 0.75   affects the accuracy of estimation of the 
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WSN distribution; (ii) the choice of a particular type of minimum distance measure in the estimation 

distorts the results; (iii) the fit of the WSN distribution is admissible in comparison with other 

distributions used for approximating forecast errors and (iv) the use of the scaled forecast errors in 

the estimation rather than unscaled errors affects the results of the CURE-convergence test. 

Numerical results of the robustness analysis are given in the On-line Annex, Part B, and summarised 

below. 

Regarding (i), it is shown that the separately estimated parameter   is very close to 0.75, and 

that its mean across countries for most of the forecast horizons is not significantly different from 

0.75 at the 5% significance level. Moreover, the estimates of   for the entire euro area for different 

forecast horizons are also reasonably close to 0.75. This justifies the choice of   = 0.75 for the 

empirical analysis.  

Regarding (ii), it is shown that in most cases, when parameters a and b are not too close to 

zero, the average differences between the estimates obtained by applying different criteria, do not 

exceed 10% of their mean.  

Regarding (iii), a comparison has been made with two other different distributions used for 

approximating distributions of forecast inflation uncertainty, these being the two-piece normal 

distribution, which is often used by practitioners in central banks (see e.g. Tay and Wallis, 2000) and 

the generalised beta (see e.g. Clements, 2014; Kenny and Melo Fernandes, 2016). 

The goodness of fit of all these distributions varies in the sense that it is difficult to say 

decisively which of them is better. Overall, the WSN for the scaled data, where forecast errors are 

defined by (2), seems to exhibit the best fit for shorter forecast horizons. For the non-scaled data, 

where , |t h t h tu e  , the advantage of WSN over other distributions is more evident for all forecast 

horizons. Nevertheless, the differences between the minimum distance measures for all these 

distributions are relatively small. 
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Regarding (iv), The CURE-convergence model has been replicated with the unscaled errors 

used for the computations of the 
,i hg  and 

,UR i h
 variables. Models based on the scaled and unscaled 

errors give similar results in terms of interpretation. As expected, the coefficient of determination for 

the ‘unscaled’ model is much greater that for the ‘scaled’ model, reflecting the spurious effect of the 

time-dependent variation that is typical for unscaled errors when there is a significant second-order 

dependence (e.g. GARCH). 

7. CONCLUSIONS  

The results of this paper are quite supportive of Issing’s ‘one size fits all’ conjecture, albeit not 

in the absolute sense. There are clearly no signs of homogeneity being achieved in inflation 

uncertainty across the euro area countries. This is not only a case of Greece versus the rest of the 

euro area, as it also applies to more stable countries like France and Italy. Fiscal and institutional 

discrepancies within the Union are still too large for this sort of convergence. As found by Rossi and 

Sekhposyan (forthcoming), the idiosyncratic effects on inflation uncertainty still exist and might even 

cause divergence in it. However, it is argued here that without the monetary policy of the ECB this 

divergence would have been worse. The CURE-convergence, which is the tendency of the relative 

ECB policy effects on inflation uncertainty to be unified across countries, is clearly detected. This may 

be a sign of institutional adjustment and also of some effectiveness in monetary policy. At the same 

time, the results presented here do not confirm the Arnold and Lemmen (2008) conjecture that 

inflation uncertainty across the euro area countries is negatively related to the degree of their 

influence on ECB policy. On the contrary, this paper provides statistical evidence for the long-run 

tendency of the ECB’s monetary policy to affect inflation uncertainty in all countries in an equal way, 

regardless of their influence. 

On the methodological side, the paper uses a cross-section model which exhibits 

heterogeneity similar to that of the fixed effects panel data models and can be used for analysing 

forecast effects jointly for different horizons. However, the stochastic structure of such models can 
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be quite complicated and might require the application of methods that allow for nonlinear 

dependence. The two-step method applied here for estimating the forecasting model first and then 

analysing the distributions of forecast errors is a novel approach, though it might not be the most 

efficient. However, the joint estimation of the ARIMA-GARCH model with skew-normal uncertainty 

still poses some statistical questions, which have not yet been fully resolved. 
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APPENDIX A. 

Data description. 

Data source: Eurostat. For all countries, the last observation is in November 2014.  

Of the 18 countries in the euro area, Cyprus and Slovakia were the only two countries for which the 

maximum likelihood ARIMA-GARCH model estimation failed and no convergence was achieved. 

Therefore these countries have been excluded, so the number of countries considered is 16.  

The common date for all countries for which 
,1UR i

 is computed (the date of 0

,1UR i
) is 

December 2010. That means the date for 0

,2UR i
 is January 2011 etc. 

Note that the RMSEs are computed using moving windows of 120  . Therefore the number of 

observations for each country in columns (5) and (6) in Table A1 differs by 118. 

TABLE A1. 

Description of data spans and recursions. 

http://www.econ.upf.edu/~brossi/RossiSekhposyanSoupre.pdf
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Country 

 

 

(1) 

 

 

 

Code 

 

 

(2) 

 

 

Date of first 

observation 

 

(3) 

 

 

 

Number of 

observations 

 

(4) 

Date of the first 

observation on 

one-step ahead forecast 

,1tu  / number of 

observations 

 

(5) 

Date of the first 

observation on 

RMSE of one-step 

ahead forecast 
,1tu  / 

number of 

observations 

(6) 

Austria AT 1991m01 287 1995m11 / 229 2005m10 / 111 

Belgium BE 1992m01 275 2000m07 / 173 2010m06 / 55 

Germany DE 1996m01 227 1999m11 / 181 2009/m10 / 63 

Estonia EE 1996m01 227 1999m11 / 181 2009/m10 / 63 

Spain ES 1993m01 263 1999m09 / 183 2009m08 / 64 

Finland FI 1991m01 287 1995m11 / 229 2005m10 / 111 

France FR 1991m01 287 1995m11 / 229 2005m10 / 111 

Greece GR 1991m01 287 1995m11 / 229 2005m10 / 111 

Ireland IE 1996m01 227 1999m11 / 181 2009/m10 / 63 

Italy IT 1991m01 287 1995m11 / 229 2005m10 / 111 

Luxembourg LU 1996m01 227 2000m03 / 177 2010/m02 / 59 

Latvia LT 1997m01 215 2000m08 / 172 2010m07 / 54 

Malta MT 1997m01 215 2002m11 / 145 2010m12 / 49 

Netherlands NL 1991m01 287 1995m11 / 229 2005m10 / 111 

Portugal PT 1991m01 287 1995m11 / 229 2005m10 / 111 

Slovenia SL 1996m01 227 1999m11 / 181 2009/m10 / 63 

Euro area U2 1991m01 287 1995m11 / 229 2005m10 / 111 

 

APPENDIX B. 

Description of the simulated minimum distance estimation method  
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The simulated minimum distance method (SMDE) estimates of a vector of parameters   (

k ), introduced by Charemza et al., (2012), are given by:  

  , 1
ˆ arg min ( , )

RSMDE

n w n t r
d g f 



 




   ,     (B1) 

where 
,tf 

 is the approximation of the pdf , f , of a random variable obtained by generating  

r = 1,…,R replications (drawings) from a distribution with the parameters  ; ng  denotes the 

density of the empirical sample of size n; w  is an aggregation operator based on R replications, 

which deals with the problem of the ‘noisy’ criterion function (median, in this case); and ( , )d  is the 

distance measure. This approach is similar to that of Dominicy and Veredas (2013).  

Following Cressie and Read (1984), the distance measure for data organised in a 

histogram with m cell, is defined as: 

 
1

,

1 ,

( )1
( , ) ( ) 1

( 1) ( )
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n
n t n

iCR CR t

g i
d g f g i

f i





 





  
        

   .   (B2) 

For 1CR   formula (B2) gives the Pearson’s 2  measure, for 1/ 2CR    the Hellinger twice 

squared distance (HD) and for 2CR    the Neyman 2  measure. For 0CR   the continuous 

limit of the right-hand side expression in (B2) gives the likelihood disparity. Although the minimum 

distance estimators have been computed for all the CR’s listed above, for further inference it has 

been decided to concentrate on the HD distance estimator. Its properties have been well researched 

in the context of skew normal distributions (see Greco, 2011), and it is known that it is reasonably 

robust to the presence of outliers, which might appear in a large sample of inflation forecast errors, 

especially for longer forecast horizons. For more details see e.g. Basu, Shioya and Park, (2011). The 

On-line Annex, Part B contains results of the robustness analysis with respect to the choice of 

measure.  
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Due to the nonlinear nature of (3), the minimisation criteria and the constraints imposed, the 

function in (B1) has been minimised using the grid search algorithm (for a review and comparison of 

numerical techniques in grid search see e.g. Jiménez, Lázaro and Dorronsoro, 2009). Denoting the 

number of grids (for each of the estimated parameters) by _n, the maximum depth of grid by _d, and 

the initial length of the interval where the particular parameter is searched by _l0 (_n and _d are 

identical for all parameters) gives the length _l of the last interval, giving the precision of the 

estimation, as _

0_ _ (_ 1) dl l n   . This secures the accuracy of the minimisation if only the initial 

intervals are properly established. 

For the parameters a and b, the initial search intervals are of length 2 and for   the length is 

3.99. For _ 7n   and _ 20d   this gives the maximal precision of the search equals to 1.82e-12 for 

a and b, and 3.63e-12 for  .  

In practice, however, the accuracy of minimisation can be affected by the appearance of cells 

with zero frequency in the empirical histogram, which can result from a combination of small sample 

size and the presence of outliers. The algorithm sets the number of cells automatically, with the 

lower constraint on the number of cells equal to 9. Although the Mandal, Basu and Pardo (2010) 

empty cells penalty is implemented in the algorithm, the appearance of a substantial number of 

empty cells affects the estimation. Because of that, it has been decided to limit the maximum 

forecast horizon to 18 in the computation of the CURE-convergence test, as for longer horizons 

where there are fewer observations in the sample, the number of empty cells becomes significant 

and the fit is generally worse due to appearance of outliers. 

Another problem arises because the criterion function (B1), where the entries are simulated, is 

‘noisy’, so that an accidental extremum can be obtained outside the true extremum due to the 

stochastic nature of the observations (see e.g. Spall, 2003). In order to safeguard against this, each 

search was repeated 50 times and the median result was chosen. 
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APPENDIX C 

Formula for computing the uncertainty ratio UR. 

For the WSN random variable defined by (3), the corresponding uncertainty ratio can be 

explicitly expressed via its parameters as 
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where  and  denote respectively the density and cumulative distribution functions of the standard 

normal distribution, 2

,

/

( )x

x

D t t dt






   and 

22 2
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. 

The derivation of this formula and some analytical properties of the UR are discussed in Charemza, 

Díaz and Makarova (2015). SERIES 

 


