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Abstract 

The frequency of sagittal crest expression and patterns of sagittal crest growth and 

development have been documented in hominoids, including some extinct hominin taxa, and 

the more frequent expression of the sagittal crest in males has been traditionally linked with 

the need for larger-bodied individuals to have enough attachment area for the temporalis 

muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of 

four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus 

pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age 

beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and 

whether these taxa show sex differences in the timing of sagittal crest development. We 

evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the 

requirement for a larger surface area than the un-crested cranial vault can provide for the 

attachment of the temporalis muscle, and present data on sex differences in temporalis muscle 

attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. 

pygmaeus males show significant relationships between tooth wear rank and sagittal crest 

size, and they show sagittal crest size differences between age groups that are not found in 

females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, 

whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more 

gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of 

specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth 

spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of 

the temporalis muscle attachment area, relative to cranial size, with males of both taxa 

showing positive allometry not shown in females. Gorilla g. gorilla males also show positive 

allometry for sagittal crest size relative to cranial size. Our results suggest that although 

patterns of sagittal crest expression have limited utility for taxonomy and phylogeny 
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reconstruction, they could be useful for reconstructing aspects of social behaviour in some 

extinct hominin taxa. In particular, our results in G. g. gorilla and Po. pyg. pygmaeus, which 

suggest that the size of sagittal crests in males cannot be solely explained by the surface area 

required for attachment of the temporalis muscle, offer partial support for the hypothesis that 

large sagittal crests form in response to sexual selection, and may play a role in social 

signalling. 
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Introduction 

Although most of the external surface of the cranium of living hominoids is smooth, 

in some regions the outer table of the cranial vault is raised up into crest-like structures. 

Some, including those on the external surface of the basicranium, are relatively modest in 

size. Others can be much larger, especially those at, or close to, the midline between the 

attachments of the temporal muscles, or those that occur either uni- or bi-laterally between 

the attachments of the temporal and nuchal muscles known, respectively, as sagittal and 

nuchal crests (Owen, 1835). Sagittal crests (i.e., ectocranial crests that occur at, or close to, 

the midline), if they appear at all in living hominoids, are more likely to occur in male than 

female individuals and they develop relatively late in ontogeny (i.e., their development tends 

to coincide with, or follow, the eruption of the permanent dentition). Ashton & Zuckerman 

(1956) found that while the process of sagittal crest formation among hominoid taxa is 

similar, the age at which sagittal crests develop varies interspecifically, and sagittal crest size 

varies both intra- and interspecifically. Other research suggests that in extant great apes, 

sagittal crests are associated with older individuals (Prat & Thackeray, 2001), and a study 

investigating age-related changes in the temporalis muscle of Po. pygmaeus indicates that 

absolute muscle attachment area is also larger in older individuals (Winkler, 1991).  

The inconsistent occurrence of sagittal crests across primate taxa, both extant and 

extinct (Neuville, 1916; Ashton & Zuckerman, 1956), suggests that sagittal crests have 

evolved independently in a number of lineages, because their occurrence cannot be predicted 

from the branching pattern supported by molecular and other morphological evidence. For 

example, the strong sagittal cresting seen in gorillas and orangutans is not found in 

chimpanzees, or in most hominins, and in some cases sagittal crests occur in a single taxon 

within a broader taxonomic group, (e.g., Sapajus among New World monkeys (Alfaro, 

2012)).  
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Sagittal cresting in primates has been traditionally linked with the need for larger-

bodied individuals to have sufficient attachment area for the temporalis muscle (Ashton & 

Zuckerman, 1956; Robinson, 1958; Holloway, 1962; Hofer, 1974). The reasoning is that 

because increases in the size of the brain case do not keep pace with increases in body size, 

there would not be enough space for the temporalis muscle in larger-bodied individuals 

without the additional surface area provided by sagittal crests (Robinson, 1958; Hofer, 1974). 

In extant primates, prominent sagittal crests are found primarily in male gorillas and 

orangutans, the two largest living primate species, which is consistent with the notion that 

sagittal crests serve the purpose of providing a more extensive muscle attachment area in 

large-bodied individuals. However, sagittal crests are also seen in smaller extant primates 

such as extant cercopithecoids and cebids, as well as in extinct adapids, and in the males of 

the early anthropoid Aegyptopithecus for which a pronounced level of sexual size 

dimorphism has been inferred (Ashton & Zuckerman, 1956; Fleagle et al. 1980; Simons, 

1987; Alfaro et al. 2012). The presence of a prominent sagittal crest in these species has been 

linked with unusually large masticatory muscles, particularly in males (Simons, 1987; Alfaro 

et al. 2012). 

Although sagittal crests are only moderately expressed in chimpanzees (Ashton & 

Zuckerman, 1956), and they are not seen in modern humans, they are expressed in several 

fossil hominin species such as Paranthropus robustus (Robinson, 1958), Paranthropus boisei 

(Tobias, 1967; Wood, 1991), Paranthropus aethiopicus (Walker et al. 1986) and 

Australopithecus afarensis (Kimbel et al. 2004). Initial interpretations about their occurrence 

in fossil hominins were controversial. Zuckerman and his colleagues argued that any 

differences between the sagittal crests seen in P. robustus and those seen in extant apes and 

monkeys “are differences of degree, not of kind” (Ashton & Zuckerman, 1956, p. 606), and 

thus provided yet more evidence that what were then called “australopithecines” or 
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“prehominines” could not be distinguished from extant Old World primates. Robinson, on the 

other hand, argued that “the crests in the australopithecines … differ from those in the 

pongids” because, among other reasons, “the sagittal crest … does not extend back to the 

superior nuchal line” (Robinson, 1958, p. 427). Both sides of the controversy seemed to 

agree, implicitly or explicitly, that sagittal crests in what were then called pongids 

(chimpanzees, gorillas and orangutans), and early hominids, are an emergent property in the 

sense that they are “a response to the need for additional area of attachment for muscles in a 

situation where space is restricted” (Robinson, 1958, p. 399). Hofer (1974) suggests that 

factors other than mastication may influence sagittal cresting in Pan, though he offers no 

suggestions about what these other factors might be. Hofer (1974) also identified three 

different cresting patterns within Pan. In the first, the crest reaches its apex at the highest 

point of the cranial vault. In the second, termed the “gorilla” pattern, the crest increases 

slowly from bregma, attaining its highest point just anterior to the occipital protuberance. In 

the third, which he termed the “australopithecine” pattern, the crest is only found at the 

highest point of the cranium. 

With respect to the ontogeny of sagittal crests, in Gorilla gorilla males, the superior 

temporal lines converge and the sagittal crest begins to form around the time of eruption of 

the permanent canine and third molar. All dentally mature G. gorilla adult males develop a 

sagittal crest, with young G. gorilla adult males having less developed sagittal crests 

compared to older adult males (Ashton & Zuckerman, 1956; cf. Neuville, 1916). This 

contrasts with G. gorilla females, where the temporal lines meet at a later stage of 

development compared to males, and not all females develop a sagittal crest, with only 37% 

of a sample of 51 G. gorilla females having a sagittal crest (Ashton & Zuckerman, 1956). In 

Pongo pygmaeus males, as with gorilla males, sagittal crest growth continues beyond dental 

maturity, though a sagittal crest is only present in 36% of a sample of 14 Po. pygmaeus 
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males. In Po. pygmaeus females, even among older individuals, the temporal lines remain far 

apart (Ashton & Zuckerman, 1956). In the Pan troglodytes sample investigated by Ashton & 

Zuckerman (1956), sagittal cresting is nowhere near as prevalent as in gorillas and 

orangutans. For example, although the temporal lines met at the mid-sagittal plane in 16% of 

25 P. troglodytes males, in only one individual was there a projecting crest, and among 73 P. 

troglodytes females the superior temporal lines met at the mid-line in only one individual 

(Ashton & Zuckerman, 1956). No specimens of Ashton & Zuckerman’s (1956) Hylobates lar 

sample showed sagittal cresting, and although in one H. lar individual the temporal lines met 

at the midline c.1 cm anterior to bregma, they diverged posteriorly. Schultz (1944) reported 

an incidence of sagittal crests of 3% in a sample of 184 specimens of H. lar and Holloway 

(1962) found that 4% of a sample of H. lar specimens exhibited sagittal crests, with roughly 

equal numbers of males and females having crests.  

The presence of a sagittal crest increases the height of both the frontal and lateral 

profile of the head, and recent behavioural research suggests that the sagittal crest in G. g. 

gorilla males is associated with male reproductive success. Caillaud et al. (2008) found a 

positive relationship in breeding silverbacks between male sagittal crest size (measured as 

size of the adipose hump, using photographs of head profiles) and the number of females 

associated with that male. Similarly, Breuer et al. (2012) examined the relationship between 

male G. g. gorilla size variables, including the sagittal crest, and various measures of 

reproductive success, namely a) the average number of adult females associated with each 

male throughout adulthood, b) the number of offspring that survived beyond weaning age and 

c) the rate of offspring survival to weaning age. Males with larger sagittal crests and gluteal 

muscles had higher siring rates, independent of the number of females they were associated 

with, and offspring sired by males with large sagittal crests had higher rates of survival. 

Contrastingly, males with longer bodies were associated with a significantly higher number 
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of females, though this did not translate to higher reproductive success as measured through 

siring rate and offspring survival. Breuer et al. (2012) proposed that the size of the sagittal 

crest and gluteal musculature may be proxies for the ability to protect females against 

attempted infanticide by other males.  

Overall, interspecific variation in sagittal crest morphology, the presence of sagittal 

crests in primates ranging in size from less than 10kg to over 100kg, and data from 

behavioural studies, suggest that factors other than mastication may affect sagittal crest size. 

In this paper, we evaluate what we refer to as the ‘muscle attachment’ and the ‘sexual 

selection’ hypotheses to assess whether the prominent sagittal crests seen in the males of 

some extant non-human apes are solely the result of the need for a larger muscle attachment 

area than the surface area of the uncrested neurocranium can provide. If that is not the case 

then we consider whether part of the variation in male sagittal crest size can be explained by 

sagittal crest size being a social signal. Specifically, the ‘muscle attachment’ hypothesis 

suggests that sagittal crests develop because the surface area required for the attachment of 

the temporalis muscle is greater than the area available on the uncrested neurocranium. The 

‘sexual selection’ hypothesis suggests that sagittal crests develop, in part, as a result of social 

signalling (i.e. sexual selection plays a role in driving sagittal crest development). These two 

hypotheses are not mutually exclusive.  

To better understand the significance of sagittal crest formation in the early hominin 

taxa listed above, we examined sagittal crest formation in samples of Gorilla gorilla gorilla, 

Hylobates lar, Pan troglodytes schweinfurthii, and Pongo pygmaeus pygmaeus. We expanded 

on Ashton & Zuckerman’s (1956) study by including larger sample sizes and by applying 

relevant statistical methods (no statistical tests were performed by Ashton and Zuckerman, 

whose analyses mainly consisted of qualitative descriptions). We examined sagittal crest 

growth and development, but given the low cresting frequency in Pan and Hylobates, this 



9 
 

part of the study was confined to Gorilla and Pongo. We investigated size changes in, and the 

timing of, sagittal crest development separately in the males and females of these taxa. If 

sagittal crest development occurs in response to sexual selection in males, we would expect 

the timing of sagittal crest emergence to coincide with the time at which males normally 

become socially dominant. Finally, we evaluated the strength of support for the ‘muscle 

attachment’ and the ‘sexual selection’ hypotheses by asking whether the sagittal crest 

develops because there is a mismatch between cranial surface area and the area needed for 

the attachment of the temporalis muscle. We investigated this question by testing for 

intraspecific sex differences in the regression slope between temporalis muscle attachment 

area (TMAA) and sagittal crest size (SCS), respectively, and cranial size. If the sagittal crest 

develops in response to sexual selection, we expect a steeper slope between SCS and cranial 

size in males, compared to females, and we would expect corresponding sex differences in 

the scaling relationship between TMAA and cranial size. If the sagittal crest develops solely 

in response to mastication, we would not expect sex differences in these allometric slopes. 

 

Materials and methods 

Sample 

The sample consists of 357 crania of wild-shot individuals of G. g. gorilla, H. lar, P. 

t. schweinfurthii, and Po. pyg. pygmaeus (Table 1). Modern humans were excluded because 

they do not have a sagittal crest. All specimens had upper and lower M3s in full occlusion, 

and for the few great apes for which sex was not clear from museum records we based the sex 

assignment on the relative size of the canine crown, following well established findings about 

sexual dimorphism in the canine size of these taxa (Leutenegger & Kelley, 1977; Harvey et 

al. 1978; Plavcan & van Schaik, 1992).  
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Data collection 

Sagittal crest size (SCS), temporalis muscle attachment area (TMAA), and linear 

measurements were taken directly from 3D surface scans. We used a NextEngine 2020i 3D 

Desktop laser scanner to obtain surface scans for all specimens except for P. t. schweinfurthii, 

for which 3D surface scans were obtained using a Breuckmann optical white light scanner or 

from CT scan data. All three scanners scan to a high enough accuracy to adequately quantify 

temporalis muscle attachment area and sagittal crest size, and differences in scanning 

methods are not likely to have introduced error in the subsequent measurements taken from 

the scans. We used the geometric mean of superior facial breadth (left frontomalare temporal 

to right frontomalare temporal), glabellar height (glabella to prosthion), and cranial length 

(glabella to inion) as a proxy for cranial size. All three linear measurements were taken from 

3D surface scans using Landmark, v 3.0.  

We measured SCS and TMAA as surface area measurements of the ectocranial 

surface, taken directly from 3D surface models. We measured SCS by calculating the area 

between the superior border of the sagittal crest and its base, as seen in lateral view. The 

posterior border of the sagittal crest was taken as the point of inflexion between the sagittal 

and nuchal crests (Fig. 1). We measured TMAA following anatomical descriptions of 

temporalis muscle attachment in great ape taxa (Boyer, 1939; Raven & Gregory, 1950; 

Miller, 1952; Swindler & Wood, 1973; Winkler, 1991). In specimens with no sagittal or 

nuchal crest, we used the superior temporal line as the superior boundary, and for specimens 

with a sagittal crest we used its superior border. The anterior boundary of the TMAA for all 

specimens begins at the upper lateral margin of the postorbital plate, and extends inferiorly, 

via the greater wing of the sphenoid, to the most inferior point of the temporal fossa. The 

inferior boundary for all specimens is the contour along the most inferior edge of the vault, 

including the supramastoid crest and the superior portion of the root of the zygomatic process 
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(Fig. 2). Surface area measurements were taken using the corresponding functions in 

Geomagic Studio v. 12 or Geomagic Design X v. 5. These surface area measurements are 

calculated through the summation of the surface areas of all triangles (formed by linking the 

points of the point cloud) within the selected boundaries as described above. Measurements 

were from the left side unless the cranium was damaged, in which case we measured the right 

side. 

 

Age categorisation method 

To assess age beyond dental maturity, we assigned specimens to adult age quartiles 

(AAQs) using the relative age estimation procedure devised by Balolia et al. (2013). 

Photographs of the upper and lower dentition were placed in ranked order based on the 

relative amounts of occlusal wear on the upper and lower molars. We took premolar and 

incisor wear into account in cases where there was little to separate specimens based on 

molar wear. Males and females were seriated separately. Based on the ranked tooth wear, we 

assigned approximate ages to the nearest 0.5 year to each specimen using a version of the 

Miles (1962) method of aging, and published molar eruption ages in hominoids (see Balolia 

et al. 2013 for molar eruption ages and sources). First, we noted the amount of M1 wear at 

the point where M3 had reached full occlusion (Fig. 3a). Second, we aged specimens where 

M2 wear has reached the same extent of M1 wear at M3 occlusion by adding the species-

specific difference in years between M1 eruption and M3 eruption to the age at M3 occlusion. 

Third, after assigning an age to a specimen based on M2 wear having reached the same stage 

of wear as M1 at the stage of M3 occlusion, we again noted the amount of M1 wear (Fig. 3b). 

A specimen in the series with M2 wear similar to that stage of M1 wear was found and, 

again, the species-specific age difference between M1 and M2 eruption was added to infer 
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specimen age. We continued this process (Fig. 3c), until all specimens in each ranked series 

were aged. Finally, the tooth wear photos were reviewed, where we assigned similar ages to 

teeth at similar tooth wear stages and giving the appropriate relative age assignment to 

specimens that fell in the intervals between assigned ages (Miles, 1962). Based on the 

observed range of estimated ages (Table 2), following Balolia et al. (2013), specimens were 

categorised into one of four AAQs. Each AAQ represents a similar stage of adult life history 

across taxa. Adults categorised as AAQ1 are referred to as young adults, AAQ2 and AAQ3 

represent mid-adulthood, and individuals categorised as AAQ4 are old adults (Table 3).  

 

Statistical analysis 

We used Fisher’s exact test to establish whether dentally mature males show a higher 

frequency of sagittal crest expression relative to dentally mature females in the same taxon. 

We used Spearman correlations between surface area measurements and tooth wear rank to 

detect evidence of sex-specific SCS changes beyond dental maturity, and we used Kruskal-

Wallis tests to test for statistically significant differences in SCS among age groups. Rank-

based (non-parametric) tests were judged to be more suitable than ANOVA because of the 

large number of individuals without a sagittal crest in some samples. To test whether the 

relationships between TMAA and cranial size, and SCS and cranial size, depart from 

isometry, and to test for sex differences in regression slopes, we ran ordinary least-squares 

(OLS) regression on logarithmically-transformed measurements. Our research question 

examines inter- and intraspecific differences in muscle attachment area and sagittal crest size 

(TMAA and SCS) at a given cranial size, so because the identification of X and Y variables is 

non-arbitrary, we followed Smith (2009) and used OLS rather than reduced major axis 

(RMA) regression. We used analysis of variance (ANOVA) to test whether the models were 
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significant. Because the proxy for cranial size (on the x axis) is based on linear variables, and 

SCS or TMAA (on the y axis) is derived from a surface area measurement, a slope of 2 

indicates isometry, < 2 indicates negative allometry and > 2 indicates positive allometry. We 

used analysis of covariance (ANCOVA) to test for significant sex differences in regression 

slopes. For analyses where multiple comparisons were conducted within the same taxon, we 

corrected statistical results for multiple comparisons; significant comparisons are highlighted 

in bold.  We performed all statistical analyses using SPSS version 21.0 or 22.0. 

 

Results 

Sagittal crest frequency in hominoids 

Among hominoids, G. g. gorilla show the highest frequency of sagittal cresting, with 

76% of the sample having a sagittal crest. When each sex is examined separately, 93% of G. 

g. gorilla males and 58% of G. g. gorilla females have a sagittal crest. Among the Po. pyg. 

pygmaeus sample, 17% of individuals, representing 39% of the male sample, show sagittal 

cresting. No Po. pyg. pygmaeus females have sagittal crests. Among the P. t. schweinfurthii 

specimens 15% have a sagittal crest, where 24% of males and 7% of females have a sagittal 

crest. Among the H. lar sample, 3% of individuals have a sagittal crest, where 4% of the male 

sample show sagittal cresting. No H. lar females have sagittal crests. Males of P. t. 

schweinfurthii, G. g. gorilla and Po. pyg. pygmaeus show a significantly higher frequency of 

sagittal cresting compared to females for each taxon; no such sex difference is shown for H. 

lar (Table 4). 

 

Sagittal crest size changes beyond dental maturity in gorillas and orangutans 

Gorilla g. gorilla and Po. pyg. pygmaeus males show significant correlations between 

tooth wear rank and sagittal crest size, and males of both taxa show significant size 
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differences among age groups (Table 5). Female G. g. gorilla show no significant 

correlations between tooth wear rank and sagittal crest size, nor do they show any significant 

size differences between age groups (Table 5). As no Po. pyg. pygmaeus females in the 

sample have a sagittal crest, no statistical tests were conducted. 

 

The timing of sagittal crest development in gorillas and orangutans 

Sagittal crests appear relatively early in G. g. gorilla males, where c.80% of AAQ1 

specimens have a sagittal crest, and by AAQ2 all G. g. gorilla males in the sample have a 

sagittal crest (Fig. 4). In contrast, in G. g. gorilla females the percentage of individuals with a 

sagittal crest increases for each age group until AAQ3. Pongo pyg. pygmaeus males show an 

additional percentage of individuals with a sagittal crest for each successive age group until 

AAQ4. Contrary to what is observed in gorillas, the percentage of Po. pyg. pygmaeus males 

possessing a sagittal crest increases abruptly between AAQ2 and AAQ3. No females of Po. 

pyg. pygmaeus in any age group have a sagittal crest (Fig. 4). 

 

Scaling relationships among TMAA and SCS, and cranial size 

 Male G. g. gorilla and Po. pyg. pygmaeus show a positive allometric relationship 

between TMAA and cranial size, whereas in P. t. schweinfurthii and H. lar males, the 

relationship does not significantly depart from isometry (Fig. 5, Table 6). With respect to 

females, only Po. pyg. pygmaeus, where the relationship is negatively allometric, departs 

from isometry (Fig. 5, Table 6). There are significant sex differences in allometric slope 

between TMAA and cranial size for G. g. gorilla (ANCOVA: F(1,96) = 5.078, P = 0.027) and 

Po. pyg. pygmaeus (F(1,89) = 15.928, P < 0.001). No such sex differences were found for P. t. 

schweinfurthii (F(1,68) = 0.018, P = 0.894) and H. lar (F(1,71) = 0.008, P = 0.930). Of the four 
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single-sex groups for which enough individuals have a sagittal crest to calculate bivariate 

regression slopes between SCS and cranial size, only G. g. gorilla males depart from 

isometry in the direction of strong, positive allometry (Fig. 6, Table 6). As the slope between 

SCS and cranial size for G. g. gorilla females is not significant, sex difference in bivariate 

slope could not be tested statistically. 

 

Discussion  

The results of our study provide support for the ‘sexual selection’ hypothesis for 

sagittal cresting in gorilla and orangutan males. In G. g. gorilla and Po. pyg. pygmaeus, the 

timing of sagittal crest emergence in males and sex differences in temporalis muscle 

attachment area allometry suggest that sagittal crests do not solely develop to accommodate a 

large temporalis muscle, and both are consistent with the hypothesis that sexual selection 

contributes to sagittal cresting in males of these taxa. In contrast, in P. t. schweinfurthii and in 

H. lar, the frequency of sagittal cresting is low, and there is no evidence of scaling 

differences between the sexes, nor is there evidence in either sex that the relationship 

between TMAA and cranial size departs from isometry. Therefore, in these two taxa, patterns 

of allometric scaling provide no support for the sexual selection hypothesis. Our results show 

that sagittal crest size increases beyond dental maturity in G. g. gorilla and Po. pyg. 

pygmaeus males, and that sagittal crests in G. g. gorilla males emerge in young adults (c.80% 

of AAQ1 males possessing a sagittal crest). This contrasts with the situation in Po. pyg. 

pygmaeus males where there is an abrupt increase in mid-adulthood of the percentage of male 

individuals possessing a sagittal crest (c. 30% of AAQ2 males and c.80% of AAQ3 males 

possess a sagittal crest). These findings suggest that the timing of sagittal crest emergence in 

G. g. gorilla and Po. pyg. pygmaeus males may be a response to taxon-specific selective 

pressures, perhaps related to differences in their habitat and social structure, discussed in 
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further detail below. Our findings of positive allometry in SCS and TMAA in G. g. gorilla 

males, but not in females, and sex differences in scaling relationships between TMAA and 

cranial size, provide further support for the ‘sexual selection’ hypothesis in gorillas. The 

positive allometry of TMAA in Po. pyg. pygmaeus males, and the sex differences in scaling 

relationships between TMAA and cranial size, are also consistent with the hypothesis that 

sexual selection contributes to sagittal cresting in male orangutans.  

By contrast to what is found in G. g. gorilla and Po. pyg. pygmaeus, the emergence of 

sagittal crests in P. t. schweinfurthii or H. lar is best explained by the ‘muscle attachment’ 

hypothesis based on the low frequency of sagittal cresting in males of these two taxa and the 

finding that scaling relationships between TMAA and cranial size do not depart from 

isometry in either sex, and that there are no sex differences in allometric slope. Given that our 

findings indicate that mastication contributes to sagittal cresting in P. t. schweinfurthii and H. 

lar, it is also likely that some of the variation in sagittal crest size in G. g. gorilla and Po. pyg. 

pygmaeus is also a result of mastication. Further research is required to investigate how much 

of the variation in sagittal crest size is explained by mastication and sexual selection 

respectively. 

The results of the present study mirror Ashton & Zuckerman’s (1956) findings that 

among dentally mature male hominoids, gorillas show the highest incidence of sagittal 

cresting, followed by orangutans, chimpanzees and gibbons. Also similar to Ashton & 

Zuckerman’s (1956) findings, over half of our dentally mature female gorilla sample have a 

sagittal crest, with fewer female chimpanzees showing evidence of sagittal cresting. Among 

the taxa investigated in this study, males show a higher frequency of sagittal cresting than do 

females. It is also consistent with patterns of cranial growth beyond dental maturity and with 

spheno-occipital fusion being delayed in both taxa (Randall, 1943; Leutenegger & Masterson, 

1989a, 1989b; Masterson & Leutenegger, 1990, 1992; Röhrer-Ertl, 1988; Uchida, 1996; 

Hens, 2003, 2005; Balolia et al. 2013; Gordon et al. 2013; Balolia, 2015).   



17 
 

The finding that in the majority of G. g. gorilla males a sagittal crest develops in early 

adulthood, and that all males develop a sagittal crest by the second quarter of adult life, can 

be considered in the context of their social behaviour and male intrasexual dominance 

relationships. Breeding groups of G. g. gorilla are almost exclusively uni-male/multi-female 

(Robbins et al. 2004; Gatti et al. 2004). Males who reach sexual maturity early in adulthood 

are more likely to establish and defend a breeding group and thus enhance their reproductive 

success, and such a strategy is likely aided by early development of a large sagittal crest 

(Breuer et al. 2012). The timing of sagittal crest emergence in G. g. gorilla males differs from 

that in Po. pyg. pygmaeus, where the onset of sagittal crest development is delayed such that 

between the second and third adult age quartiles there is a threefold increase in the number of 

male specimens exhibiting a sagittal crest. The relatively late sagittal crest development in 

Po. pyg. pygmaeus males coincides with a secondary growth spurt (Utami & van Hooff, 

2004). Other evidence of a secondary growth spurt in Po. pygmaeus comes from the facial 

skeleton and the cranium (Leutenegger & Masterson, 1989a, 1989b; Masterson & 

Leutenegger, 1990, 1992; Röhrer-Ertl, 1988; Uchida, 1996; Hens, 2003, 2005; Balolia et al. 

2013).  

The pattern of sagittal cresting in G. g. gorilla and Po. pyg. pygmaeus males is 

consistent with the nature of male intrasexual relationships in these taxa, where males of both 

taxa are mostly intolerant of one another and show a high intensity of intrasexual male 

aggression (Watts, 1996; Knott et al. 2010). Furthermore, there is evidence that females of 

these taxa prefer to mate with dominant males (Stokes et al. 2003; Knott et al. 2010; Breuer 

et al. 2012). With respect to contextualising these findings in terms of orangutan behaviour, 

Po. pygmaeus males employ two alternative reproductive strategies (Utami et al. 2002). In 

the first, dominant, flanged males control a territory and are intolerant of other dominant 

males with whom females prefer to mate (Knott et al. 2010). In the second, subordinate 

unflanged males attain reproductive success through forced copulation with females (Fox, 

2002). Subordinate males, who can remain unflanged for up to 20 years beyond sexual 
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maturity (Utami et al. 2002), use this strategy to avoid inter-male aggression from dominant 

males. Therefore, the late and abrupt onset of sagittal crest development in the Po. pyg. 

pygmaeus males examined in this study is consistent with the suggestion that sagittal crest 

development in Pongo males may be a secondary sexual characteristic that helps to determine 

dominance ranking. This explanation is consistent with interpretations by Ashton & 

Zuckerman (1956) who, based on the relatively late timing of sagittal crest emergence and 

sagittal crest development beyond dental maturity in males of some taxa, suggested that 

sagittal crests are “secondary sexual characters, induced at least partly as a result of hormonal 

action” (p. 604). Under this scenario, the sagittal crest may serve as a visual signal of 

dominance in males in that the presence of a large sagittal crest increases the height of the 

head in frontal and lateral profile (Caillaud et al. 2008; Breuer et al. 2012). Our findings of 

positive allometry for TMAA in G. g. gorilla and Po. pyg. pygmaeus, and for SCS in G. g. 

gorilla, are consistent with the proposal that if sagittal crest size varies in response to sexual 

selection, it will be most prominent in the males of taxa that show high levels of male 

intrasexual aggression. In this regard, sagittal crest size and associated musculature may be 

an honest indicator to females of mate quality and the ability to protect against infanticide, as 

well as an honest indicator of the ability to fight and to dominate other males. 

One aim for this study was to better understand the significance of sagittal crest 

formation in early hominin taxa, particularly in taxa that show a relatively high frequency of 

sagittal cresting compared to other hominins. These taxa include Paranthropus boisei and 

Paranthropus robustus (Tobias 1967, 1991), Paranthropus aethiopicus (Walker et al. 1986), 

and Australopithecus afarensis (Kimbel et al. 2004). Our results confirm previous findings 

that chimpanzees, one of the two great ape taxa most closely related to the early hominins, 

show little or no sagittal cresting, whereas some gorilla and orangutan specimens, taxa that 

are more distantly related to hominins, show large sagittal crests and vary in their frequency 

of sagittal cresting. These findings are consistent with the suggestion put forward in the 

introduction that strong sagittal cresting in some primate taxa evolved independently (i.e. 
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may be a result of homoplasy) and imply that among hominin taxa sagittal crest expression is 

likely to be an autapomorphic trait.  What is clear is that differences in sagittal crest 

expression among hominids demonstrates its evolutionary plasticity, and that sagittal crest 

expression should be considered to have limited utility for generating phylogenetic 

hypotheses (cf. Lockwood & Fleagle, 1999, p. 208), though further work is required to test 

this hypothesis in other parts of the primate clade. Furthermore, because the sagittal crest is a 

sex-specific trait, yet it is not expressed in all dentally mature males and it is manifest only 

late in ontogeny, it also has limited utility for alpha taxonomy.  

The results of the present research could alternatively be explained by sex differences 

in amount of food consumed, or other dietary differences between males and females. 

However, among Western lowland gorillas, no sex differences in diet composition have been 

found (Doran et al. 2002) and despite the large difference in overall body size, silverback 

mountain gorillas eat only c.25% more food per day than do adult females (Rothman et al. 

2008). There is evidence of sex differences in the amount of time feeding and in diet 

composition among orangutans (Fox et al. 2004; Wich et al. 2006). Adult female orangutans 

spend longer periods of time feeding than do males, and this additional time is spent eating 

insects, rather than fruit (Fox et al. 2004). During periods of high fruit availability, 

reproductive females eat more fruit (excluding figs) and insects, and unflanged males rely 

more heavily on more flowers during periods of low fruit abundance (Wich et al. 2006). 

Given that these food types, with the possible exception of insects, are relatively soft it is 

unlikely that sex differences in their consumption strongly impacts temporalis muscle 

development. There is no research of which we are aware documenting sex differences in 

food consumption (time spent feeding or type of food consumed) in other great ape taxa. 

Positive allometry has also been associated with biomechanical factors (Tseng & Rowe, 

1999; Bonduriansky, 2007). We argue that the positive allometry for sagittal crest size in G. 

g. gorilla males (slope = 12.00) substantially exceeds the scaling relationships between 

TMAA and cranial size, so dietary or biomechanical explanations are unlikely to account for 



20 
 

the sex differences in TMAA allometric slopes observed in G. g. gorilla and Po. pyg. 

pygmaeus. However, further research is required to understand the influence of diet and 

biomechanical factors on sex differences in sagittal cresting for taxa that show a high degree 

of body size dimorphism.  

A further confounding factor in understanding the relationship between the area of the 

neurocranium required to accommodate the temporalis muscle and sagittal crest emergence is 

the extent to which temporalis muscle size is associated with TMAA. There are limited data 

in hominoids investigating this relationship, though the data that do exist suggest that the 

relationship between skeletal data, measured using mandibular size measurements, and 

temporalis muscle physiological cross-sectional area (PCSA) is not clear cut (Taylor & 

Vinyard, 2013). Taylor & Vinyard (2013) also show interspecific variation in temporalis fibre 

length among hominoid taxa, though there is no evidence to suggest a trade-off between 

PCSA and fibre length. Combined, these results suggest that further research into the 

relationship between actual temporalis muscle size, muscle architecture, and our measure of 

TMAA in hominoids is warranted.  It is possible that sex differences in scaling relationships 

between TMAA and cranial size in gorillas and orangutans could be the result of differences 

in muscle architecture, with force potential being increased through increased pennation 

instead of through increased attachment area on the skull. Sex differences in temporalis 

muscle weight, fibre lengths and temporalis muscle PCSA, but not pennation angle, have 

been found in macaques (Macaca fascicularis) and these differences are suggested to be a 

result of sex differences in maximum gape, associated with large male canine size and 

associated display behaviours (Terhune et al. 2015). These results mean that factors other 

than mastication may influence sex differences in temporalis muscle architecture, which may 

in turn affect the amount of space on the ectocranial surface required for attachment of the 

temporalis muscle. Specifically, reduced pennation, or increased relative fibre length 

combined with larger overall muscle size, to allow for a wider gape associated with larger 

canines in males would create a need for larger TMAA, and possibly drive the development 
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of sagittal crests as a consequence of sexual selection for increased canine size. Further 

research investigating the association between TMAA and muscle size and architecture 

among hominoids, and how sex differences in maximum gape affects temporalis muscle 

architecture is required.    

Finally, an understanding of the biological basis of sagittal crest development related 

to the timing of other indicators of maturity (e.g. Shea, 1986, 1988; Leutenegger & 

Masterson, 1989a, 1989b; Masterson & Leutenegger, 1990, 1992; Röhrer-Ertl, 1988; Uchida, 

1996; Hens, 2003, 2005; Gordon et al. 2013; Balolia et al. 2013; Balolia, 2015), in 

conjunction with the need to increase muscle attachment area, have important applications for 

reconstructing the social behaviour of extinct primate taxa. In particular, if the timing of 

sagittal crest development in males is associated with a male reproductive strategy 

characterised by intense intrasexual competition across primates, examination of sagittal crest 

emergence and associated scaling relationships in fossil assemblages may allow us to begin 

to reconstruct the nature of intrasexual male competition in those extinct hominin taxa that 

display evidence of a sagittal crest. These findings raise the possibility that sagittal cresting in 

fossil hominin taxa such as Paranthropus boisei may have been driven by both diet-related 

factors and sexual selection. 

It is important to note that hypotheses about sagittal crest emergence may be 

pluralistic in that sagittal crests may serve more than one function and be subject to both 

sexual and other aspects of natural selection (e.g. Darwin, 1871; Tomkins et al. 2010; Padian 

& Horner, 2011a, 2011b; Knell & Sampson, 2011). For example, the results of the present 

study indicate that sagittal crests in G. g. gorilla males provide support for both the ‘muscle 

attachment’ and the ‘sexual selection’ hypotheses. To further evaluate that possibility, studies 

investigating the relationships between temporalis muscle attachment area, muscle 

architecture, sagittal crest size and aspects of primate social systems in a broader range of 

taxa are needed. For example, evidence that sagittal crests only occur in males of robust 

capuchin monkeys (Alfaro et al. 2012) suggests that sex-specific patterns of sagittal crest 
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emergence may not be restricted to hominoids. The finding that sagittal crest development 

coincides with the timing of sexual maturity and territorial displays in male California seals 

(Zalophus californianus), where seasonal fat deposition exaggerates the size of the sagittal 

crest during the reproductive season (Schusterman & Gentry, 1971) provides further evidence 

that sagittal crests may emerge in response to sexual selection in a diverse range of 

mammalian taxa.  

Although sagittal crest expression can be considered to have limited utility for 

generating phylogenetic hypotheses, our results indicate that patterns of sagittal crest 

development may provide some insight into sociality in the extinct hominin taxa in which 

they do occur. For example, further investigations could test the hypothesis that the sagittal 

crest in the males of some extant taxa emerges around the time individuals begin to exercise 

social dominance, and thus provide support for Ashton & Zuckerman’s (1956) hypothesis 

that the sagittal crest in males is a secondary sexual characteristic, subject to sexual selection. 

Similar suggestions have been made with respect to the emergence of silverback hair in fully 

mature gorillas, and facial flanges and a developed throat sac in mature male orangutans 

(Watts et al. 1991; Utami et al. 2002). But while it makes sense to investigate whether sagittal 

crest emergence coincides with the time at which males of some taxa attain dominance status, 

it is also necessary to evaluate the potential for sexual selection of crest expression against 

the background requirement of increasing muscle attachment area with increasing body size 

(Robinson, 1958). It is possible that in P. boisei, which has unusually small and sexually 

monomorphic canines (Wood & Constantino, 2007), the sagittal crest may have replaced 

canine size as a signalling mechanism. 

In conclusion, the scaling patterns reported here, and the timing of sagittal crest 

emergence in gorilla and orangutan males provide support for the hypothesis that sexual 

selection contributes to the formation of sagittal crests in hominoid primates. To what extent 

sagittal crests may serve a direct function in social signalling, and to what extent they are a 

consequence of biomechanical constraints imposed on males to accommodate wider gapes 
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and, hence, a correlate of canine size, remains unresolved without further data on temporalis 

muscle architecture, and on fitness consequences and behavioural correlates of sagittal crest 

size in hominoids. 
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Table 1 Taxa, sample sizes and sources of specimens 

Taxon Male Female Repository/collection 

Pan troglodytes schweinfurthii 37 41 Royal Museum of Central Africa, Tervuren 

Gorilla gorilla gorilla 56 50 Powell Cotton Museum, Kent 

Pongo pygmaeus pygmaeus 41 54 State Anthropological Collection, Munich 

Hylobates lar 
46 32 

Natural History Museum, London; Anthropological 
Institute and Museum, University of Zürich; American 
Museum of Natural History, New York 
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Table 2 Approximate ranges of AAQs for Gorilla and Pongo (in years). Balolia et al. (2013). 

Adult age group Gorilla gorilla Pongo pygmaeus 

AAQ1 11.8-16.8 12.9-19.1 

AAQ2 16.8-21.8 19.1-25.3 

AAQ3 21.8-26.8 25.3-31.5 

AAQ4 26.8-32.0 31.5-38.0 

AAQ = Adult age quartile 
  

 

Table 3 Gorilla and Pongo sample for each sex and age group.  

Taxon AAQ1 AAQ2 AAQ3 AAQ4 

G. g. gorilla (Male) 21 12 14 9 

G. g. gorilla (Female) 21 9 9 11 

Po. pyg. pygmaeus (Male) 19 11 5 6 

Po. pyg. pygmaeus (Female) 17 14 12 11 

AAQ = Adult age quartile 

     

Table 4 Frequency of sagittal cresting in dentally mature great apes and gibbons. Numbers in 

parentheses represent the total number of individuals in the sample. 

 

 

  

Taxon 
Male 

frequency 

Female 

frequency 

Fisher’s exact 

test results 

P. t. schweinfurthii 9 (37) 3 (41) P = 0.038 

G. g. gorilla 52 (56)  29 (50) P < 0.001 

Po. pyg. pygmaeus 16 (41) 0 (54) P < 0.001 

H. lar 2 (46) 0 (32) P = 0.345 

Statistically significant results are highlighted in bold. 
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Table 5 Sagittal crest size (SCS) growth following dental maturity in Gorilla and Pongo: 

Spearman’s rank correlations between SCS and tooth wear rank; Kruskal-Wallis tests for 

differences in SCS among AAQs (Adult Age Quartiles). 

Sagittal crest size 

    Taxon Sex N Correlation Kruskal-Wallis test 

G. g. gorilla Male 56 r = 0.401, P = 0.002 H(3) = 11.285, P = 0.010 

  Female 50 r = 0.304, P = 0.032 H(3) = 6.429, P = 0.093 

Po. pyg. pygmaeus Male 41 r = 0.508, P = 0.001 H(3) = 11.012, P = 0.012 

  Female 54 n/a n/a 

r = Spearman’s rank correlation coefficient; significant results following correction 

for multiple comparisons are highlighted in bold. 
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Table 6 Ordinary least squares regression results between log cranial size and log temporal muscle attachment area (TMAA) and log cranial size 

and log sagittal crest size (SCS) in dentally mature great apes and gibbons. 

Temporalis muscle attachment area 

  Males   

 

  

   

95% CI for B   

Taxon r N Slope (B) ANOVA 
Lower 
Bound 

Upper 
Bound 

Allometric relationship 

P. t. schweinfurthii 0.392 34 1.332 F(1,32)=5.827, P=0.022 0.208 2.456 No divergence from isometry 

G. g. gorilla 0.897 54 2.57 F(1,52)=214.544, P<0.001 2.218 2.922 Positive allometry 

Po. pyg. pygmaeus 0.866 41 3.279 F(1,39)=116.55, P<0.001 2.664 3.893 Positive allometry 

H. lar 0.475 45 1.608 F(1,43)=12.545, P=0.001 0.693 2.524 No divergence from isometry 

 

         Females   

 

  

   

95% CI for B   

Taxon r N Slope (B) ANOVA 
Lower 
Bound 

Upper 
Bound 

Allometric relationship 

P. t. schweinfurthii 0.367 38 1.442 F(1,36)=5.614, P=0.023 0.208 2.677 No divergence from isometry 

G. g. gorilla 0.67 46 1.74 F(1,44)=35.910, P<0.001 1.155 2.325 No divergence from isometry 

Po. pyg. pygmaeus 0.329 52 1.082 F(1,50)=6.064, P=0.017 0.199 1.965 Negative allometry 

H. lar 0.504 30 1.548 F(1,28)=9.536, P=0.005 0.521 2.574 No divergence from isometry 

        Sagittal crest size 
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  Males   

 

  

   

95% CI for B   

Taxon r N Slope (B) ANOVA 
Lower 
Bound 

Upper 
Bound 

Allometric relationship 

P. t. schweinfurthii 0.339 9 -2.79 F(1,7)=0.909, P=0.372 -9.71 4.129 Model not significant 

G. g. gorilla 0.79 52 12.004 F(1,50)=82.739, P<0.001 9.354 14.655 Positive allometry 

Po. pyg. pygmaeus 0.041 16 -0.576 F(1,14)=0.023, P=0.881 -8.697 7.544 Model not significant 

 

         Females   

 

  

   

95% CI for B   

Taxon r N Slope (B) ANOVA 
Lower 
Bound 

Upper 
Bound 

Allometric relationship 

P. t. schweinfurthii n/a n/a n/a n/a n/a n/a n/a 

G. g. gorilla 0.215 27 -3.646 F(1,24)=1.213, P=0.281 -10.464 3.172 Model not significant 

Po. pyg. pygmaeus n/a n/a n/a n/a n/a n/a n/a 

r = Pearson's correlation coefficient; CI = Confidence Interval; Significant slopes are highlighted in bold. 
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FIGURES 

 

Fig. 1 Sagittal crest size (SCS) measurement (red area) in the cranium of a male G. g. gorilla 

specimen. This measurement represents the area of sagittal crest when seen in profile. 

 

 

Fig. 2 Temporalis muscle attachment area (TMAA) measurement (light blue area) shown on 

the cranium of a male Po. pyg. pygmaeus specimen. 
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Fig. 3 Depiction of the approximate aging procedure. a) Female gorilla specimen in which 

the upper M3 has reached full occlusion. b) Female gorilla specimen in which M2 wear 

equals M1 wear when M3 is at full occlusion. c) Female gorilla specimen in which the M2 is 

showing a further ca. 3.5 years of wear. Reproduced from Balolia et al. (2013). 

 

 

Fig. 4 Percentage of G. g. gorilla and Po. pyg. pygmaeus male and female specimens 

exhibiting a sagittal crest for each age group. Dark grey bars = males; light grey bars = 

females. AAQ = Adult age quartile. 
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Fig. 5 Log cranial size (x axis) vs log temporalis muscle attachment area (TMAA) (y axis) 

for great apes and gibbons. Blue triangle = males; red circles = females. Males of G. g. 

gorilla and Po. pyg. pygmaeus show positive allometry, and females of Po. pyg. pygmaeus 

show negative allometry. Sex differences in allometric slopes are found in G. g. gorilla and 

Po. pyg. pygmaeus. 95% confidence intervals and the significance of each model are 

provided in Table 6. 
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Fig. 6 Log cranial size (x axis) vs log sagittal crest size (SCS) (y axis) for G. g. gorilla. Blue 

triangle = males; red circles = females. Males of G. g. gorilla show strong positive allometry. 

There is no statistically significant relationship in females, so no female slope is shown. 95% 

confidence intervals and the significance of each model are provided in Table 6. 


