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Abstract. Passive imaging refers to problems where waves generated by unknown
sources are recorded and used to image the medium through which they travel. The
sources are typically modelled as a random variable and it is assumed that some
statistical information is available. In this paper we study the stochastic wave
equation ∂2

t u − ∆gu = χW , where W is a random variable with the white noise
statistics on R1+n, n ≥ 3, χ is a smooth function vanishing for negative times and
outside a compact set in space, and ∆g is the Laplace–Beltrami operator associated
to a smooth non-trapping Riemannian metric tensor g on Rn. The metric tensor
g models the medium to be imaged, and we assume that it coincides with the
Euclidean metric outside a compact set. We consider the empirical correlations on
an open set X ⊂ Rn,

CT (t1, x1, t2, x2) =
1

T

∫ T

0

u(t1 + s, x1)u(t2 + s, x2)ds, t1, t2 > 0, x1, x2 ∈ X ,

for T > 0. Supposing that χ is non-zero on X and constant in time after t > 1,
we show that in the limit T → ∞, the data CT becomes statistically stable, that
is, independent of the realization of W . Our main result is that, with probability
one, this limit determines the Riemannian manifold (Rn, g) up to an isometry. To
our knowledge, this is the first result showing that a medium can be determined
in a passive imaging setting, without assuming a separation of scales.

1. Introduction

In passive imaging, waves generated by unknown sources are recorded and used
to image the medium through which they travel. Passiveness refers to the observer
having only little or no control over the source (think earthquakes in seismic imaging).
However, some statistical information of the source may be available and it can be
useful to model the source as a random variable: while the statistics of the random
variable is known, its realization remains unknown.

Passive imaging has had a fundamental impact to seismic and various other imag-
ing modalities. We refer to the recent book by Garnier and Papanicolaou [21] for an
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2 IMAGING WITH AN WHITE NOISE SOURCE

extensive review of the field. The previous mathematical theory is, to a large extent,
based on assuming some physical scaling regime. Such an approach has produced
a number of important and efficient numerical methods. However, our key finding
in the present paper is that exact recovery of an unknown medium is also possible
without any scaling assumptions. The proof of this is based on a reduction to a
deterministic inverse problem.

In this work we consider the wave equation

∂2t u(t, x)−∆gu(t, x) = χ(t, x)W (t, x) in R
1+n
+ = (0,∞)× R

n,(1)

u|t=0 = ∂tu|t=0 = 0,

where ∆g is the Laplace–Beltrami operator corresponding to a smooth time-independent
Riemannian metric g on Rn. In coordinates (xj)

n
j=1 this operator has the following

representation.

∆g =

n∑

j,k=1

|g|−1/2 ∂

∂xj

(
|g|1/2gjk

∂

∂xk
u

)
,

where [gjk]
n
j,k=1 = g(x), |g| = det(gjk) and [gjk]nj,k=1 = g(x)−1. We assume that

our source W is a realization of a Gaussian white noise random variable on R1+n.
Moreover, χ stands for a smooth function

χ(t, x) = χ0(t)κ(x),

such that χ0 ∈ C∞(R) and

χ0(t) =

{
0, t ≤ 0,

1, t ≥ 1,

and κ ∈ C∞
0 (Rn). We assume that there exists an open and non-empty set X ⊂ Rn

where κ is non-vanishing. The source χW can be modelled as a random variable
taking values in a local Sobolev space with negative index, and the same is true for
the solution u. Contrary to papers such as [12,41,44], we do not consider t 7→ u(t, ·)
as a random process.

The problem we study is the following: suppose we can record the empirical cor-
relation

CT (t1, x1, t2, x2) =
1

T

∫ T

0

u(t1 + s, x1)u(t2 + s, x2)ds,(2)

for t1, t2 > 0, x1, x2 ∈ X and T > 0. What information does this data yield regarding
the metric g? For any finite T , the correlation CT is random in the sense that it
depends on the realization of the source. A fundamental part of our result below is to
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show that this data becomes statistically stable, i.e. independent of the realization,
as T increases. More precisely, we show that the limit

lim
T→∞

〈CT , f ⊗ h〉D′×C∞

0
(R2+2n) , f, g ∈ C∞

0 (R1+n),

is deterministic, see Theorem 3 below. Thereafter, the paper is devoted to showing
that this stability enables the recovery of g:

Theorem 1. Let n ≥ 3. Suppose that g is non-trapping and that g coincides with the
Euclidean metric outside a compact set. Let u = U(ω) be the solution of (1) where
W = W(ω) is a realization of the white noise W on R

1+n. Then with probability one,
the empirical correlations (2) defined in the sense of generalized random variables
in D′((R × X )2) for T > 0, determine the Riemannian manifold (Rn, g) up to an
isometry.

Recall that a metric tensor g on Rn is non-trapping if for each compact K ⊂ Rn

there exists T > 0 such that for each (p, ξ) ∈ TRn, p ∈ K, ‖ξ‖g = 1, it holds that
γp,ξ(t) /∈ K when t ≥ T . Here we denote by γp,ξ the unique maximal geodesic of
metric g that satisfies the following initial conditions

γp,ξ(0) = x and γ̇p,ξ(0) = ξ.

Note that the covariance data (2) is determined by the measurement u|(0,∞)×X .
This implies the following corollary:

Corollary 1. The measurement u|(0,∞)×X , with a single realization of the white noise
source, determines the Riemannian manifold (Rn, g), up to an isometry, with prob-
ability one under the assumptions of Theorem 1.

The statistical stability of CT , T > 0, allows us to reduce the passive imaging
problem to a deterministic inverse problem, that we then solve. As this deterministic
problem is of independent interest, we solve it in a more general geometric setting.
Moreover we do not assume that the Riemannian manifold, we are considering about,
is Euclidean outside some compact set.

Theorem 2. Let (N, g) be a smooth and complete Riemannian manifold of dimension
n ≥ 2. Let X ⊂ N be an open and nonempty set. Consider the following initial value
problem for the wave equation

∂2tw(t, x)−∆gw(t, x) = f, in (0,∞)×N,(3)

w|t=0 = ∂tw|t=0 = 0.

Let ΛX : C∞
0 ((0,∞)×X ) → C∞((0,∞)×X ) be the local source-to-solution operator

defined by

ΛXf = w|(0,∞)×X .
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Then the data (X ,ΛX ) determines (N, g) up to an isometry. More precisely this
means the following:

Let (Ni, gi), i = 1, 2, be a smooth and complete Riemannian manifold. Let Xi ⊂ Ni

be open and nonempty, and assume that there exists a diffeomorphism

(4) φ : X1 → X2

that satisfies

(5) φ∗(ΛX2
f) = ΛX1

(φ∗f), for all f ∈ C∞
0 ((0,∞)×X2).

Then (N1, g1) and (N2, g2) are Riemannian isometric.

Above the pullback φ∗ of φ is defined by φ∗f = f ◦ φ̃, where φ̃ is the lift of φ on

(0,∞)× X1, that is, φ̃(t, x) = (t, φ(x)) t > 0, x ∈ X1.
Lastly we will point the connection of Theorem 2 to the following Inverse spectral

problem of Laplace-Beltrami operator.

Corollary 2. Let (N, g) be a smooth and compact Riemannian manifold of dimension
n ≥ 2 with out boundary. Let X ⊂ N be an open and nonempty set. Let (ϕk)

∞
k=1 ⊂

C∞(N) be the collection of orthonormal eigenfunctions of operator ∆g in L
2(N). Let

(λk)
∞
k=1 be the collection of corresponding eigenvalues of ∆g. Then the Spectral data

(6) (X , (ϕk|X )
∞
k=1, (λk)

∞
k=1)

determines (N, g) up to isometry.

1.1. Outline the paper. We begin by showing that the empirical correlation CT

is well-defined in Section 2. In Section 3 we show the statistical stability discussed
above, and in Section 4 we reduce the proof of Theorem 1 to that of Theorem 2. We
prove Theorem 2 in Section 5. For the convenience of the reader, we have collected
some well-known results in an appendix.

1.2. Previous literature. For previous mathematical results on passive imaging
problems we refer to [14, 20]. The monograph [21] gives a thorough review of the
related literature. Passive imaging problems arise in geophysical applications. In
seismic imaging ambient noise sources, that appear due to nonlinear interaction of
ocean waves with the ocean bottom, can be utilized to image the wave speed in the
subsurface of the Earth, see e.g. [46, 47, 57].

We also mention the closely related topic of imaging random media by time reversal
techniques [2,9,10,17] as well as inverse scattering from random potential or random
boundary conditions [11, 25, 39].

Let us now turn to results on deterministic inverse problems similar to Theorem
2. In such coefficient determination problems, it is typical to use the Dirichlet-to-
Neumann map to model the data. Apart from immediate applications, this is rea-
sonable since several other types of data can be reduced to the Dirichlet-to-Neumann
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case. For instance, in [42] an inverse scattering problem is solved via a reduction to
the inverse conductivity problem in [48], and the latter uses the Dirichlet-to-Neumann
map as data. In the present paper, however, we do not perform a reduction to the
Dirichlet-to-Neumann case but adapt techniques originally developed in that case to
the case of local source-to-solution map Λχ.

The approach that we use is a modification of the Boundary Control method. This
method was first developed by Belishev to the acoustic wave equation on Rn with an
isotropic wave speed [4]. A geometric version of the method, suitable when the wave
speed is given by a Riemannian metric tensor as in the present paper, was introduced
by Belishev and Kurylev [5]. We refer to [31] for a thorough review of the related
literature. Local reconstruction of the geometry from the local source-to-solution
map Λχ has been studied as a part of iterative schemes, see e.g. [28, 36]. In the
present paper we give a global uniqueness proof that does not rely on an iterative
scheme. For general aspects of unique solvability in geometric inverse problems,
see [15, 34, 38, 52] and references therein.

We restrict our attention to the unique solvability of the inverse problem but note
that several variants of the Boundary Control method have been studied computa-
tionally [3, 16, 30, 45] and stability questions have been investigated [1, 33, 40].

This work continues the line of research started by the authors in [23, 24], where
similar unique solvability of the geometry was considered for random and pseudo-
random boundary sources. A novel feature of this paper is that we consider passive
imaging, when the source is not assumed to be known.

2. The stochastic direct problem

In this section we show that the running averages CT , T > 0, are well-defined as
random variables. Let us first recall the concept of generalized Gaussian random
variable [22]. A cylindrical set in a locally convex vector space V with the dual V ′

is of the form

{u ∈ V | (〈ℓ1, u〉, . . . , 〈ℓk, u〉) ∈ B} ,

where k ≥ 1, ℓ1, . . . , ℓk ∈ V ′, and B is a Borel subset of Rk, i.e., B ∈ B(Rk). Above,
we write 〈·, ·〉 = 〈·, ·〉V ′×V for the dual pairing between V ′ and V . The σ-algebra
generated by cylindrical sets in V is denoted by Bc(V ). Notice that the cylindrical
σ-algebra is always a subset of the Borel σ-algebra, and the two σ-algebras are known
to coincide if V is a separable Fréchet space [8, Thm. A.3.7.].

We denote the rapidly decaying functions on Rn by S(Rd). The topological dual
of S(Rd) is the space of tempered distributions S ′(Rd). It is well-known that S ′(Rd)
is a locally convex topological vector space (even nuclear).

Throughout the paper, let (Ω,F ,P) stand for a complete probability space.
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Definition 1. A generalized random variable is a measurable function

X : (Ω,F) → (S ′(Rd),Bc(S
′(Rd))).

A generalized random variable X is called Gaussian, if for all φ1, . . . , φk ∈ S(Rd),
k ∈ N, the mapping

Ω ∋ ω 7→ (〈X(ω), φ1〉, . . . , 〈X(ω), φk〉) ∈ R
k

is a Gaussian random variable.

The probability law of a generalized Gaussian random variable X is determined
by the expectation EX and the covariance operator CX : S(Rd) → S ′(Rd) defined
by

(7) 〈ψ1, CXψ2〉 = E (〈X − EX,ψ1〉〈X − EX,ψ2〉) .

If X is zero-mean and satisfies CX = ι, where ι : S(Rd) → S ′(Rd) is the identity
operator ι(φ) = φ, then X is called Gaussian white noise.

Remark 1. The construction above is identical for generalized random variables
obtaining values in the space of generalized functions D′(Rd). This was also the
original formulation in [22].

It was proved by Kusuoka in [37] that for any ǫ > 0, white noise satisfies

(8) W ∈ H−d/2−ǫ(Rd; 〈x〉−d/2−ǫ) almost surely,

where the weight function is defined by 〈x〉 = (1 + |x|2)1/2. Moreover, we have
H−d/2−ǫ(Rd; 〈x〉−d/2−ǫ) ∈ Bc(S ′(Rd)) (see e.g. [19, Prop. 7]) and therefore we can con-
sider W as a random variable restricted to H−d/2−ǫ(Rd; 〈x〉−d/2−ǫ) assigned with the
cylindrical σ-algebra. Since the weighted Sobolev space is separable (and Fréchet),
the cylindrical σ-algebra coincides with the Borel σ-algebra and W is Borel mea-
surable in H−d/2−ǫ(Rd; 〈x〉−d/2−ǫ). Finally, since we have a continuous embedding

H−d/2−ǫ(Rd; 〈x〉−d/2−ǫ) ⊂ H
−d/2−ǫ
loc (Rd), we can identify W as a random variable

W : (Ω,F) → (H
−d/2−ǫ
loc (Rd),B(H−d/2−ǫ

loc (Rd))).

We denote by �
−1
χ the solution operator of (1), that is, �−1

χ (W ) = u where u
solves (1) and u is defined to be zero for negative times. Then

�
−1
χ : Hσ

loc(R
1+n) → Hσ+1

loc (R1+n), σ ∈ R,

is continuous, see e.g. [27, Thm. 23.2.4]. We denote by τ s the translation by s ∈ R

in time, that is,
τ sφ(t) = φ(t+ s), φ ∈ C∞

0 (R),

and extend this definition to D′(R) by

〈τ sw, φ〉D′×C∞

0
(R) = 〈w, τ−sφ〉D′×C∞

0
(R).
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The function
Φ : (0, T )× R → R, Φ(s, t) = τ sφ(t)

is smooth, and moreover Φ = 0 when t /∈ (0, T + R) where R > 0 is such that
supp(φ) ⊂ (0, R). Hence function

(9) s 7→ 〈w,Φ(s, ·)〉D′×C∞

0
(R) = 〈τ sw, φ〉D′×C∞

0
(R)

is smooth for all w ∈ D′(R) and φ ∈ C∞
0 (R), see [26, Thm. 2.1.3]. An analogous

argument shows that
s 7→ 〈τ sw ⊗ τ sw, φ〉D′×C∞

0
(R2+2n)

is smooth for all w ∈ D′(R1+n) and φ ∈ C∞
0 (R2+2n). Here ⊗ denotes the tensor

product of distributions, see e.g. [26, Thm. 5.1.1] for the definition.
For a fixed T > 0, we define the map

AT (w) =
1

T

∫ T

0

τ sw ⊗ τ sw ds, w ∈ Hσ
loc(R

1+n),

in the sense of the Pettis integral, that is,

〈AT (w), φ〉D′×C∞

0
(R2+2n) =

1

T

∫ T

0

〈τ sw ⊗ τ sw, φ〉D′×C∞

0
(R2+2n)ds.

The integral above defines AT (w) as a generalized function in D′(R2+2n) and,
moreover, yields a continuous map in the following sense:

Lemma 1. The map AT : H−σ
loc (R

1+n) → H−σ
loc (R

2+2n), σ ∈ R, is continuous.

Proof. We recall that the topology of H−σ
loc (R

1+n) is induced by the semi-norms

w 7→ ‖ψw‖H−σ(R1+n) , ψ ∈ C∞
0 (R1+n).

Let w0 ∈ H−σ
loc (R

1+n), ψ ∈ C∞
0 (R2+2n) and ǫ > 0. In order to show that AT is

continuous, it is enough to show [51, p. 64] that there are ψ̃ ∈ C∞
0 (R1+n) and δ > 0

such that∥∥∥ψ̃(w − w0)
∥∥∥
H−σ(R1+n)

< δ implies ‖ψ(AT (w)− AT (w0))‖H−σ(R2+2n) < ǫ.

We choose ψ̃ ∈ C∞
0 (R1+n) so that (ψ̃⊗ ψ̃)τ−s

1 τ−s
2 ψ = τ−s

1 τ−s
2 ψ for all s ∈ (0, T ). Here

τ−s
j , j = 1, 2, act in the different time variables. Let φ ∈ Hσ(R2+2n). It follows that

|〈ψ(AT (w)−AT (w0)), φ〉H−σ×Hσ(R2+2n)|

≤
1

T

∫ T

0

∥∥∥(ψ̃ ⊗ ψ̃)(w ⊗ w − w0 ⊗ w0)
∥∥∥
H−σ(R2+2n)

∥∥τ−s
1 τ−s

2 ψφ
∥∥
Hσ(R2+2n)

ds

≤ C
∥∥∥ψ̃(w − w0)⊗ ψ̃w + ψ̃w0 ⊗ ψ̃(w − w0)

∥∥∥
H−σ(R2+2n)

‖φ‖Hσ(R2+2n) .
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Finally, for small δ > 0
∥∥∥ψ̃(w − w0)⊗ ψ̃w + ψ̃w0 ⊗ ψ̃(w − w0)

∥∥∥
H−σ(R2+2n)

≤ δ
∥∥∥ψ̃w

∥∥∥
H−σ(R1+n)

+
∥∥∥ψ̃w0

∥∥∥
H−σ(R1+n)

δ ≤ Cδ.

�

By combining the continuity results above, we define CT (ω) = AT (�
−1
χ (W(ω))),

T > 0, and see that

CT : Ω → (Hσ
loc(R

2+2n),B(Hσ
loc(R

2+2n))), σ < −
1 + n

2
+ 1,

is a random variable.

Remark 2. Since the weighted Sobolev space H−d/2−ǫ(Rd; 〈x〉−d/2−ǫ) is separable,
the random variable W in (8) has the Radon property [8]. Notice carefully that the
Radon property is transferred through any continuous mappings and therefore also
CT is Radon.

3. The stochastic inverse problem and statistical stability

For any function f ∈ C∞
0 (R1+n), let us define vf = v as the solution of a time

reversed wave equation

∂2t v −∆gv = f in (−∞, S)× R
n,(10)

v|t=S = ∂tv|t=S = 0,

where S ∈ R is large enough so that f ∈ C∞
0 ((−∞, S) × Rn). In this section we

show the following theorem.

Theorem 3. Suppose that n ≥ 3, (Rn, g) is non-trapping and that g coincides with
the Euclidean metric outside a compact set. Let D ⊂ C∞

0 ((0,∞)×X ) be a countable
set. There exists Ω0 ⊂ Ω such that P(Ω0) = 0 and for all ω ∈ Ω\Ω0 and all f, h ∈ D,
it holds that

lim
T→∞

〈CT (ω), f ⊗ h〉D′×C∞

0
(R2+2n) = 〈κvf , κvh〉L2(R1+n).

In what follows, we write 〈·, ·〉 = 〈·, ·〉D′×C∞

0
(R2+2n).

Lemma 2. Let W ∈ D′(R1+n) and f ∈ C∞
0 (R1+n) be arbitrary sources in problems

(1) and (10), respectively. Moreover, let u and vf be the corresponding solutions.
Then we have the identity

〈u, f〉 = 〈W,χvf〉.
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Proof. Suppose that W ∈ C∞
0 (R1+n). The general case follows since test functions

are dense in distributions. Next, let v and S be as in (10). Using the shorthand
notation �g = ∂2t −∆g, we have that

〈u, f〉 = 〈u,�gv〉L2((0,S)×Rn) = 〈�gu, v〉L2((0,S)×Rn) = 〈W,χv〉.

This proves the claim. �

Let us recall the following result regarding the local energy decay which is due to
Vainberg [53, 54], see [55] for the formulation as below.

Theorem 4. Let u ∈ C∞((0,∞)× Rn) solve the problem

∂2t u−∆gu = 0, in (0,∞)× R
n,

u|t=0 = u0, ∂tu|t=0 = u1.

Suppose that u0 and u1 are compactly supported. Suppose that (Rn, g) is non-trapping
and that g coincides with the Euclidean metric outside a compact set. Then there is
t0 > 0 such that u satisfies local energy decay

∫

Rn

(
|∂tu(t, x)|

2 + |∇u(t, x)|2
)
χ(x)dx ≤ Cη(t)E0, t > t0,

for any compactly supported function χ ∈ C∞
0 (Rn). Here we have

E0 =

∫

Rn

|∇u0(x)|
2 + |u1(x)|

2dx, η(t) =

{
e−bt, n ≥ 3 odd,

t−2n, n ≥ 2 even,

and the constants C, b > 0 depend on g, χ and the supports of u0 and u1.

We need a decay estimate for the norm ‖u(t, ·)‖L2(K) where K ⊂ Rn is compact.

Lemma 3. Let (Rn, g) be as in Theorem 3 and let u be as in Theorem 4. Let K ⊂ R
n

be compact. Then there is t0 > 0 such that u satisfies

‖u(t, ·)‖L2(K) ≤ Cµ(t)E0, t > t0,

where

µ(t) =

{
e−bt, n ≥ 3 odd,

t−2n+1, n ≥ 4 even,
(11)

Proof. To simplify the notation, we assume without loss of generality that E0 = 1.
Let B(r) = {‖x‖ < r} be the Euclidean ball of radius r and write

ur(t) =
1

|B(r)|

∫

B(r)

u(t, x)dx,
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where |B(r)| is the volume of B(r). Theorem 4 implies |∂tur(t)| ≤ Cη(t) where the
constant C > 0 depends on r > 0 and g. Thus for t0 < t < s,

|ur(t)− ur(s)| ≤ C

∫ s

t

η(τ)dτ = C(µ(t)− µ(s)).(12)

We see that limt→∞ ur(t) exists, and denote the limit by ū(r).
The Poincaré-Wirtinger inequality

‖u(t, ·)− ur(t)‖L2(B(r)) ≤ C‖∇u(t, ·)‖L2(B(r)),

together with Theorem 4 and (12), implies that

‖u(t, ·)− ū(r)‖L2(B(r)) ≤ Cη(t) + |ur(t)− ū(r)|‖1‖L2(B(r)) ≤ Cµ(t).(13)

In particular, for 0 < r1 < r2, u(t, ·) → ū(rj), j = 1, 2, in L2(B(r1)). Thus ū(r) does
not depend on r > 0 and we denote it by ū.

It remains to show that ū = 0. As u(t) is compactly supported, by the finite speed
of propagation, the Gagliardo-Nirenberg-Sobolev inequality implies that

‖u(t, ·)‖Lp∗(Rn) ≤ C ‖∇u(t, ·)‖L2(Rn) ,

where p∗ is the Sobolev conjugate of 2, that is, 1/p∗ = 1/2− 1/n. Note that p∗ > 2.
We apply Hölder’s inequality with p = p∗/2 and 1/p+ 1/q = 1,

∫

B(r)

u2(t, ·)dx ≤
∥∥u2(t, ·)

∥∥
Lp(B(r))

‖1‖Lq(B(r)) .

The conservation of energy implies that ‖∇u(t, ·)‖L2(Rn), t > 0, is bounded. Thus

‖u(t, ·)‖2L2(B(r)) ≤ Crn/q with a constant C > 0 independent of r.
To get a contradiction, suppose now that ū 6= 0. Then there is ǫ > 0 such that

‖ū‖2L2(B(r)) = ū2 ‖1‖2L2(B(r)) = 2ǫrn.

By the convergence (13), for all r > 0 there is tr such that ‖u(tr, ·)‖
2
L2(B(r)) ≥ ǫrn.

Thus rn−n/q ≤ C, r > 0, which is a contradiction since q > 1. �

Lemma 4. Let (Rn, g) be as in Theorem 3. Suppose that K ⊂ Rn is compact and
f ∈ C∞

0 (Rn). Let u ∈ C∞((0,∞)× Rn) solve the problem

∂2t u−∆gu = f, in (0,∞)× R
n,

u|t=0 = ∂tu|t=0 = 0.

Then there exists t0 > 0 such that for all t > t0

‖u(t, ·)‖L2(K) ≤ Cµ(t)‖f‖L2(R1+n),

where µ(t) is defined in (11). Here the constants C and t0 depend on g, K and the
support of f .
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Proof. Let t1 > 0 be such that supp(f) ⊂ [0, t1] × Rn. By the finite speed of
wave propagation, it holds that supp(u|t=t1) and supp(∂tu|t=t1) are compact in Rn.
Consider the solution v of the initial value problem

∂2t v −∆gv = 0, in (t1,∞)× R
n,

v|t=t1 = u(t1), ∂tv|t=t1 = ∂tu|t=t1 .

By the uniqueness, it must hold that v = u. By Lemma 3 there exists t0 > t1 and
constant C independent of t > t0 such that

‖u(t, ·)‖L2(K) ≤ Cµ(t)E0, t > t0,

Where E0 =
∫
Rn |∇u(t1, ·)|

2 + |∂tu(t1, ·)|
2dx. As u is an energy class solution of a

wave equation with zero initial values, by the standard energy estimates for the wave
equation it holds that

E0 ≤ C‖f‖2L2(R1+n).

This proves the claim. �

Lemma 5. Let (Rn, g) be as in Theorem 3. Let S > 0 and f, h ∈ C∞
0 ((0, S)× Rn).

It follows that

lim
T→∞

E〈CT , f ⊗ h〉 = 〈κvf , κvh〉L2((−∞,S)×Rn).

Proof. Here we will use notation f s(t, x) = f(t + s, x) for a time sift s ∈ R. By the
Lemma 2 and standard energy estimates, we have

E〈us, f〉2 = E〈Ws, χsvf〉2 = 〈χsvf , χsvf〉 ≤ C ‖f‖2L2(R1+n) , s < T,

where the constant C depends on T . Therefore, we see that the mapping

(ω, s) → 〈us(ω), f〉〈us(ω), h〉

is integrable on Ω× (0, T ) with respect to P× dt. In consequence, together with (7)
the Fubini theorem yields

E〈CT , f ⊗ h〉 =
1

T

∫ T

0

E〈χs
W

s, vf〉〈χs
W

s, vh〉ds =
1

T

∫ T

0

〈χsvf , χsvh〉ds.

For the time-shifted characteristic function we have

χs(t, x) = χs
0(t)κ(x) = κ(x)− (1− χs

0(t))κ(x)

and supp(1 − χs
0) ⊂ (−∞, 1− s). By the local energy decay in Lemma 4, there is a

constant C > 0 depending on g and the supports of κ and f such that

∥∥vf
∥∥
L2((−∞,1−s)×supp(κ))

≤ C

(∫ 1−s

−∞

|t|−4n+2dt

)1/2

‖f‖L2(R1+n) ≤ Cs−2n+ 3

2 ‖f‖L2(R1+n) ,
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for large s. Hence we obtain

E〈CT , f ⊗ h〉 = 〈κvf , κvh〉+
1

T

∫ T

0

R(s)ds,

where

|R(s)| ≤ Cs−2n+ 3

2 ‖f‖L2(R1+n) ‖h‖L2(R1+n)

To conclude, one has

1

T

∫ T

0

|R(s)|ds ≤ CT−2n+ 3

2

and the claim follows. �

In order to show the statistical stability of the data, we need the following result
from ergodic theory (see e.g. [13, p. 94]):

Theorem 5. Let Z̃t, t ≥ 0, be a real-valued random variables such that EZ̃t = 0
and the covariance function (t, s) 7→ E(Z̃tZ̃s), t, s ≥ 0, is continuous. Assume that

for some constants c, ǫ > 0 the condition

|E(Z̃tZ̃t+r)| ≤ c(1 + r)−ǫ

holds for all t ≥ 0 and r ≥ 0. Then,

lim
T→∞

1

T

∫ T

0

Z̃t dt = 0 almost surely.

Lemma 6. Let (Rn, g) be as in Theorem 3. Let f, h ∈ C∞
0 ((0, S) × R

n) and use
notation

Zr = 〈ur, f〉〈ur, h〉

Then there is C > 0 depending on n, g, and the supports of κ, f and h such that

|E(Zr − EZr)(Zr+s − EZr+s)| ≤ C(1 + s)−n ‖f‖2L2(R1+n) ‖h‖
2
L2(R1+n) .

Proof. For convenience, let us write Xr = 〈ur, f〉 and Y r = 〈ur, h〉. By the Isserlis
formula [29] for Gaussian random variables we have

EZrZr+s = EXrY r
EXr+sY r+s + EXrXr+s

EY rY r+s + EXrY r+s
EY rXr+s

and, consequently,

(14) E(Zr − EZr)(Zr+s − EZr+s) = EXrXr+s
EY rY r+s + EXrY r+s

EY rXr+s.
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We write vfr (t, ·) = vf(t− r, ·). The local energy decay, Lemma 4, implies

|EXrY r+s| = |E〈χr
W

r, vf〉〈χr+s
W

r+s, vh〉|

= |E〈χW, vfr 〉〈χW, vhr+s〉|

= |〈χvfr , χv
h
r+s〉|

≤ C(1 + s)−2n+ 3

2 ‖f‖L2(R1+n) ‖h‖L2(R1+n) ,(15)

since vfr is small in supp(vhr+s) for s≫ 0. �

Proof of Theorem 3. For a fixed pair of sources (f, h) we set Z̃t = Zt − EZt, where
Zt = 〈ur, f〉〈ur, h〉. Continuity of the covariance function of Zt follows by considering
equality (14). Note that the correlations between Xr, Xr+s, Y r and Y r+s on the right
hand side of (14) are all represented by inner products between smooth functions in
the spirit of (15). Since these inner products are smooth functions with respect to r
and s, it follows that the covariance function in (14) is continuous. Next, we combine
Lemma 5 and Lemma 6 to validate Theorem 5. As a countable set of source pairs
(countable union of zero measurable sets is zero measurable, the claim follows for all
(f, h) ∈ D. �

We conclude this section with the following simple lemma to quantify the conver-
gence of the data. Notice that Lemma 7 is not needed for the previous proof.

Lemma 7. Let f, h ∈ C∞
0 ((0, S)×Rn). Then there is C > 0 depending on n, g, and

the supports of κ, f and h such that

Var〈CT , f ⊗ h〉 ≤ CT−2 ‖f‖2L2(R1+n) ‖h‖
2
L2(R1+n)

Proof. In the proof of Lemma 5 we showed that the Gaussian random variables Xr

and Y r have a bounded variance independent of r. Since any moment of a Gaussian
random variable is bounded by a constant depending on the variance, we see that
the mapping

(ω, r, s) → XrY rXsY s

is integrable over Ω× (0, T )× (0, T ) for any fixed T > 0 with respect to P× dr× ds.
Now the Fubini theorem yields that

E〈CT , f ⊗ h〉2 =
1

T 2

∫ T

0

∫ T

0

EXsY sXrY rdsdr and

(E〈CT , f ⊗ h〉)2 =
1

T 2

∫ T

0

∫ T

0

EXsY s
EXrY rdsdr.

It follows by equation (14) and estimate (15) that

Var(〈CT , f ⊗ h〉) ≤ C ‖f‖2L2(R1+n) ‖h‖
2
L2(R1+n)

1

T 2

∫ T

0

∫ T

0

(1 + |r − s|)−4n+3dsdr
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and the claim follows by estimating the the double integral in time by
∫ T

0

∫ T

0

(1 + |r − s|)−4n+3dsdr =
1

2

∫ 2T

0

∫ s′

2T−s′
(1 + r′)−4n+4dr′ds′

=
1

2(1− n)

∫ 2T

0

(
(1 + s′)1−n − (1 + 2T − s′)1−n

)
ds′

≤ C(1 + T 5−4n) ≤ C.

for any n ≥ 3. �

4. Reduction to the deterministic inverse problem

In this section we will show the following theorem.

Theorem 6. Let D ⊂ C∞
0 ((0,∞)× X ) be a dense set, and consider the data
〈
κvf , κvh

〉
L2(R1+n)

, f, h ∈ D,(16)

where functions vf(t, x) and vh(t, x) solve (10) with the sources f(t, x) and h(t, x),
respectively. Then the data (16) determine the local source-to-solution map ΛX as
defined in Theorem 2.

It follows from the assumptions in Theorem 1 that the Riemannian manifold
(Rn, g) is complete. Indeed, the metric tensor g coincides with the Euclidean metric
e outside a compact set, and therefore there exist uniform constants c, C > 0 such
that c‖ · ‖e ≤ ‖ · ‖g ≤ C‖ · ‖e, where ‖ · ‖e stands for the Euclidean and ‖ · ‖g for the
Riemannian norm. Thus Theorems 3, 6 and 2 imply Theorem 1.

We will prove two auxiliary lemmas before presenting a proof for Theorem 6. Let
d0 be the Euclidean distance in Rn, and denote by dg the Riemannian distance in
(Rn, g). For p ∈ R

n and r > 0, we denote the respective open balls by B0(p, r) and
Bg(p, r). We will use the shorthand notation �g = ∂2t −∆g.

Definition 2. For B ⊂ (0,∞) × Rn, we say that f ∈ C∞
0 (B) is non-radiating, if

supp(wf) ⊂ B for the solution w = wf of

∂2tw(t, x)−∆gw(t, x) = f(t, x) in (0,∞)× R
n,(17)

w(0, x)| = ∂tw(0, x) = 0, for all x ∈ N.

Furthermore, we define N (B) = {f ∈ C∞
0 (B) | f is non-radiating}.

Definition 3. We define the future of a set B ⊂ R1+n by

I+(B) =
{
(t, x) ∈ R

1+n | there exists (s, y) ∈ B such that t > s

and dg(x, y) < t− s} .
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Lemma 8. Let (t0, x0) ∈ R× X , ǫ > 0, and define B = (t0 − ǫ, t0)× B0(x0, ǫ), and
Q = (t0, t0 + 1)×X . Let f ∈ C∞

0 (B). For small ǫ > 0, f ∈ N (B) if and only if

(18) 〈κwf , κwh〉L2(R×N) = 0, h ∈ C∞
0 (Q).

Recall that κ = κ(x) is independent of time.

Proof. Let ǫ > 0 be small enough so that

(19) I+(B) ∩ ({t0} × R
n) ⊂ {t0} × X .

Clearly, f ∈ N (B) implies (18). Suppose now that (18) holds. Let φ ∈ C∞
0 (Q). By

choosing h = �g(κ
−2φ), we have wh = κ−2φ and further

〈wf , φ〉L2(R1+n) = 〈κwf , κwh〉L2(R1+n) = 0.

Thus wf = 0 in Q. By (19) and the finite speed of wave propagation, it holds that
wf = 0 in (t0,∞) × R

n. Using the finite speed of wave propagation once more, we
see that wf(t, x) = 0 when t ∈ R and dg(x,B0(x0, ǫ)) ≥ ǫ. The exterior domain
E := Rn \ B0(x0, ǫ) is connected and ∂2tw

f −∆gw
f = 0 in R × E. Thus wf = 0 in

R× E by unique continuation (Theorem 10 in the appendix). �

Lemma 9. Let x1, x2 ∈ X , and let ǫ > 0 be so small that B0(xj , ǫ) ⊂ X , j = 1, 2.
Let t0 > 0 and define C = (0,∞)×B0(x1, ǫ) and B = (t0 − ǫ, t0)×B0(x2, ǫ). Then

(20) I+(C) ∩ B = ∅,

if and only if

(21) 〈κwf , κwh〉L2(R×N) = 0, h ∈ C∞
0 (C), f ∈ N (B).

Proof. As f is non-radiating, the finite speed of wave propagation guarantees that
(20) implies (21). Suppose now that (20) does not hold. The set A := I+(C) ∩ B
is open and non-empty. Let φ ∈ C∞

0 (A) be non-zero and φ ≥ 0. Choose (s, x) ∈ A
such that φ(s, x) > 0. By approximate controllability (Theorem 11 in the appendix),
there exists a source h ∈ C∞

0 (C) such that

〈φ(s), wh(s)〉L2(Rn) > 0.

Since wh and φ are continuous, there is χ ∈ C∞
0 (R) such that 〈χφ, wh〉L2(R1+n) > 0.

We define the function f = �g(κ
−2χφ) ∈ C∞

0 (B). Then f ∈ N (B) and

〈κwf , κwh〉L2(R×N) = 〈χφ, wh〉L2(R1+n) > 0.

Therefore (21) is not valid either. �

Now we are ready to present the proof of Theorem 6.
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Proof of Theorem 6. The inner products (16) determine the same inner products for
all f, h ∈ C∞

0 ((0,∞)× X ) by density. By reversing the time, these again determine
the inner products

〈κwf , κwh〉L2(R1+n), f, h ∈ C∞
0 ((0,∞)×X ).(22)

Let x1, x2 ∈ X and ǫ, t0 > 0 be as in Lemma 9. Observe that

dg(B0(x1, ǫ), B0(x2, ǫ)) = sup{t0 > 0 | (21) is valid}(23)

and dg(x1, x2) = limǫ→0 dg(B0(x1, ǫ), B0(x2, ǫ)). For B be as in Lemma 8, we can
determine the set N (B), since the validity of (18) can be tested given the inner
products (22). Thus also the validity of (21) can be tested given (22), and the
distance function dg can be determined on X ×X . These distances determine (X , g)
up to an isometry (see e.g. the proof of Proposition 5 below).

Let h ∈ C∞
0 ((0,∞)×X ) and let us show that wh|(0,∞)×X can be determined from

the inner products (22). Let B be as in Lemma 8. As (0,∞) × X can be covered
with a countable number of sets of the form B, it is enough to show that wh|B can be
determined. We have already shown that N (B) can be determined given (22). Let
f ∈ N (B). Then wf is a solution of the following initial boundary value problem

(24)
∂2tw −∆gw = f in (0,∞)×X ,
w|R×∂X = 0,
w|t=0 = ∂tw|t=0 = 0.

As (X , g) is known, we can solve the above equation. Thus for every f ∈ N (B) we
are able to find wf . In particular, in the inner products

(25) 〈wf , κ2wh〉L2((0,∞)×X ), f ∈ N (B),

the left factor wf is known. Observe that for any φ ∈ C∞
0 (B) we have wf = φ where

f = �gφ ∈ N (B), and therefore the inclusion

{wf | f ∈ N (B)} ⊂ L2(B)(26)

is dense. Hence we find κ2wh|B from the inner products (25).
Let us conclude the proof by showing that function κ|X can be determined. We

have already shown that, when f ∈ N (B), both wf and κ2wh|B are determined by
(22). Thus κ|X can be determined by the density (26). �

5. The deterministic inverse problem

In this section we prove Theorem 2 in two steps: we show first that local the source-
to-solution map ΛX determines a certain family of distance functions, and then that
this family determines the geometry g. We work first under the assumption that
dg|X×X is known, and postpone the proof that ΛX determines dg|X×X in the end of
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the section. Recall that in the previous section we already determined dg|X×X , so
the step from ΛX to dg|X×X is needed only in the proof of Theorem 2.

5.1. Reconstruction of a family of distance functions from the local source-

to-solution mapping ΛX . Consider the following data:

(27) (X , g|X , dg|X×X , ΛX )

Here X and g|X stand for the assumption that the Riemannian structure of the open
manifold X is known. We show the following theorem.

Theorem 7. Let (N, g) be a complete Riemannian manifold. Then the local source-
to-solution data (27) determines the following family of distance functions

(28) RX (N) := {dg(x, ·)|X : x ∈ N} ⊂ C(X ).

This is to be proved in several steps. Let T, ǫ > 0. For each r > ǫ and x ∈ N we
define a set

Sǫ(x, r) := (T − (r − ǫ), T )× B(x, ǫ)

We denote for any measurable A ⊂ N the function space

L2(A) := {u ∈ L2(N) : supp(U) ⊂ A}.

Recall that for any f ∈ C∞
0 (R+ ×N) the solution wf(T, ·) ∈ L2(N).

Lemma 10. Let p, y, z ∈ N , ǫ > 0 and ℓp, ℓy, ℓy > ǫ. Then the following are
equivalent:

(i) We have

(29) B(p, ℓp) ⊂ B(y, ℓy) ∪ B(z, ℓz).

(ii) Suppose that

(30)
for all f ∈ C∞

0 (Sǫ(p, ℓp)) there exists (fj)
∞
j=1 ⊂ C∞

0 (Sǫ(y, ℓy) ∪ Sǫ(z, ℓz))

such that ‖wf(T, ·)− wfj(T, ·)‖L2(N)
j→∞
−→ 0.

Here wf , wfj is the solution of (17) with Rn replaced by N .

Proof. Suppose that (29) is valid. Let f ∈ C∞
0 (Sǫ(p, ℓp)), then by the finite speed of

wave propagation it holds that

suppwf(T ) ⊂ B(p, ℓp) ⊂ B(y, ℓy) ∪ B(z, ℓz)

Let χ(x) be the characteristic function of the ball B(y, ℓy) and set wf
y (T, x) :=

χ(x)wf(T, x) and wf
z (T, x) := wf(T, x) − wf

y (T, x). Since the boundary of a geo-

desic ball is a set of measure zero (see [43]), it holds that wf
y (T, ·) ∈ L2(B(y, ǫ))

and wf
z (T, ·) ∈ L2(B(z, ǫ)). By approximate controllability there exist sequences

(f j
y )

∞
j=1 ⊂ C∞

0 (Sǫ(y, ℓy)) and (f j
z )

∞
j=1 ⊂ C∞

0 (Sǫ(z, ℓz)) such that sequences (wfj
y (T, ·))∞j=1
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and (wfj
z (T, ·))∞j=1 converge to wf

y (T, ·) and w
f
z (T, ·), respectively, in L

2(N). There-
fore sequence

fj = f j
y + f j

z ∈ C∞
0 (Sǫ(y, ℓy) ∪ Sǫ(z, ℓz)), j = 1, 2, . . .

satisfies (30).
Suppose that (29) is not valid. Then the open set

U := B(p, ℓp) \ (B(y, ℓy) ∪ B(z, ℓz))

is not empty. By approximate controllabilty, we can choose f ∈ C∞
0 (Sǫ(p, ℓp)) such

that ‖wf(T, ·)‖L2(U) > 0. By finite speed of wave propagation it holds that

inf{‖wf(T, ·)− wh(T, ·)‖L2(N) : h ∈ C∞
0 (Sǫ(y, ℓy) ∪ Sǫ(z, ℓz))} > 0.

Therefore (30) is not true. �

For any point (p, ξ) ∈ TM, ‖ξ‖g = 1 we will denote the cut distance function

τ(p, ξ) = sup{t > 0 : dg(p, γp,ξ(t)) = t}.

Let α, β : (0, 1) → N be curves such that α(1) = β(0). Then we denote by αβ the
concatenated curve.

Lemma 11. Let (N, g) be a complete Riemannian manifold. Let x, y ∈ N and let
γy,ξ be a distance minimizing geodesic from y to x. Let s := dg(x, y). Let r > 0. If
τ(y, ξ) < s+ r, then

there exists ǫ > 0 such that B(x, r + ǫ) ⊂ B(y, s+ r).(31)

Also if (31) is valid then τ(y, ξ) ≤ s+ r.
Moreover, we have

τ(y, ξ) = inf{s+ r > 0 : r, s > 0, γy,ξ([0, s]) ⊂ X , (31) holds}.

Proof. Let r > 0 and denote p = γy,ξ(s+ r).
Suppose that (31) is valid. Let δ ∈ (0, ǫ) and consider a point

z = γy,ξ(s+ r + δ) ∈ B(x, r + ǫ).

By (31) dg(z, y) ≤ s + r. Thus τ(y, ξ) < s + r + δ. Since δ was arbitrary we have
τ(y, ξ) ≤ s + r.

Suppose that τ(y, ξ) < s + r. We show first that

(32) B(x, y) ⊂ B(y, s+ r).

By triangle inequality it suffices to show that ∂B(x, y) ⊂ B(y, s + r). Let z ∈
∂B(x, r). By triangle inequality dg(z, y) ≤ s+r. Let α be a minimizing geodesic from
x to z. Suppose first that α is not the geodesic continuation of segment γy,ξ([0, s]).
Since a curve γy,ξα has a length s + r and it is not smooth at x, it must hold
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that dg(z, y) < s + r. If α is the geodesic continuation of segment γy,ξ((0, s)), then
z = γy,ξ(s + r) = p. Since τ(y, ξ) < s + r, it holds that dg(y, p) < s + r. Thus (32)
follows. Therefore distg(∂B(x, r), ∂B(y, s+ r)) > 0 and (31) is valid.

�

Next we provide a method to find the cut distance function τ .

Proposition 1. For any y ∈ X and ξ ∈ SyN we can find τ(y, ξ) from the local
source-to-solution data (27).

Proof. Let y ∈ X and ξ ∈ SyN . Given the data (27) we can find the geodesic segment
γy,ξ([0, s]) for small values s > 0.

Let s > 0 be so small that γy,ξ([0, s]) ⊂ X . We denote x = γy,ξ(s). Let r > 0.
Consider the relation (31). By Lemma 11, relation (31) determines τ(y, ξ).

Choose ǫ > 0 so small that

B(y, ǫ) ∪B(x, ǫ) ⊂ X .

By taking z = y, ℓy = r + s = ℓz, ℓx = r + ǫ as in Lemma 10 we see that (31) is
equivalent with relation (30). Using the Blagovestchenskii identity (see (44) in the
appendix) we see that the source-to-solution data (27) determines (30). �

Lemma 12. It holds that

{γy,ξ(t) ∈ N : y ∈ X , ξ ∈ SyN, t < τ(y, ξ)} = N.

Proof. Let p ∈ N and choose any y ∈ X . Let γy,ξ be a distance minimizing geodesic
from y to p. We denote by r = dg(y, p). Then it holds that r ≤ τ(y, ξ). Choose
s ∈ (0, r) such that y1 := γy,ξ(s), γy,ξ([0, s]) ⊂ X . Let ξ1 := γ̇y,ξ(s). We will show
that r − s < τ(y1, ξ1) and this proves the claim of this lemma.

Suppose that τ(y1, ξ1) ≤ r − s. By the symmetry of cut points, it holds that
τ(p, η) ≤ r−s, where η := −γ̇y,ξ(r). Thus there exists t ∈ (0, s) such that for a point
z =: γy,ξ(t) it holds dg(p, z) < r − t. Then it also holds that

dg(y, p) ≤ dg(y, z) + dg(z, p) < t + r − t = r.

This is a contradiction and therefore r − s < τ(y1, ξ1). �

Notice that the assumption X is open is crucial in Lemma 12. For instance consider
the cylinder

{eiπt ∈ C : t ∈ [−1, 1]} × (−1, 1),

and let X = {1} × (−1, 1) and p = (−1, 0). Then it holds that every point in X is a
cut point of p.

Proposition 2. Let z, y ∈ X , ξ ∈ TyX , ‖η‖ = 1 and r̃ < τ(y, η). Then the local
source-to-solution data (27) determines dg(p, z), where p = γy,ξ(r̃).



20 IMAGING WITH AN WHITE NOISE SOURCE

Proof. Let s ∈ (0, r̃) be such that γy,ξ([0, s]) ⊂ X . We denote by x = γy,ξ(s). Let
r := r̃ − s.

Let R > 0. By Lemma 10 the inclusion

(33) B(x, r + ǫ) ⊂ B(y, r + s) ∪B(z, R)

is valid for all ǫ > 0 small enough if and only if the equation (30) is valid with
ℓx = r + ǫ, ℓy = r + s and ℓz = R. Using the Blagovestchenskii identity the local
source-to-solution data (27) determines (30). We will show that

dg(p, z) = R∗ := inf{R > 0 : Formula (33) is valid for R and some ǫ > 0}.

Suppose that (33) is valid. Since we assumed that r + s < τ(y, ξ), it holds that

p ∈ B(z, R). Thus dg(p, z) ≤ R∗.
Suppose that R ∈ (dg(p, z), R

∗). Then for any ǫ > 0 (33) is not valid. Choose for
every k ∈ N a point

pk ∈ B(x, r + 1/k) \B(y, r + s) ∪B(z, R).

By compactness of B(x, r + 1) we may assume that pk → p̃ ∈ ∂B(x, r) as k → ∞.
By similar argument as in the proof of Lemma 11 we deduce that p̃ = p. Since
p ∈ B(z, R) we get a contradiction with the choice of sequence (pk)

∞
k=1. Therefore

interval (dg(p, z), R
∗) = ∅ and R∗ = dg(p, z). �

Let p ∈ N and z ∈ X . By Lemma 12 it holds that there exists y ∈ X and an unit
vector ξ ∈ SyN such that p = γy,ξ(r̃), for some r̃ < τ(y, ξ). By Propositions 1 and 2
we have reconstructed RX (N). Therefore Theorem 7 is proved.

5.2. Reconstruction of the Riemannian manifold from the distance func-

tions. So far we have been able to find the following distance data

(34) (X , g|X , RX (N)),

where RX (N) is defined by (28). In this section we will show, how one can reconstruct
the topological, smooth and Riemannian structures from the distance data (34). The
rest of the paper is devoted to showing the following theorem:

Theorem 8. Let (N, g) be a complete smooth Riemannian manifold without a bound-
ary. Let U ⊂ N be open, bounded and have a smooth boundary. Suppose that the
topological and smooth structure of U are known, and g|U is also known. Then

R(N) := {dg(·, x)|U : x ∈ N} ⊂ C(U)

determines, topological, smooth and Riemannian structure of N up to isometry.
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We emphasize that in [31,35] similar results and methods of the proofs have been
considered in the case of manifold with a boundary.

Since U is compact, C(U) is a Banach space when equipped with L∞-norm. We
define the mapping

R : N → C(U), R(x) = rx = dg(x, ·)|U .

Our aim is to construct such a Riemannian structure in R(N) ⊂ C(U) that R : N →
R(N) is a Riemannian isometry.

Lemma 13. Mapping R is continuous and one-to-one.

Proof. Let x, y ∈ N . Then by the triangle inequality

‖R(x)− R(y)‖L∞(U) = sup
z∈U

|rx(z)− ry(z)| ≤ dg(x, y).

Thus R is continuous.
Suppose that x, y ∈ N satisfy rx = ry. If x ∈ U then ry(x) = 0 and thus x = y.

Therefore we can assume that x, y ∈ N \U . Since U is compact there exists a closest
point z ∈ U to x. Then z ∈ ∂U and it is also a closest point of U to y. Since ∂U
is smooth n− 1 dimensional submanifold of N , the distance minimizing unit speed
geodesic γ from z to x is orthogonal to ∂U . Since both x and y are points of the
exterior of U , it holds by the uniqueness of geodesics that

x = γ(rx(z)) = γ(ry(z)) = y.

This completes the proof. �

Next we will recall two topological results that allow us to prove that mapping
R : N → R(N) is a homeomorphism.

Definition 4. Let X be a topological space. We say that a sequence (xj)
∞
j=1 in X

escapes to infinity, if for every compact K ⊂ X, xj ∈ K for at most finitely many
j ∈ N.

For the proofs of the following two lemmas see for instance [56].

Lemma 14. Let (X, dX) and (Y, dY ) be metric spaces. Let f : X → Y be continuous.
Then f is proper if and only if for every sequence (xj)

∞
j=1 ⊂ X that escapes to infinity

the image sequence (f(xj))
∞
j=1 ⊂ Y escapes to infinity.

Lemma 15. Let (X, dX) and (Y, dY ) be metric spaces. Let f : X → Y be one-to-one,
continuous and proper. Then mapping the f is closed.

Proposition 3. Mapping R : N → R(N) is a homeomorphism.
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Proof. IfN is bounded, then N is compact, and the claim follows from basic topology.
Suppose that N is not bounded. Let (xj)

∞
j=1 ⊂ N be a sequence that escapes to

infinity. Let x0 ∈ U . We define Xj := B(x0, j) for every j ∈ N and Yj = R(Xj).
Then ∪∞

j=1Xj = N and thus

lim
j→∞

dg(x0, xj) = ∞.

We write R(x0) =: r0 and R(xj) =: rj . Then

d∞(r0, rj) ≥ |dg(x0, x0)− dg(x0, xj)| = dg(x0, xj).

Thus d∞(r0, rj) −→ ∞ as j −→ ∞. Since a compact set of a metric space is always
bounded, it holds that sequence (rj)

∞
j=1 escapes to infinity. Therefore R is a proper

mapping and by Lemma 15 it is closed. �

By Proposition 3, the topological structure of N has been found. Next we will
show, how to construct such a smooth atlases on N and R(N) that the mapping R
is a diffeomorphism.

Let z ∈ U and x ∈ N . Denote by ω(x) the cut locus of x. Recall that rx :=
dg(x, ·)|U is smooth at z if and only if z 6= x or z /∈ ω(x) (see Lemma 2.1.11 and
Theorem 2.1.14 of [32]). Using also the fact that z ∈ ω(x) if and only if x ∈ ω(z) we
can find the cut locus ω(z) from data (34). We write

I(z) ⊂ TzN,

for the largest, open star like subset of TzN such that the exponential mapping
expz : TzN → N restricted to I(z) is a diffeomorphism onto an open set

expz(I(z)) = N \ ω(z).

We define a mapping Φz by

Φz(r) := −r(z)∇gr|z ∈ I(z), r ∈ R(expz(I(z))).

By the following lemma it holds

(35) Φz ◦R|R(expz(I(z))) = exp−1
z ,

Lemma 16. Let x ∈ N . Then the following are equivalent:

η ∈ I(z) and expz(η) = x(36)

∇gdg(x, ·)|z ∈ TzN exists and η = −dg(x, z)∇gdg(x, ·)|z.(37)

Proof. Suppose that formula (36) is valid. Since exponential mapping expz |I(z) is a
diffeomorphism, the point z is not in the cut locus of x and therefore the function
dg(x, ·) is smooth at z. Thus ∇gdg(x, ·)|z ∈ TzN exists and η = −dg(x, z)∇gdg(x, ·)|z.
Therefore (37) is also valid.
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Suppose that formula (37) is valid. Then it holds that dg(x, ·) is smooth at z.
Thus x is not in the cut locus of z and therefore ξ := −∇gdg(x, ·)|z is the initial
velocity of the unique distance minimizing geodesic from z to x. We have

expz(η) = γz,ξ(dg(x, z)) = x ∈ expz(I(z)).

�

We define the smooth structure on R(N) by using mappings Φz, z ∈ U . By
Lemma 12 we have ∪z∈Udom(Φz) = N, and by (35) each mapping Φz is a topological

coordinate mapping. Let z, w ∈ U . Then the composition

Φz ◦ Φ
−1
w = (Φz ◦R) ◦ (Φw ◦R)−1 = exp−1

z ◦ expw

is well defined and smooth in the set

I(w)
⋂

(exp−1
w ◦ expz)(I(z)) ⊂ TwN.

Moreover, R is clearly smooth when the smooth structure of R(N) is defined in this
way. Therefore we have proved the following proposition.

Proposition 4. The mapping R : N → R(N) is a diffeomorphism.

We define a metric tensor g̃ := (R−1)∗g on R(N), that is, g̃ is the push forward
of g. Then (R(N), g̃) and (N, g) are Riemannian isometric. In the next proposition,
we provide a method to construct representation of g̃ in local coordinates of R(N).

Proposition 5. Let g̃ := (R−1)∗g. We can construct the metric tensor g̃ on R(N)
from the distance data (34).

Proof. Let r0 ∈ R(N). We write x0 := R−1(r0). By Lemma 12 it holds that there
exists a point z ∈ U that is not in the cut locus of x0. Let U ′ ⊂ U be an open
neighborhood of z such that dg(·, y) is smooth at x0 for any y ∈ U ′.

It holds that

∇gdg(·, y)|x0
= −γ̇y,x0

(dg(y, x0)) ∈ Sx0
N,

where γy,x0
is the unique unit speed distance minimizing geodesic from y to x0 Since

U ′ is open and expx0
is continuous the set exp−1

x0
U ′ ⊂ Tx0

N is open. Therefore the
set

V := {∇gdg(·, y)|x0
∈ Sx0

N : y ∈ U ′}

is open in Sx0
N . Let (x, ξ) ∈ TN . We will use the notation

ξ♭ := 〈ξ, ·〉g ∈ T ∗
xN.

Since R is a diffeomorphism it holds that

W∗ := R∗V
∗ = {(∇dg(R

−1(·), y)|r0)
♭ ∈ S∗

r0
R(N) : y ∈ U ′}
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is open. For any point y ∈ U ′ we define an evaluation function Ey : R(N) → R with
the formula Ey(r) = r(y). Notice that

dEy|r0 = (∇dg(R
−1(·), y)|r0)

♭,

and therefore

W∗ = {dEy|r0 ∈ S∗
r0R(N) : y ∈ U ′}.

As we know the smooth structure of R(N) we can find the set W∗. The last step
is to show that set W∗ determines g̃(r0).

Let

R+W
∗ := {sv ∈ T ∗

r0
R(N) : v ∈ W∗, s > 0}

be the open cone generated by W∗. Let {Ej}
n
j=1 be a local coordinate system at r0.

For any s > 0 and v ∈ W∗ it holds in coordinates {Ej}nj=1 that

F (sv) := s2g̃ij(r0)vivj = s2.

We know the function F : R+W∗ → R, and R+W∗ is open, we get

g̃ij(r0) =
∂

∂Ei

∂

∂Ej
F.

�

By Propositions 3, 4 and 5 we can reconstruct (R(N), g̃), more over (N, g) and
(R(N), g̃) are isometric as Riemannian manifolds. Thus we have proved Theorem 8.

In order to prove Theorem 2 we still need the next small lemma.

Lemma 17. Let (N, g) and X be as in the formulation of Theorem 2. Then data
(X ,ΛX ) determines the distance function dg on X × X .

Proof. Let x, y ∈ X . Since X is a smooth manifold, we may choose an auxiliary
metric d0 on X that gives the same topology as g. Let ǫ > 0 and consider the metric
ball Bd0(x, ǫ). We write Bǫ := (0,∞)×Bd0(x, ǫ) and

tǫ = inf{t > 0 : there is f ∈ C∞
0 (Bǫ) such that supp(ΛXf)(t, ·) ∩ Bd0(y, ǫ) 6= ∅}.

By the finite speed of wave propagation and the approximate controllability the
equality

tǫ = distg(Bd0(x, ǫ), Bd0(y, ǫ))

holds. Thus the following limit is valid

dg(x, y) = lim
ǫ→0

tǫ.

�

Now we are finally ready to give a proof for Theorem 2.
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Proof of Theorem 2. By making Xi smaller, if needed, we may assume without loss
of generality that Xi is precompact with smooth boundary and that φ : X 1 → X 2

(see (4)) is a diffeomorphism. Denote R(Ni) = {di(x, ·)|X i
: x ∈ Ni} and consider a

mapping

Ri : Ni → R(Ni), i = 1, 2, Ri(x) = di(x, ·)|Xi
.

By Lemma 17, Proposition 5 and equation (5) it holds that

(38) d1(·, ·)|X1×X1
= d2(φ(·), φ(·))|X1×X1

and g1|X1
= φ∗g2|X2

.

Therefore we may assume that φ : X 1 → X 2 is a Riemannian isometry. By Proposi-
tion 11 the following relation

τ1(y, ξ) = τ2(φ(y), φ(ξ)), y ∈ X1, ξ ∈ SyN1

is valid. Therefore by Proposition 2 it holds that

R2(N2) = Φ(R1(N1)),

where

Φ : C(X 1) → C(X 2), Φ(f) = f ◦ φ−1.

Moreover by Theorems 7 and 8 the mappings Ri : Ni → Ri(Ni) are Riemannian
isometries.

With out loss of generality we assume that X1 ⊂ V , where (V, α) is a coordinate
chart for N1. Write α ◦ φ =: α̃, W = α(V ) and define Riemannian isometries

α∗ : R(N1) → α∗(R1(N1)) ⊂ C(W ), α∗(r)(x) = r(α−1(x))

and

α̃∗ : R(N2) → α̃∗(R2(N2)) ⊂ C(W ), α̃∗(r)(y) = r(α̃−1(y)).

Thus we have proved that mapping

N1
R1−→ R1(N1)

α∗

−→ α∗(R1(N1))
id

−→ α̃∗(R2(N2))
(α̃∗)−1

−→ R2(N2)
R−1

2−→ N2,

is a Riemannian isometry. This ends the proof.
�

Lastly we will give a proof for Corollary 2.

Proof of Corollary 2. Since N is a compact manifold without a boundary we have

0 = λ1 < λ2 ≤ λ3 . . . .

Let f ∈ C∞
0 ((0,∞) × X ) and w = wf be the solution of the initial value problem

(3). For each j ∈ N we define the jth Fourier coefficient

Ij(t) = 〈w(t, ·), ϕj〉L2(N).
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Since w is smooth, also Ij is smooth. By Greens formula and the initial conditions
of (3) it holds that

(39)

{
d2

dt2
Ij(t)− λjIj(t) =

∫
X
f(t, x)ϕj(x)dVg(x)

Ij(0) =
d
dt
Ij(0) = 0.

Solve the ordinary differential equation (39) to get

Ij(t) =

∫ t

0

∫

X

sj(t− s)f(s, x)ϕj(x)dVg(x)ds, j ≥ 1

where

s1(t) = t and sj(t) =
sin(

√
λj(t))√
λj

, for j > 1.

Notice that apriori the volume form dVg|X is not given. However without a loss of
generality we may assume that X is contained in a coordinate patch of N . Thus we
can assume, that we are given some volume form ω on X . Therefore there exists a
unique smooth function η : X → (0,∞) such that

ηdVg|X = ω.

We write

Ĩj(t) =

∫ t

0

∫

X

sj(t− s)f(t, x)ϕj(x)ω(x)ds.

By direct computations and initial values of (39) we have

(40)
∞∑

j=1

Ĩj(t)ϕj(x) = wηf(t, x).

Thus for every f ∈ C∞
0 ((0,∞)×X ) the Fourier coefficients Ĩj(t) can be recovered

from the Spectral data (6). We conclude that we have recovered the mapping

∞∑

j=1

Ĩj(t)ϕj(x)|x∈X = wηf (t, x)|x∈X = (ΛXMη)f.

HereMη is the multiplier operatorMηf(t, x) = η(x)f(t, x). LetR(h(t, x)) = h(−t, x).
Then

(ΛXMη)
∗ =M∗

ηΛ
∗
X =MηRΛXR = R(MηΛX )R

(see Lemma 18 in the appendix), so that we have recovered the operator MηΛX .
Notice that the unknown weight η can be found in the same way as the function κ
in the proof of Theorem 6. Therefore the claim follows from Theorem 2.

�
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6. Appendix

In the appendix we recall some well known results related to the propagation
of waves on Riemannian manifold. We will use the assumptions and notations of
Theorem 2. Let T > 0, p ∈ N and a > 1. Let Cp,T be the cone

Cp,T := {(t, q) ∈ R×N : 0 ≤ t ≤ T, dN(p, q) < T − t}.

Theorem 9 (Finite speed of propagation). Let f ∈ L2(R × N). Suppose that u
solves 




(∂2t −∆g)u = f, in (0,∞)×N
f |Cp,T

= 0
u|B(p,T )×{t=0} = ∂tu|B(p,T )×{t=0} = 0,

Then
u|Cp,T

= 0.

Proof. See [50]. �

Consider an open double cone created by a cylindrical set (0, 2T )× X

C(T,X ) = {(t, x) ∈ (0, 2T )×N : distg(x,X ) < min{t, 2T − t}}

We write
M(T,X ) = {x ∈ N : distg(x,X ) ≤ T},

for the domain of influence of set X .

Theorem 10 (Tataru’s unique continuation). Let X ⊂ N be open and bounded. Let
u ∈ C∞

0 (R×N). Suppose that (∂2t−∆g)u = 0 in (0, 2T )×M(T,X ) and u|(0,2T )×X ≡ 0.
Then u|C(T,X ) ≡ 0.

Proof. See [31] for a local result and [49] for the global result.
�

We use a short hand notation

FX ,T := {f ∈ C∞
0 (R×N) : supp f ⊂ (0, T )×X}.

The Tataru’s unique continuation result yields immediately the following controlla-
bility results.
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Theorem 11 (Approximate controllability). Let X ⊂ N be open and bounded. For
any T > 0 set

WT := {wf(T ) : f ∈ FX ,T}

is dense in Hilbert space L2(M(T,X )).

Proof. By the finite speed of wave propagationWT ⊂ L2(M(T,X )). Since L2(M(T,X ))
is a Hilbert space, it suffices to prove thatW⊥

T = {0}. Suppose that φ ∈ L2(M(T,X ))
is such that (wf(T ), φ)L2(N) = 0 for all f ∈ FX ,T . Let u ∈ C∞(R×N) solve

(41)

{
(∂2t −∆g)u = 0, in (0, T )×N
u|t=T = 0, ∂tu|t=T = φ.

Let f ∈ FB,T . By the finite speed of wave propagation, there exists a compact set of
N that contains the suppwf(t) for each t ∈ (0, T ). We use the Green identities to
see that

〈f, u〉L2((0,T )×N) = 〈�gw
f , u〉L2((0,T )×N) − 〈wf ,�gu〉L2((0,T )×N) = 0.

Since FX ,T is dense in L2((0, T )× X ), it holds that u ≡ 0 in (0, T ]× X .
Let U solve

(42)

{
(∂2t −∆g)U = 0, in (0, 2T )×N
U |t=0 = u(0), ∂tU |t=0 = ∂tu|t=0.

By equations (41) and (42) it holds U |[0,T ]×N = u. More over the function ũ(t, x) =
−u(2T − t, x) solves the wave equation

(43)

{
(∂2t −∆g)ũ = 0, in (T, 2T )×N
ũ|t=T = 0, ∂tũ|t=T = φ,

since ũ(T, x) = −u(2T − T, x) = 0 and ∂tũ|t=T = ∂tu(2T − T ) = φ. Therefore in
particular U |(0,2T )×X ≡ 0.

By unique continuation (Theorem 10), it holds that U |C(T,X ) ≡ 0. SinceM(T,X )×
{T} ⊂ C(T,X ) we have

φ|M(T,X ) = ∂tU |t=T |M(T,X ) = 0.

�

Next our aim is to prove the Blagovestchenskii identity on a complete Riemannian
manifold (N, g). This identity was originally introduced in [6, 7] for a Riemannian
manifold with boundary.

Theorem 12. Let (N, g) be a complete Riemannian manifold. Let T > 0, X ⊂ N
be open and bounded. Let f, h ∈ FX ,2T , then

(44) 〈wf(T, ·), wh(T, ·)〉L2(N) = 〈f, (JΛX − Λ∗
XJ)h〉L2((0,T )×N)
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where the operator J : L2(0, 2T ) → L2(0, T ) is defined as

Jφ(t) =
1

2

∫ 2T−t

t

φ(s) ds.

Proof. Let f, h ∈ FB,2T and consider the mapping W : [0, 2T ]× [0, 2T ] → R,

W (t, s) = 〈wf(t), wh(s)〉L2(N).

Then using Greens formula

(∂2t − ∂2s )W (t, s) = (∂2t − ∂2s )〈w
f(t), wh(s)〉L2(N)

= 〈f(t),ΛB,2Th(s)〉L2(N) − 〈ΛB,2Tf(t), h(s)〉L2(N) := F (t, s).

Notice that there is no boundary terms due finite speed of wave propagation. The
function (t, s) 7→ F (t, s) can be computed, if the local source-to-solution mapping
ΛX is given. By (3) it holds that

W (0, s) = 0 = ∂tW (t, s)|t=0.

Thus w is the solution of the following (1 + 1)-dimensional initial value problem:

(45)

{
(∂2t − ∂2s )W = F, in (0, 2T )× R

W |t=0 = ∂tW |t=0 = 0.

Recall that the following formula

(46) W (t, s) =
1

2

∫ t

0

∫ s+τ

s−τ

F (t− τ, y) dydτ, s ∈ R, t ∈ [0, 2T ],

solves (45) (see e.q. [18]). By the change of variables T − s = τ , we conclude

W (T, T ) =
1

2

∫ T

0

∫ 2T−τ

τ

F (τ, y) dydτ.

= 〈f, JΛXh〉L2(X×(0,T )) − 〈ΛXf, Jh〉L2(X×(0,T )).

�

Lemma 18. The adjoint mapping of ΛX in L2((0, T )×X ) is RΛXR, where

Rh(t, x) = h(T − t, x).

Proof. Let f, h ∈ FX ,T and consider the wave equations

(47)

{
(∂2t −∆g)w = f, in (0, T )×N
w|t=0 = ∂tw|t=0 = 0

and

{
(∂2t −∆g)u = h, in (0, T )×N
u|t=T = ∂tu|t=T = 0.

We start with observing that

〈f, u〉L2((0,T )×N) − 〈w, h〉L2((0,T )×N) = 0.
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This holds due the computations we have done in the proof of Theorem 11. Therefore

〈f, u〉L2((0,T )×X ) − 〈ΛXf, h〉L2((0,T )×X )) = 0 and Λ∗
Xh = u|(0,T )×X .

Replace f = Rh. Then

�Ru = �u(T − ·, ·) = h(T − ·, ·) = Rh and Ru(0, ·) = ∂tRu(0, ·) = 0.

By (47) it holds that

Ru|(0,T )×X = w|(0,T )×X = ΛXf = ΛXRh.

Since R ◦R = idL2((0,T )×X ) we get u|(0,T )×X = RΛXRh. �
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