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Abstract

Soft independent modelling of class analogy (SIMCA) is a widely used subspace-

based classification technique for spectral data analysis. The principal component

(PC) subspace is built for each class separately through principal components anal-

ysis (PCA). The squared orthogonal distance (OD2) between the test sample and the

class subspace of each class, and the squared score distance (SD2) between the pro-

jection of the test sample to the class subspace and the centre of the class subspace,

are usually used in the classification rule of SIMCA to classify the test sample.

Although it is commonly used to classify high-dimensional spectral data,

SIMCA suffers from several drawbacks and some misleading calculations in lit-

erature. First, modelling classes separately makes the discriminative between-class

information neglected. Second, the literature of SIMCA fail to explore the poten-

tial benefit of using geometric convex class models, whose superior classification

performance has been demonstrated in face recognition. Third, based on our ex-

periments on several real datasets, calculating OD2 using the formulae in a highly-

cited SIMCA paper (De Maesschalck et al., 1999) results in worse classification

performance than using those in the original SIMCA paper (Wold, 1976) for some

high-dimensional data and provides misleading classification results. Fourth, the

distance metrics used in the classification rule of SIMCA are predetermined, which

are not adapted to different data.

Hence the research objectives of my PhD work are to reinforce SIMCA from

the following four perspectives: O1) to make its feature space more discriminative;

O2) to use geometric convex models as class models in SIMCA for spectral data

classification and to study the classification mechanism of classification using dif-
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ferent class models; O3) to investigate the equality and inequality of the calculations

of OD2 in De Maesschalck et al. (1999) and Wold (1976) for low-dimensional and

high-dimensional scenarios; and O4) to make its distance metric adaptively learned

from data. In this thesis, we present four contributions to achieve the above four

objectives, respectively:

First, to achieve O1), we propose to first project the original data to a more

discriminative subspace before applying SIMCA. To build such discriminative sub-

space, we propose the discriminatively ordered subspace (DOS) method, which

selects the eigenvectors of the generating matrix with high discriminative ability

between classes to span DOS. A paper of this work, “Building a discriminatively

ordered subspace on the generating matrix to classify high-dimensional spectral

data”, has been recently published by the journal of “Information Sciences”.

Second, to achieve O2), we use the geometric convex models, convex hull and

convex cone, as class models in SIMCA to classify spectral data. We study the dual

of classification methods using three class models: the PC subspace, convex hull

and convex cone, to investigate their classification mechanism. We provide theo-

retical results of the dual analysis, establish a separating hyperplane classification

(SHC) framework and provide a new data exploration scheme to analyse the proper-

ties of a dataset and why such properties make one or more of the methods suitable

for the data.

Third, to achieve O3), we compare the calculations of OD2 in De Maesschalck

et al. (1999) and Wold (1976). We show that the corresponding formulae in the two

papers are equivalent, only when the training data of one class have more samples

than features. When the training data of one class have more features than samples

(i.e. high-dimensional), the formulae in De Maesschalck et al. (1999) are not precise

and affect the classification results. Hence we suggest to use the formulae in Wold

(1976) to calculate OD2, to get correct classification results of SIMCA for high-

dimensional data.

Fourth, to achieve O4), we learn the distance metrics in SIMCA based on the

derivation of a general formulation of the classification rules used in literature. We
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define the general formulation as the distance metric from a sample to a class sub-

space. We propose the method of learning distance to subspace to learn this distance

metric by making the samples to be closer to their correct class subspaces while be

farther away from their wrong class subspaces.

Lastly, at the end of this thesis we append two pieces of work on hyperspectral

image analysis. First, the joint paper with Mr Mingzhi Dong and Dr Jing-Hao Xue,

“Spectral Nonlocal Restoration of Hyperspectral Images with Low-Rank Property”,

has been published by the IEEE Journal of Selected Topics in Applied Earth Ob-

servations and Remote Sensing. Second, the joint paper with Dr Fei Zhou and Dr

Jing-Hao Xue, “MvSSIM: A Quality Assessment Index for Hyperspectral Images”,

has been in revision for Neurocomputing. As these two papers do not focus on the

research objectives of this thesis, they are appended as some additional work during

my PhD study.



Acknowledgements

I would like to express my deepest and sincere gratitude to my supervisor Dr Jing-

Hao Xue, for all his support and encouragement during my PhD study. Without

his guidance this PhD thesis would not have been possible. I feel very lucky to

have worked with him in the past three and a half years. I learned a tremendous

amount from him, not only from his knowledge and expertise in statistical machine

learning, but also from his attention to detail and his way of working with others.

I would also like to thank my second supervisor Professor Tom Fearn. His topic

on “classification of NIR spectral data” for my MSc project first brought me into

the area of statistical machine learning. My sincere thanks also goes to Professor

Kazuhiro Fukui, for his insightful comments on my work with him and his warm

host of my stay in Japan. I also greatly appreciate the helpful discussions with my

other collaborators, Ziyu Wang, Mingzhi Dong and Dr Fei Zhou.

I gratefully acknowledge the funding sources that supported my PhD study. I

was funded by the Teaching Assistant Scholarship from the Department of Statis-

tical Science and the Dean’s prize from the Faculty of Mathematical & Physical

Sciences, UCL.

I thank my friends and flatmates, Ying Zhang, Xiaoke Liu, Xiaoyu Liu and

Ken Liang, for the happy time we have lived together. Special thanks to Ran Wang

for all her support and the great time we have shared.

Lastly, I would like to thank my dearest parents for all their love, understand-

ing, support and encouragement throughout my life.



Contents

1 Introduction 15

1.1 SIMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Limitations of SIMCA . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Our contributions to SIMCA . . . . . . . . . . . . . . . . . . . . . 18

1.4 The structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 20

I Contributions to the class models used in SIMCA 22

2 Building a discriminatively ordered subspace on the generating matrix 24

2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 SIMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Generalised difference subspace . . . . . . . . . . . . . . . 29

2.1.3 Discriminatively ordered subspace . . . . . . . . . . . . . . 33

2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Experiment settings . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Dual of nearest-class-model methods: a separating hyperplane classifi-

cation framework 49

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



Contents 8

3.1.1 PC Subspace representation: nearest subspace method (NSM) 55

3.1.2 Geometric convex model representation . . . . . . . . . . . 56

3.2 Dual analysis of the minimum distance problems . . . . . . . . . . 59

3.2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Dual analysis for NSM, NCHM and NCCM . . . . . . . . . 63

3.2.4 A separating hyperplane classification (SHC) framework . . 68

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Experiment settings . . . . . . . . . . . . . . . . . . . . . . 71

3.3.3 Classification Results . . . . . . . . . . . . . . . . . . . . . 72

3.3.4 Analysis of classification results . . . . . . . . . . . . . . . 73

3.3.5 A scheme to analyse the data distributions . . . . . . . . . . 77

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

II Contributions to the distances used in SIMCA 87

4 On the orthogonal distance of SIMCA for high-dimensional data 89

4.1 The calculations of SIMCA in De Maesschalck et al. (1999) . . . . 91

4.1.1 The training phase of class k . . . . . . . . . . . . . . . . . 91

4.1.2 The test phase for class k . . . . . . . . . . . . . . . . . . . 92

4.2 The calculation of vk,l and vk,new in De Maesschalck et al. (1999) . . 93

4.3 Discussion of vk,l and vk,new . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 vk,l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2 vk,new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Classification rule . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2 Validation criterion . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.4 Experiment settings . . . . . . . . . . . . . . . . . . . . . . 103

4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



Contents 9

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 Learning distance to subspace 108

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 SIMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.2 A general formulation for the classification rules in SIMCA 114

5.1.3 Learning distance to subspace . . . . . . . . . . . . . . . . 116

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . 121

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusions and future work 127

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendices: Contributions to hyperpsectral image restoration and quality

assessment 130

A Spectral Nonlocal Restoration of Hyperspectral Images With Low-

Rank Property 130

B MvSSIM: A Quality Assessment Index for Hyperspectral Images 137

Bibliography 162



List of Figures

1.1 Spectra of meat samples from two classes: chicken and turkey. . . . 15

1.2 The structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . 21

2.1 (a) Two classes of samples are mixed together in the original 3-

dimensional feature space. (b) The same groups of samples can

be well separated when they are projected to a discriminative 2-

dimensional subspace. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 An illustrative example of the difference between a class subspace

(of infinite scale) and a class (of finite scale). . . . . . . . . . . . . 26

2.3 Classification accuracies of SIMCA and the GDS-preprocessed

SIMCA on three real spectral datasets: meat, Phenyl and fat. In

each panel, the left-hand boxplot is for SIMCA, and the right-hand

boxplot is for the GDS-preprocessed SIMCA. . . . . . . . . . . . . 27

2.4 (a) Projections of the test samples onto two directions of the inter-

section. (b) Projections of the test samples onto two directions of

the DS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 The spectra of the two classes in the meat dataset. . . . . . . . . . . 37

2.6 The spectra of the two classes in the Phenyl dataset. . . . . . . . . . 38

2.7 The spectra of two classes in the fat content dataset. . . . . . . . . . 39

2.8 For the meat dataset: (a) classification accuracies of SIMCA, LDA,

GDS and DOS; (b) discriminative abilities of the eigenvectors of

the generating matrix GGGD. . . . . . . . . . . . . . . . . . . . . . . . 40



List of Figures 11

2.9 For the Phenyl dataset: (a) classification accuracies of SIMCA,

LDA, GDS and DOS; (b) discriminative abilities of the eigenvec-

tors of the generating matrix GGGD. . . . . . . . . . . . . . . . . . . . 41

2.10 For the fat dataset: (a) classification accuracies of SIMCA, LDA,

GDS and DOS; (b) discriminative abilities of the eigenvectors of

the generating matrix GGGD. . . . . . . . . . . . . . . . . . . . . . . . 42

2.11 For the eigenvectors of GGGD of the fat dataset: their distances (||eee1||22
and ||eee2||22) to the two class subspaces, and their discriminative abil-

ities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 For the eigenvectors of GGGD of the meat dataset: their distances

(||eee1||22 and ||eee2||22) to the two class subspaces, and their discrimi-

native abilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 For the eigenvectors of GGGD of the Phenyl dataset: their distances

(||eee1||22 and ||eee2||22) to the two class subspaces, and their discrimina-

tive abilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.14 Effect of the dimension of Ds. . . . . . . . . . . . . . . . . . . . . 47

3.1 An illustrative example of NSM in a 2D space. . . . . . . . . . . . 56

3.2 An illustrative example of NCHM in a 2D space. . . . . . . . . . . 58

3.3 An illustrative example of NCCM in a 2D space. . . . . . . . . . . 60

3.4 An illustrative example Theorem 3.2.3. . . . . . . . . . . . . . . . . 64

3.5 An illustrative example of Theorem 3.2.4. . . . . . . . . . . . . . . 65

3.6 An illustrative example of Theorem 3.2.5. . . . . . . . . . . . . . . 67

3.7 The separating hyperplane classification framework. . . . . . . . . . 68

3.8 The classification accuracies of NSM, NCHM and NCCM on the

three datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 The discriminative ability of the normal vectors of NSM, NCHM

and NCCM for the fat dataset. (a) and (b): the cosine similarities

between the normal vectors and the PCs for the “less than 20%”

subspace and the “more than 20%” subspace, respectively. (c) and

(d): the discriminative ability of the PCs of the two subspaces. . . . 74



List of Figures 12

3.10 The discriminative ability of the normal vectors of NSM, NCHM

and NCCM for the meat dataset. (a) and (b): the cosine similarities

between the normal vectors and the PCs for the chicken subspace

and the turkey subspace, respectively. (c) and (d): the discriminate

ability of the PCs of the two subspaces. . . . . . . . . . . . . . . . 76

3.11 The discriminative ability of the normal vectors of NSM, NCHM

and NCCM for the Phenyl dataset. (a) and (b): the cosine similar-

ities between the normal vectors and the PCs for the “with Phenyl

structure” subspace and the “without Phenyl structure” subspace,

respectively. (c) and (d): the discriminate ability of the PCs of the

two subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.12 Cosine similarities between the CR samples and the PCs for the fat

dataset. (a) and (b): for NCCM on the “less than 20%” class and

the “more than 20%” class, respectively. (c) and (d): for NCHM on

the two classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.13 PC plots of the fat dataset. . . . . . . . . . . . . . . . . . . . . . . 81

3.14 An illustration of the distribution of the fat data in a 2D space. The

training samples of the two classes are illustrated by blue and red

ellipses; the first pair of PCs are PC1
1 and PC2

1 for the two classes

and the first pair of CR samples are CR1
1 and CR2

1. . . . . . . . . . 82

3.15 Cosine similarities between the CR samples and the PCs for the

meat dataset. (a) and (b): for NCCM on the chicken class and the

turkey class, respectively. (c) and (d): for NCHM on the two classes. 83

3.16 PC plots of the meat dataset. . . . . . . . . . . . . . . . . . . . . . 83

3.17 An illustration of the distribution of the meat data in a 2D space.

The black dashed line indicates the same directions of the first PCs

of the two classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



List of Figures 13

3.18 Cosine similarities between the CR samples and the PCs for the

Phenyl dataset. (a) and (b): for NCCM on the “with Phenyl struc-

ture” class and the “without Phenyl structure” class, respectively.

(c) and (d): for NCHM on the two classes. . . . . . . . . . . . . . . 85

3.19 PC plots of the Phenyl dataset. . . . . . . . . . . . . . . . . . . . . 85

4.1 The loading plots of the first dimension. . . . . . . . . . . . . . . . 102

4.2 The plots of mean MP against nk/p. . . . . . . . . . . . . . . . . . 104

4.3 Coomans’ plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 The box plots of the MP for the real datasets. . . . . . . . . . . . . 106

5.1 An illustration of OD2
k in a 3-dimensional feature space. . . . . . . . 112

5.2 An illustration of SD2
k in a 3-dimensional feature space. . . . . . . . 113

5.3 Classification accuracies of SIMCA-W, SIMCA-R and SIMCA-

LD2S for the Phenyl dataset. . . . . . . . . . . . . . . . . . . . . . 122

5.4 Mean classification accuracies of SIMCA-W, SIMCA-R and

SIMCA-LD2S for the Phenyl dataset. . . . . . . . . . . . . . . . . 122

5.5 Classification accuracies of SIMCA-W, SIMCA-R and SIMCA-

LD2S for the fat dataset. . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 Mean classification accuracies of SIMCA-W, SIMCA-R and

SIMCA-LD2S for the fat dataset. . . . . . . . . . . . . . . . . . . . 124

5.7 Classification accuracies of SIMCA-W, SIMCA-R and SIMCA-

LD2S for the meat dataset. . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Mean classification accuracies of SIMCA-W, SIMCA-R and

SIMCA-LD2S for the meat dataset. . . . . . . . . . . . . . . . . . 125



List of Tables

3.1 constraint(xxx∗k ,ck) for NSM, NCHM and NCCM. . . . . . . . . . . . 69

4.1 Simulation settings. Notation: K, number of classes; D, number of

datasets; nk, number of samples in each class. . . . . . . . . . . . . 100



Chapter 1

Introduction

1.1 SIMCA
High-dimensional spectral data, such as near infrared (NIR) spectroscopic data and

mass spectrometry (MS) data, are widely used in a variety of fields, for example

chemometrics, bioinformatics and hyperspectral image analysis. In the analysis of

spectral data, classification is an omnipresent task (Downey, 1994; Pan et al., 2003;

Berrueta et al., 2007; Roggo et al., 2007; Zhang et al., 2012; Holloway et al., 2014),

which enables us to distinguish different species, identify the geographical origins

of the products, or predict molecular substructure, to name a few.
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Figure 1.1: Spectra of meat samples from two classes: chicken and turkey.

Figure 1.1 shows an example for NIR spectroscopic data of two classes, the

chicken meat samples and the turkey meat samples, which is further analysed in

Chapter 2. Each curve depicts the spectrum of a sample, which is usually repre-
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sented by a high-dimensional feature vector. A classification task is to classify the

spectra of new samples into the two classes based on the information provided by

some labelled training spectra. In this thesis, we focus on two-class classification

for high-dimensional spectral data. Based on the two-class classification results,

multi-class classification can be readily obtained by using the one-vs-one or one-

vs-all strategy (Bishop, 2006).

Soft independent modelling of class analogy (SIMCA) (Wold, 1976) is a

subspace-based classification method that is widely used in the classification of

high-dimensional spectral data in chemometrics (Downey, 1994; Berrueta et al.,

2007; Roggo et al., 2007; Fujimoto and Tsuchikawa, 2010; Li et al., 2014; Davis

et al., 2015; Jaiswal et al., 2016; Li et al., 2016; Márquez et al., 2016; Srivas-

tava et al., 2016; Wang et al., 2016; Basri et al., 2017). Fujimoto and Tsuchikawa

(2010) studied the identification of dead and sound knots based on SIMCA. Li et al.

(2014) applied SIMCA for Chinese liquor discrimination. Davis et al. (2015) ap-

plied SIMCA for textile classification. Jaiswal et al. (2016) used SIMCA to detect

aflatoxin M1 in milk. Li et al. (2016) applied SIMCA for the identification of pum-

melo cultivars. Márquez et al. (2016) applied SIMCA for a hazelnut adulteration

problem to classify unadulterated and adulterated with almond classes. Srivastava

et al. (2016) discriminated between dextrose and substitutes by using SIMCA. Wang

et al. (2016) discriminated bamboo species by using SIMCA. Basri et al. (2017)

used SIMCA to classify pure and adulterated palm oil.

SIMCA consists of two phases when it is used for two-class classification.

First, in the training phase, two class models are built for the two classes separately.

The class models in SIMCA are represented using principal component (PC) class

subspaces through using principal component analysis (PCA). Second, in the test

phase, a new sample is classified using a classification rule based on its distances to

the two class subspaces. Usually two distances are used in the classification rule: the

squared orthogonal distance (OD2) between the new sample and the class subspace

and the squared score distance (SD2) between the projection of the new sample

to the class subspace and the centre of that class subspace. When Wold (1976)
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first proposed SIMCA, only OD2 was used in the classification rule. Recently, a

linear combination of OD2 and SD2 has been widely adopted as the classification

rule (Berrueta et al., 2007).

SIMCA is designed for a ‘soft’ assignment of a new sample, which means

that a new sample can be assigned to one of the known classes, both of the known

classes and none of the classes. Thus SIMCA can be used as a classifier as well

as an outlier detector. In this thesis, we treat SIMCA as a simple classification

method that classifies a new sample to only one of the known classes, to obtain non

ambiguous classification results as suggested in Berrueta et al. (2007).

1.2 Limitations of SIMCA
In spite of its wide use, SIMCA suffers from the following four limitations. The first

two limitations are related to the class models built in the training phase of SIMCA,

and the last two limitations are related to the distances used in the classification rule

in the test phase of SIMCA.

Limitation 1 Since the PC class subspaces are built independently in SIMCA, the

discriminative between-class information is neglected during this process. There-

fore the classification rule calculated independently for each class may not be dis-

criminative enough to classify a new sample.

Limitation 2 Besides PC subspaces, geometric convex models, such as convex hull

and convex cone, have also been used as class models and have shown better clas-

sification results compared with PC subspaces for other classification tasks, such as

face recognition. However, to the best of our knowledge, the literature of SIMCA

have barely explored such potentially beneficial changing of class models for better

classification of spectral data.

Limitation 3 We notice that the calculation of OD2 in the highly-cited SIMCA

paper (De Maesschalck et al., 1999) is different from that in the original SIMCA

paper (Wold, 1976). Using the formulae in De Maesschalck et al. (1999) results in

worse classification performance than using those in Wold (1976) for some high-

dimensional data and provides misleading classification results.
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Limitation 4 The distance metrics used in the classification rule of SIMCA are pre-

defined: the Euclidean distance metric is used in OD2 and the Mahalanobis distance

metric is used in SD2. However, different data usually prefer different distance met-

rics and the predefined distance metrics in SIMCA should be adapted to different

data.

1.3 Our contributions to SIMCA
In this thesis, we present our contributions to overcome the above four limitations

in two parts: Part I presents two contributions to the class models used in SIMCA to

overcome Limitation 1 and Limitation 2, respectively, and Part II presents two con-

tributions to the distances used in SIMCA to overcome Limitation 3 and Limitation

4, respectively. We introduce the four contributions briefly as follows.

Contribution 1: Building a discriminatively ordered subspace on the generat-

ing matrix To overcome Limitation 1, we aim to make the feature space more dis-

criminative. An appealing remedy is to first project the original data to a more dis-

criminative subspace before applying SIMCA. For this, generalised difference sub-

space (GDS) that explores the information between class subspaces in the generat-

ing matrix can be a strong candidate. However, due to the difference between a class

subspace (of infinite scale) and a class (of finite scale), the eigenvectors selected by

GDS may not also be discriminative for classifying samples of classes. Therefore

in this contribution, we propose a discriminatively ordered subspace (DOS): differ-

ent from GDS, our DOS selects the eigenvectors with high discriminative ability

between classes rather than between class subspaces. The experiments on three

real spectral datasets demonstrate that applying DOS before SIMCA outperform its

counterparts.

Contribution 2: Dual of nearest-class-model methods: a separating hyper-

plane classification framework To overcome Limitation 2, we use two geometric

convex models, convex hull and convex cone, as class models in SIMCA to clas-

sify spectral data. We also aim to investigate the classification mechanism for the

classification methods with three class models: the PC subspace, convex hull and
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convex cone. To make the investigation straightforward, we use OD as the clas-

sification rule. Also, to avoid confusion with SIMCA, we name the classification

methods studied in this contribution as nearest class-model-based methods. We first

propose the nearest convex cone method (NCCM) to fill the gap between two ex-

isting methods, the nearest subspace method (NSM) and the nearest convex hull

method (NCHM). NSM is equivalent to SIMCA using OD as the classification rule

(SIMCA-OD); NCCM is equivalent to SIMCA-OD using convex cones as class

models; and NCHM is equivalent to SIMCA-OD using convex hulls as class mod-

els. Then we investigate NSM, NCHM and NCCM both theoretically and empir-

ically, to understand deeply their underlying classification mechanism and analyse

their data-dependent classification performances. Theoretically, we provide results

of the dual analysis of NSM, NCHM and NCCM, and establish a separating hy-

perplane classification (SHC) framework for the nearest-class-model methods. Em-

pirically, we provide a new data exploration scheme to analyse the properties of a

dataset and why such properties make one or more of the methods suitable for the

data.

Contribution 3: On the orthogonal distance of SIMCA for high-dimensional

data To overcome Limitation 3, we investigate the equality and inequality of the

calculations of OD2 in De Maesschalck et al. (1999) and Wold (1976) for low-

dimensional and high-dimensional scenarios. We show that only when the training

data of a class have more samples than features, the corresponding formulae in the

two papers are equivalent. When the training data of a class are of high dimension

(i.e., when the number of features is larger than the number of samples), the for-

mulae in De Maesschalck et al. (1999) are not precise. Hence, we suggest that the

calculation of OD2 should follow the original definition in Wold (1976), in order

to obtain a correct decision of SIMCA for classification of high-dimensional data,

which are now common in practice.

Contribution 4: Learning distance to subspace To overcome Limitation 4, we

aim to find good distance metrics for the classification rule of SIMCA to improve

its classification performance using distance metric learning methods. However,
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different from those in distance metric learning methods that measure the distances

between samples, the distance metrics in SIMCA measure the distances between

samples and class subspaces. To adapt the distance metric learning methods to learn

the distance metrics in SIMCA, we first derive a general formulation for the classi-

fication rules of SIMCA used in literature and define it as the distance to subspace.

We show that the distance to subspace is dependent on two parameterisation matri-

ces and propose a method of learning distance to subspace to learn those matrices.

We term the learned distance metrics as “learned distance to subspace (LD2S)”.

LD2S is based on the following set of similarity/dissimilarity constraints: the sam-

ples are similar to their correct class subspaces while are dissimilar to the wrong

class subspaces. LD2S aims to make the samples to be closer to their correct class

subspaces while being farther away from their wrong class subspaces. The supe-

rior classification performance of using LD2S in the classification rule on one real

spectral dataset has demonstrated the effectiveness of LD2S.

1.4 The structure of the thesis
The thesis is organised as follows. In Chapter 2, we present Contribution 1 to make

the feature space more discriminative. In Chapter 3, we present Contribution 2 to

analyse the classification mechanism of nearest-class-model methods. In Chapter 4,

we present Contribution 3 to investigate the difference of calculating OD2 using the

formulae in De Maesschalck et al. (1999) and those in Wold (1976). In Chapter 5,

we present Contribution 4 to learn good distance metrics for the classification rule

used in SIMCA. In Chapter 6 we present some concluding remarks and future work

for reinforcing SIMCA. The structure of the thesis is illustrated in Figure 1.2.
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Figure 1.2: The structure of the thesis.
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Part I presents two of our contributions to the class models used in SIMCA.

In this part, we focus on studying the class models used in the training phase of

SIMCA and use the classification rules based on OD2, such as the classification

rule in Wold (1976). The classification results of using other classification rules

based on both OD2 and SD2 can be easily obtained by replacing the classification

rules used in this chapter with those required.

We present the two contributions in Chapter 2 and Chapter 3, respectively.

First, in Chapter 3 we aim to solve the problem of ignoring the discriminative

between-class information when building the class models by making the feature

space more discriminative. We propose to first project the original data to a more

discriminative subspace, the discriminatively ordered subspace (DOS), before ap-

plying SIMCA. The content of Chapter 2 is based on our recently published pa-

per (Zhu et al., 2017). Second, in Chapter 3 we aim to use geometric models as

class models in SIMCA and to study the classification mechanism and the data-

dependant classification performances of using different class models. We propose

the separating hyperplane classification framework for the classification methods

with different class models based on the dual analysis.



Chapter 2

Building a discriminatively ordered

subspace on the generating matrix

When SIMCA is used for two-class classification, firstly two class subspaces are

built for the two classes separately through using principal component analysis

(PCA). Then a classification rule based on OD2 and/or SD2 is used to determine

the class membership of the new sample. In this Chapter, we use the F-value pro-

posed in Wold (1976) as the classification rule, which is based on OD2.

Although it has been widely used for the classification of high-dimensional

spectral data, SIMCA suffers from the problem that the class subspaces are built

independently without considering between-class information. Therefore the F-

value calculated independently for each class may not be discriminative enough to

classify a new sample.

An appealing solution to this problem is to find a more discriminative subspace

than the original feature space and project the data to this subspace before applying

SIMCA. The projections of the samples to this discriminative subspace are expected

to be more separated and can be more easily classified than those in the original

feature space, as illustrated in Figure 2.1. Also, as the new subspace contains more

discriminative information for classification, the F-value calculated in this subspace

is expected to be more discriminative. It is therefore the objective of our work in

this chapter to find such a discriminative subspace.

Recently, Fukui and Maki (2015) proposed the generalised difference subspace
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x3

(a) Original feature space.

d1

d2 Class 1

Class 2

(b) Discriminative subspace.

Figure 2.1: (a) Two classes of samples are mixed together in the original 3-dimensional
feature space. (b) The same groups of samples can be well separated when
they are projected to a discriminative 2-dimensional subspace.

(GDS) projection as a preprocessing method to improve a popular subspace-based

classifier called mutual subspace method (MSM) in image set-based object recog-

nition. GDS aims to tackle an issue of MSM: the class subspaces are independently

generated by PCA in a class-by-class manner, and thus may not be strongly discrim-

inative for classification. This issue is actually the same as that of SIMCA. Hence,

we believe the GDS projection can also be utilised as a preprocessing method for

SIMCA to improve its classification performance.

GDS is a subspace containing the information about the difference between

class subspaces, and thus is supposed to be more discriminative than the original

feature space. GDS is generated on the basis of a generating matrix GGGD, which is

calculated as the sum of the projection matrices of the two class subspaces and can

provide between-class information. Fukui and Maki (2015) show that the eigenvec-

tors of GGGD with small eigenvalues contain the information of difference between

class subspaces while those with large eigenvalues contain the information about

similarity between class subspaces. The GDS projection thus keeps only the last

few eigenvectors with small eigenvalues and discards the first few eigenvectors with

large eigenvalues, in order to make use of the difference information.

The GDS projection shows superior performance on face recognition and hand

shape recognition problems. However, there is a limitation of the GDS. The GDS
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projection discards the eigenvectors of GGGD with large eigenvalues because they con-

tain similarity information between class subspaces and thus are assumed ineffec-

tive for classification. This assumption is, however, not always valid due to the

conceptual difference between a class subspace (of infinite scale) and a class (of fi-

nite scale). For example, two separable classes may span the same subspace. More

technically, this assumption defines similarity information by using the eigenvec-

tor directions only, without considering the distribution of the projected samples in

these directions. If the projected samples of different classes in the directions of

similarity (i.e. the directions with large eigenvalues of GGGD) are still class separa-

ble, then these directions can also be discriminative in separating classes (although

not discriminative in separating class subspaces), and thus discarding them can be

harmful for classification of samples.

V3 (0,         ,         )2 / 22 / 2

V1 (1,0,0)V2 (0,1,0)

Class 1

Class 2

L1 L2

Figure 2.2: An illustrative example of the difference between a class subspace (of infinite
scale) and a class (of finite scale).

To illustrate the difference between a class subspace and a class, we show

an intuitive example in Figure 2.2. The infinite scale subspace of class 1, L1, is

spanned by vvv1 and vvv3, and the infinite scale subspace of class 2, L2, is spanned by

vvv1 and vvv2. The samples of the two classes lie in the two ellipses with finite scales

in L1 and L2, respectively. It is obvious that vvv1 is the intersection of L1 and L2,
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which represents the same direction, i.e. the similarity information, between class

subspaces. The GDS projection discards vvv1 because it is the eigenvector of GGGD with

the largest eigenvalue and contains similarity information between class subspaces.

However, the samples of the two classes are class separable on the direction of vvv1,

which suggests that vvv1 contains discriminative information between classes. (We

shall demonstrate another motivating example for this issue in Section 2.1.3.1 using

a real spectral dataset.)
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Figure 2.3: Classification accuracies of SIMCA and the GDS-preprocessed SIMCA on
three real spectral datasets: meat, Phenyl and fat. In each panel, the left-hand
boxplot is for SIMCA, and the right-hand boxplot is for the GDS-preprocessed
SIMCA.

Moreover, here we illustrate that discarding the eigenvectors of GGGD with large

eigenvalues can be harmful for classification using three real spectral datasets: meat,

Phenyl and fat. In Figure 2.3, we plot the classification accuracies of SIMCA and

the GDS-preprocessed SIMCA on the three datasets. We can clearly observe that a

preprocessing step of SIMCA by GDS does not necessarily benefit the classification

performance of SIMCA; it actually has an negative effect (lowering classification

accuracy) on SIMCA for the Phenyl dataset and the fat dataset. Detailed discussion

on this will be provided in Section 2.2.

To make use of the between-class information in GGGD and to overcome the

above limitation of the GDS projection, we propose a discriminatively ordered sub-

space (DOS): our DOS is spanned by the most discriminative eigenvectors of GGGD

instead of the eigenvectors with small eigenvalues and extracts the most discrim-

inative information from the data. That is, we sort the eigenvectors in terms of

their discriminative ability and select the top-ranked eigenvectors with high dis-
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criminative abilities to generate the DOS projection. This discriminatively ordering

procedure during the generation of the subspace is where the term ‘discriminatively

ordered’ came from in DOS. As our objective is to develop DOS to tackle the issue

of SIMCA, the discriminative ability of an eigenvector is measured by the clas-

sification accuracy of SIMCA on the samples projected to this eigenvector. The

higher the classification accuracy, the higher the discriminative ability. We choose

this filter-type of eigenvector selection scheme for high-dimensional spectral data,

taking into consideration its simplicity and efficiency, as well as the uncorrelat-

edness and orthogonality of the candidate eigenvectors. The effectiveness of the

DOS-preprocessed SIMCA will be demonstrated in Section 2.2.

The rest of this chapter is organised as follows. In Section 2.1, a discussion of

the GDS projection and a detailed description of the DOS projection are provided.

In Section 2.2, GDS and DOS are compared with respect to the improvement of

classification performance of SIMCA on real spectral datasets. Section 2.3 presents

some concluding remarks.

2.1 Methodology

2.1.1 SIMCA

In the training phase of SIMCA, suppose XXXk ∈ Rnk×p is the training set of class k

(k = 1,2), in which there are nk training instances and each instance is represented

by a p-dimensional data vector (i.e. in the original p-dimensional feature space). To

build the principal component (PC) subspace for each class, we apply eigendecom-

position to the covariance matrix of the kth class:

Cov(XXXk) =
1

nk−1
(XXXk(c))

T XXXk(c) =VVV kΣΣΣkVVV T
k , (2.1)

where XXXk(c) is the column-centred XXXk; the columns of VVV k ∈ Rp×qk (qk =

rank(Cov(XXXk))) denote the normalised eigenvectors, and ΣΣΣk is a diagonal matrix

with eigenvalues {σ1 ≥ σ2 ≥ ·· · ≥ σqk}. We select the first rk (rk ≤ qk) columns

of VVV k as the basis vectors WWW k that spans the kth class subspace Pk, which is
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rk-dimensional.

It follows that the projection matrix PPPk ∈ Rp×p of Pk can be written as

PPPk =WWW kWWW T
k . (2.2)

In the test phase, a new sample xxxnew is assigned based on the following two

residuals. First, the residual of the kth class in the training set:

EEEk = XXXk(c)−XXXk(c)PPPk . (2.3)

Second, the residual of xxxnew when it is projected to the kth class subspace:

eeek,new = xxxk,new
(c) − xxxk,new

(c) PPPk , (2.4)

where xxxk,new
(c) is centred by the mean vector of XXXk. Then xxxnew is assigned to the class

with the smallest F-value (Mertens et al., 1994), where the F-value is defined as

F =
||eeek,new||22

||EEEk||22/(nk− rk−1)
, (2.5)

in which || · ||2 denotes the Frobenius norm and ||eeek,new||22 is OD2.

2.1.2 Generalised difference subspace

Since the class subspaces in SIMCA are built independently, the between-class in-

formation is not considered by SIMCA and thus the classification performance is

limited. To improve the performance of SIMCA, we aim to find a subspace more

discriminative than the original feature space. Applying SIMCA to the projections

of the samples in this discriminative subspace is expected to have better perfor-

mance because the samples are expected to be more separated in this subspace. The

process of seeking and projecting to such a discriminative subspace can be treated

as a preprocessing step of SIMCA.

Mutual subspace method (MSM) is a commonly used subspace-based method

for image set-based object classification, which has a similar problem as SIMCA:



2.1. Methodology 30

MSM builds the class subspace by using PCA for each class separately. The gen-

erated class subspace of an image set of an unknown object is compared with the

known class subspaces of reference objects and classified to the class with the small-

est canonical angle.

When the image set of an unknown object contains only one image, the image

is represented by a feature vector and the canonical angles are calculated between

the vector and the class subspaces. In this case, MSM is reduced to the commonly-

used subspace method (SM) in image classification. The only difference between

SM and SIMCA is the criterion for assigning new samples: SM assigns the new

sample to the class with the smallest canonical angle between the sample and the

class subspace, while SIMCA assigns the new sample to the class with the smallest

F-value calculated in (2.5).

MSM suffers from the problem that the class subspaces generated by PCA may

not be sufficiently discriminative for classification. Hence recently Fukui and Maki

(2015) proposed to project the data onto a generalised difference subspace (GDS)

as a preprocessing step of MSM, so as to improve the classification performance

of MSM. GDS contains difference information between two class subspaces and

is more discriminative to separate the two class subspaces than the original fea-

ture space. Thus the projections of the samples to GDS are expected to be more

separated and can be better classified. Since SIMCA and MSM suffer from simi-

lar problems, we believe the GDS projection can also be used as a preprocessing

method of SIMCA to improve the classification performance of the latter.

2.1.2.1 GDS

The GDS projection is proposed on the basis of the properties of the difference

subspace (DS) of two class subspaces. The DS, denoted by D , is calculated by

using the sum matrix GGGD ∈ Rp×p, which is defined as

GGGD =
K

∑
k=1

PPPk , (2.6)
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where K = 2. Applying eigendecomposition to GGGD, we obtain

GGGD =VVV DΣΣΣDVVV T
D , (2.7)

where the columns in VVV D = [vvv1,vvv2, . . . ,vvvrD]∈Rp×rD are the normalised eigenvectors

of GGGD, and ΣΣΣD denotes the diagonal matrix with corresponding eigenvalues {σ1 ≥
σ2 ≥ ·· · ≥ σrD} in descending order, where rD = rank(GGGD).

The DS is defined as the subspace spanned by the eigenvectors vvvi in VVV D with

corresponding eigenvalues λi less than one. As shown by Fukui and Maki (2015),

these eigenvectors are proportional to the difference between the canonical vector

pairs of the two class subspaces, and hence they contain the difference information

between the two class subspaces.

In addition to DS, Fukui and Maki (2015) also define the principal component

subspace (PCS), denoted by M , which is spanned by the eigenvectors vvvi in VVV D

with corresponding eigenvalues λi larger than one. They point out that M contains

the similarity information between class subspaces, because the eigenvectors are

proportional to the sum of the canonical vector pairs.

Based on the properties of the DS, Fukui and Maki (2015) propose the gen-

eralised DS (GDS) projection for K (K ≥ 2) classes. The GDS projection discards

the first few eigenvectors of GGGD with large eigenvalues and keeps only the last few

eigenvectors of GGGD with small eigenvalues. In this way, the GDS spanned by the

last few eigenvectors contains difference information between class subspaces. The

projections of the samples onto GDS are expected to be more separated and can

be better classified. The dimension of GDS is determined by maximising the mean

canonical angles between class subspaces, as suggested in Fukui and Maki (2015).

2.1.2.2 The generating matrix

To further investigate the properties of the sum matrix GGGD and the GDS, we intro-

duce the generating matrix proposed in Therrien (1975). The generating matrix is

defined as the linear combination of the projection matrices of the two class sub-

spaces (Therrien, 1975). Therrien (1975) shows that the generating matrix can be
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used to find the intersection of the class subspaces.

For two classes, the generating matrix GGG ∈ Rp×p can be written as

GGG =
K

∑
k=1

αkPPPk , (2.8)

where K = 2, αk ∈ (0,1), and
K
∑

k=1
αk = 1. Applying eigendecomposition to GGG, we

can obtain

GGG =VVV GΣΣΣGVVV T
G , (2.9)

where the columns of VVV G ∈ Rp×rG denote the normalised eigenvectors of GGG, and

ΣΣΣG denotes the diagonal matrix with eigenvalues {σ1 ≥ σ2 ≥ ·· · ≥ σrG}, where

rG = rank(GGG).

Therrien (1975) shows three important properties of GGG. First, the eigenvalues

of GGG are in the interval [0,1]. Second, the eigenvectors with the corresponding

eigenvalues of one span the intersection of the two subspaces
2⋂

k=1
Pk. Third, the

eigenvectors with nonzero eigenvalues span the sum subspace of the two classes,

and the eigenvectors with eigenvalues of zeros span the complement of this sum

subspace.

Since the vectors in
2⋂

k=1
Pk are in both P1 and P2,

2⋂
k=1

Pk denotes the sub-

space that contains the most similar directions of the two class subspaces. In other

words, the most similar directions of the two class subspaces are extracted by the

eigenvectors of GGG with eigenvalues of one. In contrast, the eigenvectors with eigen-

values of zeros are the complements of the sum subspace which contain information

that is irrelevant to the two class subspaces. The larger the eigenvalue, the more

similarity information the corresponding eigenvector contains.

The generation of GDS is closely related to the generating matrix: GGGD and GGG

are both linear combinations of PPPk although with different coefficients. The linear

coefficients of GGGD are all one, i.e. αk = 1 ∀ k, while those of GGG are constrained by

αk ∈ (0,1) and
K
∑

k=1
αk = 1. Although GGGD and GGG are slightly different, we can derive

similar properties of GGGD as those of GGG by following the proofs in Therrien (1975).

First, the eigenvalues of GGGD are in the interval [0,2]. Second, the eigenvectors with
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the corresponding eigenvalues of two span the intersection of the two subspaces
2⋂

k=1
Pk. Third, the eigenvectors with the corresponding eigenvalues that are nonzero

span the sum subspace of the two subspace and those with zero eigenvalues span

the complement of the sum subspace. Hence, with some abuse of notation, we also

call the sum matrix GGGD a generating matrix.

The eigenvectors of GGGD with eigenvalues in (1,2] span the PCS M which

contains similarity information between the two class subspaces. This argument

seems to be consistent with the property of GGGD, based on the assumption that the

eigenvectors closed to the intersection directions contain large amount of similarity

information. Since the eigenvectors with eigenvalues of two span the intersections

subspace, the eigenvectors with eigenvalues close to two could be close to the in-

tersection directions. On the other hand, the eigenvectors with eigenvalues far from

two, i.e. eigenvalues in [0,1), are far from the intersection directions. Therefore,

the GDS projection aims to discard the eigenvectors that are close to the intersec-

tion directions, so as to provide a discriminative subspace.

2.1.3 Discriminatively ordered subspace

The GDS projection is based on the assumption that, because the first few eigen-

vectors with large eigenvalues close to the intersection directions contain similarity

information between the class subspaces, they are not important for classification.

However, this assumption is not always true, as a class subspace (of infinite scale)

and a class (of finite scale) are different, and hence the ability to discriminate two

class subspaces are not necessarily in line with the ability to discriminate samples

of two classes. In the extreme case, two separable classes may span the same class

subspace. More technically, the similarity information in the GDS assumption only

considers the directions, while the scores or the projection values on the directions

should also be considered. The eigenvectors of GGGD that are close to the intersection

directions between the two class subspaces can be discriminative when the scores on

these eigenvectors are largely separable between classes. In the following section,

we show a motivating real-data example that even the directions in the intersection

subspace of the two classes can be discriminative.
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2.1.3.1 Intersection and discriminative ability: a motivating exam-

ple

The fat dataset contains 193 spectra of finely chopped meat measured at 100 wave-

lengths, in which 122 samples contain less than 20% fat and 71 samples contain

more than 20% fat. Detailed description of this dataset can be found in Section

2.2.1. We split the dataset into a training set and a test set: 35 samples with fat

content less than 20% and 35 samples with fat content more than 20% are randomly

sampled into the training set; the rest samples form the test set.

The projection matrix PPPk is calculated by using all the 34 available eigenvectors

of each class. There are 68 eigenvectors that can be obtained from the eigendecom-

position of GGGD, in which the first seven eigenvectors have eigenvalues of two and

the last 34 eigenvectors have eigenvalues less than one. Thus the first seven eigen-

vectors span the intersection of the two class subspaces and the last 34 eigenvectors

span the DS.
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Figure 2.4: (a) Projections of the test samples onto two directions of the intersection. (b)
Projections of the test samples onto two directions of the DS.

Figure 2.4 shows two scatter plots of the test samples. Figure 2.4a shows the

projections of the test samples onto two intersection directions, and Figure 2.4b

shows the projections of the test samples onto the first two DS directions. It is clear

that the test samples can be well separated when projected onto the two directions

in the intersection subspace, whereas the projections of the test samples onto the

two directions of DS show slight separation with a mixture in the central region.
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In other words, this indicates that the two eigenvectors in the intersection subspace

are more discriminative than those in DS. Therefore, it is better to keep the two

eigenvectors in the intersection subspace instead of those in the DS.

This counter-example demonstrates that the eigenvectors of GGGD in the intersec-

tion directions can be discriminative and the assumption in the GDS method is not

valid in this case.

2.1.3.2 Discriminatively ordered subspace

As shown in Section 2.1.2.2, the eigenvectors of the generating matrix GGGD contain

between-class information. Thus we are able to select discriminative eigenvectors

of GGGD to generate a discriminative subspace for better classification. In the GDS

projection, the eigenvectors of GGGD are sorted by the eigenvalues in descending or-

der, and the last few eigenvectors with small eigenvalues are selected to generate

the GDS. However, as we have shown, the eigenvectors with large eigenvalues are

possible to be more discriminative than those with small eigenvalues, and discard-

ing the eigenvectors with large eigenvalues that are discriminative may be harmful

for classification.

Therefore, instead of using the GDS projection, we aim to select the most dis-

criminative eigenvectors of GGGD to generate a discriminative subspace. We propose

a discriminatively ordered subspace (DOS), which uses the discriminative ability

(rather than eigenvalues) to sort the eigenvectors in ascending order and select the

last few eigenvectors with high discriminative ability to generate the discrimina-

tive subspace. In our case for improving SIMCA, the discriminative ability of an

eigenvector is measured by the classification accuracy of SIMCA on the samples

projected to this eigenvector. For each eigenvector, if the projections of the samples

of the two classes are more separated, then the classification accuracy of SIMCA

will be high. This simple eigenvector-by-eigenvector selection scheme is appro-

priate for high-dimensional spectral data, given that the candidate eigenvectors are

uncorrelated. In the end we choose a set of eigenvectors with high discriminative

abilities to span a subspace that can make the samples of the two classes more sep-

arated and improve the performance of SIMCA.
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Specifically, given the generating matrix GGGD in (2.6) and its eigendecomposi-

tion in (2.7), the eigenvectors vvvi (i = 1, . . . ,rD) are sorted using their discriminative

abilities di, which are calculated using leave-one-out cross-validation (LOOCV) on

the training set as follows.

The training set is denoted as XXXT
train = [XXXT

1 ,XXX
T
2 ] = [xxxT

1 , . . . ,xxx
T
N1+N2

] ∈
Rp×(N1+N2), where XXXT

1 = [xxxT
1 , . . . ,xxx

T
N1
] ∈ Rp×N1 and XXXT

2 = [xxxT
N1+1, . . . ,xxx

T
N1+N2

] ∈
Rp×N2 are the training sets for the two classes and xxxm ∈ R1×p is the mth

(m = 1, . . . ,N1 +N2 ) training sample.

Firstly, we project all the training samples in XXX train to each eigenvector vvvi ∈
Rp×1 and obtain the projections X̂XX train,i = XXX trainvvvi ∈ R(N1+N2)×1. For the mth vali-

dation, the mth projection, x̂xxm,i = xxxmvvvi ∈R1×1, is used as the validation sample and

the rest projections are used as the training samples.

Secondly, we apply SIMCA to each validation by setting the dimensions of the

two class subspaces to zeros, i.e. r1 = r2 = 0. Based on (2.3), (2.4), and (2.5), we

observe that the F-value is dependent on the distance from the projected validation

sample to the projected class centre. We assign the validation sample to the class

with the smallest F-value.

Thirdly, for each eigenvector vvvi, we obtain N1 +N2 predictions from LOOCV.

The classification accuracy di is calculated as

di =
Nc

N1 +N2
, (2.10)

where Nc is the number of correctly classified test samples.

Fourthly, after obtaining d′is for i = 1, . . . ,rD, we sort the eigenvectors vvv′is in

ascending order of d′is and obtain the matrix of the sorted eigenvectors VVV sort =

[vvv(1),vvv(2), . . . ,vvv(rD)], where the discriminative ability d(1) < d(2) < · · · < d(rD). The

last few eigenvectors in VVV sort are selected to span the discriminative subspace Ds,

which we term discriminatively sorted subspace (DOS).

Finally, we project the samples to DOS and apply SIMCA to the projections of

the samples. The dimension of Ds and the dimensions of the two class subspaces in

Ds can be tuned by cross-validation through minimising the classification error of
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the training set.

2.2 Experiments
In the following experiments, we compare the performances of the original SIMCA

without preprocessing, the SIMCA preprocessed by the linear discriminative anal-

ysis (LDA) projection, the SIMCA preprocessed by the GDS projection, and the

SIMCA preprocessed by the DOS projection. The LDA-preprocessed SIMCA is

also compared since LDA is a commonly used method to find a discriminative sub-

space. Three real datasets are used in the experiments: the fat dataset, the meat

dataset, and the Phenyl dataset. In the illustrations presented in this section, the

DOS-preprocessed SIMCA is denoted by ‘DOS’, the GDS-preprocessed SIMCA

is denoted by ‘GDS’, the LDA-preprocessed SIMCA is denoted by ‘LDA’ and the

original SIMCA is denoted by ‘SIMCA’.

2.2.1 Datasets

2.2.1.1 The meat dataset
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Figure 2.5: The spectra of the two classes in the meat dataset.

The meat dataset (Arnalds et al., 2004) contains beef, pork, lamb, chicken and

turkey meat samples measured at 1051 wavelengths. Only the 55 chicken and 54

turkey samples in the dataset are used in our experiments since the two groups are

difficult to classify. The first 350 wavelengths in the meat dataset are used because

the experiments in Arnalds et al. (2004) suggest that the first 350 wavelengths rang-

ing from 400 to 1100 nm perform the best. The spectra of the meat dataset are
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illustrated in Figure 2.5.

During the training-test split, the total of 55 chicken samples and 54 turkey

samples are randomly partitioned into a training set (27 chicken samples and 27

turkey samples) and a test set (28 chicken samples and 27 turkey samples).

2.2.1.2 The Phenyl dataset
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Figure 2.6: The spectra of the two classes in the Phenyl dataset.

The Phenyl dataset is provided in the R package, ‘chemometrics’. The dataset

consists of 600 mass spectra of chemical components, with 300 compounds contain

the phenyl substructure and 300 compounds do not contain the substructure. Each

spectrum contains 658 mass spectral features. Since a plot of the spectra of all sam-

ples is confusing, we only show the spectra of two instances in the Phenyl dataset,

one for each class, in Figure 2.6.

We randomly select 100 samples from the Phenyl dataset for our experiments,

with 50 contain the phenyl substructure and 50 do not contain the structure. These

100 instances are randomly partitioned into two equal subsets: a training set con-

taining 50 samples (25 contain the phenyl substructure and 25 do not contain the

substructure), and a test set containing 50 samples (25 contain the phenyl substruc-

ture and 25 do not contain the substructure).

2.2.1.3 The fat dataset

The fat content dataset (Ferraty and Vieu, 2006) contains 193 spectra of finely

chopped meat measured at 100 wavelengths, in which 122 meat samples contain

less than 20% fat and 71 samples contain more than 20% fat. The spectra of the
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Figure 2.7: The spectra of two classes in the fat content dataset.

data of the two classes are shown in Figure 2.7.

For this dataset, 100 samples are selected as a training set (50 samples with the

fat content less than 20% and 50 samples with the fat content larger than 20%) and

the remaining samples are selected as a test set.

2.2.2 Experiment settings

The performances of the original SIMCA, the LDA-preprocessed SIMCA, the

GDS-preprocessed SIMCA, and the DOS-preprocessed SIMCA are compared.

In SIMCA, the dimensions of the two class subspaces are tuned by 10-fold

cross-validation. Before applying LDA, the high-dimensional spectral data are pro-

jected to the PC subspace of all available PCs. Then in LDA-preprocessed SIMCA,

the dimensions of the two class subspaces are set to zeros because only one dis-

criminative direction can be found for two classes by LDA and this direction should

be used for classification. In GDS and DOS, all the available PCs of each class

subspace are used to obtain the generating matrix GGGD. In GDS, the dimension

of GDS and the dimensions of the two class subspaces are also tuned by 10-fold

cross-validation. The dimensions are chosen to minimise the classification error. In

DOS, the discriminative order of the eigenvectors of GGGD is determined by using the

training set. Leave-one-out cross-validation (LOOCV) is used to obtain the classi-

fication accuracy of each eigenvector. The dimension of Ds and the dimensions of

the two class subspaces are also tuned by 10-fold cross-validation. The dimensions

are chosen to minimise the classification error, same as those for SIMCA and GDS.
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All the experiments are repeated 100 times and the classification accuracies of

all the experiments are recorded and depicted in boxplots.

2.2.3 Results

2.2.3.1 The meat dataset
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(a) Classification accuracies.
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(b) Discriminative abilities.

Figure 2.8: For the meat dataset: (a) classification accuracies of SIMCA, LDA, GDS and
DOS; (b) discriminative abilities of the eigenvectors of the generating matrix
GGGD.

Figure 2.8a shows the boxplots of the classification accuracies of the four meth-

ods for the meat dataset, from which we can observe that LDA performs similar to

SIMCA while GDS and DOS both perform on average better than SIMCA.

Figure 2.8b shows the discriminative abilities of the eigenvectors of the gen-

erating matrix GGGD versus the descending order of eigenvalues, which explains the

good performance of GDS. That is, in Figure 2.8b, the horizontal axis shows the

eigenvectors of GGGD with eigenvalues in descending order and the vertical axis shows

the corresponding average classification accuracies of SIMCA using the projected

samples onto each of the eigenvectors. Since the first few eigenvectors of GGGD do

not have high discriminative abilities, discarding them, as done by GDS, can benefit

classification, and thus GDS can provide good classification results.

In short, Figure 2.8 suggests that GDS performs well when the deletion of the

first few eigenvectors (in terms of large eigenvalues) is beneficial for classification.

In addition, DOS can achieve similarly good classification performance as GDS in

this situation, as the first few eigenvectors are also not selected by DOS due to their
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low discriminative abilities.

2.2.3.2 The Phenyl dataset
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Figure 2.9: For the Phenyl dataset: (a) classification accuracies of SIMCA, LDA, GDS and
DOS; (b) discriminative abilities of the eigenvectors of the generating matrix
GGGD.

As we have seen in Figure 2.3, GDS may fail to provide good classification

results in the cases of the Phenyl and fat datasets. Now we shall see that DOS may

provide good classification results even when GDS fails in these cases.

Figure 2.9a shows that GDS performs worse than SIMCA, which indicates

that the GDS projection is not a good preprocessing method for the Phenyl dataset.

LDA performs better than GDS, but worse than SIMCA. In contrast, DOS performs

better than GDS and LDA, although only providing similar classification accuracies

as SIMCA in this case.

To explain this result, we can check Figure 2.9b, which shows the discrimina-

tive abilities of the eigenvectors of GGGD for the Phenyl dataset. On the one hand, we

observe that the first few eigenvectors with large eigenvalues have higher discrim-

inative abilities than the remaining ones. Thus deleting the first few eigenvectors

is harmful to classification. This explains why GDS cannot provide good classifi-

cation results. On the other hand, we also observe that the discriminative abilities

of the eigenvectors are ranged from 0.52 to 0.58, which suggests that the discrimi-

native abilities of the eigenvectors are similar to each other. Since the eigenvectors

are similarly important to classification in this case, it is hard to achieve better clas-

sification by selecting from these eigenvectors. This explains why DOS performs
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similarly to SIMCA.

In summary, Figure 2.9 indicates that GDS fails to provide good classification

results in the situation where the first few eigenvectors (in terms of large eigenval-

ues) of GGGD are important for classification. DOS can provide better classification

results than GDS in this situation. However, the classification results of DOS do

not show noticeable improvement compared with those of SIMCA for this dataset,

because the eigenvectors of GGGD have similar discriminative abilities.

2.2.3.3 The fat dataset
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(b) Discriminative abilities.

Figure 2.10: For the fat dataset: (a) classification accuracies of SIMCA, LDA, GDS and
DOS; (b) discriminative abilities of the eigenvectors of the generating matrix
GGGD.

Here we shall demonstrate that DOS can achieve better classification accura-

cies than SIMCA when the discriminative abilities of the eigenvectors of the gen-

erating matrix GGGD have a large variation. In this situation, DOS can select the most

discriminative eigenvectors to make the samples more separate and is a good pre-

processing method for classification.

As shown in Figure 2.10a for the fat dataset, GDS performs worse than SIMCA

and LDA, but DOS can achieve better performance than SIMCA and LDA.

Once again, let us use Figure 2.10b to explain the above results. On the one

hand, because the discriminative abilities of the first few eigenvectors are higher

than the remaining ones, GDS deletes the first few eigenvectors of GGGD that are

actually discriminative for classification, leading to a poor performance. On the

other hand, Figure 2.10b shows that the discriminative abilities range from 0.45
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to 0.85, which indicate a large difference in discriminative abilities between the

eigenvectors. Hence DOS can select the most discriminative eigenvectors of GGGD

and provide better classification results than SIMCA.

To sum up, Figure 2.10 suggests that DOS performs well when there is a large

difference in the discriminative abilities of the eigenvectors of the generating matrix

GGGD. The good performance of DOS demonstrates that selecting the eigenvectors of

GGGD by using the discriminative ability instead of using eigenvalues can be effective,

when GDS fails to provide improvement in classification.

2.2.3.4 Summary of experiments

We would like to convey two messages through our experiments.

Firstly, from Figure 2.8b, Figure 2.9b and Figure 2.10b, we can observe that

there is no negative correlation between eigenvalues and discriminative abilities of

the eigenvectors of the generating matrix GGGD. The eigenvectors with large eigen-

values, although close to the intersection of two class subspaces, may have high

discriminative abilities and can largely benefit classification of the samples of the

two classes.

Secondly, from Figure 2.8a, Figure 2.9a and Figure 2.10a, we can observe

that DOS can provide superior or at least comparable classification performance

to SIMCA, LDA and GDS. The classification results suggest that it is appropriate

to use high discriminative ability, instead of using low eigenvalues (or being away

from the intersection of class subspaces), to select the eigenvectors of GGGD to span a

discriminative subspace for classification.

2.2.4 Discussion

2.2.4.1 Intersection of two class subspaces and its discriminative

ability

In Section 2.1.3.1, we have shown a motivating example that the intersection of two

class subspaces can be discriminative for the fat dataset. In this section, we further

investigate the relationship between the intersection and its discriminative ability

for all the three datasets.
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To check whether an eigenvector vvvi is the intersection between class subspaces,

we define ||eee1||22 and ||eee2||22 to measure the Euclidean distances from vvvi to its projec-

tions in the two class subspaces, respectively. When vvvi is in both class subspaces,

it is the intersection of the two class subspaces. To be more specific, the Euclidean

distances from vvvi to its projections in the two class subspaces are zeros when vvvi is

the intersection. The larger the Euclidean distances, the farther vvvi away from the

two class subspaces.

Suppose the two class subspaces, S(PPP1) and S(PPP2), are defined by two pro-

jection matrices PPP1 ∈ Rp×p and PPP2 ∈ Rp×p, respectively. The Euclidean distances

from vvvi to its projections in the two subspaces can be calculated as

||eee1||22 = ||PPP1vvvi− vvvi||22 (2.11)

and

||eee2||22 = ||PPP2vvvi− vvvi||22, (2.12)

respectively. As ||eee1||22 and ||eee2||22 decrease, vvvi goes closer to the two class subspaces

and to the intersection. If ||eee1||22 = 0 and ||eee2||22 = 0, then vvvi is the intersection of the

two class subspaces, because vvvi is in both subspaces, i.e. PPP1vvvi = vvvi and PPP2vvvi = vvvi.

In the following part of this section, we discuss the relationship between the

subspace intersection and its discriminative ability based on the values of ||eee1||22,

||eee2||22, and the corresponding discriminative abilities of the eigenvectors of GGGD.
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(c) Discriminative ability

Figure 2.11: For the eigenvectors of GGGD of the fat dataset: their distances (||eee1||22 and
||eee2||22) to the two class subspaces, and their discriminative abilities.

As an extension of the motivating example in Section 2.1.3.1 for the fat dataset,
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we present three plots in Figure 2.11 illustrating the relationship between the inter-

section of the two class subspaces and its discriminative ability.

Figure 2.11a and Figure 2.11b plot ||eee1||22 and ||eee2||22 against the descending

order of eigenvalues, respectively. More specifically, in Figure 2.11a and Fig-

ure 2.11b, the horizontal axis lists the eigenvectors of GGGD in the order of descending

eigenvalues, and the vertical axis shows their values of ||eee1||22 and ||eee2||22. Fig-

ure 2.11c depicts the discriminative abilities of the eigenvectors, which is the same

as Figure 2.10b.

We can clearly observe that the first few eigenvectors with the largest eigen-

values span the intersection of the two class subspaces of the fat dataset, because

||eee1||22 and ||eee2||22 of these eigenvectors are all zeros. However, we can also find that

the corresponding discriminative abilities of these eigenvectors are higher compared

with other eigenvectors, as shown in Figure 2.11c. That is, for the fat dataset, the

intersection between the two class subspaces has high discriminative ability.
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Figure 2.12: For the eigenvectors of GGGD of the meat dataset: their distances (||eee1||22 and
||eee2||22) to the two class subspaces, and their discriminative abilities.

In contrast to the relationship observed in the fat dataset, here we shall see that

the intersection can also have low discriminative ability.

The first eigenvector of the meat dataset is the intersection between the two

class subspaces, as shown in Figure 2.12a and Figure 2.12b. The discriminative

ability of this eigenvector is 0.6, which is low compared with many other eigenvec-

tors. In other words, for the meat dataset, the intersection of the two class subspaces

has low discriminative ability.

Despite the two datasets discussed above that there exists intersection between
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Figure 2.13: For the eigenvectors of GGGD of the Phenyl dataset: their distances (||eee1||22 and
||eee2||22) to the two class subspaces, and their discriminative abilities.

class subspaces, now we show another dataset, the Phenyl dataset, that it is also

possible that there is no intersection between two class subspaces.

We can observe from Figure 2.13a and Figure 2.13b that ||eee1||22 and ||eee2||22
of the first eigenvector are far from zeros. Thus there seems to be no intersection

between the two class subspaces for the Phenyl dataset.

Therefore, we can draw two conclusions based on the observations from Fig-

ure 2.11, Figure 2.12, and Figure 2.13. First, the intersection between class sub-

spaces does not always exist in all datasets. Second, even when the intersection

exists, there is no definitely negative correlation between the intersection and its

discriminative ability; that is, the discriminative ability of the intersection of two

class subspaces is data-dependent, not necessarily low.

The second conclusion above supports our argument that there is difference

between a class subspace and a class. The intersection represents the same direc-

tions that two class subspaces can take, which can be discarded if we aim to classify

two class subspaces. However, the intersection can be discriminative, and thus is

important and cannot be simply discarded when we aim to classify the samples of

two classes, which is actually the task of classification in practice.

2.2.4.2 Cross-validation of the dimension of the discriminatively or-

dered subspace

In the DOS projection, the dimension of DOS Ds is an important parameter we

need to tune. In this section, we discuss the effectiveness of using cross-validation
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to determine it.
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Figure 2.14: Effect of the dimension of Ds.

Figure 2.14 plots the effect of the dimension of Ds on the classification accu-

racy on the test sets of the three real datasets, where the dimension changes from

one to the total number of eigenvectors in VVV sort . One hundred experiments of DOS

are repeated for each dimension and the mean classification accuracies are plotted.

For the meat dataset, the dimension of Ds determined by 10-fold cross-

validation in Section 2.2.3, which uses the training set only, ranges from 41 to 47

in the repeated experiments. Figure 2.14a shows a small peak of the mean classifi-

cation accuracy of the test set around the dimension of 43, which is in line with the

dimension determined by the training set-based 10-fold cross-validation.

For the fat dataset, the same effectiveness can be observed: the peak of the

mean classification accuracy of the test set is around seven, as shown in Fig-

ure 2.14c, which is roughly consistent with the dimension (which is from two to

seven) determined by using 10-fold cross-validation on the training set.

For the Phenyl dataset, Figure 2.14b does not show an obvious peak, and the

mean classification accuracy of the test set seems to increase with the dimension and

become stable when the dimension is larger than 41. The dimension determined by

10-fold cross-validation using the training set ranges from 38 to 43, which also

conforms with the dimension of 41 in the test set.

In short, Figure 2.14 implies that the dimension of Ds determined by cross-

validation using the training set is roughly consistent with the dimension with the
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largest mean classification accuracy of the test set. Thus cross-validation is an ef-

fective way to determine the dimension of Ds for the DOS projection.

2.3 Conclusion
SIMCA is a widely-used subspace method for classifying two-class high-

dimensional spectral datasets. It suffers from the problem that the class subspaces

are built independently without considering between-class information. This prob-

lem can be tackled by projecting the data to a subspace more discriminative than the

original feature space before applying SIMCA. We have proposed a new method,

the DOS projection, to generate such a discriminative subspace, by considering the

between-class information and the discriminative ability of each basis vector of the

subspace. The experiments on three real-world spectral datasets have demonstrated

the effectiveness of the DOS projection.



Chapter 3

Dual of nearest-class-model methods:

a separating hyperplane classification

framework

SIMCA is one famous example of a category of popular classification methods:

the subspace-based classifiers, also known as the class modelling methods in the

chemometrics community or the subspace methods in the machine learning and

pattern recognition communities. In the subspace-based classifiers, each class is

modelled by a subspace generated from the training samples of that class, inde-

pendently of other classes; a test sample is assigned to the class with the highest

similarity between the sample and the class model.

Principal component (PC) subspace is a widely-used class subspace. The PC

subspace of a class is built through principal component analysis (PCA) of the train-

ing samples of that class, such that a class is represented by a low-dimensional linear

subspace spanned by a small number of selected PCs. The leading PCs, constructed

by the linear combinations of the original features, extract the most variable in-

formation in the class and remove a large amount of redundant information in the

original features. Hence the PC subspace has been widely used as a class represen-

tation, especially for classification of high-dimensional data.

SIMCA (Wold, 1976) is one representation of PC-subspace-based classifiers.

In SIMCA, the dissimilarity measure is the reweighted Euclidean distance from a
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test sample to a PC subspace; a test sample is assigned to the nearest PC subspace

based on this distance.

It is, however, not necessary to use subspaces to represent classes. The geomet-

ric convex model representation is another popular class representation approach for

classification tasks. The geometric convex model for a class is constructed by a lin-

ear combination of class samples, with certain constraints on the linear combination

coefficients.

The convex hull representation (Nalbantov et al., 2006; Cevikalp and Triggs,

2010; Cevikalp et al., 2008; Zhou and Shi, 2009) is one geometric model that at-

tracts a lot of attention recently. Nalbantov et al. (2006) propose the nearest convex

hull classification, which uses a convex hull model to represent a class and classifies

a test sample to the class with the nearest convex hull. The convex hull model of

a class is constructed by the convex combination, i.e. the linear combination with

nonnegative and sum-to-one constraints on the coefficients, of the training samples

of that class. The dissimilarity measure is the Euclidean orthogonal distance from a

test sample to a convex hull (Nalbantov et al., 2006).

The convex cone model has also been used as class representation for face

recognition (Kobayashi and Otsu, 2008). A convex cone model is constructed by the

conic combinations of the class samples, i.e. the linear combinations with nonneg-

ative coefficients. Kobayashi and Otsu (2008) propose the cone-restricted subspace

method, using the angle between a test sample and a convex cone for classification.

The PC subspace is a set of vectors that are linear combinations of the PCs

with no constraints on the coefficients. Thus the PC subspace covers an infinite

area that has weak constraints on the location of a class within its class subspace,

which is considered as a loose representation of the class. In contrast, the geometric

convex model provides a restricted area to represent the class by setting constraints

on the linear combination coefficients. The restricted area is bounded by the class

samples that are used to construct the convex model. In addition, the coefficients

of the convex models usually have physical meanings in real-world applications,

such as the abundances of the endmembers in hyperspectral image unmixing and
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the compositions of chemical compounds in chemometrics.

The convex hull model adopts the convex constraints on the linear combina-

tion coefficients. However, the convex constraint is often too tight in the sense that

the classes often extend well beyond the convex hulls (Cevikalp et al., 2008). Con-

sidering the tightness of a model, a convex cone model lies in between a linear

subspace model and a convex hull model. A convex cone is more restricted than a

linear subspace because of the nonnegative constraints on the coefficients, while is

looser than a convex hull because the conic combination constraint is looser than

the convex combination constraint.

The geometric convex-model-based classification methods have shown supe-

rior classification performances to the PC subspace classifiers (Nalbantov et al.,

2006; Kobayashi and Otsu, 2008). However, the literature of SIMCA have barely

explored the potentially beneficial changing of class models for better classifica-

tion of spectral data. In addition, the reason why the classification performance of

the geometric convex model is better for certain datasets is also barely explored in

literature.

In this chapter, we aim to use geometric convex class representation models,

the convex hull and the convex cone, in SIMCA instead of the PC class subspace,

for spectral data classification. We also aim to investigate and compare the classi-

fication schemes based on the three class representation models to assist the under-

standing of their classification performances for certain datasets.

To make the investigation more straightforward, we use the orthogonal distance

(OD) from a test sample to a class model as the dissimilarity measure (or classifi-

cation rule) for classification, i.e. a test sample is assigned to the class with the

shortest OD from that sample to the class model. We use OD instead of OD2 in this

chapter because OD can provide the same classification results as OD2 and is more

convenient for the investigation, especially the dual analysis. To avoid confusions

with SIMCA, we name the classification methods using different class models with

the dissimilarity measure OD as nearest class-model-based classification methods.

In this fashion, the PC subspace representation leads to the nearest subspace
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method (NSM), which is equivalent to SIMCA using OD as the classification rule

(SIMCA-OD); the convex hull model leads to the nearest convex hull method

(NCHM) (Nalbantov et al., 2006), which is equivalent to SIMCA-OD using con-

vex hulls as class models; and for the convex cone model, we propose the nearest

convex cone method (NCCM), which is equivalent to SIMCA-OD using convex

cones as class models. Note that NCCM is different from the method in Kobayashi

and Otsu (2008), since the dissimilarity measure is now distance instead of angle.

Since the models are built in different ways, a direct comparison of the three

methods is hard. To solve this problem, we shall seek a common platform for the

comparison of the three methods. We achieve this by noticing the link between

the geometric convex models and the separating hyperplanes for classification in

SVM (Bennett and Bredensteiner, 2000; Zhou et al., 2002). Bennett and Bre-

densteiner (2000) show that determining the best separating hyperplane in SVM

is equivalent to looking for the nearest points of the convex hulls of the training

samples of two classes, through the dual analysis for SVM.

In this chapter, we find the equivalent hyperplane-based classifiers for the three

methods through the dual analysis of their minimum distance problems. We show

that the minimum distance from a test sample to a class model is equivalent to the

maximum distance from that sample to a hyperplane. Thus for each class model,

we can find one separating hyperplane that separates the test sample from the class

training samples. The test sample is then classified to the class with the nearest

hyperplane. We show from a pure geometric view the theoretical results for the dual

analysis of the minimum distance problems in linear vector spaces with arbitrary

norms.

In this way, comparing the three different class-model-based classification

methods is transformed to comparing the separating hyperplanes found in the dual

analysis. The latter comparison is simpler than the former one because the hyper-

planes could be compared simply based on their parameters, i.e. normal vectors and

biases. In addition, the separating hyperplanes could assist the understanding of the

classification schemes of the class-model-based methods.
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Furthermore, we establish a separating hyperplane classification (SHC) frame-

work which generalises the class-model-based methods to a framework, based on

the separating hyperplanes found in the dual analysis. The SHC framework de-

scribes a category of classification methods that classify a test sample based on its

pair of separating hyperplanes. The test sample is assigned to the class with the

nearest hyperplane, based on the arbitrary-norm-measured distance. We show that

the normal vectors of the separating hyperplanes are of great importance to classifi-

cation: the more discriminative the normal vectors, the better the classification.

It is worth noting that the SHC framework is different from the extensions

of SVM based on a pair of separating hyperplanes in one-sided best fitting hy-

perplane classifier (1S-BFHC) or two-sided best fitting hyperplane classifier (2S-

BFHC) (Cevikalp, 2016), generalised eigenvalue proximal support vector ma-

chine (GEPSVM) (Mangasarian and Wild, 2006) or twin support vector machine

(TSVM) (Jayadeva et al., 2007). In Cevikalp (2016), Mangasarian and Wild (2006)

and Jayadeva et al. (2007), the pair of separating hyperplanes are found for the

pair of class models and are fixed for all the test samples, making the classification

boundary linear for linear kernels. In contrast, the pair of separating hyperplanes

in our SHC framework vary with test samples, making the classification boundary

nonlinear.

By linking the class-model-based methods with the hyperplane-based classifi-

cation through the SHC framework, we could design complicated classifiers under

the framework, inspired by the well-studied SVM and their extensions based on

hyperplanes. For example, the kernel tricks could be easily induced; and the op-

timisation problems could also be solved by the sequential minimal optimisation

(SMO) algorithm used in SVM.

Empirically, we apply NSM, NCHM and NCCM to three real spectroscopic

datasets and show that the classification performances of the three methods are data-

dependant. We are enabled to explain why one class model is better than others for

a specific dataset, based on the comparison of the normal vectors of the separating

hyperplanes. Moreover, we propose a novel data exploration scheme to analyse the



54

properties of a dataset to understand why such properties can make a class model

suitable for the data.

In summary, the contributions of this chapter are fivefold.

1. In Section 3.1.2.2, we propose NCCM to fill the gap between NSM and

NCHM for nearest class-model-based methods, considering the model tight-

ness.

2. We present the dual analysis of NSM, NCHM and NCCM in Section 3.2.3.

We also prove the theoretical results for NCCM based on the relationship

between a convex cone and its polar cone.

3. In Section 3.2.4, we establish a separating hyperplane classification (SHC)

framework for the nearest class-model-based methods on arbitrary norms.

The normal vectors of the separating hyperplanes are shown vital to classifi-

cation. The SHC framework could improve the understanding of the nearest

class-model-based methods and provide easy comparison of NSM, NCHM

and NCCM.

4. We propose a data exploration scheme in Section 3.3.5, to analyse the proper-

ties of datasets and explain why such properties make a class model suitable

for the data.

5. Throughout the chapter, we provide geometric intuitions to assist the under-

standing of the methods, the theoretical analysis and the empirical analysis.

Overall this chapter is organised as follows. In Section 3.1, we discuss NSM,

NCHM and NCCM. In Section 3.2, we show the dual analysis of NSM, NCHM

and NCCM. In Section 3.3, NSM, NCHM and NCCM are compared on three real

datasets. Section 3.4 presents some concluding remarks.
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3.1 Methodology

3.1.1 PC Subspace representation: nearest subspace method

(NSM)

We first define subspace as follows.

Definition 3.1.1. Subspace. Suppose S = {xxxi}N
i=1 is a subset of Rp. The set L (S) =

{vvv : vvv =
N
∑

i=1
αixxxi | xxxi ∈ S,αi ∈ R}, called the subspace generated by S, consists of

all vectors in Rp which are linear combinations of vectors in S. We also say that the

vectors in S span the subspace L (S).

In the training phase, NSM builds class subspaces for the classes separately

using PCA. We denote XXXk ∈ Rnk×p as the training set of class k (k = 1,2 for two-

class classification), where nk is the number of training samples and each row of XXXk

represents a p-dimensional training sample. The PC subspace for the kth class can

be obtained from applying the reduced singular value decomposition to the column-

centred XXXk:

XXXk(c) =UUUkΛΛΛkVVV T
k , (3.1)

where the rows of UUUk ∈ Rnk×qk denote the normalised PC scores; the columns of

VVV k ∈ Rp×qk denote the PCs; and ΛΛΛk is a diagonal matrix of singular values {λ1 ≥
λ2 ≥ . . .≥ λqk}. The rk-dimensional (rk ≤ qk) PC subspace L (WWW k) is spanned by

the first rk PCs WWW k ∈ Rp×rk .

In the test phase, a new sample xxxnew ∈ R1×p is assigned according to the dis-

tance from xxxk,new
c to the class subspace L (WWW k), where xxxk,new

c is centred by the mean

vector of XXXk. The distance is defined as the minimum distance from xxxk,new
c to the

vectors in L (WWW k):

dL
k = min

αααL
k

||xxxk,new
c − (WWW kααα

L
k )T ||2, (3.2)

where αααL
k ∈ Rrk×1 contains rk coefficients associated with the rk PCs in WWW k. The

minimisation problem (3.2) has a closed-form solution of αααL ∗
k = (xxxk,new

c WWW k)
T .
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Thus the distance can be written as

dL
k = ||xxxk,new

c − xxxk,new
c PPPk||2, (3.3)

where PPPk =WWW kWWW T
k is the projection matrix of the subspace L (WWW k); xxxk,new

c PPPk is the

projection of xxxk,new
c on L (WWW k). NSM assigns xxxnew to the class with the smallest

dL
k :

ŷL = argmin
k

dL
k , (3.4)

where ŷL denotes the predicted label for xxxnew by NSM. NSM can be considered as

SIMCA using OD as the classification rule.

x2

PC1

PC1

X2

xnew
d1

d2

x1

X1

Figure 3.1: An illustrative example of NSM in a 2D space.

An illustrative example of a PC subspace and NSM is shown in a 2D space in

Figure 3.1. The blue and red straight lines indicate the first PCs of the two classes,

respectively. If we set r1 = r2 = 1, then the distances from xxxnew to the two class

subspaces are shown as d1 and d2, respectively. In this example, we assign xxxnew to

class 1 since d1 < d2.

3.1.2 Geometric convex model representation

There are two major differences between the PC subspace representation and the

geometric convex model representation. First, the PC subspace is spanned by PCs
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which are the linear combinations of the original features, while the geometric con-

vex model is constructed by the linear combinations of the class samples. To be

more specific, the PC subspace is spanned by a set of vectors in WWW k, which are lin-

ear combinations of the original features in XXXk, i.e. the columns of XXXk. In contrast,

the geometric convex model is for the linear combinations of the rows of XXXk.

Second, since there is no constraints on the linear combination, the PC sub-

space representation has weak information about the location of the class samples.

However, the geometric convex model representation imposes constraints on the

linear combination of the training samples, providing more restricted areas for class

representation.

Here we introduce the nearest convex hull method (NCHM) and the nearest

convex cone method (NCCM), both based on the geometric convex model repre-

sentation.

3.1.2.1 Nearest convex hull method (NCHM)

Nalbantov et al. (2006) propose the NCHM. We define convex set and convex hull

as follows.

Definition 3.1.2. Convex set. A set K in a linear vector space is said to be convex

if, given xxx1,xxx2 ∈ K, all points of the form αxxx1+(1−α)xxx2 with 0≤ α ≤ 1 are in K.

Definition 3.1.3. Convex hull. Let S = {xxxi}N
i=1 be an arbitrary set in a linear vector

space. The convex hull, ch(S) = {zzz : zzz =
N
∑

i=1
αixxxi | xxxi ∈ S, 0≤ αi ≤ 1,

N
∑

i=1
αi = 1},

is the smallest convex set containing S. In other words, ch(S) is the intersection of

all convex sets containing S.

Given the training samples XXXk ∈ Rnk×p of class k, the convex hull built by XXXk

is the set of vectors zzz ∈ Rp:

ch(XXXk) = {zzz : zzz = XXXT
k ααα

CH
k | 0≤ ααα

CH
k ≤ 1, 111T

ααα
CH
k = 1}, (3.5)

where αααCH
k ∈ Rnk×1 is a vector containing the coefficients associated with the nk

training samples in XXXk, 0≤αααCH
k ≤ 1 means each element are in [0,1], and 111∈Rnk×1

has all elements of one.
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Given a new sample xxxnew ∈ R1×p, the distance from xxxnew to the convex hull

ch(XXXk) of the kth class is

dCH
k = min

αααCH
k

||xxxnew− (XXXT
k ααα

CH
k )T ||2,

s.t. 0≤ ααα
CH
k ≤ 1, 111T

ααα
CH
k = 1. (3.6)

Then xxxnew is assigned to the class with the smallest dCH
k :

ŷCH = argmin
k

dCH
k , (3.7)

where ŷCH denotes the predicted label for xxxnew by NCHM.

x1

x2

X2

d1

d2
xnew

X1

Figure 3.2: An illustrative example of NCHM in a 2D space.

An illustrative example of NCHM is shown in a 2D space in Figure 3.2. The

convex hulls of the two classes are shown as the blue and red polygons, respectively.

Since d1 < d2, we assign xxxnew to class 1 in this example.

3.1.2.2 Nearest convex cone method (NCCM)

In NCCM, we define cone, convex cone and convex polyhedral cone as follows.

Definition 3.1.4. Cone. A set C in a linear vector space is said to be a cone with

vertex at the origin if xxx in C implies that αxxx ∈C for all α ≥ 0.



3.2. Dual analysis of the minimum distance problems 59

Definition 3.1.5. Convex polyhedral cone. A set C is a convex cone if it is a cone

and is convex. A convex polyhedral cone is a convex cone that is generated by a

finite number of generators. Let S = {xxxi}N
i=1 be an arbitrary set in a linear vector

space. The set, cc(S) = {zzz : zzz =
N
∑

i=1
αixxxi | xxxi ∈ S,αi ≥ 0}, is the convex polyhedral

cone generated by S.

Given the training samples XXXk ∈ Rnk×p of class k, the convex polyhedral cone

built by XXXk is defined as a set of vectors zzz ∈ Rp:

cc(XXXk) = {zzz : zzz = XXXT
k ααα

CC
k | αααCC

k ≥ 0}, (3.8)

where αααCC
k ∈Rnk×1 and αααCC

k ≥ 0 means each element in αααCC
k is nonnegative. Thus

each vector in cc(XXXk) is a conical combination of the samples in XXXk.

To assign a new sample xxxnew ∈ R1×p to one of the classes, we calculate the

distance from xxxnew to cc(XXXk):

dCC
k = min

αααCC
k

||xxxnew− (XXXT
k ααα

CC
k )T ||2, s.t. ααα

CC
k ≥ 0. (3.9)

Then xxxnew is assigned to the class with the minimum dCC
k :

ŷCC = argmin
k

dCC
k , (3.10)

where ŷCC denotes the predicted label for xxxnew by NCCM.

An illustrative example of NCCM is shown in a 2D space in Figure 3.3. The

convex cones for the two classes are shown as the blue and red triangular area,

respectively. Since d1 < d2, we assign xxxnew to class 1 in this example.

3.2 Dual analysis of the minimum distance problems
The minimum distance problems (3.2), (3.6) and (3.9) play key roles in NSM,

NCHM and NCCM. However, the underlying classification mechanism of the mini-

mum distance problems are barely explored theoretically in literature, which makes

it difficult to explain their classification performances on certain datasets. To make
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Figure 3.3: An illustrative example of NCCM in a 2D space.

the analysis and comparison of NSM, NCHM and NCCM easier, we aim to find

the sets of separating hyperplanes associated with each methods. The separating

hyperplanes could largely assist the understanding of the classification methods.

Dual analysis of the minimum distance problems enables us to find the sepa-

rating hyperplanes, such that finding the minimum distance from a sample to a class

model is equivalent to find the maximum distance from that sample to a separating

hyperplane. Different from the Euclidean space settings used in the previous sec-

tion, we discuss more general cases in the linear vector space with arbitrary norm

in this section. Examples and illustrations for the Hilbert space are also discussed

for better geometric understanding.

We first introduce some essential definitions related to the dual analysis and

define the hyperplane properly. Then we show the dual analysis for the three min-

imum distance problems (3.2), (3.6) and (3.9). The dual analysis of minimum dis-

tance to the subspace and the convex hull could be found in Luenberger (1969) and

we only show their results here. We show a detailed proof of the duality theorem of

minimum distance to the convex cone based on an observation of the relationship

between a convex cone and its polar cone.

3.2.1 Preliminary

Definition 3.2.1. Normed linear vector space. A normed linear vector space is a
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vector space X , on which a real-valued function is defined to map each element xxx

in X into a real number ||xxx|| called the norm of xxx. The norm satisfies the following

axioms:

1. ||xxx|| ≥ 0 for all xxx ∈X , ||xxx||= 0 if and only if xxx = 0.

2. ||xxx+ yyy|| ≤ ||xxx||+ ||yyy|| for each xxx,yyy ∈X .

3. ||αxxx||= |α|||xxx|| for all scalar α and each xxx ∈X .

Definition 3.2.2. Linear functional. A transformation from a vector space X into

the space of real scalars is said to be a functional on X . A functional f on a vector

space X is linear if for any two vectors xxx,yyy ∈X and any two scalars α , β there

holds f (αxxx+βyyy) = α f (xxx)+β f (yyy).

Definition 3.2.3. The normed dual space. Let X be a normed linear vector space.

The space of all bounded linear functionals on X is called the normed dual of X

and is denoted by X ∗. The norm of an element f ∈X ∗ is || f ||= sup||x||≤1 | f (x)|.

Following Luenberger (1969), we use xxx∗ to denote the linear functionals and

write 〈xxx,xxx∗〉 to denote f (xxx).

Definition 3.2.4. Real inner space. A real inner space is a real linear vector space

X together with an inner product, which is a map from X ×X to R and denoted

by 〈xxx,yyy〉 where xxx,yyy ∈X . The inner product satisfies the following axioms:

1. 〈xxx,yyy〉= 〈yyy,xxx〉.

2. 〈xxx+ yyy,zzz〉= 〈xxx,zzz〉+ 〈yyy,zzz〉.

3. 〈λxxx,yyy〉= λ 〈xxx,yyy〉, where λ is a constant.

4. 〈xxx,xxx〉 ≥ 0; 〈xxx,xxx〉= 0 if and only if xxx is the origin.

Definition 3.2.5. Hilbert space. A complete real inner space is called a real Hilbert

space.

A Hilbert space has the following nice property.
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Theorem 3.2.1 (Luenberger (1969)). If xxx∗ is a bounded linear functional on a

Hilbert space H , there exists a unique vector www ∈H such that for all xxx ∈H ,

〈xxx,xxx∗〉= 〈xxx,www〉. Moreover, we have ||xxx∗||= ||www|| and every www determines a unique

bounded linear functional in this way.

3.2.2 Hyperplane

Based on the above definitions, we define a hyperplane as follows and show some

properties of a hyperplane that relates the primal problem with the dual problem.

Definition 3.2.6. Hyperplane. The translation of a subspace is said to be a linear

variety. A hyperplane H in a linear vector space X is a maximal proper linear

variety, that is, a linear variety H such that H 6= X , and if V is any linear variety

containing H, then either V = X or V = H.

Proposition 1. Let H be a hyperplane in a linear vector space X . Then there

is a linear functional f on X and a constant c such that H = {xxx : 〈xxx,xxx∗〉 = c}.
Conversely, if f is a nonzero linear functional on X , the set {xxx : 〈xxx,xxx∗〉 = c} is a

hyperplane in X . H is closed for every c if and only if f is continuous.

As stated in Proposition 1, hyperplanes have a close relationship with linear

functionals. Thus the primal problem can be related with the dual problem by using

the hyperplane as a media.

For a closed hyperplane H, we define two closed half-spaces: the negative

half-space {xxx : 〈xxx,xxx∗〉 ≤ c} and the positive half-space {xxx : 〈xxx,xxx∗〉 ≥ c}. The dis-

tance from a point to a hyperplane is of great importance in dual analysis, thus we

introduce it in Theorem 3.2.2.

Theorem 3.2.2 ((Zhou et al., 2002)). Let xxxe be an element in a real normed linear

space X and let d denote its distance from the hyperplane H: {xxx : 〈xxx,xxx∗〉 = c}.
Then,

d = inf
hhh∈H
||xxxe−hhh||= |〈xxxe,xxx∗〉− c|

||xxx∗|| .
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3.2.3 Dual analysis for NSM, NCHM and NCCM

3.2.3.1 Dual analysis of the minimum distance problem (3.2)

Theorem 3.2.3 (Luenberger (1969)). Let xxxe be an element in a real normed linear

space X and let d denote its distance from the subspace M . Suppose the orthogo-

nal complement of M is M⊥. Then,

d = inf
mmm∈M

||xxxe−mmm||= max
||xxx∗||≤1,xxx∗∈M⊥

〈xxxe,xxx∗〉, (3.11)

where the maximum on the right is achieved for some xxx∗0 ∈M⊥.

If the infimum on the left is achieved for some mmm0 ∈M , then xxx∗0 is aligned with

xxxe−mmm0, i.e. 〈xxxe−mmm0,xxx∗0〉= ||xxxe−mmm0||||xxx∗0||.

Based on Theorem 3.2.2, the right-hand side of (3.11) can be explained as

the maximum distance from xxxe to the hyperplane Hsub = {xxx : 〈xxx,xxx∗〉 = 0 | xxx∗ ∈
M⊥}, since the maximum is achieved when ||xxx∗||= 1. Thus Theorem 3.2.3 could

be understood as: The minimum distance from a point xxxe to the subspace M is

equivalent to the maximum distance from xxxe to the hyperplane Hsub.

For a better geometric understanding, we discuss Theorem 3.2.3 in the Hilbert

space. Based on Theorem 3.2.1, the dual space of a Hilbert space is itself. For each

xxx∗, we could find a unique www ∈H which is the normal vector of Hsub. Replace

xxx∗ by www, the right-hand side of (3.11), i.e. 〈xxxe,www〉, still denotes the distance from

xxxe to Hsub since the maximum is achieved for ||www|| = ||xxxe|| = 1. We also have

〈xxxe−mmm0,www0〉 = ||xxxe−mmm0||||www0||, thus xxxe−mmm0 = µwww0 (µ > 0). For any vector

mmm ∈M , 〈xxxe−mmm0,mmm〉 = 〈µwww0,mmm〉 = µ〈www0,mmm〉 = 0, as www0 ∈M⊥. This indicates

that xxxe−mmm0 has the same direction as www0 and xxxe−mmm0 is perpendicular to M .

Figure 3.4 shows an illustrative example of Theorem 3.2.3. Suppose xxx1, xxx2 and

xxx3 are the orthogonal bases for R3. Assume xxxe lies in the subspace spanned by xxx2

and xxx3 and M is the subspace spanned by xxx2. Thus M⊥ is the subspace spanned by

xxx1 and xxx3. Then the minimum distance from xxxe to M is achieved at the point mmm0;

and the maximum distance from xxxe to Hsub with normal vectors in M⊥ is attained

when www0 has the same direction as xxx3. We can find that these two distances are the
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x1

x3

xe

M

m0

M

dw0

HL

Figure 3.4: An illustrative example Theorem 3.2.3.

same, both equal to d. The hyperplane HL with the normal vector www0 is actually the

subspace spanned by xxx1 and xxx2. The vector xxxe−mmm0 has the same direction as www0.

This result is clear with simple geometry, if we treat mmm0 as the orthogonal projection

of xxxe on the subspace M .

3.2.3.2 Dual analysis of the minimum distance problem (3.6)

Theorem 3.2.4 (Luenberger (1969)). Let xxxe be a point in a real normed vector

space X and let d > 0 denote its distance from the convex set K having support

functional h, i.e. h(xxx∗) = supkkk∈K〈kkk,xxx∗〉. Then

d = inf
kkk∈K
||xxxe− kkk||= max

||xxx∗||≤1
[〈xxxe,xxx∗〉−h(xxx∗)], (3.12)

where the maximum on the right is achieved by some xxx∗0 ∈X ∗.

If the infimum on the left is achieved by some kkk0 ∈ K, then xxx∗0 is aligned with

xxxe− kkk0, i.e. 〈xxxe− kkk0,xxx∗0〉= ||xxxe− kkk0||||xxx∗0||.

The right-hand side of (3.12) can be understood as the maximum distance from

xxxe to the hyperplane HCH = {xxx : 〈xxx,xxx∗〉 = h(xxx∗)}. Thus Theorem 3.2.4 indicates

that the minimum distance from xxxe to the convex hull is equivalent to the maximum

distance from xxxe to the hyperplane HCH .

In the Hilbert space, we could find a unique www0 ∈H for xxx∗0. Since xxx∗0 is aligned
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with xxxe− kkk0, xxxe− kkk0 = µwww0 (µ > 0) and xxxe− kkk0 has the same direction as www0.

xe

w0

HCH

K
k0

d

Figure 3.5: An illustrative example of Theorem 3.2.4.

Figure 3.5 shows an intuitive example of Theorem 3.2.4 in R2. The minimum

distance from xxxe to K is achieved at point kkk0, which lies on the nearest face of K to

xxxe. The maximum distance between xxxe and HCH that separates xxxe and K is achieved

when the nearest face of K to xxxe is in HCH . The normal vector www0 is perpendicular

to HCH and has the same direction as xxxe− kkk0.

3.2.3.3 Dual analysis of the minimum distance problem (3.9)

Inspired by the relationship between M and M⊥ used in Theorem 3.2.3, we apply

the relationship between a convex cone and its polar cone to the dual analysis of

(3.9) and obtain Theorem 3.2.5. We first introduce the definition of a polar cone

and then show Theorem 3.2.5 and its proof.

Definition 3.2.7. Polar cone. Given a convex polyhedral cone C in a normed space

X , the set Cp = {xxx∗ ∈X ∗ : 〈xxx,xxx∗〉 ≤ 0, ∀xxx ∈C} is called the polar cone of C.

If xxxe is an interior point of C, then d = 0, which is a trivial case. Thus in the

following theorem, we discuss the case when xxxe is not an interior point of C with

d > 0.

Theorem 3.2.5. Let xxxe be an element in a real normed linear space X . Let d > 0
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denote the distance from xxxe to the convex cone C. Then,

d = inf
ccc∈C
||xxxe− ccc||= max

||xxx∗||≤1,xxx∗∈Cp
〈xxxe,xxx∗〉,

where the maximum on the right is achieved for some xxx∗0 ∈Cp.

If the infimum on the left is achieved for some ccc0 ∈C, then xxx∗0 is aligned with

xxxe− ccc0, i.e. 〈xxxe− ccc0,xxx∗0〉= ||xxxe− ccc0||||xxx∗0||.

Proof. We first show that there exist some xxx∗ ∈Cp with the hyperplane {xxx : 〈xxx,xxx∗〉=
0} being able to separate xxxe and C. The two closed half-spaces associated with

the hyperplane {xxx : 〈xxx,xxx∗〉 = 0} are {xxx : 〈xxx,xxx∗〉 ≥ 0} and {xxx : 〈xxx,xxx∗〉 ≤ 0}. When

xxx∗ ∈Cp, 〈ccc,xxx∗〉 ≤ 0 for ccc ∈C, and C is in the negative half-space. Since xxxe is not

an interior point of C, we could find some xxx∗ ∈Cp such that 〈xxxe,xxx∗〉 ≥ 0 and xxxe is

in the positive half-space. Thus xxxe and C lie in opposite half-spaces determined by

the hyperplane {xxx : 〈xxx,xxx∗〉= 0} with xxx∗ ∈Cp.

Let S(ε) be the sphere centred at xxxe of radius ε . For xxx∗ ∈Cp having 〈xxxe,xxx∗〉 ≥ 0

and ||xxx∗|| = 1, let ε∗ be the supremum of the ε’s for which the hyperplane {xxx :

〈xxx,xxx∗〉 = 0} separates C and S(ε). It is clear that 0 ≤ ε∗ ≤ d. Also 〈xxxe,xxx∗〉 = ε∗

when ||xxx∗||= 1. Thus, for every xxx∗ ∈Cp having 〈xxxe,xxx∗〉 ≥ 0 and ||xxx∗||= 1, we have

〈xxxe,xxx∗〉 ≤ d.

On the other hand, since C contains no interior point of S(d), there is a hyper-

plane separating C and S(d), and thus an xxx∗0 ∈Cp such that 〈xxxe,xxx∗〉= d.

To prove the alignment statement, suppose ccc0 ∈ C and ||xxxe− ccc0|| = d. Since

ccc0 ∈ C, 〈ccc0,xxx∗0〉 ≤ 0 and 〈xxxe − ccc0,xxx∗0〉 ≥ 〈xxxe,xxx∗0〉 = d. However, according to

the Cauchy-Schwarz inequality, 〈xxxe− ccc0,xxx∗0〉 ≤ ||xxxe− ccc0||||xxx∗0|| = d. Thus 〈xxxe−
ccc0,xxx∗0〉= ||xxxe− ccc0||||xxx∗0||= d and xxx∗0 is aligned with xxxe− ccc0.

Theorem 3.2.5 indicates that the minimum distance between xxxe and C is equiv-

alent to the maximum distance between xxxe and the hyperplane HCC = {xxx : 〈xxx,xxx∗〉=
0 | xxx∗ ∈Cp, ||xxx∗||= 1} that separates xxxe and C.

In the Hilbert space, we could find a unique www0 ∈H for xxx∗0. Substituting www0

with xxx∗0, we could get 〈xxxe,www0〉 = d. Also 〈xxxe− ccc0,www0〉= ||xxxe− ccc0||||www0|| = d. The
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equality holds when xxxe− ccc0 = µwww0 (µ > 0). Thus we could get the following two

conclusions. First, 〈ccc0,www0〉 = 0, which indicates that ccc0 and www0 are orthogonal.

Second, xxxe = ccc0+µwww0, which indicates that xxxe could be decomposed to ccc0 ∈C and

µwww ∈ Cp. These two conclusions indicates that the orthogonal decompositions of

xxxe to C and Cp are ccc0 and µwww0, respectively. Based on the Moreau’s theorem in the

Hilbert space stated below, ccc0 and µwww ∈Cp are the projections of xxxe on C and Cp,

respectively.

Theorem 3.2.6 (Moreau (1962)). Let C be a nonempty closed convex cone in H ,

and let xxx ∈H . Then the following statements are equivalent:

1. xxx = yyy+ zzz, yyy ∈C, zzz ∈Cp and 〈yyy,zzz〉= 0,

2. yyy = PCxxx and zzz = PCpxxx,

where PC and PCp denote the projection operators onto C and Cp, respectively.

xe

C

c0

d

w0

HCC

Cp

uw0

Figure 3.6: An illustrative example of Theorem 3.2.5.

Figure 3.6 illustrates Theorem 3.2.5 in R2. The minimum distance d from xxxe

to C is achieved by ccc0, which is the orthogonal projection of xxxe to the nearest face

of C to xxxe. The maximum distance from xxxe to HCC is achieved when HCC contains

the nearest face of C to xxxe. It is obvious that the distance from xxxe to this HCC is also

d. The normal vector associated with this hyperplane is www0, which has the same

direction as xxxe− ccc0; the point µwww0 is the orthogonal projection of xxxe to Cp.
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3.2.4 A separating hyperplane classification (SHC) framework

The dual analysis enables us to explain the classification schemes of NSM, NCCM

and NCHM from the separating hyperplane point of view. Theorems 3.2.3, 3.2.4

and 3.2.5 indicate that the three methods all classify a test sample by using a pair of

separating hyperplanes in two-class classification. Note that in this chapter we fo-

cus on two-class classification; multi-class classification could be obtained without

difficulty on the basis of two-class classification through applying the one-vs-one

or one-vs-all strategy (Bishop, 2006).

Suppose XXXk, Hk = {xxx : 〈xxx,xxx∗k〉= ck} denote the training set and the separating

hyperplane for the kth class respectively. Hyperplane Hk separates the new sample

xxxnew and the training set XXXk. The two separating hyperplanes, H1 and H2, divide

the original feature space into four parts: 1) {xxx : 〈xxx,xxx∗1〉 ≤ c1 and 〈xxx,xxx∗2〉 ≤ c2},
2) {xxx : 〈xxx,xxx∗1〉 ≥ c1 and 〈xxx,xxx∗2〉 ≤ c2}, 3) {xxx : 〈xxx,xxx∗1〉 ≤ c1 and 〈xxx,xxx∗2〉 ≥ c2} and 4)

{xxx : 〈xxx,xxx∗1〉 ≥ c1 and 〈xxx,xxx∗2〉 ≥ c2}. A new sample xxxnew falls into one of the four

parts. Figure 3.7 shows a simple example of the locations of XXX1, XXX2 and xxxnew in the

space divided by H1 and H2.

H1 H2

X1

X2

xnew
d1

d2

Figure 3.7: The separating hyperplane classification framework.

Based on the two separating hyperplanes, we could derive a separating hyper-

plane classification (SHC) framework for different class representation models and



3.2. Dual analysis of the minimum distance problems 69

distances with arbitrary norms: First, for the kth class, we obtain

max
ck,||xxx∗k ||=1

dk = 〈xxxnew,xxx∗k〉− ck

s.t. constraint(xxx∗k ,ck), (3.13)

where constraint(xxx∗k ,ck) denotes constraints on xxx∗k and ck. Then, xxxnew is assigned to

the class k with the minimum dk.

This SHC framework for two-class classification can be explained as follows.

For each test sample, we find a pair of separating hyperplanes that separate the test

sample and the two class models, respectively. The test sample is then assigned to

the class with the minimum distance from that sample to the corresponding hyper-

plane.

In NSM, NCHM and NCCM, the Euclidean norm || · ||2 is used. We sum-

marise constraint(xxx∗k ,ck) for NSM, NCHM and NCCM in Table 3.1. Note that xxx∗k is

replaced by wwwk.

Table 3.1: constraint(xxx∗k ,ck) for NSM, NCHM and NCCM.

NSM NCHM NCCM
〈xxxk

i PPPk,wwwk〉= 0 〈xxxnew,wwwk〉 ≤ ck 〈xxxnew,wwwk〉 ≤ 0
ck = 0 〈xxxk

i ,wwwk〉 ≥ ck 〈xxxk
i ,wwwk〉 ≥ 0
ck = 0

PPPk denotes the projection matrix for class k.
xxxk

i ∈ R1×p denotes the ith row in XXXk.

Besides the constraints listed in Table 3.1, other constraints could also be spec-

ified based on the properties of the dataset and the requirements from the user, to

extend further.

In the SHC framework, the normal vectors of the separating hyperplanes plays

important roles in classification. Theorems 3.2.3, 3.2.4 and 3.2.5 suggest that the

dual function xxx∗0 that determines the separating hyperplane is aligned with the vector

xxxnew− xxx0, where xxx0 is the nearest point to xxxnew in the class model. In the Hilbert

space, this means that the normal vector of the separating hyperplane is parallel with

xxxnew− xxx0. The norm of xxxnew− xxx0 is defined as the distance from xxxnew to the class
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model. Thus the discriminative information contained in the direction of xxxnew− xxx0,

which is also the direction of the associated normal vector of the hyperplane, is

vital to classification. The more the discriminative information contained in the

normal vector, the higher the classification accuracy. In other words, to get better

classification, constraints should be specified to make the normal vector contain

more discriminative information.

The SHC framework is not only restricted to the standard nearest-class-model

methods. In the nearest-class-model methods, the between-class information is not

used in classification since the class models are built independently. To further im-

prove the classification performance, the discriminative between-class information

could be imposed as constraints to get separating hyperplanes better for classifi-

cation. In this way, we can actually build class models with information from all

classes and make the class models more discriminative as desired. For a simple

example, to find the hyperplane of class k for xxxnew, we could add constraints into

the optimisation problem (3.13) to force the training samples of class k and those of

the other class to lie on the opposite sides of the hyperplane. With such additional

constraints, the information from the other class can also help to find the hyperplane

for class k.

Note that the SHC framework is different from SVM and its extensions that are

based on a pair of separating hyperplanes, i.e. 1S-BFHC and 2S-BFHC (Cevikalp,

2016), GEPSVM (Mangasarian and Wild, 2006) and TSVM (Jayadeva et al., 2007).

In SVM, only one separating hyperplane is determined for all test samples based on

the information from two classes together. In 1S-BFHC, 2S-BFHC, GEPSVM and

TSVM, one hyperplane is found for each class such that it is closer to the samples

of one class while far from the samples from the other class; but as in SVM, the pair

of hyperplanes are fixed for all test samples. Thus in SVM and its extensions with

linear kernels, the classification boundary is linear. However, in our case, different

test samples are associated with different pairs of hyperplanes, which makes the

classification boundary nonlinear.

Although there are differences between the SHC framework and SVM and its
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extensions, the well studied strategies for finding better separating hyperplanes in

SVM and its extensions could also be introduced to the SHC framework to get better

classifiers. For example, the kernel tricks could be used to introduce nonlinearity

and the SMO algorithm could be applied to solve the optimisation problems.

3.3 Experiments
In the following experiments, we show the classification and analysis of NSM,

NCHM and NCCM on three real datasets: the fat dataset, the meat dataset and

the Phenyl dataset.

3.3.1 Datasets

The fat dataset, the meat dataset and the Phenyl dataset are used in the experiments.

Detailed descriptions of the three datasets can be found in Chapter 2 Section 2.2.1.

For the fat dataset, a training set contains 100 randomly selected samples, with

35 samples of less than 20% fat and 35 samples of more than 20% fat, and a test set

contains the remaining samples.

For the meat dataset, a training set contains 27 chicken samples and 27 turkey

samples, and a test set contains 28 chicken samples and 27 turkey samples.

For the Phenyl dataset, 100 samples are randomly selected and used in the

experiments. In the 100 samples, 50 samples contain the phenyl substructure and

50 samples do not contain the structure. A training set consists of 25 samples with

the phenyl substructure and 25 without the substructure, and a test set consists of 25

with the phenyl substructure and 25 without the substructure.

3.3.2 Experiment settings

In NSM, the dimensions of the two class subspaces are tuned by 10-fold cross-

validation on the training set. The dimensions are chosen to minimise the classi-

fication error. In NCHM, the optimisation problem (3.6) is solved using the ‘cvx’

package in MATLAB. In NCCM, the optimisation problem (3.9) is solved using

the ‘lsqnonneg’ function in MATLAB. All the experiments are repeated 100 times

and the classification accuracies of all the experiments are recorded and depicted in

boxplots.
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3.3.3 Classification Results
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(a) The fat dataset.
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(b) The meat dataset.
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(c) The Phenyl dataset.

Figure 3.8: The classification accuracies of NSM, NCHM and NCCM on the three datasets.

The classification accuracies of NSM, NCHM and NCCM for the three datasets

are shown in Figure 3.8. It is clear that their relative performances are different for

different datasets.

For the fat dataset, it is clear that the geometric convex model representations

(NCHM and NCCM) are better than the PC subspace representation (NSM) in clas-

sification, as shown in Figure 3.8a. However, for the meat and Phenyl datasets, the

geometric convex models are worse than the PC model, as shown in Figure 3.8b

and Figure 3.8c, respectively.

Two summaries could be drawn from Figure 3.8. First, the classification per-

formances of NSM, NCHM and NCCM are data-dependant. Second, the perfor-

mance of NCCM is between that of NSM and NCHM for all three datasets. This

makes sense since the convex cone model is tighter than the PC subspace while

looser than the convex hull model.
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3.3.4 Analysis of classification results

Section 3.3.3 shows that the classification performances of NSM, NCHM and

NCCM are data-dependant. To understand this pattern, we compare the normal

vectors of the pairs of separating hyperplanes of the three methods. As discussed in

Section 3.2.4, the more discriminative the normal vectors are, the higher the classi-

fication accuracy. However, it is hard to determine the discriminative ability of the

normal vectors directly. In this section, we show the discriminative ability of the

normal vectors through their relationships with PCs, whose discriminative ability

could be readily determined by the classification performance (Zhu et al., 2017). If

the direction of the normal vector is similar to those of the discriminative PCs, then

the normal vector contains discriminative information.

Here the discriminative ability of a PC is assessed by the classification accuracy

of linear discriminative analysis (LDA) of the samples projected to that PC. The

relationship between a normal vector www ∈ Rp×1 and a PC vvv ∈ Rp×1 is measured by

their absolute cosine similarity:

sim(www,vvv) =
|wwwT vvv|
||www||2||vvv||2

.

3.3.4.1 The fat dataset

On the fat dataset, NCHM and NCCM provide better results than NSM (Fig-

ure 3.8a), which indicates that the separating hyperplanes found by NCHM and

NCCM are better for classifying the fat dataset than those found by NSM. To fur-

ther investigate and illustrate this, here we show an exemplar sample from the “less

than 20%” class that is correctly classified by NCHM and NCCM, while wrongly

classified by NSM. Each classification method is associated with a pair of sepa-

rating hyperplanes with normal vectors wwwmethod
k , where the superscript denotes the

classification method and the subscript denotes the class.

To measure the relationship between the normal vectors and the PCs, we plot

their cosine similarities against the first 20 PCs in Figure 3.9a and Figure 3.9b for

the “less than 20%” subspace and the “more than 20%” subspace, respectively. The
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Figure 3.9: The discriminative ability of the normal vectors of NSM, NCHM and NCCM
for the fat dataset. (a) and (b): the cosine similarities between the normal
vectors and the PCs for the “less than 20%” subspace and the “more than 20%”
subspace, respectively. (c) and (d): the discriminative ability of the PCs of the
two subspaces.

higher the cosine similarity, the closer the directions of the normal vector and the

PC. The overlapping curves of wwwCH
1 and wwwCC

1 (and those of wwwCH
2 and wwwCC

2 ) suggest

that the normal vectors of the pair of separating hyperplanes in NCHM and NCCM

to classify this test sample are the same. In contrast, the normal vectors of NSM

are different from those of NCHM and NCCM, indicated by the blue dashed curve

being quite different from the black and red curves.

Each curve in Figure 3.9a and Figure 3.9b shows a unique peak, i.e. the PC

with the direction most similar to the normal vector, which can be used to assess the

discriminative ability of the normal vectors. If the most similar PC is discriminative,

then the normal vector is believed to be discriminative. The assessment of discrim-

inative ability of the first 20 PCs is depicted in Figure 3.9c and Figure 3.9d, where

the red horizontal lines indicates the classification accuracy of 0.5. The PCs with
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the classification accuracies above the red line are believed to be discriminative.

For the “less than 20%” subspace, by comparing Figure 3.9a and Figure 3.9c,

we could observe that the normal vectors of the three methods are all discriminative;

wwwCH
1 and wwwCC

1 have the most similar directions as the third PC (PC3), as shown in

Figure 3.9a, and PC3 is highly discriminative, as shown in Figure 3.9c. Similarly,

wwwS
1 has the most similar direction as PC5, which is also highly discriminative.

However, for the “more than 20%” subspace, Figure 3.9b and Figure 3.9d show

that the normal vectors of NSM are not discriminative, although the normal vectors

of NCHM and NCCM remains discriminative: wwwS
2 has the most similar direction to

PC6, which has a classification accuracy less than 0.5 and is not discriminative.

Hence, for the fat dataset, we can suggest that the normal vectors of NCHM

and NCCM are more discriminative than those of NSM, which explains to some

extent why NSM performs worse than NCHM and NCCM (Figure 3.8a).

3.3.4.2 The meat dataset

The classification performance of NSM is better than those of NCHM and NCCM

for the meat dataset (Figure 3.8b). As with the analysis in Section 3.3.4.1, Fig-

ure 3.10 shows the results for one meat sample that is correctly classified by NSM

while wrongly classified by NCHM and NCCM.

For the chicken subspace, it is clear that wwwCH
1 and wwwCC

1 have the most similar

directions to PC4, which is not discriminative, as shown in Figure 3.10a and Fig-

ure 3.10c. However, wwwS
1 has the most similar direction to PC9, which is relatively

discriminative compared with PC4.

The results for the turkey subspace are similar to those of the chicken subspace.

For the turkey subspace, wwwS
2 has the most similar direction to PC8 and PC10, which

are very discriminative as indicated by their high classification accuracies. How-

ever, wwwCH
2 has the most similar direction to PC1 and PC3, and wwwCC

2 has the most

similar direction to PC3 and PC5. Although PC1 is discriminative, PC3 and PC5

are not discriminative. Thus wwwCH
2 and wwwCC

2 are not as discriminative as wwwS
2 .

Considering all the above results, we can conclude that, for the meat dataset,

the normal vector of NSM is more discriminative than those of NCHM and NCCM.
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Figure 3.10: The discriminative ability of the normal vectors of NSM, NCHM and NCCM
for the meat dataset. (a) and (b): the cosine similarities between the normal
vectors and the PCs for the chicken subspace and the turkey subspace, respec-
tively. (c) and (d): the discriminate ability of the PCs of the two subspaces.

Therefore, it is reasonable that NSM performs better than NCHM and NCCM (Fig-

ure 3.8b).

3.3.4.3 The Phenyl dataset

For the Phenyl dataset, NSM performs slightly better than NCHM and NCCM (Fig-

ure 3.8c). Again, we show the results of an illustrative sample from the “with

Phenyl structure” class that is correctly classified by NSM while wrongly classi-

fied by NCHM and NCCM in Figure 3.11.

Different from Figure 3.9 for the fat dataset and Figure 3.10 for the meat

dataset, the normal vectors of NSM, NCHM and NCCM are not very similar to

any of the PCs, as indicated by the low cosine similarities shown in Figure 3.11a

and Figure 3.11b. Also the discriminative ability of the PCs are not high, i.e. around

0.5, as shown in Figure 3.11c and Figure 3.11d.

The curve of wwwS
1 is very close to those of wwwCH

1 and wwwCC
1 . However, wwwS

1 is closer
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Figure 3.11: The discriminative ability of the normal vectors of NSM, NCHM and NCCM
for the Phenyl dataset. (a) and (b): the cosine similarities between the normal
vectors and the PCs for the “with Phenyl structure” subspace and the “without
Phenyl structure” subspace, respectively. (c) and (d): the discriminate ability
of the PCs of the two subspaces.

to PC3 (which has the highest classification accuracy) than wwwCH
1 and wwwCC

1 . Similarly,

the biggest difference between wwwS
2 and wwwCH

2 and wwwCC
2 is that wwwS

2 has slightly higher

similarities with PC3, PC4, PC6 and PC7, with PC4 and PC7 slightly discrimina-

tive. Thus the slightly more discriminative ability of wwwS
1 and wwwS

2 makes NSM slightly

better than NCHM and NCCM in classifying the Phenyl dataset (Figure 3.8c).

3.3.5 A scheme to analyse the data distributions

In this section, we would like to explore further the distribution properties of the

three datasets, to show which properties make them suitable for one or more of the

classification methods. We aim to check two properties of the data of each class:

the variation of the data and the shape of the geometric convex class models.

The variational property is important to assess the data distribution. It indicates

the most variable information in the data and could be easily found by the leading
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PCs.

Since NCHM and NCCM are based on the geometric convex models, the sam-

ples that determine the geometric boundaries of the models are of great importance

to describe the shapes of the geometric models. Since we aim to analyse the prop-

erties related to classification, we care more about the samples on the geometric

boundaries that are related to classification, i.e. the samples that are also close to

the classification boundary of two classes. Conceptually these samples are simi-

lar to support vectors in SVM. We name them as classification representative (CR)

samples and propose the following simple, effective scheme to find them.

We observe that the solutions of the coefficient vectors αααCH
k and αααCC

k in the

minimum distance problems (3.6) for NCHM and (3.9) for NCCM are usually

sparse, i.e. some of the entries of the coefficient vectors are zeros or very close

to zeros. Remember that the coefficient vector is constructed by the linear combi-

nation coefficients of the training samples to reconstruct a new test sample. Thus

the sparse αααCH
k and αααCC

k indicate that only a fraction of the training samples are

selected to reconstruct a test sample in NCHM and NCCM.

To find the CR samples of one class that are close to the model of the other

class, we use the training samples from one class to reconstruct the test sample

from the other class. A test sample from class k1 selects several nearest training

samples from class k2 to reconstruct itself, as the distance from the test sample to

the reconstructed sample should be minimised. The selected training samples of

class k2 to reconstruct the test sample from class k1 satisfy the two requirements of

CR samples, i.e. close to both the geometric boundary of the class model and the

classification boundary of two classes. Thus the CR samples of class k2 could be

found based on the reconstruction coefficients of the test samples from class k1. The

most frequently selected training samples of class k2 to reconstruct the test samples

from class k1 are chosen as the CR samples of class k2. We show an example of

finding the CR samples of class 1 based on the test samples of class 2 as follows.

Suppose the CR samples of the convex cone model of class 1 is denoted by

XXX1
CR ∈Rm×p, where the superscript 1 denotes class 1 and m is the number of repre-
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sentative samples. Denote the ith test samples from class 2 as xxx(2)newi (i = 1, . . . ,n2),

where n2 is the number of test samples from class 2. We solve the following prob-

lem for all n2 samples:

min
αααCC

1i

||xxx(2)newi− (XXXT
1 ααα

CC
1i )

T ||22, s.t. ααα
CC
1i ≥ 0, i = 1, . . . ,n2, (3.14)

where XXX1 ∈Rn1×p is the training set of class 1. We denote AAA1 = [αααCC∗
11 ,αααCC∗

12 , . . . ,αααCC∗
1n2

]∈
Rn1×n2 , where αααCC∗

1i denotes the solution of (3.14). The nonzero entries in the ith

column of AAA1 denote the coefficients of the training samples from class 1 that are

selected to reconstruct the ith test sample from class 2. We count the number of

the nonzero entries for each row of AAA1 and denote it as ttt ∈ Rn1×1 to represent the

frequencies that the n1 training samples of class 1 are chosen to reconstruct the

test sample from class 2. We record the positions of the first m largest frequencies

and choose the training samples in the corresponding positions in XXX1 as the CR

samples XXX1
CR. The CR samples of the convex cone model of class 2, XXX2

CR, can be

found similarly. Furthermore, the CR samples of a convex hull model can be found

in a similar scheme by changing the constraints in (3.14) for a convex cone to the

constraints for a convex hull.

The cosine similarities between the data variation directions (i.e. the directions

of the PCs) and the directions of the CR samples are measured to estimate the

distribution of the data of each class. In the following analysis, we set m = 5,

i.e. select five CR samples for each class, and calculate their cosine similarity with

the first 20 PCs.

Another important property of the distributions of two classes that relates to

classification is their separation. We use the PC plot to visually check the separation

of two classes. The PCs are selected based on their discriminative ability as in

Figure 3.9, Figure 3.10 and Figure 3.11; the PCs with high discriminative ability

are selected for the plot.
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Figure 3.12: Cosine similarities between the CR samples and the PCs for the fat dataset.
(a) and (b): for NCCM on the “less than 20%” class and the “more than 20%”
class, respectively. (c) and (d): for NCHM on the two classes.

3.3.5.1 The fat dataset

In the fat dataset, totally 34 PCs could be generated for each class. We present the

relationships between the CR samples and the first 20 PCs in Figure 3.12. We first

observe that the CR samples have the same cosine similarities with each PC, which

indicates that the five CR samples found in our method have the same directions. In

addition, Figure 3.12a for NCCM is the same as Figure 3.12c for NCHM; similarly,

Figure 3.12b for NCCM is the same as Figure 3.12d for NCHM. This indicates that

NCHM and NCCM have the same CR samples, which is consistent with the results

in Figure 3.9a and Figure 3.9b that the curves of normal vectors for NCHM and

NCCM overlap with each other.

It is also clear that, for both NCHM and NCCM, the CR samples are orthogonal

to the first five leading PCs, as indicated by the zero cosine similarities. This result

indicates that the main variation direction of the data of each class is orthogonal to

the geometric boundaries of that class.
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Figure 3.13: PC plots of the fat dataset.

Figure 3.13 shows the projections of the training samples to the two class sub-

spaces. It is clear that the two classes can be well separated by using PC3 and PC4

in the “less than 20%” subspace and by using PC2 and PC3 in the “more than 20%”

subspace. This result indicates that the two classes can be well separated on some

directions in the original feature space. In addition, the cosine similarities between

the first five pairs of PCs of the two classes are 0.789, 0.687, 0.847, 0.944 and 0.880,

which suggests that the two classes have similar directions of the most variation.

Based on the above analysis, we could summarise the following properties of

the distribution of the fat data. Firstly, the directions of the most variation of the

two classes are similar. Secondly, for each class, the CR samples are orthogonal to

the leading PCs, i.e. the directions of the most variations. Thirdly, the two classes

are separable on some leading PCs. We show an illustrative example of data with

such properties in a 2D feature space in Figure 3.14.

As illustrated by Figure 3.14 and empirically validated by Figure 3.8a, the fat

dataset gives an example that the geometric convex models of different classes can

be well separated and thus are suitable for this dataset.

The reason of NSM providing worse classification performance is that the dis-

criminative information in the leading PCs are not used in the normal vectors, as

indicated in Figure 3.9. In an extreme case, if the two classes have almost the same

direction of their first PCs, PC1
1 and PC2

1 as shown in Figure 3.14, and the samples

from the two classes are separable on this direction, then NSM will fail to classify

test samples. This is because the discriminative information only exists in the first
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Figure 3.14: An illustration of the distribution of the fat data in a 2D space. The training
samples of the two classes are illustrated by blue and red ellipses; the first pair
of PCs are PC1

1 and PC2
1 for the two classes and the first pair of CR samples

are CR1
1 and CR2

1.

PCs, but they are used to build the PC class models whereas the residual PCs used

to calculate the distances for classification do not have sufficient discriminative in-

formation. However, in this case NCHM and NCCM may classify the test samples

well, as long as the two classes are separable and the CR samples are close to be-

ing orthogonal to the first PCs. This is one of the most suitable cases for NCHM

and NCCM than NSM. More general, the results suggest that if the two classes are

separable, then NCHM and NCCM can be better classifiers than NSM.

3.3.5.2 The meat dataset

Similarly to the analysis of the fat dataset, we show the relationships between the

CR samples and the PCs for the meat dataset in Figure 3.15. In contrast to the result

in Figure 3.12 for the fat dataset, Figure 3.15 shows that the cosine similarities

between the CR samples and the first three PCs are high for the meat dataset. This

suggests that the direction of the CR samples and those of the most variation are

very similar.

The PC plots of the meat dataset are shown in Figure 3.16, which shows that

the two classes are mixed in the middle, not as separate as in Figure 3.13 for the fat

dataset. In addition, the cosine similarities between the first two pairs of the PCs
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Figure 3.15: Cosine similarities between the CR samples and the PCs for the meat dataset.
(a) and (b): for NCCM on the chicken class and the turkey class, respectively.
(c) and (d): for NCHM on the two classes.
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Figure 3.16: PC plots of the meat dataset.
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of the two classes are 0.998 and 0.933, indicating extreme similarity between two

classes, especially the first pair.

Hence the properties of the distribution of the meat data can be summarised as

follows. Firstly, the directions of the most variation of the two classes are extremely

similar. Secondly, for each class, the CR samples have similar directions as the

leading PCs. Thirdly, the two classes are not separable. We illustrate the data

distribution with such properties in a 2D feature space in Figure 3.17.

x1

x2

CR1
1

CR1
2

PC1
1, PC1

2

Figure 3.17: An illustration of the distribution of the meat data in a 2D space. The black
dashed line indicates the same directions of the first PCs of the two classes.

Since the two classes are mixed together, as illustrated in Figure 3.17, it makes

sense that NCHM and NCCM provide bad classification. This is because the convex

hull models and the convex cone models are built using all the training samples in

the original feature space. The mixture of the training samples results in overlapping

of the geometric convex class models. Thus classifying a test sample is hard.

In contrast, NSM can capture the discriminative information from the residual

PCs, i.e. the PCs that are not used to build the class models and have nonzero cosine

similarities in Figure 3.10. Thus NSM can perform better in this case.

The results of the meat dataset suggests that when there is overlap between the

training samples of two classes, NCHM and NCCM should be used with caution.

A selection of training samples to build convex models with less overlap might be

a remedy to obtain better classification.
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3.3.5.3 The Phenyl dataset
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Figure 3.18: Cosine similarities between the CR samples and the PCs for the Phenyl
dataset. (a) and (b): for NCCM on the “with Phenyl structure” class and
the “without Phenyl structure” class, respectively. (c) and (d): for NCHM on
the two classes.

Different from the previous two datasets, there is no clear trends of the similar-

ities between the representative samples and the leading PCs for the Phenyl dataset,

as shown in Figure 3.18. Moreover, all the cosine similarities have small values.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

PC2

P
C

3

 

 

Do not contain Phenyl
Contain Phenyl

(a) Subspace: “Not contain Phenyl”

−0.2 −0.1 0 0.1 0.2 0.3
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

PC3

P
C

4

 

 

Do not contain Phenyl
Contain Phenyl

(b) Subspace: “Contain Phenyl”

Figure 3.19: PC plots of the Phenyl dataset.

The Phenyl dataset shows a heavy mixture of the two classes, as shown in

Figure 3.19, which explains the bad classification accuracies for all methods in
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Figure 3.8. These suggest that NSM, NCHM and NCCM perform badly for datasets

with severe overlap of the two classes, with NSM to perform slightly better than

NCHM and NCCM.

To sum up, the analysis in this section suggests the following findings. Firstly,

when the two classes are separable, NCHM and NCCM may provide better classi-

fication performance than NSM. Especially, when the two classes have almost the

same direction of the first PCs and this direction contains most the discriminative

information, NSM will fail to classify the two classes; however, in this case NCHM

and NCCM can provide good classification performance so long as the two classes

are separable and the CR samples are close to being orthogonal to the first PCs.

Secondly, when the two classes have some overlapping parts, NSM may have better

classification performance than NCHM and NCCM, if it can capture the discrimi-

native information in the dataset. Finally, when the two classes have heavy overlap,

we may expect bad performances from all three methods.

3.4 Conclusion
In this chapter, we use geometric convex models as class models in SIMCA instead

of the PC class subspaces for spectral data classification. We propose NCCM and

provide a thorough investigation of NSM, NCHM and NCCM theoretically and

empirically. We prove theoretical results for the minimum distance problem of

NCCM, based on the relationship between a convex cone and its polar cone. We

establish a separating hyperplane classification (SHC) framework for nearest-class-

model methods with arbitrary norms. We analyse the data-dependant classification

performances of NSM, NCHM and NCCM, based on the discriminative ability of

normal vectors. We also provide a simple and effective method to find the class

representative samples and estimate the properties of the data distributions.
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Part II presents our contributions to the distances used in the classification rule

in the test phase of SIMCA. In this part, we focus on studying the distances and fix

the PC class subspaces as the class models. Two distances related to the PC mod-

els are of great importance in SIMCA: 1) the squared orthogonal distance (OD2),

i.e. the squared orthogonal Euclidean distance from a test instance to a PC model;

and 2) the squared score distance (SD2), i.e. the squared Mahalanobis distance from

the projection of a test instance to the centre of a PC model. In recent applications,

a linear combination of the two distances is used to classify a test instance: the test

instance is assigned to the class with the minimum value of the linear combination.

We present our two contributions in Chapter 4 and Chapter 5, respectively.

First, in Chapter 4 we investigate the difference of calculating OD2 between us-

ing formulae in the highly-cited SIMCA paper (De Maesschalck et al., 1999) and

using those in the original SIMCA paper (Wold, 1976) for low-dimensional and

high-dimensional scenarios. Second, in Chapter 5 we propose a method of learning

distance to subspace to learn tailored distance metrics for SIMCA.



Chapter 4

On the orthogonal distance of

SIMCA for high-dimensional data

The usages of the OD2, the SD2 and their distributions are of great interest to pat-

tern classification in chemometrics (Branden and Hubert, 2005; Pomerantsev, 2008;

Pomerantsev and Rodionova, 2014). There is a close relationship between the OD2

from a test instance to a class model and the residual standard deviation of the test

instance to the class model. A lot of researchers calculate the OD2 following the for-

mulae of the residual standard deviations defined in De Maesschalck et al. (1999),

instead of following the original formulae defined in Wold (1976). De Maesschalck

et al. (1999) show that the residual standard deviation based on the residual matrix

can be equivalently calculated by using the residual PC scores based on the PC score

matrix. Their work has been cited over a hundred times, including methodological

developments (Candolfi et al., 1999; De Maesschalck et al., 2000; Daszykowski

et al., 2007), reviews (Urı́čková and Sádecká, 2015; Kumar et al., 2014) and appli-

cations (Candolfi et al., 1999; Bicciato et al., 2003; Chen et al., 2006; Waddell et al.,

2014; Da Silva et al., 2015).

In this chapter, we shall show that the relationship, between the residual stan-

dard deviation and the sum of squares of the residual PC scores, shown in De Maess-

chalck et al. (1999) is not always valid. We shall focus on the difference between the

calculation of the OD2s using the formulae in the original work of SIMCA (Wold,

1976) and that using the formulae in De Maesschalck et al. (1999).
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The two OD2s considered here are as follows.

1. The OD2, vk,l , from the training instance l to the model of class k that was

built from all training instances. It is closely related to the residual standard

deviation, sk,0, of class k, as in De Maesschalck et al. (1999) and Wold (1976).

2. The OD2, vk,new, from the new test instance to the model of class k. It is

closely related to the residual standard deviation, sk,new, of the new test in-

stance to class k, as in De Maesschalck et al. (1999) and Wold (1976).

The above two OD2s are widely used in SIMCA for classification and outlier de-

tection. The sample statistics of vk,l are usually used to provide scaled vk,new. For

example, in Pomerantsev (2008) and Pomerantsev and Rodionova (2014) only the

mean is used, while in Branden and Hubert (2005) both the mean and the standard

deviation of vk,l are used. The only difference between vk,l and vk,new is that vk,l is

the OD2 for the training instance while vk,new is the OD2 for the test instance.

De Maesschalck et al. (1999) provide formulae for sk,0 and sk,new using the

residual PC scores, which are different in formulation from but supposed to be

equivalent to those in the original SIMCA paper (Wold, 1976). We shall show that,

although the formula in De Maesschalck et al. (1999) for sk,0 is indeed equivalent

to the original one in Wold (1976), the formula in De Maesschalck et al. (1999)

for sk,new is only precise when the training data of class k have more samples (also

called instances) than predictor variables (also called features), i.e. when the number

of samples (denoted by nk) is larger than the number of features (denoted by p). In

other words, when the training data of class k are high-dimensional (i.e. nk ≤ p,

also called “large p, small n” in the statistical literature), the calculation of sk,new

in De Maesschalck et al. (1999) is not precise.

Because of the above results, we shall point out that, for high-dimensional data,

although the OD2 vk,l can be accurately calculated by following the (precise) for-

mula of the residual standard deviation sk,0 in De Maesschalck et al. (1999), the OD2

vk,new cannot be accurately calculated by following the (imprecise) formulae of the

residual standard deviation sk,new in De Maesschalck et al. (1999). Consequently,
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inference results of the studies that calculated the OD2s for high-dimensional data

using the formulae in De Maesschalck et al. (1999) can be imprecise.

Because high-dimensional data, such as spectral data, are commonly present

in chemometrics and many other disciplines involving pattern-recognition tasks and

because SIMCA is widely applied in those cases, it is of great interest to practition-

ers to point out the imprecise calculation of the OD2s for high-dimensional data if

we follow the formulae in De Maesschalck et al. (1999), as well as to suggest that

the original formulae in Wold (1976) should be adopted in this “large p, small n”

paradigm.

4.1 The calculations of SIMCA in De Maesschalck

et al. (1999)
The following calculations are all for class k. The subscripts p, q and r denote the

number of columns in matrices UUU , DDD, VVV and TTT ; for example, VVV p indicates that there

are p columns in matrix VVV p of class k.

4.1.1 The training phase of class k

Suppose XXX ∈ Rnk×p is the training set of class k, in which there are nk train-

ing instances (or say training samples) and each instance is represented by a p-

dimensional data vector. To build the PC model of class k, we apply the reduced

singular value decomposition (SVD) to the column-centred training set XXX (c):

XXX (c) =UUUqDDDq(VVV q)
T , (4.1)

where UUUq ∈ Rnk×q and VVV q ∈ Rp×q are the two matrices containing left and right

singular vectors as columns, respectively, and DDDq ∈ Rq×q is a diagonal matrix with

singular values {λ1 ≥ λ2 ≥ ·· · ≥ λq ≥ 0}. The parameter q≤min(p,nk−1) is the

rank of XXX (c).

In PCA, the rows of TTT q = UUUqDDDq ∈ Rnk×q are known as PC scores and the

columns of VVV q are known as PCs. Suppose the first r (r ≤ q) PCs are selected to
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build the PC model for class k, then

XXX (c) = TTT r(VVV r)
T +EEE , (4.2)

where TTT r ∈Rnk×r, VVV r ∈Rp×r, and EEE ∈Rnk×p is the training residual matrix of class

k.

In De Maesschalck et al. (1999), the residual standard deviation of class k are

expressed in two forms:

sk,0 =

√√√√
nk

∑
l=1

p

∑
j=1

(el j)2/[(q− r)(nk− r−1)] (4.3)

=

√
nk

∑
l=1

q

∑
i=r+1

(tli)2/[(q− r)(nk− r−1)] , (4.4)

where el j is the (l, j)-entry of residual matrix EEE representing the residual of the lth

instance for the jth variable, and tli is the (l, i)-entry of score matrix TTT q representing

the score of the lth instance for the ith PC. The squared residual standard deviation

of class k, (sk,0)2, can be considered as the sum of the OD2s from the training

instances to the model of class k divided by the degrees of freedom (q− r)(nk− r−
1).

4.1.2 The test phase for class k

In the test (prediction) phase, to decide whether a new instance xxxnew belongs to class

k or not, xxxnew is first centred by using the means of the variables of the training data

XXX of class k, and the result is denoted by xxxk,new
(c) . Then projecting xxxk,new

(c) to the PCA

model of class k with the selected r PCs, we can obtain

xxxk,new
(c) = tttk,new

r (VVV r)
T + eeek,new , (4.5)

where tttk,new
r ∈ R1×r and eeek,new ∈ R1×p are two vectors of the PC score and the

residual, respectively, of the new instance when it is fitted to the model of class k.

In De Maesschalck et al. (1999), the residual standard deviation of the new
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instance are also expressed in two forms:

sk,new =

√√√√
p

∑
j=1

(ek,new
j )2/(q− r) (4.6)

=

√
q

∑
i=r+1

(tk,new
i )2/(q− r) , (4.7)

where ek,new
j and tk,new

i denote the jth element of the residual vector eeek,new and the

ith element of the PC score vector tttk,new
r , respectively. The squared residual standard

deviation of the new instance, (sk,new)2, can be considered as the OD2 from the new

instance to the class k model divided by the degrees of freedom (q− r).

To determine the class of xxxnew, the residual standard deviation sk,new of xxxnew is

compared to the residual standard deviation sk,0 of the training instances of class k.

The F-test statistic used in De Maesschalck et al. (1999) to determine whether the

two residual variances are significantly different is expressed as

Fk,new =
(sk,new)2

(sk,0)2 =
∑

q
i=r+1(t

k,new
i )2 (nk− r−1)

∑
nk
l=1 ∑

q
i=r+1(tli)

2 . (4.8)

4.2 The calculation of vk,l and vk,new in De Maess-

chalck et al. (1999)
The OD2 is originally defined as the sum of squares of the residuals from a sample

to the class model, which is closely related to the residual standard deviation. The

two OD2s discussed in this chapter are calculated in De Maesschalck et al. (1999)

as follows.

First, vk,l is originally defined as ∑
p
j=1(el j)

2, which is closely related to sk,0,

i.e. ∑
nk
l=1 vk,l = (sk,0)2(q−r)(nk−r−1). In De Maesschalck et al. (1999), it follows

from (4.4) that vk,l can be calculated as

vk,l =
q

∑
i=r+1

(tli)2 . (4.9)
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Second, vk,new is originally defined as ∑
p
j=1(e

k,new
j )2, which is closely related

to sk,new, i.e. vk,new = (sk,new)2(q− r). In De Maesschalck et al. (1999), it follows

from (4.7) that vk,new can be written as

vk,new =
q

∑
i=r+1

(tk,new
i )2 . (4.10)

4.3 Discussion of vk,l and vk,new

The calculations for vk,0 and vk,new in De Maesschalck et al. (1999) use formulae

(4.9) and (4.10), respectively. We shall show that, while formula (4.9) is correct for

both the cases of nk > p and nk ≤ p, formula (4.10) is only valid when nk > p.

4.3.1 vk,l

The OD2 vk,l is originally defined on the basis of the residual matrix EEE. The calcu-

lation of vk,l in (4.9), which was defined in De Maesschalck et al. (1999), is on the

basis of the PC score matrix TTT r. This is due to the relationship that

p

∑
j=1

(el j)
2 =

q

∑
i=r+1

(tli)2 . (4.11)

This relationship is true for both the cases of nk > p and nk ≤ p, as we shall show

in the following two subsections, respectively.

4.3.1.1 nk > p

When nk > p, we have q = p (assume that no feature is a linear combination of oth-

ers), and thus VVV q ∈Rp×p is a square matrix. It follows that VVV q(VVV q)
T = (VVV q)

TVVV q =

IIIp.

Let xxxl
(c) ∈ R1×p denote the l-th training instance in class k, i.e. the l-th row of
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XXX (c). For every xxxl
(c) (l = 1, . . . ,nk), we have xxxl

(c) = xxxl
(c)VVV q(VVV q)

T and

p

∑
j=1

(el j)
2 = ||xxxl

(c)− xxxl
(c)VVV r(VVV r)

T ||22

= ||xxxl
(c)VVV q(VVV q)

T − xxxl
(c)VVV r(VVV r)

T ||22
= ||ttt l

q(VVV q)
T − ttt l

r(VVV r)
T ||22

=
q

∑
i=r+1

(tli)2 , (4.12)

where || · ||2 denotes the Euclidean norm of a vector, and ttt l
q and ttt l

r are the lth row of

TTT q and TTT r, respectively. Therefore (4.11) and thus (4.9) are correct when nk > p.

4.3.1.2 nk ≤ p

When nk ≤ p, we have q = rank(XXX (c)) ≤ nk− 1 < p, and thus VVV q ∈ Rp×q is not

square. It follows that (VVV q)
TVVV q = IIIq but VVV q(VVV q)

T 6= IIIp.

Suppose we apply the full SVD to XXX (c):

XXX (c) =UUUnkD̂DDp(VVV p)
T , (4.13)

where UUUnk ∈ Rnk×nk and VVV p ∈ Rp×p denote the two matrices containing nk left and

p right singular vectors as columns, respectively, and D̂DDp ∈ Rnk×p is a matrix with

singular values {λ1 ≥ λ2 ≥ ·· · ≥ λnk−1 ≥ λnk = 0} on the main diagonal.

To make the explanation more clear, we expand D̂DDp ∈Rnk×p to a square matrix

DDDp ∈ Rp×p by adding zeros because the singular values associated with the last

(p−q) PCs are zeros when nk ≤ p. Matrix UUUnk ∈ Rnk×nk is also expanded to UUU p ∈
Rnk×p using (p−nk) unit-length column vectors that are randomly calculated to be

orthogonal to the previous column vectors. Thus we have

XXX (c) =UUUnkD̂DDp(VVV p)
T =UUU pDDDp(VVV p)

T , (4.14)

where UUU p ∈Rnk×p and VVV p ∈Rp×p denote the matrices containing p left and p right

singular vectors, respectively, and DDDp ∈ Rp×p is a diagonal matrix with singular
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values {λ1 ≥ λ2 ≥ ·· · ≥ λq ≥ λq+1 = · · · = λp = 0}. Since VVV p ∈ Rp×p is square,

we have VVV p(VVV p)
T = (VVV p)

TVVV p = IIIp.

Let TTT p =UUU pDDDp ∈Rnk×p denote the PC scores. Let tli denote the (l, i)-entry of

score matrix TTT p representing the score of the lth instance for the ith PC.

Let mmml denote the residual from using the first q PCs to reconstruct xxxl
(c): mmml =

xxxl
(c)− xxxl

(c)VVV q(VVV q)
T . We calculate the sum of squares of the residuals in mmml for the

l-th instance:

||mmml||22 = ||xxxl
(c)− xxxl

(c)VVV q(VVV q)
T ||22

= ||xxxl
(c)VVV p(VVV p)

T − xxxl
(c)VVV q(VVV q)

T ||22
= ||ttt l

p(VVV p)
T − ttt l

q(VVV q)
T ||22 . (4.15)

The sum of ||mmml||22 for all nk training instances is

nk

∑
l=1
||mmml||22 =

nk

∑
l=1

p

∑
i=q+1

(tli)2 =
p

∑
i=q+1

(λi)
2 . (4.16)

The second equation in (4.16) can be shown as follows. XXX (c) =UUU pDDDp(VVV p)
T ⇒

(UUU p)
T XXX (c)VVV p = DDDp⇒ (UUU p)

T TTT p = DDDp. For the ith singular value λi in DDDp, we have

(λi)
2 = (uuuT

i ttt i)
2 = tttT

i uuuiuuuT
i ttt i = tttT

i ttt i = ∑
nk
l=1(tli)

2, where uuui and ttt i are the ith columns

of UUU p and TTT p, respectively.

Since the last (p−q) singular values are zeros, ∑
nk
l=1 ||mmml||22 = 0. Because each

term in the sum ∑
nk
l=1 ||mmml||22 is nonnegative, ||mmml||22 = 0 for all l (l = 1, . . . ,nk).

Thus we have xxxl
(c) = xxxl

(c)VVV q(VVV q)
T , which means that the first q PCs can perfectly

reconstruct the training instances in class k. Using the same proof as in (4.12), we

can show that (4.11) and thus (4.9) are also true for nk ≤ p.

Therefore, vk,l can be correctly calculated by using (4.9) for both the cases of

nk > p and nk ≤ p.

4.3.2 vk,new

Following the original SIMCA paper (Wold, 1976), vk,new is defined in terms of

the residual vector eeek,new, while following De Maesschalck et al. (1999), vk,new is
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formulated in (4.10) by using the PC score tttk,new
r of the new sample. We shall

show that the formula (4.10) is valid when nk > p but not valid when nk ≤ p, in the

following two subsections, respectively.

4.3.2.1 nk > p

When nk > p, we have q = p, and thus VVV q ∈ Rp×p is a square matrix. As before,

VVV q(VVV q)
T = (VVV q)

TVVV q = IIIp. Since xxxk,new
(c) = xxxk,new

(c) VVV q(VVV q)
T , we have

p

∑
j=1

(ek,new
j )2 =

q

∑
i=r+1

(tk,new
i )2 . (4.17)

Using a proof similar to (4.12) by replacing xxxl
(c) with xxxk,new

(c) , we can readily show

that (4.17) and thus (4.10) are correct for nk > p.

4.3.2.2 nk ≤ p

When nk ≤ p, we have q = rank(XXX (c)) < p, and thus VVV q ∈ Rp×q is not square.

Again, it follows that (VVV q)
TVVV q = IIIq but VVV q(VVV q)

T 6= IIIp.

Let mmmk,new denote the residual from using the q PC vectors to reconstruct xxxk,new
(c) :

mmmk,new = xxxk,new
(c) − xxxk,new

(c) VVV q(VVV q)
T . We calculate the sum of squares of the residuals

in mmmk,new:

||mmmk,new||22 = ||xxxk,new
(c) − xxxk,new

(c) VVV q(VVV q)
T ||22

= ||xxxk,new
(c) VVV p(VVV p)

T − xxxk,new
(c) VVV q(VVV q)

T ||22
= ||tttk,new

p (VVV p)
T − tttk,new

q (VVV q)
T ||22

=
p

∑
i=q+1

(tk,new
i )2 , (4.18)

where || · ||2 denotes the Euclidean norm of a vector.

However, unlike the case for the training data, ∑
p
i=q+1(t

k,new
i )2 is not necessar-

ily equal to zero for a p-dimensional test instance. Thus xxxk,new
(c) 6= xxxk,new

(c) VVV q(VVV q)
T ,

which means that the new test instance cannot be perfectly reconstructed by the first

q PC vectors.
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Hence, if we rewrite

xxxk,new
(c) = xxxk,new

(c) VVV q(VVV q)
T +mmmk,new

= xxxk,new
(c) VVV r(VVV r)

T +(xxxk,new
(c) VVV q(VVV q)

T − xxxk,new
(c) VVV r(VVV r)

T )+mmmk,new , (4.19)

we have

eeek,new = (xxxk,new
(c) VVV q(VVV q)

T − xxxk,new
(c) VVV r(VVV r)

T )+mmmk,new

= (tttk,new
q (VVV q)

T − tttk,new
r (VVV r)

T )+(tttk,new
p (VVV p)

T − tttk,new
q (VVV q)

T )

= tttk,new
p (VVV p)

T − tttk,new
r (VVV r)

T (4.20)

and

p

∑
j=1

(ek,new
j )2 = ||eeek,new||22

= ||tttk,new
p (VVV p)

T − tttk,new
r (VVV r)

T ||22

=
p

∑
i=r+1

(tk,new
i )2

=
q

∑
i=r+1

(tk,new
i )2 +

p

∑
i=q+1

(tk,new
i )2 . (4.21)

Comparing (4.21) with (4.17), we can find an additional term ∑
p
i=q+1(t

k,new
i )2 in

(4.21), and this term may not be zero. It follows that (4.17) and thus (4.10) are not

valid when nk ≤ p.

When nk ≤ p, ∑
p
i=q+1(t

k,new
i )2 is hard to estimate because the last (p−q) PCs

are randomly calculated by satisfying the orthogonal condition. Nevertheless, it

can be harmful to the classification of the new instance of high-dimensional “large

p, small n” data, if we use (4.10) to calculate vk,new which omits ∑
p
i=q+1(t

k,new
i )2,

because the decision making for classification is based on vk,new.
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4.4 Experiments
In the following experiments, we compare the SIMCA with the OD2 as originally

defined in Wold (1976) (denoted by SIMCA) and the SIMCA with the OD2 cal-

culated by following De Maesschalck et al. (1999) (denoted by SIMCA-D), using

both the simulated datasets and the real datasets. We aim to show that the additional

term ∑
p
i=q+1(t

k,new
i )2 can be important for classifying high-dimensional data. To

simplify the experiment settings, we discuss the effect of ∑
p
i=q+1(t

k,new
i )2 on two-

class classification in the experiments. The effect of ∑
p
i=q+1(t

k,new
i )2 on multi-class

classification can be readily extended.

4.4.1 Classification rule

New test instances are classified by following the classification rule of the robust

SIMCA (RSIMCA) (Branden and Hubert, 2005), which is a linear combination of

the OD2 and the SD2 of a new test instance. That is, a new test instance is classified

to the class with the minimum value of

γ
OD2

k

ck
OD2

+(1− γ)
SD2

k

ck
SD2

, (4.22)

where OD2
k = vk,new; SD2

k = (tttk,new
r )T DDD−1

r tttk,new
r , in which ΛΛΛr is the diagonal matrix

of the r largest eigenvalues for the PC model; ck
SD2 = χ2

r;0.975; and ck
OD2 = (µ̂ +

σ̂z0.975)
3, in which µ̂ and σ̂ are the mean and the standard deviation of the square

roots of vk,l .

Since OD2
k is the only term that is different between SIMCA and SIMCA-D,

the value of the second term in (4.22) does not affect the difference between SIMCA

and SIMCA-D. We force the value of the second term in (4.22) to zero by setting

γ = 1, to simplify the experiments.

4.4.2 Validation criterion

We use the overall misclassification percentage (MP) as the validation criterion fol-

lowing the experiments in Branden and Hubert (2005). We use the one-assignment-

rule suggested in Branden and Hubert (2005), i.e. a test sample is assigned to one of
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the known classes with the smallest F-value, to simplify the calculation of the MP

and obtain unambiguous final results. The MP is defined as

MP =
K

∑
k=1

nt
k/Nt , (4.23)

where nt
k denotes the the number of wrongly assigned test samples in class k and Nt

denotes the total number of test samples.

4.4.3 Datasets

4.4.3.1 Simulated datasets

Simulated datasets are generated by following the experiments in Pomerantsev and

Rodionova (2014). Assume that a sample vector xxx is the sum of two independent

normal random components:

xxx = δδδ + εεε , (4.24)

where

δδδ ∼ N(µµµ,ΣΣΣ) and εεε ∼ N(000,σ2III) . (4.25)

Based on the above assumption, the samples of the two classes are drawn from

N(µµµ1,ΣΣΣ1 +σ2
1 III) and N(µµµ2,ΣΣΣ2 +σ2

2 III), respectively.

Table 4.1: Simulation settings. Notation: K, number of classes; D, number of datasets; nk,
number of samples in each class.

Simulation A Simulation B
µµµ1 000p 000p

µµµ2 (10,000T
p−1)

T (10,000T
p−1)

T

ΣΣΣ1 = ΣΣΣ2




5000 0.1 0.1 ··· 0.1
0.1 0.1 0.1 ··· 0.1
0.1 0.1 0.1 ··· 0.1
...

...
... . . . ...

0.1 0.1 0.1 ··· 0.1




p×p




0.1 0.1 0.1 ··· 0.1
0.1 5000 0.1 ··· 0.1
0.1 0.1 0.1 ··· 0.1
...

...
... . . . ...

0.1 0.1 0.1 ··· 0.1




p×p
σ2

1 = σ2
2 0.1 0.1

K 2 2
D 20 20
nk 50 50

Two sets of parameters, simulation A and simulation B, are devised to show the

following two situations, respectively: 1) ∑
p
i=q+1(t

k,new
i )2 is not important for clas-
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sification; and 2) ∑
p
i=q+1(t

k,new
i )2 may be important for classification. The details of

the two simulation settings are summarised in Table 4.1.

For each simulation setting, we generate 20 datasets with different nk/p ratios

to explore the difference between SIMCA and SIMCA-D with respect to p. In

each dataset, 50 samples are generated for each class, from which 25 samples are

selected as the training set and the rest as the test set, i.e. n1 and n2 are fixed to

25 for all the datasets. The 20 nk/p ratios are 1.5, 1, 0.7, 0.5, 0.3, 0.1, 0.09, 0.08,

0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006 and 0.005; and

the corresponding p’s are 17, 25, 36, 50, 83, 250, 278, 313, 417, 500, 625, 833,

1250, 2500, 2778, 3125, 3571, 4167 and 5000. Among these settings, nk/p = 1.5

(i.e. p = 17) indicates a low-dimensional dataset while other ratios indicate high-

dimensional datasets.

It is clear in Table 4.1 that the only difference between simulation A and

simulation B is the values of ΣΣΣ1 and ΣΣΣ2, which determines the importance of

∑
p
i=q+1(t

k,new
i )2 for classification. In both simulations, the first dimensions of

the feature vectors contain major discriminative information since µ11 = 0 and

µ21 = 10, while other dimensions contain little discriminative information since

µ1i = µ2i = 0 (i 6= 1). Therefore, the variance of the first dimension determines how

the discriminative information between two classes is distributed to the PCs. The

discriminative information left in the residuals for classification is determined by

the discriminative information in the first few PCs used in the class model.

If the first dimension has the largest variance and the discriminative informa-

tion is concentrated on the first PC which is definitely used in the class model,

i.e. (ΣΣΣ1)11 = (ΣΣΣ2)11 = 5000 in simulation A, then ∑
p
j=1(e

k,new
j )2 is not very dis-

criminative (or say unimportant for classification) and so is ∑
p
i=q+1(t

k,new
i )2. In

contrast, if the first dimension has a small variance and contributes randomly to the

PCs, i.e. (ΣΣΣ1)11 = (ΣΣΣ2)11 = 0.1 in simulation B, then the discriminative information

may not be concentrated on the first few PCs that are used in the class model. In

this case, ∑
p
j=1(e

k,new
j )2 can be discriminative (or say important for classification)

and so be ∑
p
i=q+1(t

k,new
i )2.
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(a) Simulation A.
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(b) Simulation B.

Figure 4.1: The loading plots of the first dimension.

Here we show an example to demonstrate the above argument. Two datasets

with p = 1250 are generated. Applying PCA separately to the two classes of each

dataset, we obtain the PCs for each class. We record the first entries of all the

PCs in each class, i.e. VVV q(1, :), and plot them against the PCs sorted in decreasing

order of singular values, as shown in Figure 4.1 for simulation A and simulation B,

respectively. These loadings indicate the contributions of the first dimensions of the

feature vectors to the PCs.

In simulation A, the absolute loadings of the first PC are close to one while

those of other PCs are close to zeros, which indicates that the discriminative in-

formation between the two classes is concentrated on the the first PC. Since the

first PC is definitely used to build the class model, ∑
p
j=1(e

k,new
j )2 contains little dis-

criminative information from the first dimension. Thus, as a part of ∑
p
j=1(e

k,new
j )2,

∑
p
i=q+1(t

k,new
i )2 is not important for classification.

In simulation B, the loadings are distributed randomly around zero, which

indicates that the discriminative information is spread over all PCs. Therefore,

∑
p
j=1(e

k,new
j )2 may contain discriminative information important for classification

and so be ∑
p
i=q+1(t

k,new
i )2.

4.4.3.2 Real datasets

Two real datasets are used in the experiments: the low-dimensional iris dataset

and the high-dimensional Phenyl dataset. The iris dataset (Fisher, 1936) contains
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150 samples with three classes: each class contains 50 samples. Each sample is

described by four features. The Phenyl dataset is described in Section 2.2.1 of

Chapter 2.

4.4.4 Experiment settings

In each dataset, we randomly select 25 samples from each class to generate the

training set. The remaining samples generate the test set. We repeat this procedure

100 times and perform the two methods, SIMCA and SIMCA-D, on each training-

test split.

In both methods, the number of PCs are chosen using the criterion that the

variance explained is more than 85% for all classes. Thus the numbers of PCs, r,

are the same for the two methods.

4.4.5 Results

4.4.5.1 Simulated datasets

To explore the effect of the nk/p ratio on the performances of SIMCA and SIMCA-

D, we plot the mean MP against the nk/p ratio in Figure 4.2 for simulation A and

simulation B, respectively. It is clear that the mean MPs of SIMCA and SIMCA-D

are the same when nk/p = 1.5, i.e. in the low-dimensional situation, in each of the

simulation settings, as indicated by the leftmost points in each panel of Figure 4.2.

However, the relative performances of SIMCA and SIMCA-D are different for

the two simulations when nk/p≤ 1, i.e. in the high-dimensional situation.

In simulation A, the mean MPs of the two methods are similar for all nk/p

ratios, as shown in Figure 4.2a. This indicates that ignoring ∑
p
i=q+1(t

k,new
i )2 in the

calculation of the OD2 does not affect the classification results in this simulation,

because in this case ∑
p
i=q+1(t

k,new
i )2 is not important for classification. In addition,

since the residuals are not discriminative, the mean MP varies around 0.5.

In simulation B, the difference between the mean MPs of the two methods be-

comes larger as nk/p becomes smaller (i.e. when the data are higher dimensional),

as shown in Figure 4.2b. Since in this simulation the first few PCs used in class

models contain little discriminative information, the residual ∑
p
j=1(e

k,new
j )2 is im-
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(a) Simulation A.
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(b) Simulation B.

Figure 4.2: The plots of mean MP against nk/p.

portant for classification. SIMCA performs pretty well for almost all the nk/p ratios

because ∑
p
j=1(e

k,new
j )2 captures the discriminative information for classification. In

contrast, SIMCA-D, which only uses ∑
q
i=r+1(t

k,new
i )2 for classification and ignores

∑
p
i=q+1(t

k,new
i )2, cannot capture the discriminative information in ∑

p
i=q+1(t

k,new
i )2

and can be suboptimal in classification, especially when nk/p is small (i.e. when

the data dimension is high). For example, the mean MP of SIMCA-D worsens to

around 0.4 when nk/p decreases to 0.008.

In addition for simulation B, we show an example of how ∑
p
i=q+1(t

k,new
i )2 af-

fects the classification performance using the Coomans’ plots. Figure 4.3 shows

the Coomans’ plots of the test samples on one training-test split of each simulated

dataset. The Coomans’ plot (Vandeginste and Massart, 1998) shows the orthogonal

distance from the test samples to two class models at the same time. In our exper-
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(a) SIMCA. p = 17, nk
p = 1.5.
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(b) SIMCA-D. p = 17, nk
p = 1.5.
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(c) SIMCA. p = 1250, nk
p = 0.02.
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(d) SIMCA-D. p = 1250, nk
p = 0.02.

Figure 4.3: Coomans’ plots.

iments, the horizontal and vertical axes denote the OD2s to Group 1 and Group 2,

respectively. In Figure 4.3, the red reference line divides the Coomans’ plot into

two parts: in the upper triangular part, the distance to Group 1 is smaller than that

to Group 2; in the lower triangular part, it is the other way around.

Since SIMCA and SIMCA-D have the same q and r, the Coomans’ plots reflect

the difference between the OD2s of these two methods.

When nk/p = 1.5 (i.e. low-dimensional), the Coomans’ plots of the two meth-

ods are the same. When nk/p = 0.02 (i.e. high-dimensional), the Coomans’ plots
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of the two methods are different. We observe large differences between the val-

ues of OD2s in Figure 4.3c and Figure 4.3d, which indicates that the value of

∑
p
i=q+1(t

k,new
i )2 is large. Including ∑

p
i=q+1(t

k,new
i )2 can perfectly separate the two

groups as shown in Figure 4.3c; however, omitting ∑
p
i=q+1(t

k,new
i )2 results in a mix-

ture of the two groups as shown in Figure 4.3d. This indicates that the additional

term ∑
p
i=q+1(t

k,new
i )2 is important for classification in this high-dimensional simu-

lated dataset.

4.4.5.2 Real datasets
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Figure 4.4: The box plots of the MP for the real datasets.

Figure 4.4 shows the box plots of the MP for the real datasets. In the high-

dimensional Phenyl dataset, SIMCA-D provides worse classification performance

than the original SIMCA. In the low-dimensional iris dataset, the two methods pro-

vide the same results. This pattern for the real datasets is consistent with that for

the simulated datasets.

4.5 Conclusion
We have investigated the formulae in De Maesschalck et al. (1999) of calculating

two OD2s, vk,l and vk,new. We have shown that the formula for vk,new in De Maess-

chalck et al. (1999) is not valid for high-dimensional data (i.e. when nk ≤ p). The

experiments on both the simulated datasets and the real datasets have confirmed

that the formula following De Maesschalck et al. (1999) can result in worse classi-
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fication performance than the original one in Wold (1976). Therefore, we suggest

that the original formulae in Wold (1976) for calculating the OD2s, rather than the

formulae in De Maesschalck et al. (1999), should be used for high-dimensional data

with more features than samples (i.e. when nk ≤ p).



Chapter 5

Learning distance to subspace

Given the PC class subspaces, the classification rule used in SIMCA is usually de-

pendent on two distances from the test sample to the class subspaces: OD2 and

SD2. In Wold’s version of SIMCA (Wold, 1976), only OD2 is used in the classifi-

cation rule. Recently, a linear combination of OD2 and SD2 is widely adopted as

the classification rule in SIMCA, such as the robust SIMCA (RSIMCA) (Branden

and Hubert, 2005) and the SIMCA function from the PLS Toolbox in MATLAB.

The weights for OD2 and SD2 in the linear combination can be determined by users

with prior knowledge, or can be tuned by cross-validation using the training data.

The distances between the test samples and the class subspaces are of great

importance for classification, since they determine the classification results. OD2

uses the Euclidean distance while SD2 uses the Mahalanobis distance. Instead of

predefining the distance metrics to be used in the classification rule, distance metric

learning methods emerging in the machine learning community enable us to learn

tailored distance metrics automatically from data and to improve the classification

performance (Xing et al., 2003; Alipanahi et al., 2008; Weinberger and Saul, 2009).

Distance metric learning methods identify distance metrics based on a set of

similarity/dissimilarity constraints between training samples: the samples from the

same classes are similar while the samples from different classes are dissimilar.

Thus, in terms of the distance metric learned, the samples from the same class

become closer to each other while those from different classes become farther apart.

It is important to notice that the distance metric learning methods in litera-
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ture aim to improve the classification performance of the classification methods

that are based on distance between samples, such as k-nearest neighbours (kNN).

Thus the distance metrics are for distances between samples. However, the dis-

tance metrics used in subspace-based classification methods, such as SIMCA, mea-

sure the distances between samples and class subspaces. This unfortunately makes

the established distance metric learning methods difficult to be applied directly to

subspace-based classification methods.

In this chapter, we propose a distance metric learning method tailored for the

classification rule of SIMCA to improve its classification performance. We first

analyse the classification rules of SIMCA used in literature to derive a general for-

mulation for them. We show that the general formulation is based on two parameter-

isation matrices with different sizes: the larger one is for the distance measurement

in the original feature space and the smaller one is for the distance measurement

in the PC class subspace. Hence, different classification rules of SIMCA in the

literature can be shown actually using different distance metrics in the general for-

mulation.

We define this general formulation as the distance metric from a test sam-

ple to a class subspace, and propose a method of learning distance to subspace, to

automatically learn the two parameterisation matrices that define the distance met-

ric. Then, inspired by the distance metric learning methods, we learn this distance

metric based on a set of distance-to-subspace-based similarity/dissimilarity con-

straints: the samples are similar to their correct class subspaces while are dissimilar

to the wrong class subspaces. Using the learned distance as the similarity mea-

surement, we aim to make the samples to be closer to their correct class subspaces

while be farther away from their wrong class subspaces. We term this distance met-

ric “learned distance to subspace (LD2S)”. To evaluate the effectiveness of LD2S,

we compare the classification performances of SIMCA with Wold’s classification

rule (SIMCA-W), SIMCA with the classification rule of RSIMCA (SIMCA-R) and

SIMCA with the classification rule learned from LD2S (SIMCA-LD2S) using a

real-world dataset.
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5.1 Methodology

5.1.1 SIMCA

5.1.1.1 Principal component (PC) class subspace

The calculations of the PC class subspaces are the same as those in Section 4.1.1

of Chapter 4. To make the calculations afterwards clear, we show the calculations

of the PC class subspaces here again with slightly different notation from those in

Section 4.1.1 of Chapter 4.

Given the training set of class k (k = 1,2), XXXk ∈ Rnk×p, we build the PC class

subspace of the kth class through using the reduced singular value decomposition

(SVD).

XXXk(c) =UUUqkDDDqkVVV
T
qk
, (5.1)

where XXXk(c) is the column-centred training set, the rows of UUUqk ∈ Rnk×qk (qk =

rank(XXXk(c))) are the standardised PC scores, DDDqk ∈Rqk×qk is a diagonal matrix with

singular values d1 ≥ d2 ≥ . . .≥ dqk ≥ 0 on the diagonal, and the columns of VVV qk ∈
Rp×qk are the PCs. The PC score is defined as

TTT qk =UUUqkDDDqk = XXXk(c)VVV qk ∈ Rnk×qk . (5.2)

If we select the first rk ≤ qk PCs to build the kth class subspace, then

XXXk(c) =UUU rkDDDrkVVV
T
rk
+EEEk, (5.3)

where UUU rk ∈ Rnk×rk , DDDrk ∈ Rrk×rk , VVV rk ∈ Rp×rk , and EEEk ∈ Rnk×p is the residual

matrix when reconstructing the training samples XXXk(c) using the first rk PCs. The

PC subspace built by the first rk PCs is associated with a unique projection matrix

PPPk =VVV rkVVV
T
rk
∈ Rp×p. We denote the PC subspace for class k as Lk.

Projecting a new sample xxxnew ∈R1×p to the PC class subspace, we could obtain

xxxk,new
(c) = tttk,newVVV T

rk
+ eeek,new, (5.4)



5.1. Methodology 111

where xxxk,new
(c) is the centred xxxnew by the column means of XXXk, tttk,new ∈R1×r is the PC

score of the new sample, and eeek,new ∈R1×p is the residual of reconstructing the new

sample by the PC class subspace.

5.1.1.2 The squared orthogonal distance and the squared score dis-

tance

Given the PC class subspaces, the new sample xxxnew is classified to one of the

classes using a classification rule that is based on two distances related the PC class

subspaces: the squared orthogonal distance (OD2) and the squared score distance

(SD2). In this section, we discuss the calculation and the geometric intuition of OD2

and SD2.

The squared orthogonal distance The squared orthogonal distance to class k, OD2
k ,

from xxxc
new to the subspace of the kth class is defined based on the residual eeek,new in

(5.4):

OD2
k =

p

∑
j=1

(ek,new
j )2 = eeek,new(eeek,new)T , (5.5)

which is the squared Frobenius norm of eeek,new.

Rewriting (5.4), we have

eeek,new = xxxk,new
(c) − xxxk,new

(c) PPPk = xxxk,new
(c) (IIIp−PPPk), (5.6)

where IIIp denotes the p-by-p identity matrix. eeek,new can then be considered as the

difference vector between xxxk,new
(c) and its projection on Lk, xxxk,new

(c) PPPk. The orthogonal

complement of Lk is L ⊥
k which has the projection matrix IIIp−PPPk. Thus eeek,new is

also the projection of xxxk,new
(c) to the subspace L ⊥

k . Since eeek,new is orthogonal to Lk,

the distance based on eeek,new is called the orthogonal distance.
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Figure 5.1: An illustration of OD2
k in a 3-dimensional feature space.

An illustration of OD2
k in a 3-dimensional feature space is shown in Figure 5.1.

The new instance xxxk,new
(c) is shown as the black dot; the class subspace Lk is shown

as the dark blue 2-dimensional plane; and the projection of xxxk,new
(c) to Lk, xxxk,new

(c) PPPk,

is shown as the black triangle. The residual eeek,new is represented by the red solid

line segment, which is orthogonal to the plane Lk. The square of the length of the

red line segment is OD2
k .

The squared score distance The squared score distance to class k, SD2
k , is defined

as the Mahalanobis distance from the projection of xxxk,new
(c) to the centre of the sub-

space Lk:

SD2
k =

r

∑
i=1

(tk,new
i /di)

2 = tttk,newDDD−2
rk
(tttk,new)T , (5.7)

where DDDrk is the diagonal matrix of singular values in (5.3). SD2
k is the reweighted

squared Frobenius norm of tttk,new with weights 1/di (i = 1,2, . . . ,r) and 1/d1 ≤
1/d2 ≤ . . .≤ 1/drk .

Note that

uuuk,new = tttk,newDDD−1
rk

(5.8)

is the standardised score of xxxk,new
(c) on Lk. Then (5.7) can be written as

SD2
k = uuuk,new(uuuk,new)T , (5.9)
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which indicates that SD2
k is the squared Frobenius norm of uuuk,new. An illustration

X(c)
k,new

Pk

enew

Centre
Lk

X(c)
k,new

Figure 5.2: An illustration of SD2
k in a 3-dimensional feature space.

of SD2
k in a 3-dimensional feature space is shown in Figure 5.2. In addition to the

symbols in Figure 5.1, the centre of the class subspace, Lk, is shown as the black

star, and the orange dashed line connects the centre of the class subspace and the

projection of xxxk,new
(c) to the class subspace. SD2

k is then the reweighted length of the

orange dashed line.

5.1.1.3 The classification rules

When Wold (1976) first proposed SIMCA, the classification rule was defined only

based on OD2
k . xxxnew is assigned using the F-value:

Fk,new =
OD2

k

||EEE||22/(nk− r−1)
, (5.10)

where ||EEE||22/(nk− r−1) is the adjustment coefficient for OD2
k , which is calculated

from the training set of the kth class. The classification rule in Wold (1976) assigns

xxxnew to the class with the smallest Fk,new.

Recently, a linear combination of OD2
k and SD2

k is often used as the classifica-

tion rule, such as the classification rule in the robust SIMCA (RSIMCA) (Branden

and Hubert, 2005) and in the SIMCA function from the PLS Toolbox in MATLAB.

The difference between these classification rules is dependent on the coefficients
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used in the linear combination. In this chapter, we use the classification rule in

RSIMCA as a representative of this category of classification rules. In RSIMCA,

the following classification rule is used:

γ

(
OD2

k

ck
OD2

)2

+(1− γ)

(
SD2

k

ck
SD2

)2

, (5.11)

where γ ∈ [0,1] and ck
OD2 and ck

SD2 are the cutoff values of OD2
k and SD2

k calculated

from the training set of the kth class. When γ = 1, (5.11) only depends on OD2
k ,

and is set the same as (5.10) if the cutoff value ck
OD2 in (5.11) is the same as the

adjustment coefficient in (5.10). When γ = 0, (5.11) only depends on SD2
k . In

practice, the value of γ can be set by the users based on their prior knowledge of the

importance of OD2
k and SD2

k , or can be tuned by cross-validation using the training

set.

De Maesschalck et al. (1999) propose to use the Hawkin’s distance and the

Gnanadesikan’s distance as the classification rule. However, these distances are

based on the formulae in De Maesschalck et al. (1999), which are not suitable for

high-dimensional data. Thus we do not discuss these two distances here.

5.1.2 A general formulation for the classification rules in

SIMCA

Although the classification rules used in SIMCA are in different forms, as shown in

(5.10) and (5.11), we shall show that they can be written using the following general

formulation:

xxxk,new
(c) MMMk

1(xxx
k,new
(c) )T − tttk,newMMMk

2(ttt
k,new)T , (5.12)

with different MMMk
1 ∈ Rp×p and MMMk

2 ∈ Rrk×rk . In this section, we derive this general

formulation based on the classification rules (5.10) and (5.11), and show MMMk
1 and

MMMk
2 for (5.10) and (5.11), respectively. Based on the derived general formulation

of the classification rules, we will define the distance to subspace and propose a

method to learn distance to subspace in the next section.
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Substituting (5.6) into (5.5), we obtain

OD2
k = (xxxk,new

(c) − xxxk,new
(c) PPPk)(xxx

k,new
(c) − xxxk,new

(c) PPPk)
T

= xxxk,new
(c) (xxxk,new

(c) )T −2xxxk,new
(c) PPPk(xxx

k,new
(c) )T + xxxk,new

(c) PPP2
k(xxx

k,new
(c) )T

= xxxk,new
(c) (xxxk,new

(c) )T − xxxk,new
(c) PPPk(xxx

k,new
(c) )T

= xxxk,new
(c) (xxxk,new

(c) )T − tttk,new(tttk,new)T , (5.13)

which indicates that OD2
k is the difference between the squared Frobenius norm

of xxxk,new
(c) and the squared Frobenius norm of tttk,new. This is intuitive if we think

about the right-angled triangle formed by xxxk,new
(c) , xxxk,new

(c) PPPk and the centre of Lk in

Figure 5.2.

Then the classification rule (5.10) can be written as

Fk,new =
xxxk,new
(c) (xxxk,new

(c) )T − tttk,new(tttk,new)T

||EEE||22/(nk− rk−1)

= xxxk,new
(c) MMMk

1(Wold)(xxx
k,new
(c) )T − tttk,newMMMk

2(Wold)(ttt
k,new)T , (5.14)

where MMMk
1(Wold) =

1
h1

IIIp, MMMk
2(Wold) =

1
h1

IIIrk and h1 = ||EEE||22/(nk− rk− 1). Equation

(5.14) indicates that the classification rule of Wold provides equal weights to the

p dimensions in the linear combination of the original features xxxk,new
(c) (xxxk,new

(c) )T and

also equal weights to the rk dimensions in the linear combination of the scores

tttk,new(tttk,new)T .

Similarly, for the classification rule of RSIMCA, we substitute (5.13) to (5.11):

γ

(ck
OD2)2

(xxxk,new
(c) (xxxk,new

(c) )T − tttk,new(tttk,new)T )+
1− γ

(ck
SD2)2

tttk,newDDD−2
r (tttk,new)T

=
γ

(ck
OD2)2

xxxk,new
(c) (xxxk,new

(c) )T −
r

∑
i=1

(− 1− γ

(ck
SD2)2

+
γ

(ck
OD2)2d2

i
)t2

i

= xxxk,new
(c) MMMk

1(R)(xxx
k,new
(c) )T − tttk,newMMMk

2(R)(ttt
k,new)T , (5.15)

where MMMk
1(R) =

1
h2

IIIp, h2 = γ

(ck
OD2)

2 and MMMk
2(R) is an rk-by-rk diagonal matrix with
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(− 1−γ

(ck
SD2)

2 +
γ

(ck
OD2)

2d2
i
) on the diagonals (di’s are the singular values in DDD with d1 ≥

d2 ≥ . . . ≥ drk ≥ 0). Different from the classification rule of Wold in (5.14), (5.15)

indicates that the classification rule of RSIMCA provides equal weights to the p

dimensions in the linear combination of the the original features xxxk,new
(c) (xxxk,new

(c) )T ,

while different weights to the rk dimensions in the linear combination of the scores

tttk,new(tttk,new)T .

5.1.3 Learning distance to subspace

In Wold (1976) and Branden and Hubert (2005), xxxnew is classified to the class with

the smallest value calculated from (5.10) and (5.11), respectively. Thus, using the

general formulation, we classify xxxnew to the class with the smallest value calculated

from (5.12). We define the general formulation (5.12) as the distance from xxxnew to

the kth class subspace. In this way, the classification rule is to assign xxxnew to the

nearest class subspace based on the distance to subspace defined in (5.12).

The distance to subspace for the kth class defined in (5.12) depends on two

matrices: MMMk
1 and MMMk

2. It can be treated as the difference between two squared

distances: xxxk,new
(c) MMMk

1(xxx
k,new
(c) )T is the squared distance from xxxk,new

(c) to the centre of the

class subspace Lk, and tttk,newMMMk
2(ttt

k,new)T is the squared distance from the projection

of xxxk,new
(c) to Lk to the centre of Lk.

MMMk
1 and MMMk

2 are of great importance for classification. Instead of determining

MMMk
1 and MMMk

2 manually as in Wold (1976) and Branden and Hubert (2005), distance

metric learning methods offer us a path to learn more appropriate distance met-

rics automatically from the training data to improve the classification performance.

Distance metric learning methods aim to learn distance metrics based on a set of

similarity/dissimilarity constraints: the samples from the same class should be sim-

ilar while the samples from different classes should be dissimilar. Thus the samples

from the same class are close together while the samples from different classes are

farther away from each other, based on the distance metric learned from the training

data.

Established distance metric learning methods are sample-based, i.e. the dis-

tances are measured between samples. However, in SIMCA, the distance is calcu-
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lated between a sample and a class subspace. Thus we need to develop a method of

learning the distance metric from sample to subspace, to learn the distance metrics

in SIMCA. The learned distance metrics are termed “learned distance to subspace

(LD2S)”. Inspired by the constraints used in established distance metric learning

methods, we propose the following set of similarity/dissimilarity constraints for

LD2S: the samples should be similar to their true class while dissimilar to the wrong

classes. In other words, we aim to learn MMMk
1 and MMMk

2, such that the samples are close

to their true classes while farther away from the wrong classes.

5.1.3.1 Distance metric

In this section, we briefly introduce the definition of distance metric. Given a set

of data points {xxx1,xxx2, ...,xxxN} in R1×p with a set of labels {y1,y2, ...,yN}, the dis-

tance metric d(xxxi,xxx j) between two data points xxxi and xxx j should satisfy the following

properties:

1. d(xxxi,xxx j)≥ 0 (non-negativity),

2. d(xxxi,xxx j) = 0 if and only if xxxi = xxx j (identity),

3. d(xxxi,xxx j) = d(xxx j,xxxi) (symmetry),

4. d(xxxi,xxx j)≤ d(xxxi,xxxk)+d(xxx j,xxxk) (triangle inequality),

where xxxk is an instance that is different to xxxi and xxx j. A distance metric is known

as a pseudo metric when the second property is relaxed to: d(xxxi,xxx j) = 0 if xxxi = xxx j.

Most of the metric learning algorithms aim to learn a Mahalanobis distance

liked pseudo metric:

dM(xxxi,xxx j) =
√
(xxxi− xxx j)MMM(xxxi− xxx j)T , (5.16)

which is parameterised by MMM. MMM is set to be positive semidefinite to ensure that

dM(xxxi,xxx j) is a pseudo metric. If MMM is the inverse of the sample variance, then

dM(xxxi,xxx j) is the original Mahalanobis distance. If MMM is the identity matrix, then

dM(xxxi,xxx j) is exactly the Euclidean distance.
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5.1.3.2 Distance to subspace

Different from the distance metric between two samples xxxi and xxx j defined in (5.16),

we define the squared distance metric between a sample xxx and a class subspace Lk

using the general formulation in (5.12):

d2(xxx,Lk) = xxxk
(c)MMM

k
1(xxx

k
(c))

T − tttkMMMk
2(ttt

k)T , (5.17)

where xxxk
(c) denotes the sample mean-centred by the mean of the training samples of

the kth class, MMMk
1 ∈Rp×p is the parameterisation matrix for the distance in the orig-

inal feature space of the kth class, tttk is the PC score of the sample when projected

to the PC subspace of the kth class, and MMMk
2 ∈ Rrk×rk is the parameterisation matrix

for the distance in the PC subspace of the kth class. Then d2(xxx,Lk) can be treated

as the difference between the squared distance from the sample (column-centred by

the column means of class k) to the centre of Lk and the squared distance from the

projection of the sample to the centre of Lk.

5.1.3.3 Learned distance to subspace

To learn good distance metrics between samples and class subspaces, we propose

the following similarity/dissimilarity constraints:

SSS = {(xxxi,Lk) | xxxi belongs to class k}, and

DDD = {(xxxi,Lk) | xxxi does not belong to class k}.
In the following part, the training samples from class 1 are denoted by sub-

script 1(i), i.e. xxx1(i) ∈ R1×p and XXX1 = [xxxT
1(1), . . . ,xxx

T
1(n1)

]T ∈ Rn1×p, and the train-

ing samples from class 2 are denoted by subscript 2( j), i.e. xxx2( j) ∈ R1×p and

XXX2 = [xxxT
2(1), . . . ,xxx

T
2(n2)

]T ∈ Rn2×p. Thus the similarity/dissimilarity constraints be-

come

SSS = {(xxx1(i),L1),(xxx2( j),L2) | i = 1,2, . . . ,n1, j = 1,2, . . . ,n2}, and

DDD = {(xxx1(i),L2),(xxx2( j),L1) | i = 1,2, . . . ,n1, j = 1,2, . . . ,n2}.
One straightforward way to find tailored distance metrics is to minimise the

sum of the distances between the samples and the class subspaces that fall into the

similarity constraint SSS, while maximise the sum of those that fall into the dissimi-
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larity constraint DDD. However, simply optimising the sums of the distances suffers

from loosing the information in individual samples. Hence, instead of treating all

training samples together, we aim to make the difference between the distance to

the wrong class and that to the correct class for each training sample large enough

for classification by using the following constraints:

d2(xxx1(i),L2)−d2(xxx1(i),L1)≥ 1, for i = 1, . . . ,n1, and

d2(xxx2( j),L1)−d2(xxx2( j),L2)≥ 1, for j = 1, . . . ,n2. (5.18)

In this way, the samples can be classified more easily. In addition, to enhance the

generalisation ability of the learned distance metrics, we add slack variables ξ1(i)

and ξ2( j) to the constraints and aim to solve the following optimisation problem:

min
ξ1(i),ξ2( j),MMM

k
1,MMM

k
2

n1

∑
i=1

ξ1(i)+
n2

∑
j=1

ξ2( j) (5.19)

s.t. d2(xxx1(i),L2)−d2(xxx1(i),L1)≥ 1−ξ1(i), ξ1(i) ≥ 0, (5.20)

d2(xxx2( j),L1)−d2(xxx2( j),L2)≥ 1−ξ2( j), ξ2( j) ≥ 0, (5.21)

MMMk
1 ≥ 0 and MMMk

2 ≥ 0. (5.22)

The constraints in (5.20) and (5.21) can be rewritten as

ξ1(i) ≥ [1+d2(xxx1(i),L1)−d2(xxx1(i),L2)]+ and

ξ2( j) ≥ [1+d2(xxx2( j),L2)−d2(xxx2( j),L1)]+,

where [l]+ = max(0, l). Hence the optimisation problem is equivalent to

min
MMMk

1,MMM
k
2

n1

∑
i=1

[1+d2(xxx1(i),L1)−d2(xxx1(i),L2)]++

n2

∑
j=1

[1+d2(xxx2( j),L2)−d2(xxx2( j),L1)]+

s.t. MMMk
1 ≥ 0, MMMk

2 ≥ 0. (5.23)
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The hinge losses used in (5.23) only penalise the samples that do not satisfy (5.18),

while assign zero loss to the correct class for the samples that satisfy (5.18) using

SIMCA. In this way, the hinge loss makes full use of the effectiveness of SIMCA.

It is worth noting that the hinge loss has also been popularly used in other distance-

based classifiers, such as support vector machine (SVM) and large margin nearest

neighbour (LMNN) classification (Weinberger et al., 2006).

Suppose we denote MMMk∗
1 and MMMk∗

2 (k = 1,2) as the solutions of (5.23). Then the

distance from a test sample xxxnew to the kth class subspace is

d2(xxxnew,Lk) = xxxk,new
(c) MMMk∗

1 (xxxk,new
(c) )T − tttk,newMMMk∗

2 (tttk,new)T . (5.24)

We compare d2(xxxnew,L1) and d2(xxxnew,L2), and assign xxxnew to the class with the

smallest squared distance.

Considering the nature of spectral data, i.e. high-dimensional feature and small

sample size, learning the full matrices, MMMk
1 with p(p+ 1)/2 parameters and MMMk

2

with rk(rk + 1)/2 parameters, could easily suffer from the overfitting problem. In

(5.14) and (5.15), MMMk
1(Wold) =

1
h1

IIIp and MMMk
1(R) =

1
h2

IIIp are identity matrices with

common coefficients 1/h1 and 1/h2 for all dimensions, respectively. Therefore, in

this chapter, we learn MMMk
1 = ckIIIp(with ck ≥ 0) and MMMk

2 = diag(mk
21,m

k
22, . . . ,m

k
2rk

)

(with each element nonnegative), as natural and practically-interpretable extensions

of those used in (5.14) and (5.15).

5.2 Experiments
In the following experiments, SIMCA with classification rule (5.10) (SIMCA-W),

SIMCA with classification rule (5.11) (SIMCA-R) and SIMCA with classifica-

tion rule (5.24) (SIMCA-LD2S) are compared using the Phenyl dataset, the fat

dataset (Ferraty and Vieu, 2006) and the meat dataset (Arnalds et al., 2004). De-

tailed descriptions for the three datasets can be found in Chapter 2 Section 2.2.1.

The classification performances of the three methods are shown for five differ-

ent training set size/feature dimension ratios: n1/p = n2/p = 0.1, n1/p = n2/p =

0.2, n1/p = n2/p = 0.3, n1/p = n2/p = 0.4 and n1/p = n2/p = 0.5.
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For the Phenyl dataset, we randomly select 100 samples with Phenyl struc-

ture and 100 samples without Phenyl structure. In addition, we select the first 100

dimensions from the 658 feature dimensions for the experiments in this chapter,

i.e. p = 100.

For the fat dataset, we use all 120 meat samples with less than 20% fat and 71

meat samples with more than 20% fat in the dataset. We also use all the dimensions

of the fat dataset, i.e. p = 100.

For the meat dataset, we use all 55 chicken samples and 54 turkey samples in

the dataset. We also select the first 100 dimensions from the 350 dimensions for the

experiments in this chapter, i.e. p = 100.

Therefore, for the three datasets, the five training set sizes are n1 = n2 = 10,

n1 = n2 = 20, n1 = n2 = 30, n1 = n2 = 40 and n1 = n2 = 50. The rest of the samples

in the datasets are used as test samples.

5.2.1 Experiment settings

In SIMCA-W, SIMCA-R and SIMCA-LD2S, the numbers of PCs, rk, are tuned by

5-fold cross-validation using the training set to minimise the classification error.

In SIMCA-R, ck
OD = (µ̂ + σ̂z0.975)

3/2, where µ̂ and σ̂ are the mean and the

standard deviation of the orthogonal distances in of the training samples in class k;

and ck
SD =

√
χ2

nk;0.975. The weight γ is also tuned by 5-fold cross-validation.

In SIMCA-LD2S, the optimisation problem (5.23) is solved by ‘cvx’ in MAT-

LAB.

All the experiments are repeated 100 times and the classification accuracies are

recorded.

5.2.2 Results

5.2.2.1 The Phenyl dataset

The classification results of the Phenyl dataset demonstrate the superior classifica-

tion performance of SIMCA-LD2S, as shown in Figure 5.3 and Figure 5.4, com-

pared with SIMCA-W and SIMCA-R over all nk/p ratios.

However, the classification performance of SIMCA-LD2S cannot always be
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(e) n1/p = n2/p = 0.5.

Figure 5.3: Classification accuracies of SIMCA-W, SIMCA-R and SIMCA-LD2S for the
Phenyl dataset.
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Figure 5.4: Mean classification accuracies of SIMCA-W, SIMCA-R and SIMCA-LD2S for
the Phenyl dataset.
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better than those of SIMCA-W and SIMCA-R over all scenarios, in particular un-

der small nk/p ratios. In the following two sections, we show two examples that

SIMCA-LD2S performs worse than SIMCA-W and SIMCA-R for small nk/p ra-

tios while better than SIMCA-W and SIMCA-R for large nk/p ratios. This is be-

cause there are more parameters in SIMCA-LD2S to be learned than SIMCA-W

and SIMCA-R, and SIMCA-LD2S needs more training samples to achieve good

classification performance for some data.

5.2.2.2 The fat dataset
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(e) n1/p = n2/p = 0.5.

Figure 5.5: Classification accuracies of SIMCA-W, SIMCA-R and SIMCA-LD2S for the
fat dataset.
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Figure 5.6: Mean classification accuracies of SIMCA-W, SIMCA-R and SIMCA-LD2S for
the fat dataset.

In the fat dataset, the classification performance of SIMCA-LD2S is worse than

SIMCA-W when nk/p < 0.3 and is better than SIMCA-W when nk/p ≥ 0.3, as

shown in Figure 5.5 and Figure 5.6. SIMCA-R provides the worst classification

accuracies over all nk/p ratios.

5.2.2.3 The meat dataset

Compared with the fat dataset, the classification accuracies of the three methods

for the meat dataset show a stronger effect of the nk/p ratios. When nk/p < 0.4,

SIMCA-LD2S performs much worse than SIMCA-W and SIMCA-R, especially for

nk/p = 0.1. However, when nk/p = 0.5, the classification accuracies of SIMCA-

LD2S become much better than those of SIMCA-W and SIMCA-R, as shown in

Figure 5.7(e) and Figure 5.8. The classification results of the meat dataset suggest

that SIMCA-LD2S needs nk/p > 0.4 to achieve superior classification performance

for the meat dataset.

5.2.2.4 Summary of the results

The experiments show that using the learned distance metrics from data can provide

superior classification results, compared with using predetermined distance metrics,

when the nk/p ratio is large enough. For data with small nk/p ratios, using the

classification rule based on LD2S may perform poorly in classification since the

nk/p ratio is not large enough to learn the parameters in LD2S.
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0.4

0.5

0.6

0.7

0.8

0.9

1

SIMCA−W SIMCA−R SIMCA−LD2S

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

(d) n1/p = n2/p = 0.4.
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(e) n1/p = n2/p = 0.5.

Figure 5.7: Classification accuracies of SIMCA-W, SIMCA-R and SIMCA-LD2S for the
meat dataset.
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Figure 5.8: Mean classification accuracies of SIMCA-W, SIMCA-R and SIMCA-LD2S for
the meat dataset.
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5.3 Conclusion
We have proposed a general formulation of distance to subspace, i.e. the distance

from a sample to a PC class subspace. Based on this formulation, we have pro-

posed a simple but effective LD2S method that can learn tailored distance metrics

adaptively from data, for the classification rule of SIMCA. The classification perfor-

mances on three datasets demonstrate the effectiveness of learning distance metrics

from data when the nk/p ratio is large enough.



Chapter 6

Conclusions and future work

6.1 Conclusions
In this thesis, we present four reinforcements for SIMCA, with the first two related

to the class models used in SIMCA and the last two related to the distances used in

SIMCA.

First, SIMCA suffers from the problem that the class subspaces are built sepa-

rately ignoring the discriminative between-class information. We have tackled this

problem by projecting the original data to a subspace more discriminative than the

original feature space before applying SIMCA. We have proposed the DOS projec-

tion to generate such a discriminative subspace which is spanned by the eigenvec-

tors of the generating matrix with high discriminative ability. The experiments on

three real-world spectral datasets have demonstrated the effectiveness of the DOS

projection.

Second, we have proposed NCCM and have provided a thorough comparison

of NSM, NCHM and NCCM theoretically and empirically. We have proved the

theoretical dual analysis results for the dual problem of NCCM, based on the re-

lationship between a convex cone and its polar cone. We have also established an

SHC framework for nearest-class-model methods with arbitrary norms to inspire

future research. Empirically, we have proposed an effective method to explore the

properties of the data.

Third, we have investigated the calculations of the two OD2, vk,l and vk,new, us-
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ing the formulae in De Maesschalck et al. (1999). We have shown that the formula

for vk,new in De Maesschalck et al. (1999) is not precise for high-dimensional data.

The experiments on both the simulated datasets and the real datasets have confirmed

that using the formula in De Maesschalck et al. (1999) can proved worse classifi-

cation results than using the original one in Wold (1976). Therefore, we suggest to

use the original formulae in Wold (1976) to calculate the OD2s for high-dimensional

data.

Fourth, we have derived a general formulation for the classification rules used

in literature and have defined it as the distance metric to subspace. We have pro-

posed to learn the two parameterisation matrices in the distance metric to subspace

adaptively from data using the learning distance to subspace method. Our proposed

LD2S forces the samples to be closer to their correct class subspaces while be far-

ther away from their wrong class subspaces.

6.2 Future work
Based on our work in the thesis, more research on SIMCA and subspace-based

classification methods could be done in the future.

Firstly, subspace-based classification methods have been generalised to multi-

view or tensor versions (Zhang et al., 2013, 2015, 2016) recently. Inspired by these

research, it is interesting to extend the DOS projection to multi-view or tensor ver-

sions.

Secondly, further improvements for learning distance to subspace could be de-

veloped, such as adding regularisation of the matrices to be learned in the optimisa-

tion problem. Besides the spectral data, the method of learning distance to subspace

could be applied to other types of data. As nature extensions of the work in Chapter

5, we could first extend MMMk
1 to diagonal matrices, instead of the simple identity ma-

trices with learned coefficients in Chapter 5. Furthermore, with sufficient amount

of data, we could even learn the full parameterisation matrices instead of the simple

diagonal matrices to improve the classification performance, since the full matri-

ces allow more variability. Advanced techniques are needed to learn tailored full
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matrices.

Thirdly, the classification methods discussed in this thesis are only applied to

high-dimensional spectral data which only measure the spectral information of the

samples. Hyperspectral image data are 3-dimensional data cubes that measure both

spectral and spatial information and have attracted a lot of attentions recently. It is

natural to extend the methods proposed in this thesis to classify hyperspectral image

data. In such extensions, how to include the spatial information from the images is

an interesting work meriting investigation.
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Spectral Nonlocal Restoration of Hyperspectral
Images With Low-Rank Property

Rui Zhu, Mingzhi Dong, and Jing-Hao Xue

Abstract—Restoration is important in preprocessing hyperspec-
tral images (HSI) to improve their visual quality and the accuracy
in target detection or classification. In this paper, we propose a
new low-rank spectral nonlocal approach (LRSNL) to the simul-
taneous removal of a mixture of different types of noises, such as
Gaussian noises, salt and pepper impulse noises, and fixed-pattern
noises including stripes and dead pixel lines. The low-rank (LR)
property is exploited to obtain precleaned patches, which can then
be better clustered in our spectral nonlocal method (SNL). The
SNL method takes both spectral and spatial information into con-
sideration to remove mixed noises as well as preserve the fine
structures of images. Experiments on both synthetic and real
data demonstrate that LRSNL, although simple, is an effective
approach to the restoration of HSI.

Index Terms—Hyperspectral image, low rank (LR), nonlocal
means, restoration, spectral and spatial information.

I. INTRODUCTION

H YPERSPECTRAL images (HSI) are captured on 100s of
narrow spectral bands ranging from 400 to 2400 nm, rep-

resented as a three-dimensional (3-D) data cube containing both
spectral and spatial information. During the capture of HSI, var-
ious kinds of noises are introduced, polluting the images. The
noises also affect further HSI applications such as classifica-
tion, target detection, and unmixing. In order to recover clean
images and facilitate further applications, image restoration is
required as a preprocessing.

The restoration of HSI has attracted considerable attention
recently [1]–[10]. The 3-D representation of HSI makes the HSI
restoration different from the traditional two-dimensional (2-D)
image restoration, with both spectral and spatial information at
our disposal.

Common denoising methods, such as maximum noise frac-
tion (MNF) [4], orthogonal, or oblique subspace projection [5],
[6], and frequency domain filtering [7], [8], reconstruct the
image in a transformed domain. They, however, fail to restore
image edges effectively. Wavelet-based restoration methods
[8]–[10] can preserve details of images such as edges. However,
it depends on prior knowledge to choose an appropriate type
of wavelet transform. Besides being represented in a trans-
formed domain, spatial information in the original image can
be exploited directly. Most of the methods that consider spatial
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information are based on local information from neighbouring
pixels. However, local methods exploit limited information of
the true image. In contrast, nonlocal approaches use informa-
tion from the whole image, based on the assumption that a
small patch of the image can be represented by similar patches
in other places of the same image [11]. In this way, the fine spa-
tial structures of the image can be preserved. Qian and Ye [1]
adopted this idea and applied a nonlocal sparse model to the
HSI restoration, in which the overlapped patches of the image
are clustered and a sparse learning method is applied to each
cluster. In [1], patches in each cluster are assumed to be rep-
resented by the same dictionary. However, how to choose the
dictionary is based on certain prior knowledge.

Without using prior knowledge, Golbabaee and
Vandergheynst [2] and Zhang et al. [3] solved the HSI
restoration problem utilising the low-rank (LR) property of
HSI. The LR property can be attributed to the high correlation
between hyperspectral signatures of pixels. Hence, the images
can be expressed by a linear combination of a limited number
of endmembers. In [3], an LR matrix recovery model was
developed to simultaneously remove several types of noises,
such as Gaussian noises, impulse noises, stripes, and dead
lines. Stripes and dead lines are fixed-pattern bad pixels due
to variations in detection [5], [8], [12]. Impulse noises, stripes,
and dead lines can be sparse, since they only appear in few
bands or few pixels within a band.

However, the LR methods, mainly exploiting the spectral
correlation between spectral bands, may not preserve fine spa-
tial structures. On the other hand, the nonlocal techniques
mainly exploit the spatial correlation between spatial patches.

Hence, to exploit the best of both worlds, in this paper we
propose a new low-rank spectral nonlocal (LRSNL) approach,
which will consider both spectral and spatial information. It
combines both the LR property of HSI and the nonlocal method
for the HSI restoration. In addition, we extend the standard
nonlocal approach for 2-D images to 3-D HSI, using spectral
information to remove the mixed noises as well as preserve the
fine spatial structures of the image.

II. METHODOLOGY

The proposed HSI restoration approach (LRSNL) contains
two major parts: 1) using the LR property to obtain pre-cleaned
patches and 2) applying the spectral nonlocal (SNL) method
to restore the image. The LR precleaning is to improve the
performance of the nonlocal restoration. The importance of pre-
cleaning has been shown in the experiments of [13] and [14],
where better clustering results of the patches are obtained after a

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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first round of denoising. We shall also demonstrate this through
our experiments.

A. LR Precleaning of HSI

To explain the LR property of HSI, we first transform the
3-D data cube into a 2-D matrix. Suppose the size of an HSI
data cube is M × N × Q, where M and N represent the total
numbers of pixels in height and width, and Q is the num-
ber of spectral bands. The cube can be rearranged as a 2-D
matrix of (M × N) × Q, with each column representing the
reflectance from a specific spectral band, and each row repre-
senting the spectral signature of a specific pixel. Note that the
spatial information is nevertheless lost after this transformation.

The LR property can be associated with the linear mixing
model of HSI. In the linear mixing model, HSI are considered
as a linear mixture of several endmembers: Ũ = AST , where
Ũ is the transformed 2-D matrix of the HSI and A is an (M ×
N) × K matrix representing the abundance of K endmembers;
the endmembers are concatenated into a Q × K matrix S. Since
there are a limited number of endmembers, the rank of Ũ is
limited [2].

The captured noisy HSI can be modeled as

V = U +N (1)

where V is the noisy HSI cube, U is the true, clean HSI cube,
and N denotes the noise [15].

To preclean the noisy V , the HSI cube is first divided
into small patches of size m × m × Q, where m is much
smaller than min(M,N). Each patch is centred at a pixel, thus
the number of patches is M × N . All the patches are trans-
formed to 2-D matrices of size (m × m) × Q. For pixel (i, j),
i = 1, . . . ,M and j = 1, . . . , N , its noisy patch matrix Vij is
precleaned by using the LR property of HSI

Ûij = argmin
Uij

‖Vij − Uij‖2F s.t. rank(Uij) ≤ K (2)

where Vij and Uij denote the noisy and clean patch matri-
ces centred at (i, j), respectively, ‖ · ‖F denotes the Frobenius
norm of matrix, and K is a predefined constant that indicates
the maximal rank of the clean patch matrix [15].

As we mentioned, the LR methods only consider the spectral
correlation, and thus may not preserve the fine spatial struc-
tures of the image. Fig. 1 shows the LR restoration results from
LRMR [3] for two bands of a synthetic Indian Pines dataset.
(The construction of this synthetic dataset will be detailed in
Section III-A). We can observe that in both cases using only
the LR property tends to over-smooth the images. To fur-
ther recover the fine spatial structures, we propose a spectral
nonlocal approach.

B. Spectral Nonlocal Restoration of HSI

The standard nonlocal means algorithm (NL) for 2-D images
[11] considers the spatial information of images and aims to
preserve the fine structures during image restoration. In NL, the
image is divided into small patches and each pixel is restored

Fig. 1. LR restoration of two images: images with (a) Gaussian noises and (c) a
mixture of Gaussian and impulse noises, and their LRMR results in (b) and (d),
respectively.

as the weighted average of the pixels that have a neighborhood
similar to the neighborhood of the target pixel. Although NL
can effectively remove Gaussian noises, it cannot handle fixed-
pattern noises such as dead pixel lines and stripes. For a dead
pixel, the pixels that have the most similar neighbors will be the
neighboring dead pixels, hence the neighboring dead pixels will
have large weights and the restoration of a dead pixel is still a
dead pixel.

To extend NL for HIS reconstruction, we incorporate the
spectral information into NL. In our proposed method LRSNL,
we assume that the weights of pixels, that have a neighborhood
similar to that of the target pixel, are the same over all spectral
bands. These weights are thus calculated based on the mean dis-
similarity between patches over all bands. As a result, if dead
lines and stripes are few, the effect of these noises will be small
and the bands containing these noises can be restored by using
information from other spectral bands. In this way, we extend
the standard NL to a SNL, such that it can be readily applied to
HIS to reduce various types of noises.

Fig. 2 illustrates the difference between NL and SNL for HIS.
Fig. 2(a) shows a part of a spectral band of the Indian Pines
synthetic data. The areas with the same colour have the same
land cover. Fig. 2(b) shows the noisy image with two dead pixel
lines, and P is a dead pixel on the left-hand line. The colour
of P, different from other dead pixels, is to visually indicate
its position. The true value of pixel P is 0.190 and the noisy
value is 0. Fig. 2(c) and (d) shows the pixels similar to P found
by NL and SNL, respectively. The dead pixels in squares A
and B are the similar pixels found by NL, so clearly P will be
restored as a dead pixel with value remaining 0. In contrast, the
similar pixels found by SNL are all the pixels in squares C and
D. Although there are dead pixels in the two squares, a large
number of normal pixels will overwhelm the influence of the
dead pixels. The restored value of P by using SNL is actually
0.178, close to its true value.
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Fig. 2. Comparison of NL and SNL for dead lines: (a) original; (b) noisy;
(c) NL; and (d) SNL.

Let us describe the SNL algorithm as follows. Instead of cal-
culating the similarity between patches based on the precleaned
2-D matrix, we transform the 2-D matrix back to the 3-D cube
and calculate the similarity based on this cube. The dissimilar-
ity between two patches, respectively, centred at pixels (i, j)
and (k, l), can be defined as

Dij,kl =
1

Q

Q∑

q=1

‖Ûij,q − Ûkl,q‖2F , k �= i or l �= j (3)

where q indexes the spectral bands. The pixel (i, j) can be
recovered by a weighted average of all other pixels in the
image. The weight that pixel (k, l) carries to pixel (i, j) can
be expressed as

wij,kl =
e−Dij,kl/h

2

∑
k,l e

−Dij,kl/h2 (4)

where h is the parameter indicating the decay of the exponen-
tial function, which reduces the weight with the dissimilarity
between the two patches.

From (3), we can see that the dissimilarity between two
patches is evaluated as the average of the dissimilarity over all
spectral bands. That is, the weights for restoring each pixel take
advantage of the spectral information available. Hence, pixels
affected by impulse noises or dead pixels can then be restored
through using information from other spectral bands.

In NL and SNL, each patch is compared with all other
patches and all the associated weights are calculated. This will
result in high-computational costs when the image is large. To
reduce the costs, Buades et al. [11] suggest to set a searching
area, compute the dissimilarity between the patches within this
area, and restore a pixel based on the weighted average only
within this area.

Although the proposed SNL can remove mixed noises and
preserve the fine structures of images, it cannot perform well

Algorithm 1. LRSNL: Low-Rank Spectral Nonlocal

Input: V , m, K, h
Output: U cleaned

1: Divide the data cube V into overlapped patches of size m ×
m × Q. Transform each patch into a 2-D matrix of size (m ×
m) × Q.
2: Preclean patches using the low-rank property as (2).
3: Calculate the weights between the precleaned patches using
(3) and (4).
4: Restore each pixel using the weighted average of all other
pixels in the searching area to obtain U cleaned.

when pixel values are largely affected by noises since the pixels
are restored as the weighted average of pixels within the image.
Using LR as a precleaning step will remove some noises and
thus lead to better clustering and restoration.

Therefore, the proposed LRSNL can be summarized in
Algorithm 1.

III. EXPERIMENTS

A. Synthetic Data Experiments

1) Data and Experimental Settings: An Indian Pine dataset
is used for our synthetic experiments. The dataset is created
based on the ground truth of Indian Pine (http://www.ehu.
es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes) and the spectral signatures from the USGS digital
spectral library (http://speclab.cr.usgs.gov/spectral.lib06). The
ground truth describes the real land cover materials of the
Indian Pine area and thus this synthetic dataset can be viewed as
clean HSI that represent a real-world situation. This dataset has
been widely used for validating the techniques of hyperspectral
image processing and analysis [1]. The image of Indian Pine
is of size 145 × 145 and the spectral signatures in the library
describe the reflectance of 223 spectral bands. According to
the ground truth, pixels of the image are classified into 17
categories. Each pixel is assigned with a spectral signature
based on its category. Thus, the synthetic data cube is of size
145 × 145 × 223 with reflectance values within range [0, 0.5].

The performance of restoration methods is evaluated in two
ways. First, the restored images and spectral signatures are
shown directly for visual comparison. Since, there are numer-
ous pixels and spectral bands, only a few of them are presented
in this paper. Second, the performance is also quantitatively
measured by the improved signal to noise ratio (ISNR) for each
spectral band [1]

ISNRi = 10 log10

M∑
x=1

N∑
y=1

[unoised
i (x, y) − ui(x, y)]

2

M∑
x=1

N∑
y=1

[ucleaned
i (x, y) − ui(x, y)]2

(5)

where M and N are the numbers of rows and columns of the
image of a specific spectral band, unoised

i (x, y) is the noisy
value of a pixel (x, y) of band i, ui(x, y) is its true value, and
ucleaned
i (x, y) is its restored value.
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Fig. 3. Effect of tuning parameters: (a) the patch size and the rank of the clean
matrix; and (b) the filtering parameter h.

As with [3], our synthetic dataset covers four types of noises:
1) Gaussian noises with standard deviation ranging from 0.01
to 0.03 are added randomly to all the spectral bands; 2) 20%
salt and pepper impulse noises are added to band 20 and band
22; 3) dead lines are added to band 5 to band 14 in the same
positions; and (4) stripes are added to band 50 and 70. Due
to the similarity between dead lines and stripes, we omit the
presentation of results for stripes in this paper.

The proposed method (LRSNL) is compared with the LR
matrix recovery method (LRMR) [3] and the SNL that does
not have the LR precleaning step. LRMR transforms the 3-D
cube into a 2-D matrix and takes advantage of the LR property
of the 2-D matrix. The mixed noises are removed by using the
LR matrix recovery model, which treats the clean image as a
LR matrix and treats the noises, such as impulse noise and dead
lines, as a sparse matrix. The GoDec algorithm [16] is used
to solve the optimization problem in LRMR. We also compare
LRSNL with SNL to show the effect of precleaning.

There are three parameters in Algorithm 1 to be tuned: the
patch size, the rank of the clean matrix, and the filtering parame-
ter h. The average ISNR is chosen as the performance measure.
The performance of LRSNL with respect to the patch size and
the rank of the clean matrix is shown in Fig. 3(a). Since the
standard deviation is in the range of [0.01, 0.03], h is simply
set to the mean of this interval, 0.02. The performance is rel-
atively stable when the rank is larger than 4, given the patch
size. Hence, when we explore the effect of the filtering param-
eter h, we fix the patch size to 3 × 3 and the rank to 4. Fig. 3(b)
plots the performance of LRSNL with respect h in this case. It
shows that the value of h is slightly better to be 0.015 than 0.02.
Hence, we set the value of h in (4) to 0.015.

For all methods, the 3-D cube is divided into small patches of
size 3 × 3 × 223, and each small patch is transformed into a 2-
D matrix of size 9 × 223. In LRMR, the rank of the clean matrix
is chosen from {2, 4, 6, 8} and the cardinality of the sparse
matrix is chosen from {30, 50, 70, 100}. The 16 combinations
of the two parameters are evaluated and the best combination
is chosen based on the average ISNR. The combination of rank
2 and cardinality 50 provides the best performance and is cho-
sen for the experiments. In our LRSNL, the rank is set to 4.
To reduce the computational cost, the searching area is set to
a 21 × 21 square centred at the target pixel in the SNL step of
LRSNL, by following the experiments in [11].

2) Results: Fig. 4 is the plot of ISNR versus all bands. It
shows that our method can restore the noisy images better than

Fig. 4. ISNR of LRMR, SNL, and the proposed LRSNL.

Fig. 5. Restoration of the spectral signature of pixel (136, 21): (a) original;
(b) noisy; (c) LRMR; (d) SNL; and (e) LRSNL.

do LRMR and SNL in almost all spectral bands. We note that
the performances of LRSNL, LRMR, and SNL at band 140 are
almost the same. This is mainly because only small Gaussian
noise with a standard deviation of 0.016 has been added to
the band. LRMR can perform well on bands with such small
Gaussian noise, but compared with LRSNL and SNL it cannot
remove large mixed noises in other bands. The restored spectral
signatures of pixel (136, 21) are shown in Fig. 5. Compared
with the original spectral signature, LRSNL also provides the
best results while LRMR performs the worst.

A synthetic image with only Gaussian noises and its restored
images are shown in Fig. 6. The result from LRMR shows
that large Gaussian noises cannot be effectively removed, edges
are over-smoothed, and fine details are lost. Compared with
LRMR, SNL, and LRSNL remove most of Gaussian noises and
recover the fine details of the original image. The colours of
the results of LRSNL are much closer to those of the origi-
nal image compared with those of SNL, which indicates that
LRSNL produces an image closer to the original image.

Fig. 7 presents the restoration results of an image with a mix-
ture of Gaussian and impulse noises. LRSNL performs the best
among the three methods. Blurred white dots in Fig. 7(c) indi-
cate that LRMR performs badly on removing impulse noises.
Gaussian noises also still exist in the LRMR results. LRSNL
and SNL can remove most of the impulse noises, but SNL
provides a much darker image than does LRSNL.
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Fig. 6. Restoration of band 30 with Gaussian noises: (a) original; (b) noisy;
(c) LRMR; (d) SNL; and (e) LRSNL.

Fig. 7. Restoration of band 20 with a mixture of Gaussian and impulse noises:
(a) original; (b) noisy; (c) LRMR; (d) SNL; and (e) LRSNL.

Compared with LRMR and SNL, LRSNL also shows supe-
rior performance against stripes and dead pixel lines. Fig. 8
displays the restoration results of an image with a mixture of
Gaussian noises and dead pixel lines, in (c) of which the blurred
black lines indicate that LRMR cannot effectively remove the
dead lines. Some short lines in Fig. 8(d) indicate that SNL alone
cannot effectively remove the dead pixel lines that appear over
several bands. Moreover, the two dead pixel lines on the right-
hand side are on the edges of land covers, and Fig. 8(e) shows
that LRSNL still performs well on these dead pixel lines.

In summary, from Figs. 4 to 8, we can observe that the pro-
posed LRSNL approach performs well in all the four situations.
LRMR cannot effectively remove the mixed noises, and the fine
structures within the images are also lost in its restored results.
SNL performs better than LRMR but worse than LRSNL, as
the patches are not precleaned. The colours of the restored
results confirm that the restored values of SNL are worse than
those of LRSNL. SNL also cannot effectively remove the dead
pixel lines that appear successively in several bands. In con-
trast, LRSNL can effectively remove the mixed noises as well
as preserve the fine spatial structures.

Fig. 8. Restoration of band 14 with a mixture of Gaussian noises and dead pixel
lines: (a) original; (b) noisy; (c) LRMR; (d) SNL; and (e) LRSNL.

Fig. 9. Restoration of band 130 of an EO-1 Hyperion dataset: (a) original;
(b) LRMR; (c) SNL; and (d) LRSNL.

B. Real-Data Experiments

An EO-1 Hyperion image dataset is used in our real-
data experiments (http://eros.usgs.gov/find-data). The original
dataset is of size 3371 × 931 × 242. A subset of size 200 ×
200 × 163 is used here after the removal of water pollution
bands. The pixel values of each band are normalized to [0, 1]
before experiments. For all methods, the dataset is first divided
into patches of size 3 × 3 × 163 and transformed into a 2-D
matrix of size 9 × 163. As with the experiments in Section III-
A, for LRMR, the rank of the clean image is set to 2 and
the cardinality of the sparse matrix is set to 50. For LRSNL,
the rank is set to 4 and the parameter h is set to 0.015. The
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searching area is set to a 21 × 21 square centred at the target
pixel.

A large number of spectral bands of the original hyperspec-
tral data cube are polluted by a mixture of dead pixel lines,
stripes, and other noises. The restoration results of band 130
are shown in Fig. 9. LRMR can only remove part of dead
pixel lines and stripes, as shown in Fig. 9(b). It also tends to
over-smooth some edges. Although SNL preserves more fine
structures compared with LRMR, the dead pixel line still can
be spotted as shown in Fig. 9(c). Apparently, LRSNL performs
the best among the three methods. It can remove almost all the
noises and preserve the details as well, as shown in Fig. 9(d).

IV. CONCLUSION

In this paper, we have proposed LRSNL, a simple and effec-
tive restoration method for hyperspectral images. In LRSNL,
the standard NL algorithm is extended to SNL to take advan-
tage of both spectral and spatial information. Hence, a mixture
of different types of noises can be removed simultaneously, and
at the same time the fine details and local structures of the clean
image can be preserved. For a better clustering of the patches
in SNL, the LR property of the clean hyperspectral image is
exploited in a precleaning step. The experiments have demon-
strated the effectiveness of LRSNL and the importance of the
precleaning step.

LRSNL treats all spectral bands the same and simply uses
the average of all the bands to calculate similarities between
patches. However, when spectral bands are of different impor-
tance, an adaptive weighting scheme is better to be developed.
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Abstract

Quality assessment indexes play a fundamental role in the analysis of hy-

perspectral images (HSI) cubes. To assess the quality of an HSI cube, the

structural similarity (SSIM) index has been widely applied in a band-by-

band manner, as SSIM was originally designed for 2D images, and then the

mean SSIM (MeanSSIM) index over all bands is adopted. MeanSSIM fails to

accommodate the spectral structure which is a unique characteristic of HSI.

Hence in this paper, we propose a new and simple multivariate SSIM (MvS-

SIM) index for HSI, by treating the pixel spectrum as a multivariate random

vector. MvSSIM maintains SSIM’s ability to assess the spatial structural

similarity via correlation between two images of the same band; and adds

an ability to assess the spectral structural similarity via covariance among

different bands. MvSSIM is well founded on multivariate statistics and can

be easily implemented through simple sample statistics involving mean vec-

tors, covariance matrices and cross-covariance matrices. Experiments show
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that MvSSIM is a proper quality assessment index for distorted HSIs with

different kinds of degradations.

Keywords: Hyperspectral images, quality assessment, structural similarity

(SSIM), spectral structure, spatial structure.

1. Introduction1

Hyperspectral images (HSI) are captured on 100s of narrow spectral bands2

ranging from 400 to 2400 nm, represented as a 3D data cube containing both3

the spatial structure in two dimensions and the spectral structure in the other4

dimension. Quality assessment plays a fundamental role in HSI analysis,5

especially in image restoration. Image restoration aims to recover clean HSI6

and thus facilitate further analysis such as classification, target detection and7

unmixing. A good quality assessment index can identify well-cleaned HSI.8

The structural similarity (SSIM) index has been widely used in the quality9

assessment of HSI [1–6]. SSIM was originally designed for traditional 2D10

greyscale images to assess the image quality resembling human perception [7–11

10]. SSIM can evaluate the similarity in the spatial structure between two12

images (a reference image and a test image). Recently, many extensions13

of SSIM for 2D images have been proposed, such as multi-scale SSIM [11],14

complex wavelet SSIM [12], information content weighting SSIM [13] and15

intra-and-inter patch similarity [14], among others. As with these works, in16

this paper we focus on the full reference assessment, i.e. a reference image17

(an HSI cube in our case) is provided.18

2



Reference HSI Test HSI

Spatial SS

(a) MeanSSIM.

Reference HSI Test HSI

Spatial SS Spectral SS

(b) MvSSIM.

Figure 1: Illustration of MeanSSIM and MvSSIM (‘SS’ for structural similarity).

In the literature on using SSIM for HSI, usually a band-by-band manner19

is adopted for the 3D cube. The SSIM index for the image of each spectral20

band is calculated and then the mean of all these SSIM indexes (MeanSSIM)21

is taken as the quality measure of the whole HSI cube, as illustrated in Fig-22

ure 1a. This simple strategy can compare the within-band spatial structure23

between each pair of images for the same band in the reference HSI and24

the test HSI. However, the similarity in the cross-band spectral structure25

has been neglected, although such information is rich, unique and crucial in26

HSI. It is well known that both spatial and spectral structures are of great27

importance in the analysis of HSI and omitting the spectral structure is un-28

desirable. Alparone et al. [15] and Garzelli and Nencini [16], extend SSIM to29

HSI by representing the pixel spectrum as a hypercomplex number. However,30

restricted by the properties of hypercomplex numbers, their index needs a31

recursive procedure to compute, making it not as popular as MeanSSIM in32

HSI restoration and denoising.33

In this context, we propose in this paper a new and simple quality assess-34

ment index for HSI, termed multivariate SSIM (MvSSIM). In a 2D image a35

3



pixel is treated as a univariate random variable by SSIM; in contrast, in an36

HSI cube a pixel is in nature a multivariate random vector. By replacing37

the univariate sampling statistics in SSIM with their multivariate versions,38

MvSSIM generalises SSIM to HSI. Compared with MeanSSIM, MvSSIM can39

assess both the within-band spatial structural similarity, between images of40

the same band, and the cross-band spectral structural similarity, between41

spectra of the same pixel, as illustrated in Figure 1b between a reference42

cube and a test cube. MvSSIM is well founded on multivariate statistics43

and can be easily implemented through simple multivariate sample statistics44

involving mean vectors, covariance matrices and cross-covariance matrices.45

Experiments show that MvSSIM is a proper quality assessment index for46

distorted HSIs with different kinds of noises.47

2. MvSSIM for hyperspectral images48

2.1. SSIM49

SSIM is a quality assessment index originally designed for 2D greyscale50

images. Suppose we have two images x and y, both containing N = a × b51

pixels: x = [x1, . . . , xN ]T ∈ RN×1 and y = [y1, . . . , yN ]T ∈ RN×1, aligned52

with each other. In SSIM, the N pixels of a 2D image are treated as N53

realisations of a univariate random variable: xi and yi (i = 1, . . . , N) are the54

realisations of random variables x and y, respectively.55

SSIM consists of three comparisons between x and y: the similarity of56

luminance, l(x,y); the similarity of contrast, c(x,y); and the similarity of57

structure, s(x,y). It is defined as the product of the powers of these three58

4



similarities:59

SSIM(x,y) = [l(x,y)]α × [c(x,y)]β × [s(x,y)]γ, (1)

where α, β and γ are three positive exponents adjusting the relative impor-60

tance of the similarities and often all set to 1.61

The three similarities are calculated by using the sample statistics of x62

and y. First, the similarity of luminance l(x,y) is obtained by comparing63

the sample means x̄ and ȳ:64

l(x,y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

, (2)

where x̄ = 1
N

N∑
i=1

xi and ȳ = 1
N

N∑
i=1

yi, and C1 is a constant that controls the65

stability of the fraction when x̄2 + ȳ2 is close to zero. Constants C2 and C366

in the other two similarities play the same role as C1.67

Second, the similarity of contrast c(x,y) is obtained by comparing the68

sample standard deviations sx and sy:69

c(x,y) =
2sxsy + C2

s2x + s2y + C2

, (3)

where s2x = 1
N−1

N∑
i=1

(xi−x̄)2 and s2y = 1
N−1

N∑
i=1

(yi−ȳ)2 are the sample variances.70

Third, the similarity of structure s(x,y) is calculated as the sample cor-71

relation coefficient of x and y:72

s(x,y) =
s2xy + C3

sxsy + C3

, (4)
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where s2xy = 1
N−1

N∑
i=1

(xi− x̄)(yi− ȳ) is the sample cross-variance. The sample73

correlation coefficient measures the linear dependency between x and y, indi-74

cating the similarity between two within-image spatial structures of the two75

images, which were vectorised into a pair of two N -element vectors. Thus76

s(x,y) is of great important in SSIM for assessing the spatial structural77

similarity of two images.78

SSIM possesses the following three good properties as a similarity index.79

First, SSIM is symmetric, i.e. SSIM(x,y) = SSIM(y,x). Second, the value80

of SSIM is bounded, i.e. SSIM(x,y) ∈ [−1, 1]. Third, SSIM has a unique81

maximum, i.e. SSIM(x,y) = 1 if and only if x = y.82

2.2. MeanSSIM83

When SSIM is used in the quality assessment of HSI, it is commonly84

applied in a band-by-band manner. That is, an SSIM index is obtained for a85

pair of images of the same band, and then the mean index over bands is used86

as the quality measure of the test HSI cube against the reference cube, as87

illustrated in Figure 1a. We call this measure the mean SSIM (MeanSSIM)88

index.89

Suppose we have two HSI cubes, XH ∈ Ra×b×Q and Y H ∈ Ra×b×Q,90

where a and b represent the numbers of pixels in height and width, and Q91

is the number of spectral bands. XH and Y H can be rearranged as 2D92

matrices X = [xc1,x
c
2, . . . ,x

c
Q] ∈ RN×Q and Y = [yc1,y

c
2, . . . ,y

c
Q] ∈ RN×Q,93

where N = a × b denotes the total number of pixels and xcq ∈ RN×1 and94

ycq ∈ RN×1 represent the image vectors of the qth spectral band of XH and95
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Y H , respectively. The MeanSSIM index is calculated as96

MeanSSIM =
1

Q

Q∑

q=1

SSIM(xcq,y
c
q). (5)

MeanSSIM can explore the similarity in spatial structure of each pair of97

band images. However, due to its band-by-band manner, it fails to adequately98

explore the cross-band spectral structure in HSI, while the spectrum of each99

pixel, i.e. each row of X or Y , contains crucial information like its chemical100

components. Thus, in addition to assessing the within-band spatial structural101

similarity between two images of the same band, assessing the cross-band102

spectral structural similarity between two spectra at the same spatial position103

should also be considered in the quality assessment of HSI.104

2.3. MvSSIM105

Since an HSI cube contains both spatial structure and spectral struc-106

ture, its quality assessment should contain assessments for both structures.107

Hence in this paper, we propose multivariate SSIM (MvSSIM) for the quality108

assessment of HSI, generalising SSIM via multivariate sample statistics.109

In MvSSIM, the spectrum of each pixel of an HSI cube is treated as110

a realisation of a Q-dimensional random vector. To be more specific, we111

rewrite X ∈ RN×p and Y ∈ RN×p as X = [xr1,x
r
2, . . . ,x

r
N ]T and Y =112

[yr1,y
r
2, . . . ,y

r
N ]T , where xrn ∈ RQ×1 and yrn ∈ RQ×1 represent the spectra of113

the nth pixel of XH and Y H , respectively. Here xrn and yrn are considered as114

the realisations of Q-dimensional random vectors X ∈ RQ×1 and Y ∈ RQ×1,115

respectively.116
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As an extension of SSIM, MvSSIM also consists of three similarity mea-117

surements between X and Y , i.e. l(X,Y ), c(X,Y ) and s(X,Y ). These118

three similarities are defined on the following multivariate sample statistics119

of X and Y :120

i) the sample means,121

X̄ =
1

N

N∑

n=1

xrn ∈ RQ×1, Ȳ =
1

N

N∑

n=1

yrn ∈ RQ×1; (6)

ii) the sample covariance matrices,

ΣX =
1

N − 1

N∑

n=1

(xrn − X̄)(xrn − X̄)T ∈ RQ×Q , (7)

ΣY =
1

N − 1

N∑

n=1

(yrn − Ȳ )(yrn − Ȳ )T ∈ RQ×Q; (8)

and iii) the sample cross-covariance matrix,122

ΣXY =
1

N − 1

N∑

n=1

(xrn − X̄)(yrn − Ȳ )T ∈ RQ×Q. (9)

Different from the univariate sample statistics in SSIM, the sample statis-123

tics in MvSSIM are vectors or matrices, rather than scalars. Thus the com-124

parisons between scalars in SSIM should be extended to comparisons be-125

tween vectors or matrices in MvSSIM. The extensions from l(x,y), c(x,y)126

and s(x,y) to l(X,Y ), c(X,Y ) and s(X,Y ) are described as follows.127
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2.3.1. From l(x,y) to l(X,Y )128

As with l(x,y), l(X,Y ) measures the luminance similarity between im-129

ages by comparing the sample mean vectors, X̄ and Ȳ . Because l(X,Y )130

compares the luminance similarity, the spectral structure is not included in131

this term and the inner products of vectors are used to make the numerator132

and denominator scalars. We define133

l(X,Y ) =
2〈X̄, Ȳ 〉+ C1

〈X̄, X̄〉+ 〈Ȳ , Ȳ 〉+ C1

=

2
Q∑
q=1

x̄qȳq + C1

Q∑
q=1

(x̄2q + ȳ2q ) + C1

, (10)

where 〈 , 〉 denotes the inner product of two vectors, and x̄q and ȳq are the134

qth entries of X̄ and Ȳ , respectively.135

It is easy to show that l(X,Y ) ∈ [0, 1] and l(X,Y ) = 1 when X = Y . If136

Q = 1, i.e. the HSI becomes a 2-D image, (10) degenerates into (2) of SSIM.137

2.3.2. From c(x,y) to c(X,Y )138

Similar to c(x,y), c(X,Y ) compares the similarity between sample co-139

variance matrices ΣX and ΣY . A sample covariance matrix (e.g. ΣX) con-140

tains the variances within individual bands (of X) in its diagonal entries, and141

the covariances between different spectral bands (of X) in its off-diagonal en-142

tries. Hence when we compare X and Y through ΣX and ΣY , we can achieve143

two comparisons simultaneously: comparing the contrasts of two images of144

the same band via the two standard deviations of this band, and comparing145

the contrasts of two spectra of the same spatial position via the covariances146

between different bands.147
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To make use of both the spatial and spectral information and to make148

the numerator and the denominator scalars, a natural choice is to use the149

nuclear norm to summarise the sample covariance matrix. Hence we define150

c(X,Y ) as151

c(X,Y ) =
2||ΣX ||

1
2∗ ||ΣY ||

1
2∗ + C2

||ΣX ||∗ + ||ΣY ||∗ + C2

=
2
√
λs
√
ds + C2

λs + ds + C2

, (11)

where || ||∗ is the nuclear norm, λs =
Q∑
q=1

λq, d
s =

Q∑
q=1

dq, and λq and dq are152

the singular values of ΣX and ΣY , respectively.153

The similarity c(X,Y ) can take values in [0, 1], and c(X,Y ) = 1 when154

X = Y . If Q = 1, we treat the spectral norm of a scalar as itself and (11) is155

equivalent to (3) of SSIM.156

2.3.3. From s(x,y) to s(X,Y )157

The term s(x,y) measures the spatial structural similarity between two

images and is vital for SSIM resembling human perception. Preserving this

good property of SSIM, we also adopt the correlation coefficient for MvSSIM.

We define s(X,Y ) as

s(X,Y ) =
1

Q
trace((ΣXY + C3IQ)(Γ

1
2
XΓ

1
2
Y + C3IQ)−1)

=
1

Q

Q∑

q=1

σ2
XY q + C3

σXqσY q + C3

, (12)

where ΓX and ΓY are diagonal matrices composed of the diagonal elements158

of ΣX and ΣY , respectively; and σ2
XY q, σ

2
Xq and σ2

Y q are the qth diagonal159

entry of ΣX , ΣY and ΣXY , respectively. It is obvious that s(X,Y ) is the160
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mean of correlation coefficients of all spectral bands.161

The similarity s(X,Y ) ∈ [−1, 1], and s(X,Y ) = 1 when X = Y . If162

Q = 1, (12) degenerates into (4) of SSIM.163

2.3.4. MvSSIM164

Combing the three similarity measurements defined above, the MvSSIM165

index of X and Y can be written in a similar formulation to SSIM:166

MvSSIM(X,Y ) = [l(X,Y )]α × [c(X,Y )]β × [s(X,Y )]γ, (13)

where as with SSIM α, β and γ are three positive exponents that adjust the167

relative importance of the components.168

Among these three terms, l(X,Y ) and s(X,Y ) measure the similarity169

between band images in luminance and spatial structure, while c(X,Y ) mea-170

sures the similarity between both band images and pixel spectra. Thus in171

MvSSIM, both the within-band spatial structural similarity and the cross-172

band spectral structural similarity are assessed.173

Moreover, comparing (1)-(4) with (10)-(13), we can find that MvSSIM is174

a natural generalisation of SSIM, and thus it can be readily embedded into175

other state-of-the-art SSIM-based quality assessment indexes such as [11–14].176

3. Experiments177

Besides MeanSSIM, MvSSIM is also compared with three other SSIM-178

based quality assessment indexes in literature, namely Qλ, Qm [17] and179

Q2n [16].180
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The index Qλ measures the minimum SSIM between the pair of spectra of181

the same pixel among all pixels; Qm is the product of Qλ and the minimum182

SSIM between the pair of images of the same band among all bands; and183

Q2n is an extension of SSIM by expressing the spectrum as a hypercomplex184

number.185

The five quality assessment indexes could be categorised into the following186

three groups: 1) Qλ, which measures spectral similarities between spectra of187

the same pixel; 2) MeanSSIM, which measures spatial similarities between188

images of the same band; and 3) Qm, Q2n and MvSSIM, which measure both189

spectral and spatial similarities.190

3.1. Dataset191

The Washington DC dataset is used for the synthetic experiments. The192

dataset is of size 250× 250× 191, where 250× 250 is the size of the image of193

each spectral band and 191 is the number of bands. The original HSI cube194

serves as the reference cube while its noisy version acts as a test cube.195

3.2. Experiment settings196

MeanSSIM is computed using the MATLAB function ‘ssim’ with the de-197

fault setting: window size is 11, C1 = 0.01 and C2 = 0.03. For MvSSIM, a198

patch of size 5× 5× 191 moves from pixel to pixel, the index of each patch is199

calculated, and then the mean index of all the patches is taken as the index of200

the whole HSI. We set constants Ci of MvSSIM to 0 and exponents α, β and201

γ to 1 for simplicity. The index Q2n is calculated by using the pansharpening202

toolbox of [18]. The block size is set to 32 and the block shift size is set to203

32, as suggested in [16].204
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(a) (b)

(c) (d)

(e)

Figure 2: The reference image and noisy images of band 80. (a) Reference. (b) Gaussian
white noise (variance 60). (c) Gaussian smoothing noise (standard deviation 1). (d)
Savitzky-Golay smoothing noises (frame size 11). (e) JPEG2000 compression (compression
ratio 30).
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Figure 3: The reference spectrum and noisy spectra of the pixel at position (50, 50). (a)
Reference. (b) Gaussian white noise (variance 60). (c) Gaussian smoothing noise (stan-
dard deviation 1). (d) Savitzky-Golay smoothing noises (frame size 11). (e) JPEG2000
compression (compression ratio 30).
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Following the experiments in [17], four typical degradations are applied to205

the HSI to evaluate the quality assessment indexes: Gaussian white additive206

noise, spatial smoothing, spectral smoothing and lossy compression. The207

index values are calculated for different levels of degradations.208

First, Gaussian white additive noises are added to 50 randomly-selected209

bands of the spectra. We test 10 different variances: from 10 to 100 with a210

step of 10, i.e. 10 different noisy HSIs are created with different variances.211

Second, Gaussian smoothing filters are applied to 50 randomly-selected212

bands to create spatially blurred band images, i.e. in the spatial dimensions213

of the HSI. Eight different standard deviations of the Gaussian smoothing214

kernels are tested: 0.1, 0.5, 1, 5, 10, 50, 100 and 500, i.e. eight different noisy215

HSIs are created with different standard deviations.216

Third, Savitzky-Golay smoothing filter is applied to the spectra of all217

pixels to create smooth spectra, i.e. in the spectral dimension of the HSI. We218

test eight different frame sizes: 5, 11, 31, 71, 91, 131, 171 and 191, i.e. eight219

different noisy HSIs are created with different frame sizes..220

Fourth, JPEG2000 compression is applied to the HSI in a band-by-band221

way. We test five different compression ratios: from 10 to 50 with a step of222

10, i.e. five different noisy HSIs are created with different compression ratios.223

The reference image and noisy images of band 80 and the reference spec-224

trum and noisy spectra of pixel (50, 50) are shown in Figure 2 and Figure 3.225

3.3. Results226

3.3.1. Gaussian white additive noise227

Figure 4 shows the assessments for the HSIs contaminated by the Gaus-228

sian white additive noises of different variances, which represent different de-229
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Figure 4: Assessments for the Gaussian white additive noise contaminated HSIs.

grees of contamination. The performances of the three indexes that measure230

both spectral and spatial similarities are shown in Figure 4a. It is obvious231

that Qm is the most sensitive to the Gaussian white additive noise, Q2n is232

less sensitive, and MvSSIM is the least sensitive. However, sensitivity is not233

the only criterion to evaluate the performances of the indexes. The changes234

in the spatial structure and the spectral structure should also be considered235

when carrying out such evaluation.236

We use MeanSSIM as a measurement for the spatial structural change237

and Qλ as a measurement for the spectral structural change, and plot the238

performances of these two indexes in Figure 4b. In the plot, the value of Qλ239

is high when the variance is less than 60 and drops fast when the variance240

becomes large; this indicates that the spectral structure changes little when241

the white noise is light but can change dramatically when the white noise is242

heavy. In the meantime, the figure shows that the value of MeanSSIM is rel-243

atively stable; this indicates that the spatial structure does not change much244

with the variance of white noise. This is because MeanSSIM averages out245
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white noise over bands that the low similarities between contaminated band246

images are compensated by high similarities between other band images.247

Considering the above behaviours of MeanSSIM and Qλ, we prefer MvS-248

SIM in the Gaussian white noise case even though it is the least sensitive249

index in Figure 4a. As shown in Figure 4b, it is clear that the values of Qm250

and Q2n are close to zero even when the values of Qλ are still close to one;251

this indicates that Qm and Q2n fail to consider the high spectral structural252

similarity in this case and are over-sensitive to the Gaussian white noise.253

In contrast, MvSSIM provides large values when the values of Qλ are large.254

Also, compared with Qλ, MvSSIM is more desired because it also reflects the255

spatial structural similarity, making it between MeanSSIM and Qλ in the256

case of Gaussian white noise.257

3.3.2. Gaussian smoothing noise258
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Figure 5: Assessments for the Gaussian smoothing noise contaminated HSIs.

Figure 5a shows the assessments for the HSIs contaminated by the Gaus-259

sian smoothing noise: Qm is the most sensitive to the Gaussian smoothing260
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noise, MvSSIM is less sensitive, and Q2n is the least sensitive.261

Similarly to the case of Gaussian white noise, we use MeanSSIM to con-262

sider the spatial structural similarity and use Qλ to consider the spectral263

structural similarity, as plotted in in Figure 5b to evaluate the relative per-264

formances of MvSSIM, Qm and Q2n. The value of Qλ drops quickly when the265

standard deviation of the Gaussian smooth noise is larger than one, while266

the value of MeanSSIM is less sensitive to the Gaussian smoothing noise267

compared with that of Qλ.268

When Qλ largely decreases due to the noise, Q2n remains relatively sta-269

ble; this indicates that Q2n fails to respond well to the decrease in the spec-270

tral structural similarity introduced by the Gaussian smoothing noise. In271

contrast, Qm reflects well the changes in the spectral structural similarity.272

However, Qm fails to consider the strong spatial structural similarity as indi-273

cated by the big values of MeanSSIM. Compared with Q2n and Qm, MvSSIM274

is a more desired candidate to assess the Gaussian smoothing noise contam-275

inated HSIs. It is between MeanSSIM and Qλ, demonstrating a reasonable276

compromise between the spatial structural similarity and the spectral struc-277

tural similarity.278

3.3.3. Savitzky-Golay smoothing noise279

Figure 6a shows the assessments for the HSIs contaminated by the Savitzky-280

Golay smoothing noise: Qm is the most sensitive to the Savitzky-Golay281

smoothing noise, Q2n is less sensitive, and MvSSIM is the least sensitive.282

Considering the behaviours of MeanSSIM and Qλ in Figure 6b, the in-283

sensitive performance of MvSSIM is reasonable. It is obvious that Qλ and284

MeanSSIM are not sensitive to the Savitzky-Golay spectral smoothing noise,285
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Figure 6: Assessments for the Savitzky-Golay smoothing noise contaminated HSIs.

i.e. neither the spatial and spectral structures are dramatically affected by286

the spectral smoothing noise. It makes sense that the spectral structural sim-287

ilarity is not largely affected by the Savitzky-Golay smoothing noise, because288

it is well known that the Savitzky-Golay filter can keep original signal struc-289

ture while removing noises with proper frame sizes [19]. Thus the large values290

of MvSSIM is reasonable as it assesses both spatial and spectral structural291

similarities. However, Qm and Q2n provide small values when the values292

of MeanSSIM and Qλ are still large, which indicates that Qm and Q2n are293

over-sensitive to the spectral smoothing noise.294

3.3.4. JPEG2000 compression noise295

Figure 7a shows the assessments of the HSIs contaminated by the JPEG2000296

compression noise: Qm is the most sensitive to the JPEG2000 compression297

noise, MvSSIM is less sensitive, and Q2n is the least sensitive.298

Considering the behaviours of MeanSSIM and Qλ in Figure 7b, the com-299

parative evaluation of MvSSIM, Qm and Q2n is similar to that in 3.3.2:300
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Figure 7: Assessments of the JPEG2000 compression noise contaminated HSIs.

Q2n does not manage to respond well to the spectral and spatial structural301

changes; Qm is over-sensitive to the JPEG2000 compression noise; and MvS-302

SIM provides index values between Qλ and MeanSSIM, which indicates that303

MvSSIM more properly measures the influence of both spectral and spatial304

structural similarities. Thus we can prefer MvSSIM for assessing the HSIs305

contaminated by the JPEG2000 compression noise.306

3.3.5. Summary307

Two summaries could be made from these experiment results.308

First, MvSSIM could provide appropriate assessments for noisy HSIs.309

Second, as the indexes can perform differently for different kinds of noises,310

by combining the performances of the indexes for a noisy HSI, we could311

estimate the type of the noise added to the HSI based on the patterns of312

the indexes, as suggested by [17]. For example, when MvSSIM is the least313

sensitive to different levels of noises, there may be smoothing noise along the314

spectral dimension.315
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4. Conclusion316

In this paper, we proposed a new quality assessment method called MvS-317

SIM for 3D HSI cubes. MvSSIM explores both spatial and spectral simi-318

larities of HSI cubes. It can assess the similarities in both the within-band319

spatial structure and the cross-band spectral structure, by treating each pixel320

spectrum as a realisation of a multivariate random vector. The experiments321

demonstrated that MvSSIM is a proper index of quality assessment for vari-322

ous types of noises.323
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