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Abstract: (247 words) 

Background: Implications of different adiposity measures on cardiovascular disease 

aetiology remain unclear. In this paper we quantify and contrast causal associations of central 

adiposity (waist:hip ratio adjusted for BMI (WHRadjBMI)) and general adiposity (body mass 

index (BMI)) with cardiometabolic disease.  

Methods: 97 independent single nucleotide polymorphisms (SNPs) for BMI and 49 SNPs for 

WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective 

studies supplemented with CHD data from CARDIoGRAMplusC4D (combined total 66,842 

cases), stroke from METASTROKE (12,389 ischaemic stroke cases), type 2 diabetes (T2D) 

from DIAGRAM (34,840 cases), and lipids from GLGC (213,500 participants) consortia. 

Primary outcomes were CHD, T2D, and major stroke subtypes; secondary analyses included 

18 cardiometabolic traits.  

Results: Each one standard deviation (SD) higher WHRadjBMI (1SD~0.08 units) associated 

with a 48% excess risk of CHD (odds ratio [OR] for CHD: 1.48; 95%CI: 1.28-1.71), similar 

to findings for BMI (1SD~4.6kg/m2; OR for CHD: 1.36; 95%CI: 1.22-1.52). Only 

WHRadjBMI increased risk of ischaemic stroke (OR 1.32; 95%CI 1.03-1.70). For T2D, both 

measures had large effects: OR 1.82 (95%CI 1.38-2.42) and OR 1.98 (95%CI 1.41-2.78) per 

1SD higher WHRadjBMI and BMI respectively. Both WHRadjBMI and BMI were 

associated with higher left ventricular hypertrophy, glycaemic traits, interleukin-6, and 

circulating lipids. WHRadjBMI was also associated with higher carotid intima-media 

thickness (39%; 95%CI: 9%-77% per 1SD). 

Conclusions: Both general and central adiposity have causal effects on CHD and T2D. 

Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of 

adiposity on health should include measures of central and general adiposity.  
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Clinical Perspective: 

What is new: 

 This large-scale genetic analysis presents the most comprehensive causal assessment 

of adiposity with cardiometabolic diseases to date, including new data for  stroke 

subtypes from METASTROKE and novel cardiometabolic traits including ECG 

measures and CIMT.  

 We find that waist:hip ratio adjusted for BMI, a measure of central body fat 

distribution that aims to be independent of general adiposity, is causally related to 

higher risks of coronary heart disease, ischaemic stroke and a multitude of 

cardiometabolic traits.  

 Our findings also reinforce existing evidence on the causal relevance of general 

adiposity (BMI) to these diseases and provide more precise estimates. 

What are the clinical implications:  

 Both the amount of adiposity and its distribution play important roles in influencing 

multiple cardiometabolic traits and the development of cardiometabolic diseases.  

 Furthermore, our findings indicate that body fat distribution has multiple causal roles 

in disease that are independent of general adiposity.  

 This suggests that physicians should pay attention to measures of adiposity beyond 

BMI as measurement of such traits may identify patients at risk of cardiometabolic 
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disease and provides opportunities to the scientific community to identify novel 

approaches to disease prevention.  



 
 

6 
 

 

Word count (4978)   

Introduction 

Observational studies have identified associations between adiposity and the risk of 

developing incident coronary heart disease (CHD), stroke and type 2 diabetes mellitus 

(T2D)1, 2. Many observational studies report consistent results with different measures of 

adiposity; for example the Emerging Risk Factors Collaboration found similar associations 

with both general adiposity measured via body mass index (BMI) and central adiposity 

measured via waist to hip ratio (WHR) for CHD and ischaemic stroke1. The association of 

different adiposity measures with T2D has also been found to be similar2. 

However, other studies have suggested that central adiposity, measured as either WHR or 

waist circumference (WC), may have stronger associations with cardiovascular disease. For 

example, INTERHEART found a stronger association for WHR with myocardial infarction 

(MI) than BMI, and the association of WHR with MI persisted after adjustment for BMI3. 

The Million Women Study found that WC increased CHD risk within BMI categories (and 

vice versa) again suggesting each is independently associated with CHD4.  Furthermore, 

INTERSTROKE found WHR to be more strongly associated with stroke risk than BMI5. 

While these studies have attempted to separate the independent effects of general and central 

adiposity, this remains challenging in observational studies due to the high degree of 

correlation between adiposity measures. Another problem is that adiposity measures may 

differ in their reproducibility; for example BMI is less affected by regression dilution bias – a 

bias to the null resulting from measurement error - than WHR 6. In addition, all measures of 

adiposity suffer from confounding due to underlying ill-health at low or sub-clinical levels, 

because many chronic conditions lead to weight loss7-9.  Consequently it is very difficult, if 
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not impossible, to quantify the true independent effects of different measures of adiposity in 

observational studies alone. 

Whilst Mendelian randomization (MR) studies minimise bias from traditional sources such as 

confounding, regression dilution bias and reverse causation, they may be susceptible to bias 

from pleiotropy (association of genetic variants with more than one variable). Pleiotropy can 

be vertical due to multiple downstream effects that follow the SNP effect on the exposure of 

interest, but this does not compromise MR assumptions. Alternatively, pleiotropy can be 

horizontal, whereby the SNP or instrument affects pathways other than those of the exposure 

of interest and could therefore invalidate the MR assumption that the SNP only affects the 

outcome through the exposure of interest, potentially leading to biased causal estimates. With 

multi-SNP instruments, there is a chance that pleiotropic effects might become balanced such 

that causal inference regarding the exposure is possible. In this study we perform MR 

analyses of BMI and WHR together with recently developed methods that are robust to 

horizontal pleiotropy under additional assumptions (Supplemental Figure 1).  We therefore 

employ MR-Egger regression to provide a test for unbalanced pleiotropy and a causal 

estimate of exposure on outcome in its presence10, 11.  In addition we use the weighted median 

estimator which can give valid estimates even in the presence of horizontal pleiotropy 

provided at least 50 per cent of the information in the analysis comes from variants that are 

valid instruments, and has the advantage of retaining greater precision in the estimates 

compared to MR-Egger12. 

This manuscript represents the most comprehensive assessment of the causal role of adiposity 

on CHD, stroke and T2D to date. It contrasts the causal effects of central adiposity (waist:hip 

ratio adjusted for BMI (WHRadjBMI) from general adiposity (BMI) on multiple 

cardiovascular outcomes: new CHD events from 14 prospective studies/ RCTs in addition to 

data publicly available from the CARDIOGRAMplusC4D13 increasing CHD cases to 66,842, 
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multiple stroke subtypes using data from METASTROKE14 and T2D from DIAGRAM15. We 

present the largest number of cardiometabolic traits ever examined in a MR analysis of 

adiposity  including lipids from the Global Lipids Genetic Consortium (GLGC; 213,500 

participants)16 and many novel intermediate disease end points, including electrocardiogram 

(ECG) measures of left ventricular hypertrophy, carotid intima media thickness (CIMT) as a 

measure of sub-clinical atherosclerosis, as well as markers of renal and lung disease.  We 

build distinct multi-SNP genetic instruments for each adiposity measure using the most 

comprehensive repertoire available from recent genome-wide association (GWA) studies17, 18,  

with 97 SNPs for BMI and 49 SNPs for WHRadjBMI, thereby more than doubling the 

phenotypic variance explained in some earlier MR studies19-23. 

 

Methods 

Study selection and inclusion of participants 

We include individual participant data from 10 studies in the University College London – 

London School of Hygiene and Tropical Medicine – Edinburgh - Bristol (UCLEB) 

consortium (see Supplemental Table 1 for study details). We include summary data from a 

further four studies (Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), Health and 

Retirement Study (HRS), Netherlands Epidemiology of Obesity (NEO) and Prospective 

Study of Pravastatin in the Elderly at Risk (PROSPER)), and summary data from four 

consortia (CARDIoGRAMplusC4D, METASTROKE, DIAGRAM, Global Lipids Genetics 

Consortium (GLGC)) (see Appendix). All participating studies received approval from local 

institutional review boards or ethics committees. All participants gave informed consent. 

Clinical Outcomes 
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Supplemental Table 2 provides details of CHD ascertainment and number of events by 

study. In UCLEB studies the primary outcome was combined prevalent or incident CHD 

defined as fatal or non-fatal myocardial infarction, or a coronary revascularisation procedure, 

but excluding angina. In the majority of studies events were validated (e.g. hospital episode 

statistics, clinical/laboratory measurements, review of primary care medical records). 

CARDIoGRAMplusC4D used standard criteria for defining cases of CAD and myocardial 

infarction with some studies including angiography-confirmed stenosis and stable or unstable 

angina13. METASTROKE define stroke as a typical clinical syndrome with radiological 

confirmation; subtyping was done with the Trial of Org 10172 in Acute Stroke Treatment 

(TOAST) classification system14. We include all ischaemic stroke, three sub-types of 

ischaemic stroke (large-vessel disease, small-vessel disease and cardioembolic stroke) and 

haemorrhagic stroke. T2D definitions follow DIAGRAM24.   

Cardiometabolic traits  

For analysis of individual participant data studies, data on sex, age, measured standing height, 

weight, waist circumference and hip circumference were used to derive BMI and 

WHRadjBMI traits. WHRadjBMI was calculated by generating the predicted residuals from 

the linear regression of WHR on BMI. Biomarkers included in analyses were grouped into 

the following categories; Lipids (triglycerides, HDL-C and LDL-C), inflammation (IL-6), 

lung function (ratio of FEV1 to FVC), metabolic (glucose, insulin and albumin), renal 

(creatinine, estimated glomerular filtration rate (EGFR), MDRD) and systolic blood pressure. 

The following electrocardiogram (ECG) measures of left ventricular hypertrophy were 

recorded:  QRS voltage sum, QRS voltage sum product, Cornell product and Sokolow-Lyon 

index as well as PR interval (see Supplemental Method 1 for definitions). Cardiometabolic 

traits that were not normally distributed were transformed to the natural logarithmic scale. 

For comparability across biomarkers, measurements were z-score standardised. Self-reports 
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of current smoking status (ever/ never) and alcohol consumption (drinker/ non-drinker) were 

considered to be potential confounders of adiposity-cardiovascular disease (CVD) 

associations.  

Genotyping 

Supplemental Table 1 details genotyping by study. Genotyping in all UCLEB studies was 

conducted with the Metabochip array (except a subset of ELSA study that used a GWAS 

array)25. The remaining studies used GWAS arrays (HRS, PROSPER) or Exome Chip 

(NEO). Individuals were excluded from the analyses on the basis of gender mismatch, 

excessive or minimal heterozygosity, relatedness or individual missingness (>3%). 

Individuals of non-European ancestry were removed to minimise confounding by population 

structure. SNPs with a low call rate or evidence of departure from Hardy–Weinberg 

equilibrium were excluded from analyses (see Supplemental Table 1 for thresholds 

employed in different studies).  

Statistical Analyses 

Observational Analyses 

In individual participant data studies adiposity (BMI or WHRadjBMI) was z-score 

standardised and linear or logistic regression models were fitted for each cardiometabolic trait 

or disease outcome.  Observational models were adjusted for age and sex. Fixed-effect meta-

analyses were employed to derive combined observational estimates across studies. We 

calculated I2 statistics to quantify heterogeneity between studies and derived P-values from 

Cochran’s Q test26.  

Genetic Analyses 

SNP selection and construction of the genetic instruments  
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Selection of SNPs for the genetic instruments was based on analyses from the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium, which included 339,224 

individuals from 125 separate studies for BMI17 and 224,459 individuals from 101 studies for 

WHRadjBMI18.  These studies identified 97 independent SNPs for BMI and 49 independent 

SNPs for WHRadjBMI at GWAS significance. We found no overlap between the BMI SNPs 

and WHRadjBMI SNPs. In studies where the SNP identified by GIANT was not available in 

the Metabochip array, we used proxy SNPs in linkage disequilibrium (R2>0.8) with the 

specified SNP. Details of proxy SNPs used by platform (Metabochip/ GWAS) are given in 

Supplemental Tables 3 and 4. 

Genetic association analyses in individual participant data 

We performed a within study genetic association analysis with adiposity (standardised BMI 

and WHRadjBMI) as a continuous trait using an additive model. We used linear or logistic 

regression models to estimate the additive effect of each SNP on cardiometabolic traits and 

outcomes. We used logistic regression to test the association of each SNP with smoking and 

alcohol consumption as potential confounders of the adiposity-CVD association.  

Instrumental variable analyses in summary data 

We conducted three tests for the causal estimation of each adiposity measure on 

cardiometabolic outcomes: 1) Inverse-variance weighted method (IVW), 2) MR-Egger and 3) 

Weighted median. In the absence of horizontal pleiotropy, we would expect all three tests to 

give consistent results. All IV estimates in summary data were calculated using the mrrobust 

package (available from https://github.com/remlapmot/mrrobust) in Stata version 1427, 28. The 

proportion of variance in adiposity explained by the genetic instruments in summary data was 

calculated using the grs.summary function from the gtx package in R29, 30. A threshold of 



 
 

12 
 

statistical significance of P<0.025 (0.05/2=0.025) was used to reflect testing for two different 

adiposity traits (BMI and WHRadjBMI). 

1) IVW instrumental variable analyses 

To combine data across studies with summary level data we pooled the association of each 

SNP on risk of each CVD outcome/ cardiometabolic trait using fixed effects meta-analysis. 

To provide external weights for the SNP-adiposity associations, the effect of each SNP on 

adiposity (BMI; WHRadjBMI) in GIANT was pooled with that in all other contributing 

studies, excluding studies that had already contributed to GIANT (1958BC, EAS, HRS, 

NSHD, PROSPER, Whitehall II). To quantify heterogeneity in the SNP effects across studies 

we calculated I2 and derived P-values from Cochrane’s Q tests. All P-values were two-sided.  

Inverse-variance weighted meta-analysis (IVW) was used to provide a combined estimate of 

the causal estimates (SNP-outcome/ SNP-adiposity) from each SNP. IVW is equivalent to a 

two-stage least squares or allele score analysis using individual-level data, and is hence 

referred to here as “conventional MR”31. However, it can lead to over-rejection of the null, 

particularly when there is heterogeneity between the causal estimates from different genetic 

variants. 

2) MR-Egger instrumental variable analyses  

To account for potential horizontal pleiotropy in the multi-SNP adiposity instruments, we re-

estimated the instrumental variable associations using MR-Egger regression10, 11. MR-Egger 

tests for presence of, and accounts for, unbalanced pleiotropy by introducing a parameter for 

this bias10. Specifically, linear regression of the instrument-outcome effects is performed on 

the instrument-exposure effects, with the slope representing the causal effect estimate and the 

intercept the net bias due to horizontal pleiotropy. An additional assumption is required that 
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the individual SNP effects on the exposure are independent of their pleiotropic effects on the 

outcome (termed the ‘InSIDE assumption’)12.  

3) Weighted median estimate instrumental variable analyses  

Finally, we applied a complementary approach termed the weighted median estimator which 

can give valid estimates even in the presence of horizontal pleiotropy provided at least half of 

the weighted variance is valid12.   

Power calculations 

Power to detect causal estimates was calculated based on the proportion of variance of the 

exposure explained by the instruments (R2), the total number of individuals in the analysis, 

and the number of cases and controls using the online tool 

http://cnsgenomics.com/shiny/mRnd/32. Power estimates are provided in (Supplemental 

Table 5).  

 

 

Results 

Studies and participants 

Full descriptive details of the included studies are given in Supplemental Table 1.  Data 

from 14 prospective studies and randomised trials and four consortia were included with 

66,842 CHD cases (3,716 from UCLEB/ other non-consortia studies), 12,389 ischaemic 

stroke cases and 34,840 T2D cases. The number of individuals included in the analyses of 

cardiometabolic traits ranged from 6,625 to 213,556. The mean age in individual participant 

data  studies was 63.5 years, the mean BMI 27.4 kg/m2 (SD 4.6) and the mean WHR 0.89 

http://cnsgenomics.com/shiny/mRnd/
http://cnsgenomics.com/shiny/mRnd/
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(SD 0.13) (Supplemental Tables 1 & 6). Distribution of binary traits by study are given in 

Supplemental Table 7. 

  

Instrument validation  

We identified Metabochip proxies for 13 BMI SNPs and 7 WHRadjBMI SNPs; the median 

R2 was 0.965 & 0.913 respectively (Supplemental Tables 3 and 4). The proportion of 

variance of BMI explained by the BMI genetic instrument was 1.7% while the WHRadjBMI 

instrument explained 0.7% WHRadjBMI variance. The associations of individual SNPs with 

adiposity are shown in Supplemental Tables 8 and 9.  

 

Mendelian randomization analysis of adiposity with cardiometabolic traits  

Figure 1a/b presents estimates of associations between BMI and WHRadjBMI with 

cardiometabolic traits from IV analyses. Both genetically instrumented adiposity measures 

were found to be causally associated with increased insulin and triglycerides. In addition, 

BMI was causally associated with higher IL-6, with a directionally consistent result identified 

for WHRadjBMI. Both adiposity measures were also causally associated with decreased 

levels of HDL-C. However, only WHRadjBMI was associated with increased LDL-C, and 

the association with SBP was also stronger. BMI was inversely associated with albumin, 

while WHRadjBMI was not; but heterogeneity across studies was moderately high (I2=57%).  

There was evidence for a causal association with some of the ECG measures that index left 

ventricular hypertrophy with both adiposity measures associated with higher log Cornell 

Product; in addition BMI, but not WHRadjBMI associated with lower Sokolow-Lyon index. 

There was no suggestion for a causal association of either measure of adiposity and PR 

interval.  
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Both WHRadjBMI and, to a weaker extent, BMI were causally associated with higher CIMT 

(39%, 95%CI: 9%, 77% and 18%, 95% CI: 1%, 38% higher per SD in WHRadjBMI and 

BMI, respectively). WHRadjBMI had a weak association with lung function (FEV1:FVC) at 

0.12 units per SD (95%CI 0.00, 0.23), but the P-value does not meet the threshold which 

takes into account testing for multiple measures of adiposity.  There was no suggestion of a 

causal association of either adiposity measure with any of the measures of renal function.  

With MR-Egger regression there was no convincing evidence for directional pleiotropy in 

any of the associations of adiposity traits with continuous cardiometabolic traits 

(Supplemental Tables 10 and 11).  

Supplemental Figures 2a/b illustrate the consistency of observational and IV estimates for 

associations between adiposity and cardiometabolic traits (Supplemental Tables 12 and 13). 

 

Mendelian randomization analysis of adiposity with cardiometabolic diseases  

Figures 2a-c show the association of each adiposity measure with CHD, ischaemic stroke and 

T2D from conventional IVW and weighted median MR analyses. MR-Egger estimates tended 

to be much more imprecise and are therefore presented separately in Supplemental Table 14 

to facilitate interpretation. 

  

Mendelian randomization analysis of adiposity with CHD  

The summary causal estimate per 1SD increment in BMI from conventional IVW MR was an 

OR for CHD of 1.36 (95%CI: 1.22, 1.52) (Figure 2a). MR-Egger regression suggested little 

evidence for unbalanced pleiotropy in the genetic instrument (intercept P-value=0.65), and 

both MR-Egger and weighted median estimates were consistent with the IVW estimate 
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(Supplemental Figure 3a). Furthermore, MR estimates were consistent with observational 

estimates reported by the Emerging Risk Factors Collaboration (Figure 2a) 

Similarly, we found an association between WHRadjBMI and CHD using conventional MR 

(OR 1.48, 95% CI 1.28, 1.71 per SD WHRadjBMI, Figure 2a and Supplemental Figure 

3b). The intercept for the MR-Egger test was 0.0134 (95%CI -0.0004, 0.0278; P-value=0.06). 

The causal estimate from MR-Egger was imprecise (OR 0.89, 95% CI 0.52, 1.53), but the 

weighted median estimator (which retains more power than MR-Egger) provided a causal 

effect of 1.61 (95% CI 1.36, 1.90) which was consistent with the IVW result. 

 

Mendelian randomization analysis of adiposity with ischaemic stroke  

The causal OR for the association between BMI and ischaemic stroke was 1.09 (95%CI 0.93, 

1.28 per SD) (Figure 2b). Results from the MR-Egger analysis were compatible with no 

unbalanced pleiotropy (intercept P-value=0.73), and the weighted median estimator 

suggested no causal association (Supplemental Figure 3c). Estimates for association 

between BMI and stroke sub-types were imprecise and 95% confidence intervals all included 

the null (Table 1). Thus, while all IV estimates for BMI and stroke include the Emerging 

Risk Factors Collaboration estimate (Figure 2b), lack of precision hinders any clear causal 

evidence for an association between BMI and ischaemic stroke. 

Results do, however, provide some evidence for a causal association of WHRadjBMI with 

ischaemic stroke (OR 1.32, 95%CI 1.03, 1.70 per SD in WHRadjBMI) (Figure 2b). MR-

Egger regression was consistent with no unbalanced pleiotropy (intercept P-value=0.94), and 

the weighted median estimator was very close to the IVW estimate (causal OR 1.34, 95%CI 

0.97, 1.86 per SD increase in WHRadjBMI) (Supplemental Figure 3d). Limited evidence 
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was found for a causal association with stroke sub-types; all point estimates were consistently 

above one but precision was poor and 95% confidence intervals included the null (Table 1).   

 

Mendelian randomization analysis of adiposity with T2D  

We found a causal OR for T2D of 1.98 (95%CI: 1.41, 2.78) per SD increase in BMI (Figure 

2c). Similar but stronger estimates were identified using MR-Egger (OR 3.70, 95% CI 1.63, 

8.41; P-value for pleiotropy=0.10) and weighted median estimator (OR 2.70, 95% CI 2.26, 

3.23). One BMI SNP (rs7903146) was an outlier (Supplemental Figure 3e) and is a marker 

for the TCF7L2 gene, a GWAS-identified locus for T2D33. We therefore repeated the T2D 

analysis excluding rs7903146 (Supplemental Table 15 yielding an IVW OR of 2.25 

(95%CI: 1.87, 2.71) per SD increase in BMI, with similar estimates from MR-Egger and 

weighted median estimators. 

Likewise, we found a causal relationship between WHRadjBMI and T2D (OR 1.82, 95% CI 

1.38, 2.42 per SD increase in WHRadjBMI, Figure 2c). MR-Egger did not provide evidence 

of unbalanced pleiotropy (P-value for pleiotropy=0.21), and the weighted median estimator 

result was consistent with the IVW (OR 1.64, 95% CI 1.25, 2.15) (Supplemental Figure 3g). 

Multivariate Mendelian randomization 

We found some evidence for association of both adiposity instruments with smoking, but not 

with other major confounders (Supplemental Table 16). To account for this, sensitivity 

analyses were undertaken for each cardiometabolic disease using multivariate MR including 

the effect of each SNP used as instrument for BMI and WHRadjBMI on smoking. MR 

estimates were found to be robust to this adjustment (Supplemental Table 17), with 

generally consistent point estimates measured with greater imprecision reflecting the reduced 

https://mail.google.com/mail/u/0/?zx=er6u5noii64i#m_4542617511302108270__ENREF_33
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power in these analyses. The multivariate MR (adjusted for smoking) for the causal 

association of WHRadjBMI with ischaemic stroke was 1.27 (95% CI 0.84-1.93) broadly 

similar to 1.32 (95% CI 1.03-1.70) in the main IVW analysis, but with a wider confidence 

interval. We also included FEV1:FVC in these sensitivity analyses due to the likely 

association of this trait with smoking; again adjusted results were very similar to the main 

IVW results (Supplemental Table 17). 
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Discussion 

We conducted the most comprehensive MR analysis to date comparing the causal role of 

central and general adiposity in the development of multiple cardiovascular disease outcomes 

(CHD, multiple stroke sub-types and T2D). Owing to benefits of MR to minimize residual 

confounding by common lifestyle factors and underlying ill-health, we are able to quantify 

that one standard deviation increase in  genetically instrumented WHRadjBMI (~0.08 units) 

results in a ~50% increase in risk of CHD independent of BMI. This compares with the ~40% 

increase in risk of CHD we find per 1SD increase in genetically instrumented BMI (~4.6 

kg/m2) which is consistent with the observational effect derived from large prospective 

population cohorts including the Emerging Risk Factors Collaboration 1 (CHD HR 1.29 

[1.22-1.37] per 1SD) and the Prospective Studies Collaboration33    Thus, while observational 

studies such as the Emerging Risk Factors Collaboration  have found risk to be consistent 

across different measures of adiposity, our results suggest WHRadjBMI may have a stronger 

effect, although the greater imprecision in the MR estimates should also be considered.  

Similarly, while observational studies have found different measures of adiposity to have 

similar associations with risk of ischaemic stroke1, our result again suggest that WHRadjBMI 

may be more strongly associated (increased risk ~30% per 1SD). Recent findings from 

INTERSTROKE also suggest that WHR is a much stronger deleterious risk factor for 

ischaemic stroke5.  Our SBP results follow a similar pattern, with a much stronger association 

between central adiposity and SBP than general adiposity. This is also the first MR study to 

suggest potential causal association between central adiposity ischaemic stroke subtypes, and 

CIMT, a widely used surrogate measure of sub-clinical atherosclerosis.  

Previous adiposity MR studies used limited numbers of SNPs, (with weaker genetic 

instruments), fewer events and generally failed to find evidence for a causal association 
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between BMI and CHD19, 21.  However, one MR study using a 3-SNP allele score (FTO, 

MC4R, TMEM18) reported an OR of 1.52 (95% CI 1.12-2.05 for a 4 kg/m2 increase in BMI20 

, and most recently a MR study using a 32-SNP instrument for BMI found similar results for 

CHD to ours22. We do not however replicate the causal association between BMI and 

ischaemic stroke reported by the same study (hazard ratio per SD-increase of BMI 1.83; 95% 

CI 1.05-3.20)22, despite increasing the number of stroke cases tenfold. Furthermore, our 

results are in line with those for ischaemic stroke from the Emerging Risk Factors 

Collaboration and INTERSTROKE, including the apparently stronger association we find 

between central adiposity and stroke relative to general adiposity. Results for the causal 

association of WHRadjBMI with CHD and T2D are consistent with those from a recent MR 

analysis34.  

We present the largest number of cardiometabolic traits ever examined in a MR analysis of 

adiposity. The current findings are broadly consistent with earlier MR studies for glucose, 

triglycerides, HDL-C, SBP, and IL-6, providing further support for a detrimental impact of 

adiposity on the cardiovascular system19, 21, 23. However, we find no evidence for a causal 

association between BMI and LDL-C, consistent with some but not all earlier studies21, 23. A 

recent MR study found a causal effect of BMI and a wide range of lipid metabolites, 

including all LDL metabolites35, but was conducted in a younger, healthier population 

(average BMI ~24kg/m2) than is commonly included in MR studies (including the current 

one) and this could explain the discrepancy with our findings (as observational studies 

suggests the association of BMI and LDL-C plateaus beyond 27kg/m2) 33.  We also report 

novel positive causal associations of adiposity with the ECG measure log Cornell product (a 

measure of left ventricular hypertrophy; LVH). The negative association of BMI with 

Sokolow Lyon (an alternative measure of LVH) was unexpected and may represent a false 

positive. While both log Cornell product and Sokolow Lyon measure left ventricular 
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hypertrophy, log Cornell product is considered to be the better test for identifying LVH when 

measured against a gold standard36. 

This study demonstrates that central obesity (as quantified by WHRadjBMI) has a causal 

effect on CHD that is independent of BMI. This finding demonstrates the potential of MR 

approaches for investigating highly correlated adiposity measures that have proved 

challenging to disentangle in observational studies37. In these analyses we find that 

WHRadjBMI has a more deleterious lipid profile than BMI, with detrimental associations of 

greater magnitude with triglycerides and HDL-C and association with LDL-C not found for 

BMI. The association of WHRadjBMI with CIMT is also of greater magnitude. Conversely, 

BMI appears to have a greater inflammatory effect than WHRadjBMI, and potentially a 

stronger effect on the ECG measures that index left ventricular hypertrophy as well as with 

glucose and T2D. The apparent lack of association of WHRadjBMI with glucose is 

surprising, but is potentially explained by a negative association of WHRadjBMI SNPs with 

BMI. Interestingly, a recent paper showed WHRadjBMI to associate with 2-hour fasting 

glucose suggesting that WHRadjBMI may have differential effects according to how glucose 

is measured; different mechanisms are likely to regulate fasting and 2-hour glucose34. In 

keeping with our findings, the discovery GWAS that identified 49 SNPs associated with 

WHRadjBMI18 found associations of the SNPs with concentrations of HDL-C, TG, LDL-C, 

adiponectin and fasting insulin. Furthermore, the study identified enrichment of WHRadjBMI 

SNPs for T2D and CHD.  

This study suggests that it is not only the volume of adiposity, but also its location, that is 

relevant for disease, lending weight to the emerging theory that the deposition of body fat 

plays important roles that are independent of total fat. For example, at a given BMI, there is 

considerable inter-individual variation in the amount of visceral fat, which shows associations 
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with disease38. Our results also suggest that efforts to quantify the effect of adiposity on 

burden of disease should include multiple measures of adiposity to avoid underestimating the 

true burden of adiposity on health39. As regards specific interventions that focus WHR more 

than BMI, there is observational evidence that physical activity can modify WHR 

independent of BMI40. Thus it may be possible to mitigate the effects of WHR through 

increased population-wide physical activity. In addition, our findings open potentially new 

avenues of investigation. For example, identifying these causal effects of WHRadjBMI can 

enable research to focus on the downstream consequences of this trait, and potentially 

identify traits (such as metabolites)35 that could mediate the relationship between 

WHRadjBMI and disease which may themselves be amenable to pharmacological 

modification. Such traits downstream of WHRadjBMI could be unique (and not shared with 

BMI) raising the possibility of novel opportunities for drug discovery and disease prevention.  

Strengths 

This study has many strengths. First, independent multi-SNP instruments comparing the 

effect of central and general adiposity on multiple CVD outcomes; second, the use of 

powerful genetic instruments for BMI and WHRadjBMI which explained up to twice the 

phenotypic variation compared with previous MR studies; third, large number of clinical 

events that provided ample power to detect the associations of adiposity with cardiometabolic 

diseases fourth, the use of methods to minimise the impact of unbalanced pleiotropy in the 

genetic instruments that may invalidate findings from conventional MR.  

In addition to this being the most comprehensive evaluation of adiposity-related traits with 

cardiovascular and metabolic risk factors and diseases, our analysis also facilitates their direct 

comparison, and therefore contrasts the effects of general adiposity with body fat distribution 

in the same datasets. This provides novel insights, demonstrating that WHRadjBMI is more 
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relevant to the development of subclinical atherosclerosis and stroke compared to BMI, 

whereas both BMI and WHRadjBMI are important for CHD and diabetes. 

 

Limitations 

Limitations include the potential pleiotropic effects of the multi-SNP instruments. However, 

results suggest little evidence for unbalanced pleiotropy. Re-estimates of the causal 

associations using MR-Egger regression were broadly consistent with our conventional MR 

analysis, albeit with a loss of precision and consequently a loss of power, while weighted 

median estimates (that retains more power than MR-Egger) proved remarkably similar to 

IVW.   

The InSIDE (Instrument Strength Independent of Direct Effect), which is untestable, assumes 

that the pleiotropic effects of the genetic variants are uncorrelated with the association of the 

genetic variants with the exposure. Violation of InSIDE would give rise to biased causal 

estimates from MR-Egger; however each MR approach has different strengths and 

assumptions, for example, violation of InSIDE does not affect the weighted median MR 

approach 12. This highlights the importance of using the three MR approaches (IVW, median 

and MR-Egger) in our study. General concordance of MR estimates derived from these 

approaches helps reinforce the conclusions that can be drawn.   We used a multi-SNP 

instrument for WHR that had already been adjusted for BMI as part of the GIANT GWAS18. 

Genetic instruments for phenotypes adjusted for heritable components may show association 

with the adjusted phenotype through collider bias41, which could violate the InSIDE 

assumption. Indeed, we found WHRadjBMI SNPs to be associated with BMI beyond what 

would be expected by chance (Supplemental Table 18). This could lead to biased results; 
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however in the current scenario the bias will tend to be towards the null (and underestimate 

the true effect) as the WHRadjBMI SNPs are associated negatively with BMI. 

We selected cardiometabolic traits a priori on the basis that previous studies have shown 

them to be observationally and genetically associated with BMI. Therefore, although we test 

multiple outcomes use of a conventional Bonferroni would over-penalize the interpretation. 

Future studies should look to include emerging CVD outcomes such as heart failure and atrial 

fibrillation, and consider additional potential confounders. In addition, more stroke cases 

should be added to improve precision in these analyses, in particular for multivariate MR 

analyses. 

Given that our MR analysis on CHD was largely based on summary data, we were unable 

undertake more detailed investigations of the linear relationship between BMI or 

WHRadjBMI and risk of CHD and/ or to explore the causal effects of very low levels of BMI 

or WHR on CHD42. These are important next steps to investigate, given the uncertainty 

regarding whether the U-shape association of BMI with disease reflects a true causal 

relationship, or whether it is an artefact from residual confounding and/or underlying ill-

health. The recent finding of a J-shaped (rather than U-shaped) association between BMI and 

mortality in healthy non-smokers reinforces the likely role of artefact this association43. 

Therefore, application of methods for non-linear MR could help to determine the true optimal 

level of BMI for health44. However, such analyses would require access to individual 

participant data in all studies.  

Finally, although we identify several downstream biological mechanisms by which general 

and central adiposity may mediate the effects on risk of CHD, these results should be 

considered as exploratory and further studies using adequate methodology for mediation 
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analysis should be conducted45, 46, including the analysis of finer resolution for cardio-

metabolic traits for example using NMR metabolomics. 

 

Conclusions 

Our study supports evidence for a causal role of both central and general adiposity in risk of 

CHD and T2D, and central adiposity in risk of ischaemic stroke. Furthermore, our results 

suggest that central adiposity may pose higher risk for stroke and CHD. Efforts to estimate 

the role of adiposity on cardiovascular disease should consider the potential independent 

effects of different measures of adiposity. 
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Figure 1a. Association of BMI with continuous biomarkers derived from Mendelian 

randomization analysis. Values represent standardized mean differences of each trait per SD 

increase in BMI derived from conventional (IVW) Mendelian randomization analysis. Non-normally 

distributed variables were natural ln transformed; therefore mean differences displayed on the log 

scale may be anti-logged and interpreted as percentage differences in SD of trait per SD in BMI. Log 

triglycerides from individual participant data studies only; GLGC triglycerides in Supplemental Table 

10. 

 

 

Figure 1b. Association of WHRadjBMI with continuous biomarkers derived from Mendelian 

randomization analysis. Values represent standardized mean differences of each trait per SD 

increase in WHRadjBMI derived from conventional (IVW) Mendelian randomization analysis. Non-

normally distributed variables were natural log transformed; therefore mean differences displayed on 

the log scale may be anti-logged and interpreted as percentage difference in SD of trait per SD in 

WHRadjBMI. Log triglycerides from individual participant data studies only; GLGC triglycerides in 

Supplemental Table 11. 

 

 



 
 

39 
 

 

Figure 2a. Associations of adiposity with risk of CHD from observational and Mendelian 

randomization analyses. Association between coronary heart disease and adiposity (BMI and 

WHRadjBMI) comparing causal odds ratios (OR) per SD of adiposity trait derived from instrumental 

variable analysis and observational analysis from the Emerging Risk Factors Consortium hazard ratio 

(HR per SD of BMI or waist:hip adjusted for age, sex and smoking status)1. Causal estimates are 

derived from Mendelian randomization and include conventional (ratio) approach and weighted 

median (see Methods for further details). P(genetic pleiotropy) relates to the P-value derived from the 

intercept of MR-Egger; a small P-value denotes presence of directional pleiotropy. 

 

 

Figure 2b. Associations of adiposity with risk of ischaemic stroke from observational and 

Mendelian randomization analyses. Association between ischaemic stroke and adiposity (BMI and 

WHRadjBMI) comparing causal odds ratios (OR) per SD of adiposity trait derived from instrumental 

variable analysis and observational analysis from the Emerging Risk Factors Consortium (HR of 

ischaemic stroke per SD of BMI or waist:hip adjusted for age, sex and smoking status)1. Causal 

estimates are derived from Mendelian randomization and include conventional (ratio) approach and 

weighted median (see Methods for further details). P(genetic pleiotropy) relates to the P-value derived 

from the intercept of MR-Egger; a small P-value denotes presence of directional pleiotropy. 

 

 

Figure 2c. Associations of adiposity with risk of T2D from observational and Mendelian 

randomization analyses. Association between T2D and adiposity (BMI and WHRadjBMI) 

comparing causal odds ratios (OR) per SD of adiposity trait derived from instrumental variable 

analysis and observational analysis from Vazquez et al., 20072. Causal estimates are derived from 

Mendelian randomization and include conventional (ratio) approach and weighted median (see 

Methods for further details). P(genetic pleiotropy) relates to the P-value derived from the intercept of 

MR-Egger; a small P-value denotes presence of directional pleiotropy. 



 
 

40 
 

 

Table 1: Mendelian randomization estimates for the association of adiposity and stroke sub-types 

 

   IVW       Weighted median 

  OR LCI UCI I2 
  

P(Genetic 

pleiotropy) 
OR LCI UCI 

  

  

  

      

 BMI 

        All ischaemic stroke 1.09 (0.93, 1.28) 20% 0.734 0.98 (0.77, 1.25) 

   - Cardioembolic 1.18 (0.89, 1.55) 0% 0.507 1.40 (0.87, 2.24) 

   - Large vessel disease 1.14 (0.82, 1.59) 19% 0.625 1.12 (0.65, 1.91) 

   - Small vessel disease 0.93 (0.64, 1.35) 30% 0.270 1.15 (0.67, 1.97) 

Haemorrhagic stroke 1.51 (0.73, 3.13) 0% 0.435 1.28 (0.37, 4.40) 

         

         WHRadjBMI 

        All ischaemic stroke 1.32 (1.03, 1.70) 38% 0.936 1.34 (0.96, 1.87) 

   - Cardioembolic 1.24 (0.84, 1.83) 0% 0.588 1.32 (0.73, 2.38) 

   - Large vessel disease 1.37 (0.90, 2.09) 0% 0.470 0.87 (0.48, 1.58) 

   - Small vessel disease 1.57 (0.98, 2.51) 13% 0.861 1.71 (0.89, 3.29) 

Haemorrhagic stroke 1.89 (0.69, 5.18) 0% 0.430 1.73 (0.42, 7.06) 

                  

 

IVW: inverse variance weighted (also termed ‘conventional’ MR) and weighted median. P(genetic pleiotropy) relates to the P-value derived from the intercept of MR-Egger; a small P-value 

denotes presence of directional pleiotropy. 
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Appendix: Sources of summary data/ beta weights from genome-wide association consortia 

 

GIANT  

BMI and WHRadjBMI data were obtained from the GIANT consortium. The Genetic Investigation of 

ANthropometric Traits (GIANT) consortium is an international collaboration that seeks to identify genetic loci that 

modulate human body size and shape, including height and measures of obesity. The GIANT consortium is a 

collaboration between investigators from many different groups, institutions, countries, and studies, and the results 

represent their combined efforts. The primary approach has been meta-analysis of genome-wide association data and 

other large-scale genetic data sets. Anthropometric traits that have been studied by GIANT include body mass index 

(BMI), height, and traits related to waist circumference (such as waist-hip ratio adjusted for BMI, or WHRadjBMI). 

Thus far, the GIANT consortium has identified common genetic variants at hundreds of loci that are associated with 

anthropometric traits. 

https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium 

 

CARDIoGRAMplusC4D 
CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) 

plus The Coronary Artery Disease (C4D) Genetics) consortium represents a collaborative effort to combine data from 

multiple large scale genetic studies to identify risk loci for coronary artery disease and myocardial 

infarction.CARDIoGRAMplusC4D Metabochip is a two stage meta-analysis of Metabochip and GWAS studies of 

European and South Asian descent involving 63,746 cases and 130,681 controls. The CARDIoGRAM GWAS data 

was used as Stage 1 - data as published in: CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg 

C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König 

IR,Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg E, 

Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K,Lundmark P, Lyytikäinen LP, Rafelt S, 

Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E,Van Zuydam N, Voight BF, Waite LL, Zhang W, Ziegler A, 

Absher D, Altshuler D, Balmforth AJ,Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do 

R, DIAGRAM Consortium, CARDIOGENICS Consortium, Doney AS, El Mokhtari N, Eriksson P, Fischer 

K,Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G,Han BG, Hunt SE, 

Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J,Langenberg C, Langford C, Leander K, Lokki ML, 

Lundmark A, McCarthy MI, Meisinger C,Melander O, Mihailov E, Maouche S, Morris AD, Müller-Nurasyid M, 

MuTHER Consortium,Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schäfer 

A,Sivananthan M, Song C, Stewart AF, Tan ST, Thorgeirsson G, van der Schoot CE, Wagner PJ,Wellcome Trust 

Case Control Consortium, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D,Basart H, Boehnke M, Boerwinkle 

E, Brambilla P, Cambien F, Cupples AL, de Faire U,Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario MM, 

Ferrières J, Gauguier D, Go AS,Goodall AH, Gudnason V, Hazen SL, Holm H, Iribarren C, Jang Y, Kähönen M, Kee 

F, Kim HS,Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, Lee JY, Lind L,Ouwehand WH, 

Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ,Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark 

K, Stefansson K, Trégouët DA, Virtamo J,Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg 

C, Sandhu MS,Pastinen T, Syvänen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimäki T, Metspalu A,Zalloua 

PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, Clarke R, Boehm BO, O'Donnell C, Reilly MP, 

März W, Collins R, Kathiresan S, Hamsten A, Kooner JS,Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, 

Watkins H, Schunkert H and Samani NJ; Large-scale association analysis identifies new risk loci for coronary artery 

disease. Nat Genet 2013 45:25-33 

http://www.cardiogramplusc4d.org/ 

 

METASTROKE  

Ischaemic stroke data were obtained from the METASTROKE consortium. The METASTROKE consortium is 

supported by NINDS (NS017950). We thank all study participants, volunteers, and study personnel that made this 

consortium possible. The METASTROKE study consists of combined data from 15 GWAS of IS (12 389 cases vs 62 

004 controls). We used TOAST criteria17 to classify IS as large artery stroke (LAS) (2167 cases/49 159 controls from 

11 studies), cardioembolic stroke (CE) (2365 cases/ 56,140 controls from 13 studies), and small vessel disease (SVD) 

(1894 cases/51 976 controls from 12 studies). METASTROKE studies consisted of independently performed genome-

wide single nucleotide polymorphism (SNP) genotyping using standard technologies and imputation to HapMap 

release 21 or 22 CEU phased genotype18 or 1000 Genome 

reference panels. Investigators contributed summary statistical data from association analyses using frequentist 

additive models for metaanalysis after application of appropriate quality control measures.  
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DIAGRAM 

The DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) consortium is a grouping of researchers with 

shared interests in performing large-scale studies to characterise the genetic basis of type 2 diabetes, and a principal 

focus on samples of European descent. The membership and scope of DIAGRAM has developed as the scale of 

collaboration in the field has increased. The initial instance of DIAGRAM (retrospectively termed "DIAGRAM v1") 

enabled the combination of T2D genome wide association (GWA) studies from the UK (WTCCC), DGI and FUSION 

groups: this meta-analysis, and consequent replication, resulted in identification of six novel signals influencing T2D 

risk (Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, 

Andersen G, Ardlie K, Boström KB, Bergman RN, Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, 

Daly MJ, Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, 

Grallert H, Grarup N, Groves CJ, Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, 

Jørgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren 

CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, Nilsson P, 

Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, 

Roix JJ, Sandbaek A, Shields B, Sjögren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, 

Thorsteinsdottir U, Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ; 

Wellcome Trust Case Control Consortium, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen O, Wareham 

NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M, Altshuler D., Nature Genetics 

2008;40(5):638-45). An incremental meta-analysis ("DIAGRAM v2" or "DIAGRAM+") adding GWA data from a 

further five studies (DGDG, KORA, Rotterdam, DeCODE, EUROSPAN for a total of 8,130 cases and 38,987 

controls) together with extensive replication involving 20 other cohorts, was central to identification of a further 17 

loci (Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, 

Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, 

Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson 

R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt 

NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, 

Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, 

Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jørgensen T, Kao WH, Klopp N, Kong A, Kraft P, 

Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken 

MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann 

W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson 

G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van 

Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman 

RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem 

K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, 

Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley 

AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek 

R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, 

McCarthy MI; MAGIC investigators; GIANT Consortium., Nature Genetics 2010;42(7):579-89). Whilst in the Voight 

(2010) paper, GWA data from the Framingham, ARIC and NHS studies was only used for in silico replication, the full 

data from these studies was subsequently combined to constitute the largest current GWA dataset in samples of 

European descent ("DIAGRAMv3": 12,171 cases and 56,862 controls). This data set was used as the basis for the 

selection of SNPs for T2D replication for the Metabochip custom array, and a manuscript describing the integration of 

DIAGRAM v3 and Metabochip data (a combined total of ~150k individuals) was published in 2012 (Morris AP, 

Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A, 

Prokopenko I, Kang HM, Dina C, Esko T, Fraser RM, Kanoni S, Kumar A, Lagou V, Langenberg C, Luan J, Lindgren 

CM, Müller-Nurasyid M, Pechlivanis S, Rayner NW, Scott LJ, Wiltshire S, Yengo L, Kinnunen L, Rossin EJ, 

Raychaudhuri S, Johnson AD, Dimas AS, Loos RJ, Vedantam S, Chen H, Florez JC, Fox C, Liu CT, Rybin D, Couper 

http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
http://www.nature.com/ng/journal/v40/n5/full/ng.120.html
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