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Pathogenic p62/SQSTM1 mutations 
impair energy metabolism through 
limitation of mitochondrial 
substrates
Fernando Bartolome   1,2,3, Noemi Esteras   3, Angeles Martin-Requero4,5, Claire Boutoleau-
Bretonniere6,7,8, Martine Vercelletto7,8, Audrey Gabelle9, Isabelle Le Ber10,11, Tadashi Honda12, 
Albena T. Dinkova-Kostova13, John Hardy3,14, Eva Carro1,2 & Andrey Y. Abramov3

Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and 
amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes 
the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In 
this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying 
two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human 
dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with 
inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. 
This deficiency was also associated with increased levels of NADPH reflecting a higher activation of 
pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) 
levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic 
ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial 
NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest 
that the phenotype is caused by a loss-of-function effect, because similar alterations were found both 
in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy 
metabolism in pathophysiological events associated with p62 deficiency.

p62, also known as sequestosome 1, is a scaffold or an adaptor protein involved in multiple cellular activities and 
is encoded by the p62 gene (also known as SQSTM1). Mutations in the p62 gene have been found to cause both 
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). FTD and ALS are sometimes asso-
ciated in patients or within families showing ALS and FTD as a pathological continuum (ALS/FTD) as they 
share common pathological features1. Supporting this idea, mutations in the same disease-causing genes in both 
disorders have been reported. These include VCP2, p623, OPTN4, UBQLN25 and especially the hexanucleotide 
repeat expansion in C9orf726. It is worth mentioning that mutations in OPTN, VCP and p62 also cause Paget 
disease of the bone (PDB)1. p62 has been related to neurodegenerative phenotypes and it has been linked to the 
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ubiquitin-proteasome system and autophagy, main protein degradation mechanisms in cells. Protein aggregates 
containing p62 have been also found in many disorders, including ALS and FTD7, 8, in some cases colocalizing 
with the transactive response DNA-binding protein 43 (TDP-43)9 and also in ubiquitinated inclusions along with 
FUS protein and TDP4310.

The link between p62 and neurodegeneration has been further investigated using animal and cell models. 
Most of them have focused on autophagy, the ubiquitin-proteasome degradation pathway and particularly, the 
mitochondrial quality control process known as mitophagy11–15. Studies with cell models showed the implication 
of p62 in mitophagy which is disrupted in some forms of Parkinson’s disease11, 15. The silencing of the p62 ortho-
logue in drosophila ref(2)P, resulted in mitochondrial dysfunction, and mitochondrial DNA accumulation and 
this was linked to the observed locomotor deficits in the flies12, 13. In 2014, Seibenhener and colleagues further 
showed the link between p62 and mitochondrial protein turnover using p62 silenced mouse embryonic fibro-
blasts (MEFs)14. Mitochondria are essential organelles especially for neurons as they are the main source of ATP 
due to limited glycolysis. The p62 knockout mouse model as well as p62 silenced MEFs showed impaired mito-
chondrial function resulting in reduced ATP production14, 16, 17.

Accumulating evidence from recent studies suggests that mitochondrial dysfunction plays a significant role 
in both the FTD and ALS etiopathogenesis18–21. This has been demonstrated using different animal and cell mod-
els. In particular, we recently demonstrated that mutations in VCP cause mitochondrial uncoupling leading to 
decreased mitochondrial membrane potential and a significant reduction of cellular ATP production highlighting 
the pathophysiological events that may occur in FTD and ALS22. In the present study we aimed to analyze mito-
chondrial function and pathophysiology using fibroblasts from FTD diagnosed patients carrying two independ-
ent p62 mutations and the p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y) 
model. We found that p62 deficiency induces inhibition of mitochondrial respiration due to a lack of substrate 
delivery. This inhibition results in higher cytosolic ROS production inducing the cells to increase the pentose 
phosphate pathway activity (PPP) in order to enhance the reduced glutathione (GSH) levels. We also demon-
strated that the p62 mutations cause a loss-of-function effect as the p62 KD shows the same phenotype as the p62 
mutations from patients.

Results
p62 deficiency is associated with decreased mitochondrial membrane potential 
(ΔΨm).  Mitochondrial health and function are reflected in the mitochondrial membrane potential (ΔΨm). 
The implication of p62 in the mitochondrial function was assessed by transient silencing of the p62 gene in 
the SH-SY5Y human neuroblastoma cell line using siRNA (p62 KD) (Fig. 1A). The ΔΨm was then measured 
using tetramethyl-rhodamine methylester (TMRM) as a fluorescent indicator of ΔΨm in the p62 KD cells and in 
mutant fibroblasts from patients carrying independent p62 mutations (patient 1 = A381V; patient 2 = K238del; 
for donor’s details see Supplementary Fig. 1 and Table 1). Interestingly, the p62 protein levels in the mutant fibro-
blasts were reduced in both carriers but more remarkably in patient 1 carrying the A381V mutation (Fig. 1B). A 
significant decrease in ΔΨm was observed in p62 KD SH-SY5Y cells reducing the TMRM signal to 81 ± 4% (n = 4) 
compared to either untransfected (100 ± 1%, n = 4) or cells transfected with scrambled (SCR) siRNA control 
(102 ± 6%, n = 4) (Fig. 1C). Equivalent effects on the ΔΨm were observed in the mutant fibroblasts when com-
pared to age-matched controls (Fig. 1D). The TMRM fluorescence signal was significantly reduced in fibroblasts 
with the pathogenic p62 mutations, indicating that basal ΔΨm is also reduced in these cells (control 1 = 100 ± 1%, 
n > 10; control 2 = 97 ± 2%, n = 5; patient 1 = 80 ± 3%, n > 10; patient 2 = 79 ± 3%, n > 10) compared to control 
fibroblasts (Fig. 1D).

Both, p62 KD SH-SY5Y cells and p62 mutant fibroblasts showed a depolarization in response to the F0-F1-ATP 
synthase (ATPase or complex V) inhibitor oligomycin (2 µg/ml), suggesting a reverse mode function for the 
ATPase (Fig. 1E and F). Subsequent inhibition of complex I by rotenone (5 µM) caused a rapid loss of potential in 
all cells (Fig. 1E and F) and a complete depolarisation was assessed by addition of the mitochondrial uncoupler 
carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) (1 μM) (Fig. 1E and F). These data suggest that 
ΔΨm in p62 KD cells is partially maintained by ATP hydrolysis by the ATPase (Fig. 1E and F).

Mitochondrial respiration is inhibited in p62 deficient cells and this is associated with limited 
substrates for the ETC.  The activity of the mitochondrial electron transport chain (ETC) and the rate of 
substrate supply can be estimated by measurement of mitochondrial NADH and FAD autofluorescence as pre-
viously shown22, 23 (Figs 2 and 3). Figure 2A shows representative average traces for NADH autofluorescence in 
untransfected, SCR-transfected and transient p62 KD SH-SY5Ys cells (Fig. 2A). Then, the NADH redox index 
was estimated as represented in Fig. 2B. The obtained NADH redox index for the transient p62 KD SH-SY5Y cells 
was significantly higher (63 ± 4%, n = 5) compared to either untransfected (45 ± 4%, n = 5) or SCR-transfected 
(43 ± 6%, n = 5) cells (Fig. 2C). Equivalent results were obtained in p62 mutant fibroblasts when compared 
to healthy controls (NADH redox index in patient 1 = 59 ± 5%, n = 9; patient 2 = 50 ± 4%, n = 6; control 
1 = 22 ± 2%, n = 8; control 2 = 26 ± 3%, n = 8) (Fig. 2D). The analysis of the FAD autofluorescence (Fig. 3A) was 
used to generate the FAD redox index (Fig. 3B and C) which was higher in the p62 KD SH-SY5Y cells (91 ± 4%, 
n = 4) compared to untransfected (53 ± 6%; n = 4) and SCR (63 ± 13%; n = 4) cells (Fig. 3C). Increased NADH 
and FAD redox indexes in p62 deficient cells reflects inhibition of complex I-driven respiration and suggest more 
activated complex II dependent respiration as a compensatory mechanism. We were unable to measure the FAD 
redox state in fibroblasts from both patients and controls due to the very low level of FAD autofluorescence in 
these cells. Mitochondrial NADH pool obtained as represented in Fig. 2B was found to be reduced in the p62 
KD cells (68 ± 5%, n = 5) compared to untransfected (94 ± 5%, n = 5) and SCR (97 ± 2%, n = 5) cells (Fig. 2E) 
and in the p62 mutant fibroblasts when compared to the control fibroblasts (patient 1: 61 ± 4%, n = 9; patient 
2: 68 ± 5%, n = 6; control 1: 98 ± 2%, n = 11; control 2: 93 ± 3%, n = 11) (Fig. 2F) indicating a lack of substrates. 
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Figure 1.  p62 deficiency induces mitochondrial depolarisation. (A,B) Immunoblotting showing the p62 
protein levels corresponding to whole cell lysates from untransfected (Untr) and transiently transfected (either 
with SCR or p62 siRNA) SH-SY5Y cells (A) or fibroblasts from patients carrying p62 mutations and aged-
matched controls C1 and C2 (B). In both A and B, β-actin was used as loading control. (C,D) Mitochondrial 
membrane potential (ΔΨm) was estimated by live cell imaging in untransfected, scramble siRNA KD (SCR) and 
p62 KD SH-SY5Y cells (C) and in fibroblasts from patients carrying A381V and K238del pathogenic mutations 
in p62 compared to fibroblasts from two healthy donors (C1, C2) (D) using TMRM in a redistribution mode 
(40 nM). Data were normalised to control SCR cells (C) and control fibroblasts (D) and are represented 
as mean ± SEM from at least three independent experiments. (E,F) Representative TMRM traces from 
untransfected, SCR and p62 KD SH-SY5Y cells (E) and fibroblasts from control donors (F, upper panels) and 
fibroblasts from patients carrying the p62 pathogenic mutations mentioned above (F, bottom panels). The 
charts show responses to oligomycin (2 μg/mL), rotenone (5 μM) and FCCP (1 μM). In all cases *indicates 
p < 0.05 and ***indicates p < 0.001 compared with the values of control cells.
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Along with this observation, lower FAD pool levels were also found in the p62 KD cells (59 ± 9%, n = 4) com-
pared to untransfected (91 ± 9%, n = 4) and SCR (95 ± 7%, n = 4) confirming an inhibition in complex I and 
reduced substrate availability (Fig. 3D). Further analysis of complex I activity using an activity microplate assay 
confirmed the inhibition of complex I in the p62 mutant fibroblasts compared to controls (patient 1 = 74 ± 1%, 
n = 3; patient 2 = 55 ± 8%, n = 3; control 1 = 99 ± 7%, n = 3; control 2 = 101 ± 4%, n = 3) (Fig. S3). It is possible 
that the p62 deficient cells try to compensate the inhibition of complex I-driven respiration through activation of 
complex II as reflected by the lower FAD pool levels in the p62 deficient cells (Fig. 3D).

p62 deficient cells exhibit increased cytosolic ROS production.  Altered mitochondrial function 
could be linked to an overproduction of cytosolic reactive oxygen species (ROS). Cytosolic ROS production was 
analyzed in the p62 deficient cells using dihydroethidium (Het). Figure 4 shows representative Het fluorescence 
rates in SH-SY5Y cells (Fig. 4A) and in fibroblasts (Fig. 4B). The p62 KD cells showed higher Het rates (122 ± 6%, 
n = 5) compared to the untransfected (100 ± 0%, n = 5) or SCR cells (101 ± 7%, n = 5) (Fig. 4C). Equivalent 
results were obtained in the p62 mutant fibroblasts (patient 1 = 135 ± 7%, n = 4; patient 2 = 133 ± 6%, n = 4) 
compared to controls (control 1 = 103 ± 5%, n = 4; control 2 = 90 ± 8%, n = 4) (Fig. 4D). Together, all the p62 
deficient cells showed cytosolic ROS overproduction in agreement with the inhibited respiration found in these 
cells.

Nrf2 activators restored the phenotype in mutant p62 cells.  Previous work from our group showed 
that the nuclear factor erythroid-derived 2 (NF-E2)-related factor 2 (Nrf2) directly regulates cellular energy 
metabolism by modulating the availability of substrates for mitochondrial respiration24, 25. It was reported that 
p62 and Nrf2 form a positive feed-forward regulatory loop, whereby p62 activates Nrf2 by competing for binding 
with the negative regulator Kelch-like ECH associated protein 1 (Keap1), and Nrf2 activates the transcription 
of p6226. These observations, together with the fact that both models of p62 deficiency show similar mitochon-
drial alterations to the ones we had previously shown in Nrf2-deficient cells24 prompted us to evaluate the role 
of Nrf2 activation on mitochondrial function in p62-deficient cells. To this end we used three different Nrf2 
activators, the synthetic acetylenic tricyclic bis(cyanoenone) (TBE-31), the naturally occurring isothiocyanate 
sulforaphane (SFN) and the synthetic triterpenoid RTA-408 (RTA). Each of the three pharmacological Nrf2 acti-
vators rescued the respiration deficiencies in the fibroblasts carrying the p62 mutations (Fig. 5A and B). The 
NADH redox index was significantly reduced in p62 mutant fibroblasts treated with Nrf2 activators compared to 
the same fibroblasts without treatment (patient 1 TBE = 34 ± 5%, n = 6; patient 2 TBE = 34 ± 3%, n = 7; patient 1 
SFN = 37 ± 2%, n = 5; patient 2 SFN = 35 ± 3%, n = 5; patient 1 RTA = 42 ± 10%, n = 3; patient 2 RTA = 31 ± 5%, 
n = 4) (Fig. 5A) and the NADH pool was restored reaching equivalent values to the control fibroblasts (Fig. 5B) 
(patient 1 TBE = 113 ± 10%, n = 6; patient 2 TBE = 118 ± 9%, n = 7; patient 1 SFN = 110 ± 8%, n = 5; patient 
2 SFN = 103 ± 4%, n = 5; patient 1 RTA = 99 ± 7%, n = 3; patient 2 RTA = 112 ± 8%, n = 4). Consequently, the 
restoration of the mitochondrial NADH pool increased the ΔΨm in the p62 fibroblasts (Fig. 5C), (patient 1 
TBE = 114 ± 7%, n = 7; patient 2 TBE = 95 ± 7%, n = 4; patient 1 SFN = 113 ± 5%, n = 7; patient 2 SFN = 97 ± 8%, 
n = 5; patient 1 RTA = 106 ± 7%, n = 3; patient 2 RTA = 102 ± 7%, n = 5). Taken together, these results suggest 
that Nrf2 activation restores cellular metabolism in the p62-deficient cells by increasing the availability of sub-
strates for mitochondrial respiration.

p62 deficiency is associated with higher pentose phosphate pathway (PPP) activity.  Upon oxi-
dative stress, cells may react by increasing the levels of reduced glutathione (GSH), which is one of the major 
endogenous antioxidants in the cell. During an oxidative insult, neurons divert part of their glucose pool towards 
the PPP, thereby increasing the production of NAD(P)H, a necessary cofactor in the regeneration of GSH. PPP 
activity can be estimated by analysing the basal levels of NAD(P)H autofluorescence after addition of 1 μM FCCP, 
which maximises respiration (Fig. 2A). This basal fluorescence reflects the non-mitochondrial NADH and the 
NADPH levels. The NAD(P)H levels in the p62 KD SH-SY5Y cells (125 ± 6%, n = 4) were significantly increased 
compared to untransfected (106 ± 3%, n = 4) and SCR-transfected (104 ± 4%, n = 4) SH-SY5Y cells indicat-
ing an increased activity in the PPP due to p62 deficiency (Fig. 6A). Similar results were obtained in the p62 
mutant fibroblasts when compared to controls (patient 1 = 127 ± 3%, n > 10; patient 2 = 122 ± 3%, n > 10; control 
1 = 99 ± 1%, n > 10; control 2 = 102 ± 1%, n > 10) (Fig. 6B). We found no changes between control and patient 
fibroblasts in the glucose 6 phosphate dehydrogenase protein levels, a rate limiting enzyme in the PPP, indicating 

Sex
Current 
Age

Age of 
onset

Family 
history Clinical features

Clinical 
diagnosis

p62 
mutation

Control 1 M 81 — — unaffected — —

Control 2 F 52 — — unaffected — —

Patient 1 F 54 48 yes
Behavioural 
disturbances (Le 
Ber et al. 2013)

bvFTD A381V

Patient 2 F 82 75 yes
Speech apraxia 
(Boutoleau-
Bretonniere et al. 
2015)

nvfFTLD K238del

Table 1.  Donors’ information. M: male; F: female; nfvFTLD: non-fluent variant of FTLD; bvFTD: behavioural 
variant of FTD.
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Figure 2.  p62 deficiency disrupts the NADH homeostasis. (A) Time-course representative traces of NADH 
autofluorescence from untransfected, SCR and p62 KD in SH-SY5Y cells. The uncoupler FCCP (1 μM) 
maximises mitochondrial respiration and therefore minimises mitochondrial NADH (0%). NaCN (1 mM) was 
then added to block mitochondrial respiration and thereby maximise mitochondrial NADH (100%). The traces 
represent the mean of at least 20 cells on a single coverslip ±SEM. (B) Graphical description of the NADH 
homeostasis analysis by monitoring the NADH autofluorescence in cells. NADH redox indexes were obtained 
by calculating the initial NADH autofluorescence when the minimum NADH autofluorescence is normalised 
to 0% and the maximum to 100%. Both the NADH redox index (the initial redox level expressed as percentage 
of the range) and the NADH pool are described graphically. (C,D) NADH redox indexes from untransfected, 
SCR and p62 KD SH-SY5Y cells (C) and control and p62 deficient fibroblasts (D) representing the mean of at 
least 3 independent experiments ±SEM. In all cases ** indicates p < 0.01 and ***indicates p < 0.001 compared 
with the values in control cells. (E,F) The NADH pool was expressed as absolute values between maximal 
and minimal respiration in untransfected, SCR and p62 KD SH-SY5Y cells (E) and control and p62 mutant 
fibroblasts (F). Data represent the mean of at least 3 independent experiments ±SEM. In all cases **indicates 
p < 0.01 and ***indicates p < 0.001 compared with the values in control cells.
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the PPP increased activity observed was not related to higher expression levels of this enzyme (Fig. S2). Finally, 
using the monochlorobimane (MCB) fluorescent probe to determine GSH levels (Fig. 6C) we found increased 
cytosolic (Fig. 6D) but not mitochondrial (Fig. 6E) GSH levels in the fibroblasts carrying the p62 mutations (cyto-
solic: control 1 = 99 ± 1%, n = 7; control 2 = 99 ± 1%, n = 9; patient 1 = 110 ± 2%, n = 5; patient 2 = 114 ± 7%, 
n = 5; mitochondrial: control 1 = 98 ± 1%, n = 7; control 2 = 102 ± 1%, n = 9; patient 1 = 105 ± 2%, n = 5; patient 
2 = 104 ± 11%, n = 5). The increased GSH levels in patients fibroblasts were confirmed using a quantitative fluo-
rometric assay (control 1 = 102 ± 2%, n = 3; control 2 = 98 ± 2%, n = 3; patient 1 = 153 ± 14%, n = 3; patient 
2 = 156 ± 21%, n = 3) (Fig. S2). These data, along with the higher NADPH levels, revealed an increased PPP 
activity in the p62-deficient cells compared to the healthy controls, possibly due to a switch from glycolysis to PPP.

Figure 3.  Altered FAD homeostasis is reflected in p62 deficient cells. (A) Time-course representative traces 
of FAD autofluorescence from untransfected, SCR and p62 KD SH-SY5Y cells. Addition of FCCP (1 μM) 
maximised respiration and thereby increased FAD autofluorescence to maximal levels (100%). Addition of 
NaCN (1 mM) then inhibited respiration and reduced the FAD autofluorescence to a minimum (0%). The 
traces represent the mean of at least 20 cells on a single coverslip ±SEM. (B) Graphical description of the FAD 
homeostasis analysis by monitoring the FAD autofluorescence using confocal microscopy in p62 deficient 
cells compared to controls. FAD redox indexes were obtained by calculating the initial FAD autofluorescence 
when the minimum FAD autofluorescence is normalised to 0% and the maximum to 100%. The FAD redox 
index generation (the initial redox level expressed as percentage of the range) and the FAD pool are described 
graphically. (C) FAD redox indexes from untransfected, SCR and p62 KD SH-SY5Y cells representing the mean 
of at least 3 independent experiments ±SEM. In all cases * indicates p < 0.05 compared with the values in the 
corresponding control cells. (D) The FAD pool was expressed as absolute values between maximal and minimal 
respiration in untransfected, SCR and p62 KD SH-SY5Y cells. Data represent the mean of at least 3 independent 
experiments ±SEM. * indicates p < 0.05 compared with the values in the corresponding control cells.
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Discussion
Mitochondria are the main source of energy in neurons due to their limited glycolytic capacity. Harnessing the 
proton gradient generated in the respiration through complexes I to IV, neurons rely on the oxidative phospho-
rylation process to generate ATP through the ATP synthase in the mitochondria. Mutations in FTD and ALS 
have been found to induce impairments in crucial mitochondrial metabolic processes causing a fatal fate for cells, 
organs and patients27. Previous works presented p62 protein as one of the main regulators of mitochondrial func-
tion14, 16, 17. In this study, the mitochondrial bioenergetics in p62 deficient cells and fibroblasts from FTD patients 
carrying independent p62 mutations was investigated. Reduced p62 levels are associated with reduced ΔΨm in 
both p62 SH-SY5Y deficient cells and mutant fibroblasts. These cells also exhibit inhibited mitochondrial respi-
ration through complex I due to the lack of substrates for the ETC complexes and higher superoxide production. 
The boost in the cytosolic ROS levels leads to activation of the pentose phosphate pathway, thereby increasing the 
GSH levels in order to counteract the oxidative stress environment.

Mitochondrial dysfunction in ALS has been thoroughly demonstrated28–30 but not much is known about this 
topic in FTD. Recent studies found mitochondrial alterations in FTD cases together with ALS supporting the 
idea of the FTD/ALS continuum18–20, 31–34. Other works showing mitochondrial alterations were carried out in 
different cohorts of patients with variations in the CHCH10 gene, a common cause of both FTD and ALS31, 35. A 
number of studies have demonstrated that mitochondrial activity is compromised in FTD and ALS using animal 
models and cells from patients22, 36. In this study, a reduction in the ΔΨm is observed in the p62 deficient cell 
models. The ΔΨm reflects mitochondrial health and function and mitochondrial viability and it is defined as the 
proton gradient generated in the intermembrane space during respiration. This proton gradient is harnessed by 
the ATPase to synthesise ATP through the oxidative phosphorylation (OXPHOS) process. Here it is also shown 
that ATP hydrolysis by the ATPase maintains the ΔΨm in the p62 deficient cells since these cells exhibited depo-
larised mitochondria when oligomycin, the inhibitor of the F1-F0 ATPase, was added. Under normal conditions 
the process of respiration maintains the ΔΨm but mitochondria can also hydrolyze the ATP forcing the ATPase to 
work in a reverse mode in order to maintain the ΔΨm

37. This has been thoroughly described in other neurodegen-
erative models in which an inhibition of respiration hampers the normal ΔΨm maintenance forcing the reversal 
ATPase38–40.

Figure 4.  p62 deficiency results in increased oxidative stress. (A,B) Cellular oxidative stress was evaluated 
analysing the oxidation rates of the superoxide indicator dihydroethidium (Het) which initially exhibits 
cytosolic blue fluorescence and when oxidised, it shows bright red fluorescence in the nucleus. These changes 
can be detected by live-cell imaging. Time-course representative traces showing the Het oxidation slopes in 
untransfected, SCR and p62 KD SH-SY5Y cells (A) and fibroblasts from control donors and patients carrying 
the p62 pathogenic mutations mentioned above (B). In all cases the traces represent the mean of at least 20 
cells on a single coverslip ±SEM. (C,D) Het oxidation rates from untransfected, SCR and p62 KD SH-SY5Y 
cells (C) and control and p62 mutant fibroblasts (D). Rates were calculated as the change in fluorescence over a 
period of time and are expressed as percentage of a basic rate. Data represent the mean of at least 3 independent 
experiments ±SEM. In all cases * indicates p < 0.05 compared with the values in control cells.
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In combination with the reduced ΔΨm an inhibition in the respiration process was detected in p62 deficient 
cells. This was reflected by both the elevated NADH redox index and the decreased FAD redox index, pointing 
to the inhibition of complex I. This inhibition is a consequence of lack of substrates as demonstrated by the lower 
NADH pool observed in the p62 deficient cells as well as the lower FAD pool. The inhibition of the respiration 
through the complex I induces an increase in ROS production in the cells. Damaged mitochondrial respiration 
including reduced complex I and II activities were previously found in mitochondria from p62 KO mice brains16. 
These authors also found an exacerbated oxidative stress due to inhibition of respiration. On the other hand, in 
2012 Kwon and colleagues showed mitochondrial impairments in a p62 KO model reflected in reduced mito-
chondrial membrane potential and reduced oxygen consumption together with increased cellular oxidant levels17. 
Increased ROS generation has been found to be related to inhibited mitochondrial respiration in neurodegener-
ative disorders41–43. In AD, it has been found that an inhibition in mitochondrial respiration through complex I 
increased ROS generation44. Increased ROS production is also a demonstrated feature in some forms of PD. This 
has been related to inhibition in the complex I dependent respiration both in cells and PD animal models39, 45, 46.

The results presented herein show that Nrf2 activators restore the inhibition of the respiration and the NADH 
pool in the p62 deficient cells. Nrf2 is a transcription factor implicated in the activation of antioxidant genes, 
providing cytoprotection against oxidative stress and inflammation47. More recently, new roles regarding the 
maintenance of mitochondrial function and bioenergetics have been attributed to Nrf224, 47–49. It has been shown 
that cells from Nrf2-deficient mice have impaired mitochondrial function. Specifically, it was demonstrated that 
Nrf2 is a main regulator in the substrates supply to both complex I and complex II as the rate of NADH and 
FADH2 production was much lower in the Nrf2 KO cells compared to controls24. Nrf2 and p62 were shown to 
intersect through the direct interaction between p62 and Keap126. Under normal conditions Nrf2 is ubiquitinated 

Figure 5.  Nrf2 activators restore the p62 deficient phenotype. (A) NADH redox index was evaluated after 
incubation with the Nrf2 activators TBE-31(TBE, 20 nM), sulphoraphane (SFN, 10 μM) and the synthetic 
triterpenoid RTA-408 (RTA, 50 nM). Cells were plated on 25 mm coverslips in 6 well plates. When they reached 
70% confluency, cells were treated 24 hours with TBE, SFN and RTA separately. NADH redox index was 
calculated as the basal level relative to maximal respiration after FCCP (1 mM) (0%) and inhibited respiration 
after NaCN (1 mM) (100%) (see Fig. 2B) in fibroblasts from patients carrying the A381V and K238del 
pathogenic mutations in p62 compared to two control fibroblasts (C1, C2) in presence of the Nrf2 activators. 
All data represents the mean of at least 3 independent experiments ±SEM. In all cases ** indicates p < 0.01 
and *** indicates p < 0.001 compared with the values in control cells. (B) NADH pool expressed as absolute 
values between maximal and minimal respiration (see Fig. 2B) in control and patient fibroblasts in presence of 
the Nrf2 activators. Experimental conditions were the same as in (A). All data represents the mean of at least 3 
independent experiments ±SEM. In all cases *** indicates p < 0.001 compared with the values in control cells. 
(C) The ΔΨm was analyzed in fibroblasts from patients and controls upon activation of Nrf2. Experimental 
conditions were the same as in (A). All data represents the mean of at least 3 independent experiments ±SEM. 
In all cases ** indicates p < 0.01 and *** indicates p < 0.001 compared with the values in control cells.
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and degraded by the proteasome as it is bound to the E3-ubiquitin ligase adaptor protein Keap1. When Keap1 is 
challenged with ROS or electrophiles, Nrf2 degradation is blocked, activating the antioxidant response elements 
(ARE)-mediated transcription. In the noncanonical pathway of Nrf2 regulation, Keap1 is sequestered by p62 and 
can no longer bind Nrf2, leading to increased Nrf2 signalling with the subsequent activation of the ARE-mediated 
transcription. Our findings point to a disruption in the Keap1 sequestration by p62, leading to enhanced degrada-
tion of Nrf2. The consequence would be inhibition in respiration due to low Nrf2 levels, which could be restored 
by Nrf2 pharmacological activators.

Figure 6.  Pentose phosphate pathway activity is increased upon p62 deficiency. (A,B) NAD(P)H levels were 
obtained through the analysis of NADH autofluorescence. The NAD(P)H values were calculated by subtracting 
the background from the minimum fluorescence after addition of FCCP (1 μM) which oxidises all the 
mitochondrial NADH minimising the NADH fluorescence (see Fig. 2B). NAD(P)H levels from untransfected, 
SCR and p62 KD SH-SY5Y cells (A) and control and p62-deficient fibroblasts (B) representing the mean of 
at least 3 independent experiments ±SEM. * indicates p < 0.05 and *** indicates p < 0.001 compared with 
the values in control cells. (C–E) GSH levels were analyzed by measuring the monochlorobimane (MCB) 
fluorescence. Representative images showing the cell fluorescence after MCB incubation (50 μM) in fibroblasts 
from control 2 (C2) and patient 2 carrying the K238del mutation (C). Scale bar represents 44 μm. The GSH 
levels were obtained after evaluation of the MCB fluorescence in fibroblasts from all p62 mutant carriers and the 
obtained values were compared to those from the control fibroblasts before (D) and after digitonin treatment 
(40 nM) (E). All data represents the mean of at least 3 independent experiments ±SEM. In all cases * indicates 
p < 0.05 and ** indicates p < 0.01 compared with the values in control cells.
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Finally, it is shown that p62 deficiency is associated to an increased activity in the pentose phosphate pathway 
as demonstrated by the elevated levels of NAD(P)H and reduced glutathione. It has been demonstrated that 
elevated ROS levels in cells induce the activation of the PPP to generate the antioxidant GSH50. The expression 
levels of the rate limiting enzyme responsible for GSH biosynthesis, the glutamate-cysteine ligase, are very low in 
neurons. This fact makes neurons more vulnerable to oxidative stress as the GSH-dependent antioxidant system 
is very weak in these cells. Neurons can compensate their oxidative stress vulnerability by diverting part of the 
glucose pool to the PPP, which generates NAD(P)H and increases the GSH levels51. It is possible that p62 deficient 
cells divert part of their glucose to the PPP to increase GSH levels after an oxidative stress stimulus, as has been 
shown in neurons52.

In summary, our results show that p62 deficiency induces mitochondrial respiration inhibition by deficient 
delivery of substrates to the mitochondrial complexes, which subsequently results in elevated cytosolic oxidative 
stress. The rise in the oxidative stress could partially trigger glucose diversion to the PPP in order to increase the 
GSH levels.

Even though our results were obtained using fibroblasts from FTD patients, they have been also validated 
using the SH-SY5Y p62 KD model, suggesting a loss-of-function effect upon p62 deficiency. This point makes 
the results applicable not only to FTD patients carrying p62 mutations but also to ALS patients with mutations 
in p62, and therefore supports the idea of FTD/ALS continuum. The data presented here along with recent works 
showing functional mitochondrial impairments linked to mutations causing both FTD and ALS provides signif-
icant basis to support the hypothesis that mitochondrial dysfunction is involved in the underlying pathogenic 
mechanisms within the FTD/ALS spectrum. Additionally, the pharmacological activation of Nrf2 needs to be 
further explored as therapeutic tool for the p62-associated ALS/FTD prevention and treatment.

Methods
All methods were performed following the relevant guidelines and regulations approved by the local ethical 
review committee from the National Hospital for Neurology and Neurosurgery and the Institute of Neurology.

Donors.  Written informed consent was obtained from the donors for publication of their individual details. 
The consent form is held by the authors’ institution within the patients’ clinical notes and is available for review 
by the Editor-in-Chief. Donors gave written consent and the project was approved by the local ethical review 
committee from the National Hospital for Neurology and Neurosurgery and the Institute of Neurology (London, 
UK). Fibroblasts from two patients carrying independent p62 mutations and two non-related healthy donors 
used as controls were generated from a 4-mm skin punch biopsy taken under local anesthetic following informed 
consent. Biopsies were dissected into ~1-mm pieces and cultured in 5-cm2 petri dishes in DMEM, 10% FBS, 1% 
L-Glutamine until fibroblasts were seen to grow out from the explants. When fibroblasts reached confluency, they 
were detached from culture dishes using TrypleE from Thermo Fisher Scientific (Waltham, MA, USA) and trans-
ferred to larger culture vessels for further expansion and cryopreservation. Age, sex, age of onset, clinical features, 
clinical diagnosis, and p62 mutations carried by the patients as well as healthy donors characteristics are given in 
Table 1. Family trees from patient 1 and patient 2 are provided in (Supplementary Fig. S1).

Cell culture.  Human neuroblastoma (SH-SY5Y) cells were purchased from the European Collection of Cell 
Cultures (Health Protection Agency, Salisbury, UK) and maintained as previously described53. Unless otherwise 
stated, SH-SY5Y cells and fibroblasts were seeded at a density of 4 × 104 cells/cm2, grown to 75–80% confluence 
and maintained at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) medium supplemented 
with 10% (v/v) foetal bovine serum (FBS), 2 mM L-glutamine and 1% (v/v) penicillin/streptomycin.

Immunoblotting and antibodies.  Cells lysates were obtained after 2 minutes of incubation with the lysis 
buffer NP-40 (50 mM Tris-base pH 7.4, 150 mM NaCl, 0.5% Nonidet P-40, 1 mM EDTA, protease inhibitors cock-
tail) and the lysates were immediately frozen. 10 μg of denatured protein previously estimated (Pierce BCA Protein 
Assay Kit, Thermo Fisher, Waltham, MA, USA) from each sample were loaded in a precast 4–20% Tris-Glycine 
SDS-PAGE (Bio Rad Laboratories, Inc., Hercules, CA). After electrophoresis, proteins were transferred to 0.45 μm 
PVDF membranes (IPVH00010, Immobilon Millipore) and identified by the appropriate primary and second-
ary antibodies and visualised using Enhanced Chemiluminescence (ECL Clarity; BioRad) with the ImageQuant 
LAS4000 (GE Healthcare). Anti-human p62 rabbit monoclonal antibody (1:20000) and anti-human glucose 6 
phosphate dehydrogenase (1:1000) were obtained from Abcam (Cambridge, UK). Anti-human β-Actin rabbit 
polyclonal antibody (1:5000) was obtained from Sigma-Aldrich (Poole, UK).The anti-rabbit secondary antibodies 
(1:5000) coupled to horseradish peroxidase and bovine immunoglobulins (IgG) were from Bio-Rad (Richmond, 
CA).

Plasmids and reagents.  The non-targeting scramble siRNA, the targeted siRNA (siGenome SMARTpool) 
against human p62 and the Dharmafect transfection reagent were purchased from Dharmacon, Thermo Fisher 
Scientific (Waltham, MA, USA). The siRNA transfection was performed following the manufacturer’s instruc-
tions once the plated cells reached 60% confluence. Cells were ready for subsequent experiments after 48 h post 
transfection 37 °C and 5% CO2.

Nrf2 activators.  Three different activators for the transcription factor Nrf2 were used: the synthetic acet-
ylenic tricyclic bis(cyanoenone) TBE-3154, the triterpenoid RTA-408 (RTA)55, and the naturally occurring iso-
thiocyanate sulforaphane (SFN)56. The concentration of each compound was optimized based on the potency 
in inducing NAD(P)H:quinone oxidoreductase 1 (NQO1), a prototypic Nrf2 target gene, without causing any 
cytotoxicity, using a quantitative bioassay57. The compounds were prepared as stock solutions in acetonitrile and 
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diluted (1:1000) in the cell culture medium, such that the final concentration of acetonitrile was maintained at 
0.1% (v/v). Cells were exposed to the Nrf2 activators for 24 h.

Measurement of mitochondrial membrane potential (ΔΨm).  ΔΨm was measured as was described 
previously22. Briefly, cells were plated on 25 mm coverslips and loaded with 40 nM tetramethyl-rhodamine methyl 
ester (TMRM) in a HEPES-buffered salt solution (HBSS) (composed of 156 mM NaCl, 3 mM KCl, 2 mM MgSO4, 
1.25 mM KH2PO4, 2 mM CaCl2, 10 mM glucose and 10 mM HEPES; pH adjusted to 7.35 with NaOH) for 40 min-
utes at room temperature and keeping the dye present in the chamber at the time of recording. TMRM is a 
cell-permeant fluorescent dye used in the redistribution mode to assess ΔΨm, and therefore a reduction in TMRM 
fluorescence represents ΔΨm depolarization. Confocal images were obtained using a Zeiss 710 VIS CLSM (Zeiss, 
Oberkochen, Germany) equipped with a META detection system and a × 40 oil immersion objective. TMRM was 
excited using the 560 nm laser line and fluorescence was measured above 580 nm. The Z-stack images were ana-
lyzed using the Volocity software (PerkinElmer, Waltham, MA) and TMRM values for control cases were set to 
100% and the p62 deficient cells values were expressed relative to controls. For analysis of response to mitochon-
drial toxins, images were recorded in a time course-dependent manner from a single focal plane and analyzed 
using ZEN Zeiss software (Zeiss).

Measurement of NADH-FAD autofluorescence.  NADH autofluorescence was measured using an epi-
fluorescence inverted microscope equipped with a 20× fluorite objective. Excitation light at a wavelength of 
350 nm was provided by a Xenon arc lamp, with the beam passing through a monochromator (Cairn Research, 
Faversham, Kent, UK). Emitted fluorescence light was reflected through a 455 nm long-pass filter to a cooled 
CCD camera (Retiga, QImaging, Surrey, BC, Canada) and digitised to 12 bit resolution. Imaging data were col-
lected and analyzed using software from Andor (Belfast, UK). FAD autofluorescence was monitored using a 
Zeiss 710 VIS CLSM equipped with a META detection system and a × 40 oil immersion objective. Excitation was 
measured using the 454 nm Argon laser line and fluorescence was measured from 505 to 550 nm. Illumination 
intensity was kept to a minimum (at 0.1–0.2% of laser output) to avoid phototoxicity and the pinhole set to give 
an optical slice of ~2 μm.

Complex I activity assay.  The NADH dehydrogenase activity of isolated complex I was measured using 
the complex I enzyme activity microplate assay kit (Abcam, ab109721). Cell lysis was carried out using the lysis 
buffer provided by the manufacturer and left on ice for 20 min to allow protein extraction. Samples were then cen-
trifuged at 12, 000 × g for 20 min at 4 °C and total protein concentration in the supernatant was estimated using 
the Pierce BCA Protein Assay Kit (Thermo Fisher, Waltham, MA, USA). Samples were then diluted in Incubation 
Solution (provided by the manufacturer) to reach a final protein concentration of 0.5 μg/μl. 200 μl of each sample 
were transferred to each well of the microplate containing immobilised anti-complex I antibody bound to the 
wells and incubated for 3 hr at RT. After the incubation period, the wells were rinsed twice in 300 μl of Buffer, pro-
vided by the manufacturer, and 200 μl of Assay Solution containing NADH and a reporter dye were added to each 
well. NADH dehydrogenase activity was determined by measuring the oxidation of exogenous NADH to NAD+, 
coupled to the 1:1 reduction of the reporter dye of which product concentration was proportional to the increase 
in absorbance at 450 nm, measured over time using a spectrophotometer. Complex I activity was expressed as the 
rate of increase in absorbance per amount of sample loaded in the well.

ROS measurements.  Cellular ROS generation was measured using dihydroethidium (Het, DHE; 2 μM for 
superoxide) from Life Technologies (Paisley, UK). All imaging was performed in HBSS and the dye was present in 
the solution during the experiment. No preincubation (“loading”) was used for Het to limit the intracellular accu-
mulation of oxidized products. Fluorescence images were collected with a 12-bit resolution cooled CCD camera 
coupled to an epifluorescence inverted microscope equipped with a 20× fluorite objective (Leica Microsystems). 
The excitation wavelength for the oxidised form (ethidium) was 530 nm collected at 605 nm while excitation 
to measure changes in the reduced form (hydroethidium) was 380 nm collecting the emission at 405–470 nm. 
Ratiometric Het fluorescence was recorded with excitation light at 380 and 530 nm. All imaging data were col-
lected and analyzed using the Metamorph software (Molecular Devices, US).

GSH measurements.  The reduced glutathione (GSH) levels were determined in live cells after incubation 
with 50 μM monochlorobimane (MCB) for 40 minutes at room temperature in HBSS until a steady state was 
reached. MCB is a nonfluorescent probe until conjugated with GSH. Once the cytosolic GSH was analyzed, HBSS 
was removed and a hypotonic medium (135 mM KCl, 10 mM NaCl, 20 mM HEPES, 0.5 mM KH2PO4, 1 mM 
MgCl2, 5 mM EGTA and 1.86 mM CaCl2 at pH 7.1) including digitonin (40μM) was added to permeabilise the 
cells allowing us to measure the mitochondrial GSH. The fluorescence images of the MCB-GSH adduct were 
acquired using the cooled CCD imaging system as described above using excitation at 380 nm and emission 
at >400 nm. The fluorescence was then quantified using the Metamorph analysis software (Molecular Devices, 
US). Additionally, quantitative GSH analysis was performed in live cells in a modified protocol as was previously 
described58. Briefly, cells were plated in 96 well plates. Once they reached 70–80% of confluence they were loaded 
for 30 minutes with 2 mM MCB allowing the formation of the MCB-GSH fluorescent adduct inside cells. The 
fluorescence was then quantified using the Varioskan plate reader (Thermo Fisher, Waltham, MA, USA) with 
excitation wavelength at 380 nm and emission at 470 nm. Fluorescence values were then related to the protein 
content (Pierce BCA Protein Assay Kit, Thermo Fisher, Waltham, MA, USA).
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Statistical Analysis.  Data were generated from a minimum of three independent replicate per experiment 
(n ≥ 3) performed in different days. Each replicate consisted of at least 1 coverslip per condition where a number 
of 15–30 cells per coverslip were analyzed. Statistical analysis and exponential curve fitting were performed using 
GraphPad Prism 6.01 (GraphPad Software, La Jolla, CA) software. Statistical significance for multiple compar-
isons was performed by one-way ANOVA followed by Fisher’s LSD correction. All results are related to healthy 
control fibroblasts or untransfected cells accordingly and expressed as percentage. In all cases, P < 0.05 was con-
sidered significant (*p < 0.05, **p < 0.01, ***p < 0.001). For all graphs, error bars represent mean ± SEM.

Ethical Approval and Informed Consent.  Primary fibroblast lines were generated from skin punch biop-
sies. Donors gave written consent, and the project was approved by the local ethical review committee from the 
National Hospital for Neurology and Neurosurgery and the Institute of Neurology.
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