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Abstract 

Sense of agency—a feeling of control over one’s actions and their outcomes—might include at least 

two components: free choice over which outcome to pursue, and motoric control over the action 

causing the outcome. We orthogonally manipulated locus of outcome choice (free choice/instructed) 

and motoric control (active/passive), while measuring the perceived temporal attraction between 

actions and outcomes (“temporal binding”) as an implicit marker of agency. Participants also rated 

stimulus intensity.  Actions caused higher or lower levels of either painful heat, or mild electro-tactile 

stimulation. We found that both motoric control and outcome choice contributed to outcome binding. 

Moreover, free choice, relative to instructed action, attenuated high intensity outcomes, but only when 

participants made an active movement. Thus, choosing, not just doing, influences temporal binding 

and perceived sensory magnitudes, though in different ways. Our results show these implicit measures 

are sensitive both to voluntary motor command and instrumental control over action outcomes. 

Keywords: action selection; temporal binding; pain; sense of agency; sensory attenuation; tactile; 

voluntary action 
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Choosing, Doing, and Controlling: Implicit Sense of Agency over Somatosensory Events 

Voluntary action is accompanied by a “sense of agency”—the feeling of initiating and 

controlling one’s own actions and their sensory outcomes. The delay between a movement and its 

outcome is perceived as shorter when the movement is voluntary than when it is involuntary—an 

effect sometimes called “intentional binding” (Haggard & Clark, 2003; Haggard, Clark, & Kalogeras, 

2002). This temporal binding effect consists of two dissociable components: a shift in the perceived 

time of the action forward towards the outcome (“action binding”) and a shift in the perceived time of 

the outcome backward towards the action that caused it (“outcome binding”; Haggard, Clark, & 

Kalogeras, 2002; Wolpe, Siebner, Haggard & Rowe, 2013). Temporal binding occurs even without 

voluntary action, for example, when judging the time of an external event with a sensory consequence 

(Buehner, 2012; Buehner & Humphreys, 2009). Nevertheless, comparing an agentic condition to an 

appropriate non-agentic control condition reveals a component of binding attributable to intentional 

action, over and above other factors. This intentional component of binding has been proposed as one 

implicit marker of agency (Haggard, 2008).  

The concept of agency includes two forms of control. First, agents select which outcome to 

pursue. Second, they use motoric control to initiate the action that triggers the outcome. The former 

component, outcome selection control, has received limited attention in the temporal binding 

literature. Binding increases with reliability of outcome timing (Haggard et al., 2002) and probability 

of outcome occurrence (Moore & Haggard, 2008). Moreover, top-down (false) beliefs about control 

over outcome timing influence binding (Desantis, Roussel, & Waszak, 2011). On the other hand, one 

study found no effect of control over outcome identity (i.e., which of two tones was triggered by the 

action) on binding (Desantis, Hughes, & Waszak, 2012). However, that study used neutral outcomes 

without any particular meaning to participants, making action selection arbitrary.  

In a novel design, we orthogonally manipulated choice over outcome identity (free or 

instructed) and motoric action initiation (active or passive) to investigate how each factor contributes 

to temporal binding, while keeping outcome identity entirely predictable across conditions. To make 
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the choice of outcome meaningful, we used pain as a motivationally significant outcome. Previous 

studies that used valenced outcomes found less temporal binding for negative outcomes than for 

positive or neutral outcomes (Takahata et al., 2012; Yoshie & Haggard, 2013). Moreover, voluntary 

cognitive control should normally select actions that minimize pain. We therefore expected stronger 

temporal binding when choosing actions that cause less pain, rather than more pain. 

Sensory attenuation has also been proposed as an implicit measure of agency (Blakemore, 

Frith, & Wolpert, 1999). Compared to passive movements, voluntary actions reduce the perceived 

intensity of sensory events simultaneous with (Williams, Shenasa, & Chapman, 1998) or caused by 

the movement itself (e.g., Blakemore et al., 1999; Wang, Wang, & Luo, 2011). Whether sensory 

attenuation and intentional binding reflect the same underlying processes is an important, unresolved 

question in agency research (Hughes et al., 2013). A previous study found no relation between inter-

subject differences in temporal binding and sensory attenuation (Dewey & Knoblich, 2014). However, 

a relation between these two measures might be more apparent at the single-trial level. 

We measured temporal binding in blocked conditions where either a voluntary action or a 

passive movement was followed by a higher or lower intensity heat-pain stimulus. By comparing 

binding in passive and active movement conditions, we could isolate the specific part of binding 

attributable to voluntary motor commands, while controlling for other factors that influence the 

perceived interval between events. Locus of outcome choice was also manipulated. In some blocks 

participants chose for themselves which outcome level they would receive, while in other blocks the 

experimenter chose for them. By comparing free choices with instructed trials, we could isolate the 

specific part of binding attributable to free selection of outcomes. To test whether any effects were 

specific to meaningful (i.e., heat-pain) outcomes, we tested higher or lower intensity non-painful 

electro-tactile stimuli in a separate group of participants. On each trial, participants reported the time 

of either their action or the outcome, and rated stimulus intensity. We considered action and outcome 

binding separately, because there are both theoretical reasons to expect dissociation, and experimental 

evidence that such dissociations occur (e.g., Desantis et al., 2011; Wolpe et al., 2013). 
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Considering that the pre-reflective sense of agency could reflect both choice over outcomes and 

motoric execution, we predicted that voluntary action and free choice would enhance temporal 

binding, compared to passive movement and instructed action. Furthermore, we expected that highly 

painful stimuli would decrease binding compared to less painful stimuli, and to non-painful tactile 

stimuli. We also assessed the contributions of motoric action control and outcome choice to perceived 

sensory magnitude. Finally, we looked for a relation between binding and sensory attenuation across 

trials. 

Method 

Participants 

A power calculation in G*Power 3.1 (Faul, Erdfelder, Lang, & Buchner, 2007) indicated that 

40 participants would be needed to achieve a power of 0.80, with a 2 x 2 x 2 x 2 mixed factors design 

and estimated effect sizes (ηp
2) of .38 to .61 for action-related manipulations of intentional binding 

(Haggard & Clark, 2003; Haggard et al., 2002) and .23 to .53 for valence-related manipulations of 

temporal binding (Takahata et al., 2012; Yoshie & Haggard, 2013). Therefore, 40 neurologically 

healthy adult participants (20 males, Mage = 25.4 years, SDage = ±5.3 years) with normal or corrected-

to-normal vision were recruited to participate in the study. They provided written informed consent 

prior to the experiment and were paid £7.50 per hour. Two participants opted not to complete the 

experiment during threshold determination, so they were replaced with other volunteers. The 

experiment was approved by the UCL Research Ethics Committee, and carried out in accordance with 

the provisions of the World Medical Association Declaration of Helsinki. Half of the participants 

received noxious radiant heat stimulation as an outcome and the other half received non-noxious 

electro-tactile stimulation. 

Apparatus and Materials 

A laptop computer running LabVIEW 2012 (National Instruments, Austin, Texas, USA) was 

used to run the intentional binding task, trigger the outcome stimuli, and collect participants’ 

responses. The computer display was located 60 cm in front of the participant. Noxious radiant heat 
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stimulation was delivered to the left hand dorsum by an infrared CO2 laser stimulation device with a 

wavelength of 10.6 µm (SIFEC, Ferrières, Belgium). The laser pulse (100 ms duration) was 

transmitted via an optic fiber to reach a spot diameter of 6 mm. These laser pulses selectively excite 

Aδ- and C-fibers without co-activating lower-threshold Aβ-fibers in the dermis. Tactile stimulation 

with a duration of 10 ms was delivered using a Digitimer DS5 constant current stimulator (Digitimer 

Ltd., Welwyn Garden City, UK) connected to a pair of disposable press-stud electrodes (Biosense 

Medical, Chelmsford, UK) placed on the dorsum of the left hand. 

Procedure 

For each participant that received radiant heat stimulation, we identified the Aδ threshold for 

“pinprick pain” using ascending-descending-ascending staircases. The threshold was identified as the 

stimulus temperature that elicited reports of pinprick sensation and a reaction time (RT) less than 650 

ms (Churyukanov, Plaghki, Legrain, & Mouraux, 2012; Mouraux, Guerit, & Plaghki, 2003). Starting 

at 38°C, the temperature was increased in steps of 4°C until the RT was less than 650 ms. Then the 

temperature was decreased in steps of 2°C until the RT became longer than 650 ms. Finally, the 

temperature was increased in steps of 1°C until the RT was less than 650 ms again, and the participant 

reported a pinprick sensation for 3 consecutive repetitions of the same temperature (M = 48.6°C). We 

then set the low stimulus intensity at 2°C above pinprick threshold, and the high stimulus intensity at 

8°C above pinprick threshold. Participants were familiarized with the high and low levels of 

stimulation. Then they practiced rating sensory magnitude on a visual analog scale from 0 (‘no pain’) 

to 100 (‘worst pain imaginable’). To help participants use the scale, they were instructed to consider 

the average perceived intensity of the lower stimulus as a 25 on the scale, and the average perceived 

intensity of the higher stimulus as a 75. 

In the group that received electro-tactile stimulation, each participant’s detection and pain 

thresholds for electrical stimulation were measured prior to the experiment. Starting at 0.5 mA, the 

current was increased in steps of 0.5 mA until the participant detected the stimulus. The current was 

then reduced in 0.5 mA steps until the stimulus was no longer detected, and then increased again until 

the stimulus was again perceived. This last value was taken as the detection threshold. Next, the 
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current was increased rapidly until the participant reported that the stimulus had started to feel 

uncomfortable. This value was taken as the near-pain threshold. To find the pain threshold, the current 

was increased in steps of 0.5 mA until the participant reported that the stimulus felt painful. The 

current was then reduced in 0.5 mA steps until the stimulus was no longer painful, and then increased 

again until the stimulus was once again felt as painful. This value was taken as the pain threshold. The 

low and high levels of stimulation for the main experiment were then set to 45% and 55%, 

respectively, of the range between the detection and pain thresholds. These levels were chosen based 

on a pilot study in a separate group of volunteers which indicated that this difference between high 

and low electro-tactile intensities would match the discriminability of the high and low heat-pain 

stimuli. The mean difference between the high and low intensities was 1.05 mA (range = 0.55-1.15 

mA). Participants were familiarized with the high and low levels of stimulation. Then they practiced 

rating sensory magnitude on a visual analog scale from 0 (‘no sensation’) to 100 (‘maximum non-

painful sensation’). To help participants use the scale, they were instructed to consider the average 

perceived intensity of the lower stimulus as a 25 on the scale, and the average perceived intensity of 

the higher stimulus as a 75. 

At the beginning of each trial in the operant blocks, either the experimenter (in “instructed” 

blocks) or the participant (in “free choice” blocks) chose the stimulus level the participant would 

receive on that trial (high or low). Then a clock appeared on the screen, and the clock hand began to 

rotate. Participants fixated the clock. In “active movement” blocks, participants pressed the key 

corresponding to the previously chosen stimulus intensity (F4 for high intensity, or F5 for low 

intensity) at a time of their own choice. In “passive movement” blocks, the experimenter pressed the 

participant’s finger instead. The outcome stimulus was delivered 250 ms after the keypress. The clock 

hand continued to rotate for a short time, and then stopped. Then participants used the keyboard to 

report either the time of the action or the time of the outcome stimulus, depending on the block. 

Afterwards, a visual analog scale from 0-100 appeared on the screen, and participants rated sensory 

magnitude as practiced earlier in the session (Fig. 1).  
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Fig. 1.  

Schematic of experimental design and trial structure. Please refer to the text for further explanation. 

In “instructed” blocks, the experimenter ensured that equal numbers of low and high intensity 

stimuli were delivered. In “free choice” blocks, participants were allowed to choose the level of 

stimulation they would receive on a given trial, but they were told that they had to select equal 

numbers of high and low intensity stimuli in each block. To help participants do this, they were given 

feedback about the distribution of their choices twice during each block: once after either 8 or 12 

trials, and again at the end of the block. All participants complied with instructions. 

In baseline action judgment blocks, the action (F4 or F5; free choice or instructed; active or 

passive movement) was not followed by an outcome stimulus. Participants reported the time of the 

action, but did not provide sensory magnitude ratings. In baseline outcome judgment blocks, no 

actions were made. A visual cue presented at the beginning of each trial indicated the level of heat-

pain or electro-tactile stimulation to be delivered. Stimulation began 2000-4000 ms after the onset of 

the trial. Participants reported the time of the stimulus, and rated stimulus intensity. 

Action binding and outcome binding were measured in separate sessions on different days. 

The threshold was taken at the beginning of each session. In total, 13 blocks (4 operant action 

judgment blocks, 4 operant outcome judgment blocks, 4 baseline action judgment blocks, and 1 

baseline outcome judgment block) were run. Operant action judgment, operant outcome judgment, 

and baseline action judgment conditions each consisted of one active movement/free choice block, 

one active movement/instructed block, one passive movement/free choice block, and one passive 
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movement/instructed block. Each block contained 20 trials. Block order was counterbalanced across 

participants along the motoric execution control and locus of outcome choice factors. Stimulus level 

varied within blocks. Two of the action baseline blocks were done at the beginning of the action 

binding session, and the other two were done at the end of that session, in a counterbalanced order. 

The outcome baseline block was done at either the beginning or the end of the outcome binding 

session (counterbalanced across participants). 

Results 

Intentional binding can be broken down into two separate measures: action binding and 

outcome binding. Action binding is the difference in the perceived time of the action when it is 

followed by an outcome (operant condition) compared to when it is not (baseline condition). Outcome 

binding is the difference in the perceived time of the outcome when it is caused by the participant’s 

action (operant condition) compared to when it is not (baseline condition). To calculate action and 

outcome binding, the mean difference between the participants’ time judgments and the actual time of 

the action/outcome in each baseline and operant condition is computed (Tables S1 and S2). Then the 

mean error in the baseline condition is subtracted from the mean error in the operant condition to 

account for any time perception biases unrelated to the operant action-outcome relationship. In 

particular, note that this subtraction removes baseline differences between the timing of the electro-

tactile stimuli (10 ms square-wave pulses) and the radiant heat-pain stimuli (100 ms pulses with a 

gradual ramp-up to the target temperature). Because of these differences, participants perceived the 

heat-pain stimuli as occurring later in time than the electro-tactile stimuli in both baseline outcome 

judgment and operant outcome judgment blocks (Table S2). Importantly, differences in the perceptual 

latency for the two types of stimuli do not contribute to our inferences, because the perceptual latency 

in the baseline condition was subtracted from that in the operant condition to provide a measure of 

binding. 
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Action binding  

A mixed factors analysis of variance (ANOVA) with the between-subjects factor stimulus 

modality (pain, tactile), and the within-subjects factors stimulus level (high, low), motoric execution 

control (active movement, passive movement), and locus of outcome choice (free choice, instructed) 

was run on action binding. There was a trend towards a main effect of motoric execution control, F(1, 

38) = 3.93, p = .055, ηP
2 = .09, with more binding for active movements (M = 35.5 ms, 95% CI = 

[21.3, 49.6]) than for passive movements (M = 8.8 ms, 95% CI = [-16.4, 34.0]; Fig. 2). No other main 

effects or interactions approached significance (Table S4). 

Outcome binding 

A mixed factors ANOVA with the between-subjects factor stimulus modality (pain, tactile), 

and the within-subjects factors stimulus level (high, low), motoric execution control (active 

movement, passive movement), and locus of outcome choice (free choice, instructed) was run on 

outcome binding. Note that more negative values indicate greater outcome binding. There was a main 

effect of motoric execution control, F(1, 38) = 6.01, p = .019, ηP
2 = .14, with more binding for active 

movements (M = -208.1 ms, 95% CI = [-251.9, -164.3]) than for passive movements (M = -172.9 ms, 

95% CI = [-215.3, -130.5]). There was also a main effect of locus of outcome choice, F(1, 38) = 6.50, 

p = .015, ηP
2 = .15. Binding was stronger in the free choice condition (M = -207.3 ms, 95% CI = [-

250.4, -164.3]) than in the instructed condition (M = -173.7 ms, 95% CI = [-216.1, -131.3]; Fig. 2). 
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Fig. 2.  

Effects of motoric execution control and locus of outcome choice on action binding (left) and 

outcome binding (right). The dashed lines indicate the perceived time of the action and the outcome in 

the corresponding baseline condition. The broken vertical line indicates a false zero for outcome 

binding. The solid portions of the outcome binding bars are drawn to scale from a value of -100 ms. 

Moreover, there was a main effect of stimulus modality, F(1, 38) = 5.18, p = .028, ηP
2 = .12, 

with more binding for non-painful electro-tactile stimuli (M = -236.1 ms, 95% CI = [-293.5, -178.8]) 

than for painful heat stimuli (M = -144.9 ms, 95% CI = [-202.2, -87.5]). There was also an interaction 

between stimulus modality and stimulus level, F(1, 38) = 5.44, p = .025, ηP
2 = .12 (Fig. 3). We 

explored the origin of this interaction using simple effects tests. This showed less binding for high 

intensity heat-pain stimuli (M = -117.1 ms, 95% CI = [-172.0, -62.3]) than for low intensity heat-pain 

stimuli (M = -172.6 ms, 95% CI = [-244.0, -101.3]), F(1, 38) = 4.16, p = .048, ηP
2 = .10. There was no 

difference in binding between the high level (M = -253.3 ms, 95% CI = [-308.1, -198.4]) and the low 

level (M = -219.0 ms, 95% CI = [-290.3, -147.7]) of electro-tactile stimulation, F(1, 38) = 1.58, p = 

.216, ηP
2 = .04. No other main effects or interactions were significant (Table S5). 
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Fig. 3.  

Effects of outcome stimulus level and modality on action binding (left) and outcome binding (right). 

The dashed lines indicate the perceived time of the action and the outcome in the corresponding 

baseline condition. 

Non-intentional contributions to temporal binding 

The main purpose of our study was to look at aspects of temporal binding related to two key 

components of intentional action, specifically, motoric execution control and locus of outcome choice. 

However, non-intentional factors such as causal relations between actions and outcomes can also 

contribute to temporal binding, and may indeed account for the bulk of the perceived temporal 

compression between events (Buehner, 2012; Buehner & Humphreys, 2009; Cravo, Claessens, & 

Baldo, 2009). In fact, we observed some temporal binding even in a completely non-agentic condition 

of our experiment, where participants controlled neither motoric execution nor outcome choice 

(passive, instructed condition; Fig. 2). To formally examine these non-intentional contributions to 

action and outcome binding, we used one-sample t-tests to compare action binding and outcome 

binding in the entirely non-agentic (passive movement, instructed action) condition to 0 (i.e., no 

change in time estimation error between baseline and operant conditions). We found that this non-
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intentional part of action binding was not statistically significant, t(39) = 1.08, p = .288, Cohen’s d = 

.17 (M = 13.1 ms, 95% CI = [-11.5, 37.8]). We did, however, find significant non-intentional outcome 

binding, t(39) = -6.24, p = .0000002, Cohen’s d = -.99 (M = -156.7, 95% CI = [-207.5, -105.9]). 

Sensory magnitude ratings (operant blocks) 

A five-way mixed factors ANOVA with the between-subjects factor stimulus modality (pain, 

tactile), and the within-subjects factors block type (operant action judgment block, operant outcome 

judgment block), stimulus level (high, low), motoric execution control (active movement, passive 

movement), and locus of outcome choice (free choice condition, instructed condition) was run on 

sensory magnitude ratings. Note that block type was included as a nuisance variable rather than a 

factor of interest. There was a main effect of stimulus level, F(1, 38) = 409.81, p < .00001, ηP
2 = .92, 

confirming that participants indeed perceived the higher intensity stimulus as more intense (M = 61.7, 

95% CI = [58.3, 65.0]) than the lower intensity stimulus (M = 24.1, 95% CI = [22.3, 26.0]) in both the 

painful heat and innocuous electro-tactile stimulation conditions. An interaction between stimulus 

modality and stimulus level was found, F(1, 38) = 9.34, p = .004, ηP
2 = .20. Simple effects tests 

showed that the high level of heat-pain (M = 65.3, 95% CI = [60.6, 70.1]) was rated higher than the 

high level of electro-tactile stimulation (M = 58.0, 95% CI = [53.3, 62.7]), F(1, 38) = 4.92, p = .033, 

ηP
2 = .11, while the low level of heat-pain (M = 22.1, 95% CI = [19.5, 24.8]) was rated lower than the 

low level of electro-tactile stimulation (M = 26.1, 95% CI = [23.5, 28.8]), F(1, 38) = 4.72, p = .036, 

ηP
2 = .11. That is, participants perceived a greater difference in intensity between the high and low 

levels of heat-pain than between the high and low levels of electro-tactile stimulation 

There was also an interaction between stimulus level and locus of outcome choice, F(1, 38) = 

7.28, p =.010, ηP
2 = .16. Simple effects tests showed that the high levels of stimulation were perceived 

as more intense in the instructed condition (M = 62.1, 95% CI = [58.8, 65.4]), than in the free choice 

condition (M = 61.2, 95% CI = [57.8, 64.7]), F(1, 38) = 6.02, p =.019, ηP
2 = .14. The low level of 

stimulation was perceived as equally intense in the instructed condition (M = 23.8, 95% CI = [21.9, 
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25.8]) and the free choice condition (M = 24.4, 95% CI = [22.6, 26.3]), F(1, 38) = 0.07,  p = .791, ηP
2 

= .002. 

In addition, there was a three-way interaction between stimulus level, locus of outcome choice, 

and motoric execution control, F(1, 38) = 14.73, p = .0005, ηP
2 = .28. Simple effects tests showed that 

the interaction between stimulus level and locus of outcome choice described above was only present 

when participants executed an active movement to exert their outcome choice, F(1, 38) = 28.23, p < 

.0001, ηP
2 = .43, and not when the experimenter passively moved their finger, F(1, 38) = 0.94,  p = 

.340, ηP
2 = .02 (Fig. 4). High levels of stimulation were perceived as less intense when they were 

freely chosen by the participant and produced by an active movement, compared to when the 

participant was merely instructed to actively press the key producing a high level of stimulation, F(1, 

38) = 6.48, p = .015, ηP
2 = .15. There was no difference between free choice and instructed conditions 

when a passive movement produced the high level of stimulation, F(1, 38) = 0.06, p = .802, ηP
2 = 

.002. In contrast, low levels of stimulation were perceived as more intense when freely chosen and 

produced by an active movement, compared to when the participant was instructed to press the key 

producing a low level of stimulation, F(1, 38) = 20.35, p < .0001, ηP
2 = .35. Again, there was no 

difference between free choice and instructed conditions when a passive movement produced the low 

level of stimulation, F(1, 38) = 2.29, p = .138, ηP
2 = .06. 
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Fig. 4.  

Mean sensory magnitude ratings on a visual analog scale (0-100), showing the significant interaction 

between stimulus level, locus of outcome choice and motoric execution control. Error bars show 

standard error of the mean. * =  p < .050; ns = not significant 

Finally, there was a three-way interaction between block type, stimulus modality, and motoric 

execution control, F(1, 38) = 5.92, p = .020, ηP
2 = .14, and a four-way interaction between block type, 

stimulus modality, stimulus level, and locus of outcome choice, F(1, 38) = 8.49, p = .006, ηP
2 = .18. 

These interactions do not represent effects of interest, and are not discussed further. No other main 

effects or interactions were significant (Table S6). (See Table S3 for the mean sensory magnitude 

ratings in all experimental conditions.) 

Sensory magnitude ratings (baseline blocks) 

The above analysis of sensory magnitude ratings includes only the ratings from the operant 

blocks, in which the outcome stimulus was caused by an action. However, participants also rated 
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sensory magnitude in outcome baseline blocks, where no action was made, but the outcome stimulus 

was preceded by a visual cue indicating whether it would be high or low. To analyze sensory 

magnitude ratings from the outcome baseline blocks, we performed a two-way mixed factors analysis 

of variance (ANOVA) with the between-subjects factor stimulus modality (pain, tactile) and the 

within-subjects factor stimulus level (high, low). There was a main effect of stimulus level, 

confirming that participants rated the high-intensity stimuli (M = 60.2, 95% CI = [56.2, 64.2]) as more 

intense than the low-intensity stimuli (M = 23.2, 95% CI = [20.9, 25.5]), F(1, 38) = 294.02, p < 

.00001, ηp
2 = .89. There was also an interaction between stimulus level and stimulus modality, F(1, 

38) = 4.81, p = .035, ηp
2 = .11. There was a trend toward the high level of heat-pain stimulation (M = 

63.5, 95% CI = [57.8, 69.1]) being rated as more intense than the high level of electro-tactile 

stimulation (M = 57.0, 95% CI = [51.4, 62.7]). On the other hand, the low level of heat-pain 

stimulation (M = 21.7, 95% CI = [18.5, 24.9]) was rated slightly lower than the low level of electro-

tactile stimulation (M = 24.8, 95% CI = [21.5, 28.0]). However, simple effects tests did not show a 

significant effect of stimulus modality at either the high stimulus level, F(1, 38) = 2.63, p = .113, ηp
2 = 

.06, or the low stimulus level, F(1, 38) = 1.84, p = .183, ηp
2 = .05. 

Predicting temporal binding from sensory magnitude ratings across trials 

We used linear mixed effects models to predict action binding values from sensory magnitude 

ratings at the single-trial level. Mean-centered sensory magnitude ratings, stimulus modality (dummy 

coded: pain = 1, tactile = 0), motoric execution control (active = 1, passive = 0), and locus of outcome 

choice (free choice = 1, instructed = 0) were modeled as random effects. We used conditional t-tests 

(Wald tests) to test the marginal significance of each effect in the model. None of the factors were 

significant predictors of action binding, although the motoric execution control effect approached 

significance (β = 25.02, SE = ±12.98), t(3116) = 1.93, p = .054 . Importantly, sensory magnitude 

ratings did not predict action binding, t(3116) = 1.66, p = .097 (Table 1). 
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Table 1. Summary of random effects in the linear mixed effects model of action binding. 

Random effect 

Coefficient (ms)a 

DF t p 

Mean SE 

(Intercept) 16.78 ±14.23 3116 1.18 .238 

Sensory magnitude rating (mean-centered) 0.25 ±0.15 3116 1.66 .097 

Stimulus modality (pain = 1, tactile = 0) -13.75 ±12.39 38 -1.11 .274 

Motoric execution control (active = 1, passive = 0) 25.02 ±12.98 3116 1.93 .054 

Locus of outcome choice (free choice = 1, instructed = 0) -2.01 ±6.84 3116 -0.29 .769 

aPositive coefficients indicate greater action binding. 

We also modeled outcome binding values using the same linear mixed effects model design as 

for action binding. Stimulus modality was a significant predictor (β = 124.49, SE = ±39.04), t(38) = 

3.19, p = .003, with less outcome binding for heat-pain than for electro-tactile stimuli. (Note that a 

more positive coefficient indicates less outcome binding, because a shift of the outcome towards the 

action corresponds to a negative value.) Motoric execution control was also a significant predictor (β 

= -33.87, SE = ±14.28), t(3121) = -2.37, p = .018, with more binding of outcomes produced by active 

movements, compared to passive movements. Finally, locus of outcome choice was a significant 

predictor (β = -33.70, SE = ±13.24), t(3121) = -2.55, p = .011, with more binding when the outcome 

stimulus level was chosen by the participant rather than by the experimenter. Sensory magnitude 

ratings did not predict outcome binding, t(3121) = -0.07, p = .947 (Table 2). 

Table 2. Summary of random effects in the linear mixed effects model of outcome binding. 

Random effect 

Coefficient (ms)a 

DF t p 

Mean SE 

(Intercept) -215.26 ±30.04 3121 -7.17 <.0001 

Sensory magnitude rating (mean-centered) -0.03 ±0.50 3121 -0.07 .947 

Stimulus modality (pain = 1, tactile = 0) 124.49 ±39.04 38 3.19 .003 
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Motoric execution control (active = 1, passive = 0) -33.87 ±14.28 3121 -2.37 .018 

Locus of outcome choice (free choice = 1, instructed = 0) -33.70 ±13.24 3121 -2.55 .011 

aNegative coefficients indicate greater outcome binding. 

Discussion 

 We replicated previous studies showing stronger temporal binding for voluntary movements 

than passive movements (Haggard & Clark, 2003; Haggard et al., 2002). We also found stronger 

outcome binding when participants could choose the outcome level, even when the outcome was 

achieved by the experimenter passively moving their finger. This suggests that a process of voluntary 

action selection, or inverse model, contributes to temporal binding, along with other components such 

as the voluntary motor command (Wolpert, Ghahramani, & Jordan, 1995), and non-agentic 

components such as causal relations between events (Buehner, 2012; Buehner & Humphreys, 2009; 

Cravo, Claessens, & Baldo, 2009). A contribution of choice to temporal binding has been proposed 

before (Barlas & Obhi, 2013; Chambon, Wenke, Fleming, Prinz, & Haggard, 2013). However, our 

study provides the first evidence that the locus of outcome choice (free vs. instructed) affects temporal 

binding, irrespective of outcome identity predictability or motoric control over the action itself. In 

principle, our outcome choice effect could reflect top-down beliefs about one’s ability to control 

outcomes through action selection (Desantis et al., 2011) rather than the process of action selection 

itself. Our study cannot distinguish these possibilities. However, one priming study found that 

manipulations of action selection fluency can directly alter explicit agency judgments, without top-

down mediation by beliefs (Wenke, Fleming, & Haggard, 2010). 

Other research has suggested that binding is not affected by outcome identity prediction 

(Desantis et al., 2012). Our effect of outcome control is not at odds with this finding, as stimulus 

intensity was completely predictable in both the free choice and the instructed conditions. Rather, our 

effect depended upon whether participants could choose the stimulus level for themselves, or whether 

the experimenter chose for them. We thus demonstrate a novel effect of the locus of outcome choice 
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on temporal binding, even when outcome predictability was matched between free choice and 

instructed conditions. 

Buehner and colleagues (Buehner, 2012; Buehner & Humphreys, 2009) have suggested that 

temporal binding results from causality, and is not specific to the experience of agency. Another study 

found that both voluntary action and causality were necessary for temporal binding (Cravo et al., 

2009). Our data further support the idea that causality contributes to temporal binding. We found 

substantial outcome binding (but not action binding) in a purely causal but non-agentic condition, 

when the experimenter chose the outcome level, and caused the outcome by pressing the participant’s 

passive finger. The presence of outcome binding in an entirely non-agentic condition stresses the 

importance of using careful control conditions that isolate intentional components of temporal binding 

when using binding as an implicit agency measure. 

We also found that more intense stimuli reduced outcome binding, but only when outcomes 

were painful. High pain levels have a more negative valence than lower pain levels. Intentional 

binding is often reduced for negatively-valenced outcomes (Takahata et al., 2012; Yoshie & Haggard, 

2013), providing an implicit analog to the self-serving attribution bias (e.g., Bradley, 1978; 

Greenberg, Pyszczynski, & Solomon, 1982; Mezulis, Abramson, Hyde, & Hankin, 2004). The tactile 

stimulation, on the other hand, was less valenced. Alternatively, the reduction in outcome binding for 

high intensity heat-pain stimuli could be a direct consequence of stimulus intensity. Participants rated 

the high heat-pain stimuli as more intense than any of the other outcomes. Intense stimuli are highly 

salient, and act as anchors for timing judgments. The perceived time of such anchors is relatively 

uninfluenced by other events, such as preceding actions (Wolpe et al., 2013). Our high heat-pain 

stimuli may have shown relatively little binding either because of their high perceived intensity, or 

because of their negative valence. 

Finally, we found that free choice over outcomes attenuated perceived sensory magnitudes, 

relative to an instructed condition, but only for high intensity stimuli. A further three-way interaction 

with motoric control showed that this effect was present for active but not passive movements.  
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Therefore, it could reflect a specific variant of sensory attenuation previously reported following 

voluntary actions (Blakemore et al., 1999; Wang et al., 2011; Williams et al., 1998). Interestingly, 

another recent study showed that sensory attenuation effects are intensity-dependent (Reznik, Henkin, 

Levy, & Mukamel, 2015). Previous studies of sensory attenuation did not manipulate locus of 

outcome choice and motoric control independently, as we have done here. Our study suggests that 

sensory attenuation of outcomes reflects, at least in part, the ability to choose the outcome through 

voluntary action. However, we found no main effect of motoric control on sensory magnitude ratings 

(i.e., no sensory attenuation effect, as classically defined). Therefore, our results may reflect a 

different form of “sensory attenuation” that primarily depends upon instrumental control over action 

outcomes through free choices, rather than the mere presence of a voluntary motor command. Future 

research should investigate whether these effects are distinct or overlapping. 

Several studies have reported that painful stimuli feel less intense when they are cued than 

when they are unexpected (e.g., Carlsson, Andersson, Petrovic, Petersson, Öhman, & Ingvar, 2006; 

Crombez, Baeyens, & Eelen, 1994). Thus, agentic control over noxious stimuli might reduce pain 

levels by enhancing stimulus predictability. However, our participants always knew in advance which 

stimulus level they would receive. Further, the attenuation of self-chosen stimuli was only found 

when participants themselves initiated the action, and not when they were passively moved. This 

suggests that our “sensory attenuation” effect resulted from free choice over outcome intensity, rather 

than mere predictability. 

Across trials, we found no association between sensory magnitude ratings and either action or 

outcome binding. This extends Dewey and Knoblich’s (2014) finding of no relation between binding 

and sensory attenuation across participants. Though caution is required in interpreting null results, 

both findings appear to challenge the idea that sensory attenuation and temporal binding reflect a 

single underlying cognitive process. However, we found that both temporal binding and perceived 

sensory magnitude were sensitive not only to voluntary motoric control over an action, but also to 

instrumental control over action outcomes through free choice. To recap, we found main effects of 

motoric control and outcome choice on outcome binding, and an interaction effect between these 
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factors on sensory magnitude ratings. Thus, both measures reflect key components of agency, based 

on a theoretical definition of agency as involving both choosing what to do, and actually doing it.  

However, the absence of strong trial-by-trial association suggests that binding and sensory magnitudes 

may not reflect a common cognitive process. 

One limitation of our study was the constrained nature of “free” choices.  Participants were 

asked to choose equal numbers of high and low intensity stimuli in each block. If we had allowed 

participants to make entirely free choices, they presumably would always have chosen lower intensity 

stimuli when those stimuli were painful. Locus of outcome choice and stimulus level would then be 

confounded in the heat-pain condition. We instead allowed participants to control the distribution of 

high and low intensity outcomes in each block. This arrangement constrains endogenous choice in the 

long run, but allows endogenous processes to contribute to the generation of individual actions. 

Together, our findings show that temporal binding and perceived sensory magnitudes are 

influenced by motoric execution control and by the ability to select between alternative action 

outcomes. This supports the idea that binding and sensory attenuation, with appropriate non-agentic 

controls in place, may be implicit markers of the sense of agency, as they are sensitive to two key 

agency components, namely, the voluntary motor command and instrumental control over the action 

outcome. However, we found no relation between action or outcome binding and sensory magnitude 

ratings across trials, suggesting that they are not entirely consistent measures of the implicit sense of 

agency.  
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