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Abstract 21 

 22 

The world is currently experiencing a period of rapid, human-driven biodiversity loss. Over 23 

the past decade, numerous metrics for biodiversity have been used to create indicators to 24 

track change in biodiversity. However, our ability to predict future changes has been limited. 25 

In this study, we use two very different models to predict the status and possible futures for 26 

ecological assemblages in African tropical grasslands and savannas. We show that local 27 

biodiversity often responds more to land use in African grasslands and savannas than in 28 

other biomes. We estimate that average losses of biodiversity are already between 9.7 and 29 

42.0%, depending on the model and measure of biodiversity used. If current socio-economic 30 

trajectories continue (‘business-as-usual’), the likely associated land-use changes are 31 

predicted to lead to a further 5.6-12.3% loss of biodiversity. In contrast, a scenario that 32 

assumes more efficient use of agricultural areas (thus requiring a smaller total area) could 33 

be associated with a partial reversal ‒ of as much as 3.2% ‒ of past losses of biodiversity. 34 

While the agriculture that causes the majority of land-use change is an important source of 35 

economic growth, projections of the effect of land-use change on biodiversity can allow for 36 

more informed decisions. 37 

  38 

  39 



Introduction 40 

 41 

Biodiversity is declining globally, under increasing pressure from a number of different 42 

human activities (Tittensor et al. 2014). Among the pressures affecting biodiversity, land-use 43 

and land-cover change (henceforth referred to as ‘land-use change’) have had the most 44 

profound impacts, at least at a global scale (Green et al. 2005). There is an increasing 45 

interest in understanding changes in the biodiversity of ecological assemblages and 46 

ecosystems at a local scale, because the land-use interventions that can slow and reverse 47 

biodiversity loss operate at this scale. Understanding changes in local-scale biodiversity is 48 

also likely to be important when considering the functioning of ecosystems (Hooper et al. 49 

2012, Dornelas et al. 2014, Newbold et al. 2016a). 50 

Broad-scale models can help to understand how land use affects the biodiversity of 51 

ecosystems, and to predict future changes. While these inevitably have uncertainties caused 52 

by generalizing over wide domains, they are an important tool for understanding and 53 

predicting biodiversity change. Most such models have so far been statistical, based on 54 

collections of data on biodiversity from the published literature (Alkemade et al. 2009, 55 

Gibson et al. 2011, Newbold et al. 2015, Visconti et al. 2016). Global-scale statistical models 56 

suggest that local ecological assemblages have lost on average nearly 14% of the species 57 

and nearly 11% of the individual organisms that would have been present in the absence of 58 

major human land-use change (Newbold et al. 2015). A limitation of statistical models is that 59 

they rely predominantly on data available in the published literature. These data are typically 60 

biased spatially and taxonomically, and even databases that were collated so as to be as 61 

representative as possible have residual biases (e.g. Baillie et al. 2008, Collen et al. 2009, 62 

Hudson et al. 2014; Table 1). Furthermore, the data often consist of spatial comparisons and 63 

lack a time component, precluding a consideration of the dynamics of biodiversity change 64 

and how this relates to transitions between particular combinations of land use. 65 



Recently, mechanistic models of the dynamics of ecological assemblages and their 66 

ecosystems (Cramer et al. 2004, Caron-Lormier et al. 2009, Evans et al. 2013, Purves et al. 67 

2013, Harfoot et al. 2014b) have been developed. These models are based on a 68 

mathematical representation of underlying ecological processes. As such, their data 69 

requirements are smaller (only needing data to parameterise the ecological processes) and 70 

they can represent organisms and ecosystems for which little or no data exist.(Cramer et al. 71 

2004, Bondeau et al. 2007)(Purves et al. 2013, Harfoot et al. 2014b) While attempts to 72 

develop mechanistic models of ecosystems have had reasonable success in capturing 73 

observed properties of ecosystems in the absence of human impacts (Harfoot et al. 2014b), 74 

their use for understanding human impacts on ecosystems remains limited to small spatial 75 

scales (Caron-Lormier et al. 2009, Bartlett et al. 2016), at least in the terrestrial environment. 76 

Tropical grassy biomes (grasslands and savannas) present an interesting case study 77 

for understanding human land-use impacts on ecosystems. Globally, they are estimated to 78 

have experienced a much greater extent of conversion from natural to human land uses 79 

compared to tropical forests, and indeed most other biomes (Boakes et al. 2010, Ellis 2011), 80 

although there is uncertainty over the distinction between grazed natural grassland and true 81 

pasture in these estimates (see below). Future conversion to agriculture is likely to be an 82 

important pressure on biodiversity in African grasslands and savannas, given that this area 83 

is estimated to contain 60% of remaining cultivable land (Roxburgh et al. 2010). Moreover, 84 

tropical grassy biomes are relatively poorly represented in global biodiversity databases (e.g. 85 

Collen et al. 2009, Hudson et al. 2014), and are much less often considered in ecology and 86 

conservation than are tropical forests (Bond and Parr 2010). Global statistical models of 87 

biodiversity’s response to land use (e.g. Alkemade et al. 2009, Newbold et al. 2015) assume 88 

that the response is the same everywhere. However, the sensitivity of ecological 89 

assemblages to land use varies across space (Cowlishaw et al. 2009, Fritz et al. 2009, 90 

Newbold et al. 2016b). It is unclear whether the assemblages in tropical grassy biomes 91 

respond more or less to land use than those in other biomes. On one hand, their biodiversity 92 

has interacted with humans for millennia (at least in Africa; e.g. Sinclair and Norton-Griffiths 93 



1979). On the other hand, the onset of intensive, industrialized agriculture is likely to present 94 

conditions not typical of the small-scale agriculture practised in the past, and tropical 95 

grasslands and savannas are known to be comprised of a distinct set of species with a high 96 

degree of endemism (Bond and Parr 2010).    97 

In this study, we assess the effect of land use on the local diversity of ecological 98 

assemblages in African tropical grassy biomes, using both a data-driven statistical model 99 

and a mechanistic ecosystem model (Supplementary Figure 1).(Cramer et al. 2001) (Oliver 100 

and Morecroft 2014) We ask: 1) to what extent the assemblages of Africa's tropical grassy 101 

biomes respond to land use, and whether this response is different to the global average 102 

response; 2) what the impact of past land use has been on the diversity of ecological 103 

assemblages; 3) what future changes to ecological assemblages might be under contrasting 104 

scenarios of land-use change; and 4) whether the two different models generate similar 105 

predictions of land-use impacts. 106 

 107 

Methods 108 

 109 

The Statistical Model 110 

 111 

The statistical model was based on the database of the PREDICTS (Projecting 112 

Responses of Ecological Diversity in Changing Terrestrial Systems) Project (Hudson et al. 113 

2017; full details are given in the supplementary material). These data were drawn from 114 

published studies, each of which describe the abundance (or for 17% of records only 115 

occurrence) of species sampled at different levels of human pressure (generally different 116 

land uses or land-use intensities). In the data from African grassy biomes (a subset of the 117 

global dataset), all measures of abundance were of individuals or groups (even for plants). 118 

Land use was classified based on the description of the habitat given in the source paper or 119 

provided by the authors of the source paper (Supplementary Table 1). Land use was 120 



classified as primary vegetation (natural vegetation with no recorded past destruction of the 121 

habitat), secondary vegetation (recovering natural habitat after past destruction), cropland or 122 

pasture (too few plantation-forest or urban sites were available to include in the models 123 

presented here). This land-use classification is coarse, but was selected so that the models 124 

could be generalized over large areas, and for correspondence with available land-use 125 

projections. Importantly for this study, pasture describes sites regularly or permanently 126 

grazed; whereas sites with irregular grazing, insufficient to substantially alter the habitat 127 

architecture, were classified as primary or secondary vegetation. Sites where fire occurs at 128 

natural frequency were classified as primary vegetation. In order to understand the effects of 129 

slight, small-scale human disturbances – such as irregular grazing or altered fire regimes – 130 

within natural (primary and secondary) habitat, we distinguished between minimally and 131 

substantially used natural vegetation.(Hudson et al. 2014) The baseline for the models and 132 

projections ‒ minimally used primary vegetation ‒ does not preclude some human 133 

disturbances, of small extent and magnitude; indeed, there are unlikely to be any areas in 134 

African grassy biomes that have experienced no human influence of any kind, which will 135 

make our estimates of biodiversity change conservative. Furthermore, primary vegetation 136 

does not have to be the potential climax vegetation, if vegetation is maintained in a non-137 

climax state through natural disturbances, such as fire or herbivory. This coarse abstraction 138 

of land use, and a degree of subjectivity in the classification, will mean that some potentially 139 

important details are lost (land-use classification is particularly challenging for grasslands); 140 

but this abstraction is necessary in order to develop broad-scale models. 141 

We developed a model of sampled species richness and sampled total abundance (of 142 

all species sought by a given study), as a function of land use (this model does not consider 143 

the effects of climate change), using data from the tropical grassy biomes of Africa. These 144 

data comprised 170,878 records, for 1,830 uniquely named taxa (374 plants, 919 145 

invertebrates and 537 vertebrates), from 922 sites. The sites were distributed very patchily 146 

(representing only 4 of the 26 ecoregions in African tropical grassy biomes; Figure 1a; 147 

Supplementary Figure 2a), but showed a reasonable representation of land uses (231 in 148 



minimally used primary vegetation, 50 in substantially used primary vegetation, 36 in 149 

minimally used secondary vegetation, 33 in substantially used secondary vegetation, 378 in 150 

cropland, and 194 in pasture). We fitted generalized linear mixed-effects models with land 151 

use as a single categorical fixed effect, and random effects representing the identity of the 152 

source study ‒ to capture the wide heterogeneity in sampled taxa, and in the sampling 153 

methods and effort among studies ‒ and the spatial blocking structure of sites within studies. 154 

To assess whether biodiversity in tropical grassland biomes is responding to land use 155 

differently to biodiversity globally, we also developed models using the global data across all 156 

biomes (2.8 million records, for over 45,000 uniquely named taxa, from 17,064 sites; 157 

Supplementary Figure 2b). 158 

To project the models of species richness and total abundance onto estimates of 159 

current and future land-use patterns, we followed the methods in Newbold et al. (2015). 160 

Mapped estimates of land use were taken from the harmonized land-use data associated 161 

with the Representative Concentration Pathways scenarios (Hurtt et al. 2011). These data 162 

describe the proportion of each half-degree grid cell occupied by the six above-named land-163 

use classes. The model-estimated intactness of biodiversity in each land use was applied, 164 

and then values averaged across the land uses in each grid cell, weighted by proportional 165 

area. For details of the land-use projections used, see ‘Land-use Scenarios’ below. 166 

 167 

The Mechanistic Ecosystem Model 168 

 169 

As an alternative way of understanding human land-use impacts on ecosystems, we used 170 

the Madingley general ecosystem model, which represents all photoautotrophic organisms 171 

and all heterotrophic organisms with body masses larger than 10 µg. This model is 172 

described in detail elsewhere (Harfoot et al. 2014b). Briefly, organisms are divided into 173 

functional groups: on land, divisions are made between trophic levels (autotrophs, 174 

herbivores, omnivores and carnivores), between endotherms and ectotherms, and between 175 



semelparous and iteroparous reproductive strategies. Organisms are also characterized by 176 

their body mass (juvenile, adult and current body masses).Purves et al. 2013) 177 

The dynamics of plants are modelled using a terrestrial carbon model, where 178 

ecological processes are modelled, directly or indirectly, as a function of climate (Smith et al. 179 

2013b). The plant model was chosen because future projections of the driving climate 180 

variables are readily available. Non-climatic factors important in shaping grassland/savanna 181 

plant dynamics, such as fire, are captured implicitly to the extent that they correlate with 182 

climatic variables (Smith et al. 2013b). However, explicit representation of these processes 183 

in future might allow better predictions for grasslands and savannas Scheiter and Higgins 184 

2009. 185 

The model has been shown to capture observed properties of individual organisms and 186 

the coarse structure of ecosystems reasonably well under environmental conditions without 187 

human impact, especially in grassland ecosystems (Harfoot et al. 2014b). To simulate land-188 

use impacts in the model, we removed from the model plant biomass calculated as a certain 189 

proportion of net primary production, following the Human Appropriation of Net Primary 190 

Production (HANPP) paradigm (Haberl et al. 2007). We used published data on HANPP for 191 

the year 2000, compiled based on statistics on permanent agriculture and forestry (excluding 192 

wood-fuel harvesting), and estimates of global spatial patterns of land use and soil 193 

degradation, excluding the effects of shifting cultivation and vegetation loss from fire 194 

(important limitations in the application of these estimates to grassland/savanna systems) 195 

(Haberl et al. 2007). To project HANPP estimates, we developed simple spatial models as a 196 

function of the total areas of cropland, pasture and urban land use within each cell ‒ using 197 

the same HYDE land-use data (Hurtt et al. 2011) as described above ‒ and UN subregion 198 

(to control for some of the socio-economic factors that might drive spatial differences in 199 

human use of the land). These models explained a substantial proportion of the estimated 200 

spatial variation in HANPP (R2 values were 0.42 for land-use losses and 0.53 for harvest 201 

losses). The spatial models of HANPP were then applied to the current and future land-use 202 

projections (for details, see ‘Land-use Scenarios’ below). 203 



 204 

Land-use Scenarios 205 

 206 

At a global scale, the availability of land-use scenarios is limited. The most consistent 207 

scenarios are those produced by the Integrated Assessment Models (Hurtt et al. 2011). For 208 

reconstructions of historical land use, the two principal reconstructions are HYDE (e.g. Klein 209 

Goldewijk et al. 2011) and KK10 (e.g. Kaplan et al. 2011). We use the results from HYDE 210 

because these results form part of the harmonized land-use database describing both past 211 

and future changes (Hurtt et al. 2011). By 2005, the HYDE scenario estimates that there had 212 

been substantial losses of natural vegetation in African tropical grasslands (Supplementary 213 

Figure 3a), with replacement by human-dominated land uses (Supplementary Figure 3d). 214 

Consequently, a substantial biomass of vegetation was removed from ecosystems 215 

(Supplementary Figure 3g), which we assume becomes unavailable for herbivores. 216 

There are a greater number of future projections of land use available. Here we use 217 

the projections associated with the Representative Concentration Pathways (RCP) 218 

scenarios, because they provide the most commonly used set of land-use estimates that are 219 

consistent across broad spatial scales and multiple socio-economic scenarios (Hurtt et al. 220 

2011). Among the future scenarios, we focus on the MESSAGE and MINICAM projections 221 

as opposite extremes of land-use change, and thus of expected changes to biodiversity. The 222 

MESSAGE scenario is often assumed to be the outcome of a ‘business-as-usual’ trajectory 223 

(Burrows et al. 2014, Newbold et al. 2015), and is most consistent with a continuation of 224 

current trends in emissions (Oldfield and Steffen 2014). This scenario is associated with a 225 

growth of the human population to 12 billion by 2100, a large degree of conversion of natural 226 

habitats to agricultural uses (Supplementary Figure 3c,f), and a global average temperature 227 

rise of approximately 4°C by 2100 (Hurtt et al. 2011). Our spatial models (see above) 228 

estimate that the predicted land-use change in this scenario will lead to a substantial 229 

reduction in plant biomass available to herbivores (Supplementary Figure 3i). Globally, this 230 



scenario is expected to have the most negative impact on biodiversity of the RCP scenarios 231 

for biodiversity (Newbold et al. 2015). In contrast, the MINICAM scenario assumes a slower 232 

growth in the human population (8.7 billion by 2095), and more efficient use of agricultural 233 

land (thus requiring a smaller area) (Hurtt et al. 2011), leading to the decreases in human-234 

dominated land uses (Supplementary Figure 3e). Our spatial models (see above) estimate 235 

that the decrease in the area of human land uses will lead to a decline in the average plant 236 

biomass extracted by humans from ecosystems. The MINICAM scenario is associated with a 237 

1.75°C rise in global average temperatures by 2100 (Hurtt et al. 2011) and is expected to 238 

have more positive outcomes for biodiversity than the MESSAGE scenario, at least in terms 239 

of land-use impacts (Newbold et al. 2015). 240 

Like all broad-scale land-use scenarios, those associated with the RCPs have 241 

limitations (Harfoot et al. 2014a). An important limitation for studies of grasslands and 242 

savannas is the distinction between natural grassland and pasture. The harmonized land-243 

use scenarios that were used in this study to estimate human land-use impacts on 244 

ecosystems suggest that there is a large expanse of pasture in Africa in the present day. 245 

The estimates of the Human Appropriation of Net Primary Production (HANPP; Haberl et al. 246 

2007), which were used as the basis for estimating land-use impacts in the mechanistic 247 

ecosystem model, also predict a large loss of vegetation to humans in some (but not all) of 248 

the same places. It is likely that some of these places represent areas of natural vegetation 249 

with low levels of grazing (classified in the models as primary/secondary vegetation). This is 250 

a key uncertainty in the projections made by all broad-scale biodiversity models. 251 

 252 

Model Outputs 253 

 254 

Each of the two models is able to produce a different suite of output metrics, reflecting their 255 

different strengths. For the statistical model, we made estimates of the intactness of 256 

ecological assemblages in terms of species richness and total abundance. For the 257 



mechanistic general ecosystem model, we made estimates of the intactness of the total 258 

abundance (density of individuals) of heterotrophic organisms (plant abundance cannot be 259 

estimated because plants are modelled as stocks of biomass rather than individual 260 

organisms) and total biomass of all organisms (including plants). Because the general 261 

ecosystem model is based on broad functional types, it cannot yet make predictions about 262 

species richness. While the total abundance of a community is not particularly informative for 263 

conservation, it is a useful (and practical) proxy measure when considering changes in 264 

ecosystem function (Steffen et al. 2015). We mapped projections for each of these metrics 265 

across all tropical grassy biomes within Africa. 266 

 267 

Data and Code Availability 268 

 269 

The data underlying the statistical model of biodiversity are publicly available from the 270 

Natural History Museum’s data portal at http://dx.doi.org/10.5519/0066354 (Hudson et al. 271 

2016). The code for the Madingley Model can be downloaded from 272 

https://github.com/Madingley/C-sharp-version-of-Madingley. 273 

 274 

Results 275 

 276 

Do the Ecological Assemblages of Tropical Grasslands Respond More to Land Use Than 277 

Those in Other Biomes? 278 

 279 

The statistical models suggest a stronger response of abundance to land use in tropical 280 

grasslands compared with the average across all biomes. An exception to this pattern was 281 

seen for natural vegetation (primary and secondary) subject to substantial human use. In 282 

African tropical grassy biomes, natural vegetation used substantially by humans contained 283 

greater total community abundance than minimally used natural vegetation (Figure 1b). The 284 



response of species richness to land use was similar in tropical grasslands and worldwide, 285 

except in pasture, to which the biodiversity of tropical grassy biomes was shown to be 286 

disproportionately sensitive (Figure 1c). 287 

 288 

The current status of African tropical grasslands 289 

 290 

We estimate that by 2005 there had been substantial changes to the diversity of ecosystems 291 

in African tropical grassy biomes, as a result of land-use change (Figure 2). The statistical 292 

model of biodiversity responses to land use suggests that these biomes had lost on average 293 

21.6% of species richness and 42.0% of the total abundance of organisms. Change has 294 

been fairly consistent over time, but if anything steepest in recent decades (Supplementary 295 

Figure 4). The magnitude of changes predicted by the general ecosystem model was much 296 

smaller. Specifically, the model predicted that ecosystems had lost on average 9.7% of the 297 

total abundance of animal organisms and 15.4% of the total biomass of all organisms 298 

(including plants). The projections made by the two models were spatially similar in broad 299 

terms, but the congruence was only moderate (Figure 2). Notable areas of disagreement 300 

were in the Horn of Africa and northern Namibia/southern Angola. 301 

 302 

Potential futures for African tropical grasslands 303 

 304 

A continuation of current socio-economic trajectories (‘business as usual’), leading to land-305 

use changes corresponding most closely to the MESSAGE scenario, is predicted to lead to 306 

further changes in the biodiversity of ecological assemblages and ecosystems under both 307 

models (Figure 3). The statistical model of biodiversity predicts further losses of 5.6% of 308 

species richness and 12.3% of the total abundance of organisms by 2100, at a similar rate of 309 

loss to recent decades (Supplementary Figure 4). The general ecosystem model predicts a 310 

further 6.8% loss of abundance and a 10.5% loss of biomass. In contrast, under the 311 



MINICAM scenario, a slowing in the rate of loss of primary vegetation and a rapid increase in 312 

recovered natural (secondary) vegetation in African tropical grassy biomes is projected, 313 

through more efficient agriculture and thus abandonment of cropland and pasture (Thomson 314 

et al. 2011). In African tropical grasslands/savannas, this leads to a 1% increase in species 315 

richness and a 3.2% increase in total abundance according to the statistical model (Figure 4; 316 

Supplementary Figure 4), and increases of 2.2% of total abundance and 2.8% of total 317 

biomass according to the general ecosystem model (Figure 3). As with the predictions of 318 

current status, the future projections made by the two models showed broad congruence, 319 

but with significant areas of disagreement (Figure 3). 320 

 321 

Discussion 322 

 323 

Our results suggest that human land-use change has strongly influenced the local 324 

biodiversity of ecosystems in Africa's tropical grassy biomes.(Cramer et al. 2004, Bondeau 325 

et al. 2007) and restricted to small spatial scales Caron-Lormier et al. 2009, Bartlett et al. 326 

2016) However, while biodiversity has declined overall, human land use has in some cases 327 

had a positive effect, depending on its nature and intensity (Figure 1). The 6% decline in 328 

abundance since 1970 predicted by our statistical model was much smaller than the 19% 329 

decline of vertebrates estimated by the Living Planet Index for the Afrotropics (WWF 2014), 330 

although the latter estimate measures species’ population trends not community abundance, 331 

and covers not only grassy biomes but also forests. The increasing influence of humans in 332 

future is likely to cause further overall declines in biodiversity. We show that the ecological 333 

assemblages of African tropical grassy biomes in many cases respond more to land use 334 

compared with other biomes, especially when considering changes in organism abundance. 335 

These differences could be due both to differences in the sensitivity of the biota and 336 

differences in the characteristics of different land-use systems among biomes. 337 



The loss of individuals, species and biomass from ecosystems might lead to the 338 

impairment of certain ecosystem functions (such as productivity, pollination and nutrient 339 

cycling) and the resilience of these ecosystem functions (Isbell et al. 2011, Hooper et al. 340 

2012, Oliver et al. 2015, Steffen et al. 2015), although evidence for this comes only from 341 

experimental low-diversity grassland communities, not real high-diversity communities. The 342 

future of African grassland ecosystems depends upon the human socio-economic pathway 343 

adopted. A continuation of ‘business as usual’ in tropical grasslands, although potentially 344 

important for economic growth in the region, will likely lead to further declines in biodiversity, 345 

while scenarios with mitigation of land-use changes could lead to a partial offsetting of past 346 

losses. A similar pattern has already been demonstrated globally with statistical models of 347 

biodiversity’s response to land use (Newbold et al. 2015). Here we show that the same 348 

pattern holds for tropical grassy biomes in Africa, using two very different models of the 349 

effect of land use. 350 

The spatial patterns predicted by both models were broadly similar. Both estimated 351 

large declines in biodiversity in the past, and continued declines in the future under the 352 

MESSAGE scenario, for the Sahel region and in southern Africa. Under the MESSAGE 353 

scenario, conversion of natural habitats to agricultural land use is predicted to be very 354 

widespread across Africa’s grasslands; an area that comprises 60% of the world’s 355 

uncultivated land (Roxburgh et al. 2010). Under the MINICAM scenario, which assumes a 356 

slower growth in the human population, and more efficient use of agricultural land leading to 357 

decreased areas of cropland and pasture in western African grasslands and in parts of the 358 

Sahel region (Supplementary Figure 3), both models predict that past losses might be 359 

reversed to some extent. This scenario assumes technological improvements will allow for 360 

more efficient use of agricultural land (thus requiring a smaller total area), leading to a rapid 361 

restoration of natural (secondary) vegetation. On the other hand, the climate mitigation 362 

achieved in the MINICAM scenario is assumed largely to be achieved through afforestation 363 

(Hurtt et al. 2011), which could have a strong negative effect on biodiversity. Afforestation for 364 

carbon storage is predicted to become a major pressure on Africa's tropical grassy biomes 365 



(Parr et al. 2014), but the land-use projections used here do not adequately represent this. 366 

The relative value of afforested grasslands for biodiversity is an important topic for further 367 

study. We did not have enough data to consider intensity of use of agricultural areas. 368 

Understanding at a broad scale the optimal balance between high-intensity agriculture over 369 

a small area and low-intensity agriculture over a wider area also requires further study 370 

(Seppelt et al. 2016). 371 

Morin and Thuiller 2009)Although there was broad agreement between the models, 372 

there were also notable areas of disagreement, particularly in northern Namibia/southern 373 

Angola and in the Horn of Africa. Such differences are important for guiding the future 374 

development of broad-scale models, which otherwise can miss important details and 375 

processes. Much of the disagreement can be ascribed to the different assumptions about 376 

pasture made by each of the models. The average removal of vegetation biomass from 377 

pastures under each scenario is much smaller than from cropland (Supplementary Figure 5). 378 

Since vegetation removal is the only way that land use impacts ecosystems in the general 379 

ecosystem model, estimated changes in areas dominated by pasture were relatively small. 380 

In contrast, the statistical model of the response of biodiversity to land use shows pastures 381 

to have relatively low species richness and abundance, especially in tropical grassy biomes 382 

(Supplementary Figure 3). There are many ways that human land use can affect ecological 383 

systems beyond the simple removal of vegetation, such as changes to the architecture of the 384 

vegetation, the impact of livestock beyond their grazing, chemical inputs, and pressures 385 

associated with land use such as road development and bushmeat hunting. There is a need 386 

for future general ecosystem models to account better for these other indirect effects of land 387 

use. On the other hand, the projections of land use may overestimate the extent of regularly 388 

grazed pasture at the expense of occasionally grazed natural habitat. This latter land-use 389 

type was classified as primary vegetation in our statistical model, and was shown to have 390 

similar, sometimes higher, biodiversity than ungrazed natural vegetation (Figure 1). This 391 

distinction is important for biodiversity and should be considered more carefully in future 392 

land-use models. 393 



There were two further key differences between the predictions made by the two 394 

models. First, the magnitude of the changes (especially past changes) predicted by the 395 

general ecosystem model were smaller than for the statistical model. This is likely partly 396 

owing to the differences discussed in the previous paragraph, but there are other differences 397 

between the models that might also contribute. Importantly, while the database used in the 398 

statistical models is broadly representative of the taxa found in terrestrial ecosystems, 399 

including plants, invertebrates and vertebrates (Hudson et al. 2014), there is a bias toward 400 

larger-sized species. In contrast, the general ecosystem model simulates all plants and all 401 

animals larger than 10 μg. There is some evidence that larger-sized animals respond more 402 

strongly to human activities than smaller animals (Gardner et al. 2008, Flynn et al. 2009, 403 

Newbold et al. 2013, Birkhofer et al. 2015; but see e.g. Newbold et al. 2015), in which case 404 

statistical models based on biodiversity databases biased towards larger species may over-405 

estimate effects of land use. More generally, there is a lack of data on land-use impacts on 406 

biodiversity in grasslands and savannas, compared with forests. Gathering a greater number 407 

of data, with more even spatial coverage, will allow us to reduce the uncertainty in broad-408 

scale biodiversity models to some extent. The second key difference between the 409 

predictions made by the two models is that estimates of changes in total abundance by the 410 

general ecosystem model were much more spatially variable than the estimates made by the 411 

statistical model. This is probably because the general ecosystem model is a dynamic model 412 

capturing feeding interactions among organisms, whereas the statistical model is based on a 413 

database of snapshot samples of ecological assemblages. Furthermore, the general 414 

ecosystem model captures more representatively the smallest organisms within ecosystems, 415 

which have exponentially higher variance in population sizes over time (Cohen et al. 2012). 416 

In this study, we focus on alpha (local) measures of biodiversity. Local diversity is likely 417 

to be important for understanding changes in ecosystem function (Hooper et al. 2012), but 418 

other measures reflecting the global endangerment of species may be required to gain a full 419 

picture of the conservation implications of land-use change. (e.g. Staver et al. 2011) We also 420 

focus only on the effects of land use. Tropical grassland biomes also face other pressures, 421 



which could add to or interact with the effects of land use. First, climate change is likely to 422 

become an increasingly important driver of biodiversity change in the coming 423 

decades(Cramer et al. 2001, Scheiter and Higgins 2009) (refs). Tropical grasslands are 424 

predicted to experience a relatively high level of absolute temperature increase in future, and 425 

soon to experience temperatures beyond the range of recent variability (Mora et al. 2013). 426 

Moreover, the C4 grasses that dominate tropical grasslands are predicted to be 427 

disproportionately impacted by rising CO2 (Cramer et al. 2001, Midgley and Bond 2015). 428 

Consequently, models (restricted to well-known species groups) that consider both land use 429 

and climate suggest that tropical grasslands will experience relatively high losses of 430 

biodiversity in future (Visconti et al. 2016). Second, fire is an important process in shaping 431 

the structure of grassland ecosystems (Knapp et al. 2004), and human activities are altering 432 

fire regimes (Reid and Ellis 1995, Fuhlendorf and Engle 2001), which may have important 433 

effects on ecological assemblages (Smith et al. 2013a, Kelly et al. 2015). Future climate and 434 

land-use change are likely to exacerbate changes to fire regimes. Furthermore, changes in 435 

ecosystem structure might influence fire regimes through changes in herbivory levels, but 436 

global data currently do not permit a good understanding of this interaction (Lehmann et al. 437 

2014). Models like the general ecosystem model used here, as well as dynamic global 438 

vegetation models (e.g. Scheiter and Higgins 2009), present an opportunity to fill this gap. 439 

The effect of fire is captured to some extent in the general ecosystem model in that climate-440 

determined fire frequency affects the mortality of plants (Smith et al. 2013b). However, the 441 

effects of fire will be much more diverse than this, and the model does not yet capture the 442 

interaction between land use and fire frequency. Finally, hunting is an important driver of 443 

biodiversity decline in African grasslands and savannas (Lindsey et al. 2013), which was 444 

captured only implicitly to the extent that it correlates with land use.(Newbold et al. 445 

2015)(Laurance et al. 2014) 446 

 447 

Conclusions 448 



 449 

We show that human land use has had large effects on the biodiversity of tropical 450 

grasslands in Africa (although the distinction between grazed natural vegetation and pasture 451 

is a key uncertainty in the projections). Future changes to tropical grasslands will depend on 452 

the socio-economic pathways adopted. Regardless of the model type employed, business as 453 

usual scenarios are predicted to be accompanied by substantial further changes to 454 

ecosystems, while more efficient use of land for agriculture offers the potential of a partial 455 

offsetting of past changes. Clearly there are challenges to be faced in selecting pathways of 456 

future development and protection, not least because habitat change can have positive 457 

consequences for local human communities, and agriculture is a strong source of economic 458 

growth. Predictions of the future impacts of these changes will help policy-makers make 459 

informed decisions. 460 
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 606 

  607 



Figure and Table Legends 608 

 609 

Figure 1. (a) Map of sites in Africa's tropical grassy biomes. Sites were very patchily 610 

distributed, but showed a reasonable representation of land uses: 281 in primary vegetation, 611 

69 in secondary vegetation, 378 in cropland and 194 in pasture. (b, c) Response to land use 612 

of ecological assemblages in tropical grasslands, in terms of total abundance of organisms 613 

(a) and species richness (b). Responses for tropical grasslands (shown as opaque symbols) 614 

are compared with global responses (translucent symbols). For primary and secondary 615 

vegetation, minimally used refers to areas where recorded human disturbances are very 616 

minor; substantially used refers to areas where human disturbances are of at least moderate 617 

intensity or broad in spatial footprint (see Table S1 for more detail). All values are shown as 618 

the % difference relative to the value in primary vegetation. 619 

 620 

  621 



Figure 2. Estimated intactness - given land-use change - of ecological assemblages in 622 

2005, according to a statistical model of biodiversity’s response to land use (a and b) and a 623 

mechanistic general ecosystem model (c and d). Estimated changes shown are total 624 

abundance of organisms (a and c), species richness (b) and total biomass (d). 625 

 626 

  627 



Figure 3. Predicted intactness of ecological assemblages in tropical grasslands by 2100, 628 

according to a statistical model of biodiversity’s response to land use (a-d) and a 629 

mechanistic general ecosystem model (e-h). Predicted changes shown are total abundance 630 

of organisms (a-b and e-f), species richness (c-d) and total biomass (g-h). Predictions are 631 

shown under two Representative Concentration Pathways scenarios: the MESSAGE 632 

scenario (a, c, e, g) and the MINICAM scenario (b, d, f, h). Colours correspond to those in 633 

Figure 2 for the same model-metric combinations. 634 
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Table 1. Comparison of statistical and mechanistic models of the response of biodiversity to 637 

land-use change 638 

 639 

 640 
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Tables 642 

 643 

Table 1 644 

Statistical models of biodiversity 

response 

Mechanistic models of biodiversity response 

Based on survey/monitoring data 

from populations and species 

assemblages 

Based on mechanistic relationship among 

biological, physical and ecological processes 

Test predictability e.g. using hold-out 

of a proportion of data used to build 

model 

Test of predictive ability using an ecosystem 

property that is measured but not reported 

Correlative - built from association 

between biodiversity and 

environment (e.g. land use) 

variables 

Mechanistic - built from basic ecological 

mechanisms 

Prediction limited to environmental 

conditions observed previously 

Prediction in novel conditions possible through 

projection of dynamics 

Limited in breadth; data are still 

comparatively rare, and focus on 

particular species or populations and 

on particular geographic regions 

Limited by computational power and knowledge of 

the processes and the relationships among the 

modelled parameters 
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