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Abstract 
WHO guidelines recommend viral load monitoring for all HIV-ͱ positive patients 

on antiretroviral therapy (ART). However, few low-income countries have 

virological monitoring widely available, and patients may remain on virologically 

failing regimens. This could compromise future ART through the accumulation 

of drug resistance mutations and result in worse long-term clinical outcomes. 

The DART trial was conducted in Uganda and Zimbabwe and compared clinically 

driven monitoring with or without routine CDʹ measurement in ART-naïve adult 

patients. Annual plasma viral load was retrospectively measured for ͱ,ͷͶͲ 

patients. This thesis investigates how no laboratory monitoring impacts 

virological failure and the development of drug resistance.  

Time to persistent virological failure was analysed, and analytical weights were 

calculated to correct for non-random sampling. The long-term durability of first-

line ART was remarkable; Ͳͱ% of patients on an NRTI-NNRTI regimen and ʹͰ% 

on a triple-NRTI regimen experienced persistent virological failure by ͲʹͰ weeks. 

Routine CDʹ monitoring did not reduce virological failure. 

Deaths after ʹ weeks of ART are widely assumed to be due to virological failure 

or non-adherence. Analyses revealed that a surprisingly high number of these 

deaths (ʹͰ%) occurred without virological criteria for treatment switch being 

met. Routine CDʹ monitoring reduced the rate of death with virological failure 

but did not impact deaths with virological suppression. 

Cross-sectional analyses quantified HIV-ͱ drug resistance at the end of first-line 

ART. On NRTI-NNRTI regimens, % had NRTI resistance, and ͶͶ% had NNRTI 

resistance. Routine CDʹ monitoring did not reduce the prevalence or extent of 

drug resistance. The order and rate of HIV-ͱ drug resistance mutations were 

explored using repeated genotypes within patients. On NRTI-NNRTI regimens, 

NRTI and NNRTI mutations developed at a rate of Ͱ.Ͷ and Ͱ.Ͳͱ per year 

respectively. Mutagenic tree models demonstrated that ART regimen influenced 

the order and rate in which mutations occurred. 
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1 Introduction 
1.1 HIV infection 
1.1.1 HIV life cycle 

Human immunodeficiency virus (HIV) is a retrovirus, specifically a 

lentivirus, which replicates by infecting human immune system cells. The 

main targets for infection are CDʹ+T lymphocytes, otherwise known as 

CDʹ cells. The CDʹ cells send signals identifying cells to be destroyed by 

CD killer cells. HIV replicates by initially binding to the CDʹ receptor and 

then fusing with the cell, releasing HIV Ribonucleic Acid (RNA) and 

various enzymes into the cell (steps ͱ and Ͳ of Figure ͱ). An enzyme called 

reverse transcriptase changes RNA to DNA (step ʹ) and another enzyme, 

called integrase, integrates this into the DNA within the nucleus of the 

CDʹ cell (step Ͷ). Infected cells may lie dormant for several years before 

activating. Once active, the virus uses the CDʹ cell to create more of its 

genetic material. The protease enzyme then assembles these long strands 

into a new virus.  

During the process of HIV replication there is a gradual decline of CDʹ 

cells through: 

(i) The direct killing of cells as part of the HIV replication cycle. 

(ii) Increased “programmed death” of cells infected with HIV, known 

as apoptosis. 

(iii) Pyroptosis, a highly inflammatory form of programmed cell 

death, triggered by cells abortively infected with HIV. Pyroptosis 

attracts more CDʹ cells to the area and is thought to account for 

͵% of CDʹ cell deaths [ͱ]. 

(iv) CD cells killing infected cells. 
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Figure ͱ: HIV-ͱ life cycle [Ͳ] 

 

1.1.2 The course of HIV infection 

As a person’s CDʹ cells are lost they become increasingly susceptible to 

opportunistic infections and other diseases; without antiretroviral therapy 

(ART) this will eventually lead to death. In HIV-positive people, this is 

known as Acquired Immune Deficiency Syndrome (AIDS). Figure Ͳ 

displays the course of a typical HIV infection without treatment. Patients 

move through several stages of HIV infection, classified by the World 

Health Organisation (WHO). Starting with stage I (where a patient is 

asymptomatic with a CDʹ cell count greater than ͵ͰͰ copies/mL) to stage 

IV or AIDS (where there are CDʹ cell count less than ͲͰͰ copies/mL or 

severe symptoms, which can include rare cancers such as Kaposi’s sarcoma 

and diseases like candidiasis of the lungs). The introduction of HIV 

treatment has transformed HIV from a lethal disease to a chronic one, and 

life expectancy is approaching that of non-infected individuals [ͳ]. 
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Figure Ͳ: Natural history of HIV during untreated infection [ʹ] 

 

1.1.3 Transmission of HIV 

HIV spreads through the transfer of bodily fluids such as blood, semen, 

vaginal fluid and breast milk. Unprotected sexual intercourse and direct 

blood contacts are the primary means of HIV-ͱ infection. HIV prevention 

programmes encourage the use of condoms, more frequent HIV testing 

and needle exchange programmes. Antiretroviral drugs have been shown 

to reduce the risk of HIV infection after a possible exposure (post-exposure 

prophylaxis; PEP) and also as pre-exposure prophylaxis (PrEP) [͵]. 

Currently, antiretroviral therapy is also thought to be the best control of 

the transmission of HIV. The HPTN Ͱ͵Ͳ study [Ͷ] demonstrates that 

antiretroviral therapy limits the transmission of HIV in serodiscordant 

couples if the HIV-positive patient has a suppressed viral load. 

1.1.4 Antiretroviral Therapy 

Treatment for HIV infection currently consists of highly active 

antiretroviral therapy (HAART), a combination of three or more drugs 

from at least two different classes of antiretroviral agents. Antiretroviral 

classes each affect a different part of the HIV-ͱ replication cycle. 

Nucleoside reverse transcriptase inhibitors (NRTIs) interfere with the 
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retrotranscription process by being taken up instead of the natural 

nucleotide, thereby stopping the viral DNA chain from continuing. Popular 

drugs in this class include lamivudine (ͳTC), abacavir (ABC), zidovudine 

(ZDV or AZT) and emtricitabine (FTC). Nucleotide reverse transcriptase 

inhibitors (NtRTIs) act similarly and are considered part of the same drug 

class; tenofovir (TDF) is the main drug of this type. Non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) disrupt the same part of the HIV life 

cycle but work by binding directly to the reverse transcriptase enzyme and 

are considered a different drug class. Commonly used NNRTIs include 

nevirapine (NVP), efavirenz (EFV) and etravirine (ETR). Protease inhibitors 

(PIs) block the protease enzyme from breaking up proteins. HIV still 

replicates, but the resulting virions are unable to mature so cannot infect 

new cells. PIs such as lopinavir (LPV) and atazanavir (ATV) are often used 

with a small dose of an additional PI, ritonavir (RTV), to “boost” the levels 

of the main PI in the blood and extend dosing intervals. Table ͱ displays 

the most common antiretroviral drugs and abbreviations. In high-income 

countries, additional drug classes are also available, such as integrase 

inhibitors and fusion inhibitors. Currently, these are not recommended in 

low-income settings because they are more expensive and difficult to store 

compared to other drug classes. 

1.1.5 HIV-1 drug resistance 

HIV replicates rapidly, approximately ͱͰͱͰ new virions per day in an 

untreated individual [ͷ]. The replication process of HIV is error prone 

compared to DNA as there is no “proofreading,” a result of being 

constructed from RNA. This results in approximately one error per ͱͰ,ͰͰͰ 

to ͳͰ,ͰͰͰ nucleotide incorporations [] and subsequently a wide variety of 

natural mutations develops. While many mutations will lead to virions 

unable to properly replicate or function, some will have mutations which 

confer drug resistance. These mutations have changed the structure of 

enzymes, such as reverse transcriptase and protease so that an 
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antiretroviral compound will not bind to the enzyme as effectively. While 

HIV can rapidly develop mutations to reduce susceptibility to a single 

drug, it is extremely unlikely to simultaneously develop mutations which 

reduce susceptibility to three or more drugs. This is particularly the case if 

these drugs are from several classes and this forms the basis for HAART. 

Table ͱ: Antiretroviral drugs and their abbreviations 

Class Generic drug name Abbreviation 
NRTI Abacavir ABC 
NRTI Emtricitabine FTC 
NRTI Didanosine DDI 
NRTI Lamivudine ͳTC 
NRTI Stavudine DʹT 
NRTI Tenofovir TDF 
NRTI  Zidovudine ZDV or AZT 
NNRTI Efavirenz EFV 
NNRTI Etravirine ETR 
NNRTI Nevirapine NVP 
NNRTI Rilpivirine RPV 
PI Atazanavir ATV 
PI Darunavir DRV 
PI Fosamprenavir FPV 
PI Indinavir IDV 
PI Lopinavir LPV 
PI Nelfinavir NFV 
PI Ritonavir RTV 
PI Saquinavir SQV 
PI Tipranavir TPV 

HIV with drug resistant mutations can replicate more effectively in the 

presence of antiretroviral drugs. If a person stops taking a drug or changes 

antiretroviral regimen, then wild-type virus (HIV without drug resistance 

mutations) may replicate more efficiently and outgrow drug-resistant 

virus. Drug-resistant viruses are often undetectable in plasma when 

outgrown by wild-type virus. However, they are not lost completely and are 

archived in cells within the body []. Archived viruses can rapidly become 

the majority virus if antiretroviral therapy affected by these mutations is 

resumed. Treatment guidelines in high-income countries [ͱͰ, ͱͱ] 

recommend performing resistance testing while a patient remains on their 
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failing antiretroviral regimens. Not all mutations directly reduce 

susceptibility to treatment. Compensatory mutations may develop, which 

improve the replication of the resistant virus, while not directly influencing 

the interaction between the structure of the enzyme and antiretroviral 

drugs [ͱͲ]. 

Most mutations involve the substitution of one amino acid for another. 

They are named using abbreviations for the amino acid changes that occur 

and the location of the amino acid codon. For instance, the KͶ͵R mutation 

identifies that the wild-type amino acid lysine (K) is substituted with 

arginine (R) at the codon numbered Ͷ͵. Some mutations involve the 

insertion or deletion of an amino acid at a particular location; these are 

denoted using nomenclatures such as KͶins and DͶͷdel respectively. 

HIV-ͱ drug resistance testing uses polymerase chain reaction (PCR) to 

produce large quantities of HIV-ͱ gene from plasma samples. The relevant 

HIV genes are sequenced and create an amino-acid sequence of the pol 

gene. This process produces a consensus sequence and differs from single-

genome sequencing where a single molecule is amplified. Consensus or 

bulk sequencing report a mixture of bases at positions and can detect 

minority variants where they comprise more than ͲͰ% of the viral 

population. This consensus sequence can then be compared to lists of 

previously identified drug resistance mutations to determine whether a 

virus is susceptible to a particular drug.  

There are several drug resistance interpretation algorithms available, 

including the IAS-USA lists [ͱͳ] and the Stanford University HIVdb 

algorithm [ͱʹ]. The IAS-USA lists are known as single mutation tables 

(Figure ͳ), where just one major mutation for an antiretroviral drug can 

reduce virological response. 
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Figure ͳ: Example of IAS-USA mutation list for NNRTIs 

 

An alternative approach is the Stanford University HIVdb algorithm; this 

scores each mutation per antiretroviral drug according to the extent to 

which it reduces susceptibility. A higher score indicates a greater loss in 

susceptibility. Scores may be negative for some mutations, showing the 

increased susceptibility of HIV with this mutation to an antiretroviral 

agent. Also, certain combinations of mutations have associated scores. For 

each antiretroviral drug scores are cumulated, and a virus is classified as 

being either susceptible, potentially low-level resistant, low-level resistant, 

intermediate resistant or high-level resistant. Figure ʹ displays examples of 

these scores. 

Figure ʹ: Example of Stanford HIVdb scoring method 

 

1.1.6 HIV-1 subtype 

Genetically distinct viral strains of HIV-ͱ are classified into nine distinct 

viral subtypes and many hybrid viruses, formed when two viruses of 
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different subtypes mix after meeting in a cell. These hybrid viruses 

currently include ͷ circulating recombinant forms, many unique 

recombinant forms and other less well characterised complex structures 

[ͱ͵]. Genetically divergent strains have biological differences which may 

impact the development of drug-resistance [ͱͶ], susceptibility to 

antiretroviral therapy [ͱͷ] and the rate of disease progression [ͱ, ͱ]. The 

gold standard for classifying HIV-ͱ subtypes is a phylogenetic analysis of 

the full-length genome. In a clinical setting, a phylogenetic analysis of the 

pol region can be used to classify HIV-ͱ subtype by using software such as 

REGA [ͲͰ]. Figure ͵ depicts a phylogenetic tree using DART data featuring 

HIV-ͱ subtype and is discussed in Chapter ʹ. 

Figure ͵: Phylogenetic tree of HIV-ͱ pol gene 

 

Subtype B virus is the dominant form in regions such as Europe and the 

Americas and has consequently been the most extensively investigated. 
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Globally, Subtype C is the most prevalent, accounting for nearly half of all 

HIV infections [Ͳͱ]. Figure Ͷ presents the global distribution of HIV 

subtypes in ͲͰͰʹ to ͲͰͰͷ (taken from Hemelaar et al. [Ͳͱ]). Each pie chart 

size corresponds to the relative number of people living with HIV in each 

region. Subtypes A and D in Uganda and subtype C in Zimbabwe [ͲͲ] are 

the most prevalent HIV subtypes in the countries where the DART trial 

was conducted. 

Figure Ͷ: Global distribution of HIV subtypes 

 

1.2 HIV treatment in low-income settings 
Globally, there are ͳ͵.ͳ (͵% CI: ͳͲ.Ͳ-ͳ.) million people estimated to be 

living with HIV in ͲͰͱͲ [Ͳͳ]. Approximately Ͳ͵.Ͱ (Ͳͳ.͵-ͲͶ.Ͷ) million HIV-ͱ 

positive people live in sub-Saharan Africa with a prevalence of ʹ.ͷ% (ʹ.ʹ-

͵.Ͱ%), and ͳ. (Ͳ.-͵.Ͳ) million people in South and Southeast Asia with a 

prevalence of Ͱ.ͳ% (Ͱ.Ͳ-Ͱ.ʹ%). In sub-Saharan Africa, ͱͰ.ͳ (.-ͱͰ.) 

million people are likely to need antiretroviral therapy based on WHO 

ͲͰͱͰ guidelines [Ͳʹ], and Ͷ. million are reported to be on antiretroviral 

therapy, giving a coverage of Ͷ% (Ͷ͵-ͷͲ%). Treatment availability has 
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expanded rapidly in Sub-Saharan Africa; seven times as many people were 

receiving antiretroviral therapy in ͲͰͱͲ compared to ͲͰͰ͵. 

The World Health Organisation (WHO) has released a series of guidelines 

designed for the scale-up of HIV in low-income settings with a public 

health approach [Ͳʹ-Ͳͷ]. The WHO’s adult guidelines make 

recommendations concerning when antiretroviral therapy should be 

started, which antiretrovirals should be used, the frequency of clinical and 

laboratory monitoring of patients on antiretroviral therapy, and the 

surveillance of HIV-ͱ drug resistance mutations. 

Additionally, guidelines define the criteria for the clinical stages of HIV 

disease. WHO stage ͳ events include conditions such as severe 

unexplained weight loss, pulmonary tuberculosis, explained persistent 

diarrhoea, persistent unexplained fever, persistent oral candidiasis and 

severe bacterial infections. WHO stage ʹ events include HIV wasting 

syndrome, Kaposi’s sarcoma, Pneumocystis pneumonia, chronic herpes 

simplex infection, extrapulmonary tuberculosis and HIV encephalopathy. 

Table Ͳ summarises the changes in recommendations over time. More 

recent recommendations have expanded the eligibility criteria for starting 

antiretroviral therapy, with a gradual increase in the CDʹ cell count at 

which antiretroviral therapy should be initiated. The recommended first-

line regimens have altered, with stavudine no longer included and 

tenofovir now being favoured. Guidelines have consistently advised that 

second-line regimens should use an NRTI plus a boosted PI regimen, but 

recent research has clarified individual PIs. Triple-NRTI regimens were 

initially considered a viable alternative in many situations where NNRTIs 

were not possible; they were also considered advantageous by conserving 

NNRTI and PI classes for second-line regimens. However, the increase in 

the number of available antiretroviral drugs means that patients requiring 

tuberculosis (TB) or hepatitis treatment can now start antiretroviral 
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therapy without using contraindicated medication. Before ͲͰͱͰ, the 

guidelines emphasised that laboratory monitoring was not a requirement 

for starting antiretroviral therapy. More recent guidelines have noted that 

laboratory monitoring plays a key role, even in low-income settings. 

Monitoring CDʹ cell counts every six months and viral load every twelve 

months while on antiretroviral therapy is now recommended. Drug 

resistance tests at treatment failure for individual patient management are 

not recommended. Instead, the WHO supports monitoring of drug 

resistance through surveillance programmes in low-income settings. 

WHO guidelines recommend that patients receive regular viral load testing 

to diagnose and confirm treatment failure [Ͳͷ]. Despite this, the real life 

situation in low-income settings remains that viral load measurements are 

typically not performed in real time. A Médecins Sans Frontières survey 

[Ͳ] found that while ͳ of the ͵Ͳ low and middle-income countries 

surveyed had guidelines recommending viral load testing on antiretroviral 

therapy, only a minority ( of ͵Ͳ) of countries had testing widely available. 

The UNAIDS ͲͰͲͰ [Ͳ] aim, known as “Ͱ-Ͱ-Ͱ”, is for Ͱ% of HIV-

positive patients to be diagnosed, Ͱ% of these to be on treatment and for 

Ͱ% to be virally suppressed. A variety of strategies are required to 

eradicate HIV, but UNAIDS note that this will be impossible without HIV 

treatment for all. 

 



 

 

ͳͰ 

Table Ͳ: Summary of changes in WHO recommendations for the treatment of adults with HIV infection 
 ͲͰͰͳ WHO Guidelines [Ͳ͵] ͲͰͰͶ WHO Guidelines [ͲͶ] ͲͰͱͰ WHO Guidelines [Ͳʹ] ͲͰͱͳ WHO Guidelines [Ͳͷ] 
When to start Adults and adolescents 

should start ART when: 
 WHO stage ʹ disease: 

irrespective of CDʹ 
 WHO stage ͳ, with 

consideration of CDʹ cell 
count<ͳ͵Ͱ cells/mmͳ 

 WHO stage ͱ or Ͳ with 
CDʹ≤ͲͰͰ cells/mmͳ 

Adults and adolescents  
should start ART when: 
 WHO stage ʹ disease: 

irrespective of CDʹ 
 WHO stage ͳ, if CDʹ is available 

consider if CDʹ cell count<ͳ͵Ͱ 
cells/mmͳ and before CDʹ cell 
count<ͲͰͰ cells/mmͳ 

 WHO stage ͱ or Ͳ: if CDʹ<ͲͰͰ 
cells/mmͳ 

Adults and adolescents should 
start ART when: 
 WHO stage ͳ or ʹ disease: 

irrespective of CDʹ 
 WHO stage ͱ or Ͳ: if 

CDʹ<ͳ͵Ͱ cells/mmͳ 
 Active TB/HBV infection: 

irrespective of CDʹ 

Adults and adolescents should start 
ART when: 
 CDʹ cell count≤͵ͰͰ cells/mmͳ 
 Active TB/HBV/pregnant/ 

serodiscordant relationship: 
irrespective of CDʹ 

Recommended 
first-line 
regimens 

 (DʹT or ZDV)+ͳTC+(NVP 
or EFV) 

 ZDV+ͳTC+NVP should be 
used with lab monitoring 

Primarily recommends: 
 (ZDV or TDF)+(ͳTC or 

FTC)+(EFV or NVP) 
If pregnant:  
 ZDV+ͳTC+NVP 
TB co-infection: 
 (ZDV or TDF)+(ͳTC or 

FTC)+EFV 
HBV co-infection: 
 TDF+(ͳTC or FTC)+EFV 
 

Primarily recommends: 
 (ZDV or TDF)+(ͳTC or 

FTC)+(EFV or NVP) 
If pregnant: 
 ZDV+ͳTC+(EFV or NVP) 
TB co-infection: 
 (ZDV or TDF)+(ͳTC or 

FTC)+EFV 
HBV co-infection: 
 TDF+(ͳTC or FTC)+(EFV or 

NVP) 

Adults (including pregnant women, 
TB/HBV coinfection): 
 TDF+(ͳTC or FTC)+EFV 
Alternatively: 
 ZDV+(ͳTC or FTC)+(EFV or 

NVP) 
 TDF+(ͳTC or FTC)+NVP 
In special circumstances regimens 
containing ABC, dʹT and boosted 
PIs may be used 

Recommended 
second-line 
regimens 

 (TDF or ABC)+DDI+ 
(LPV/r or SQV/r) 

 DDI or TDF+(ABC or ͳTC) 
(±ZDV)+PI/r 

A boosted PI plus two NRTIs 
backbone should be used 
ATV/r and LPV/r are 
recommended as boosted PIs 
If dʹT or ZDV have been used in 
the first-line, switch to 
TDF+(ͳTC or FTC) backbone 
If TDF has been used in first-line 
switch to ZDV+ͳTC 
 

Preferred regimen: 
 ZDV+ͳTC+(LPV/r or ATV/r) 
Alternative regimen: 
 TDF+(ͳTC or FTC)+(LPV/r or 

ATV/r) 
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 ͲͰͰͳ WHO Guidelines [Ͳ͵] ͲͰͰͶ WHO Guidelines [ͲͶ] ͲͰͱͰ WHO Guidelines [Ͳʹ] ͲͰͱͳ WHO Guidelines [Ͳͷ] 
Triple-
NRTI first-
line 
regimens 

A lower tier recommendation 
than regimens containing 
NNRTIs but should still be 
considered, particularly when 
NNRTIs cannot be used 
because of intolerance/drug 
resistance and PIs are not 
available or when co-
administered with anti-TB 
therapy. 

A triple-NRTI regimen should be 
considered as an alternative first-line 
ART regimen in situations where 
NNRTI options provide additional 
complications and to preserve the PI 
class for second-line treatment (e.g. 
in women with CDʹ counts of 
Ͳ͵Ͱ−ͳ͵Ͱ cells/mmͳ; coinfection with 
viral hepatitis or tuberculosis; severe 
adverse reactions to NVP or EFV, 
infection with HIV-Ͳ). 
Recommended triple-NRTI 
combinations are ZDV+ͳTC+ABC and 
ZDV+ͳTC+TDF 

The triple nucleoside regimens 
ZDV+ͳTC+ABC or 
ZDV+ͳTC+TDF should be used 
for individuals who are unable 
to tolerate or have 
contraindications to NNRTI-
based regimens, particularly in 
the following situations: 
• HIV/TB coinfection 
• pregnant women 
• chronic viral hepatitis B 
• HIV-Ͳ infection 

No longer specifically mentioned in a 
separate section, discussed as an option for 
HIV-Ͳ infection but a regimen containing a 
boosted PI such as LPV is preferred. 

Clinical 
and 
laboratory 
monitoring 

Primary health care centre 
 Rapid HIVab  
 Haemoglobin if ZDV is 

considered 
 Pregnancy test 
 TB sputum smear 
 District hospital, above plus: 
 FBC and differential 
 CDʹ+cell count 
 ALT 
Regional referral centres 
 All of above 
 Full serum chemistries 
 Viral load testing 

Recommends clinical assessment as 
primary tool for monitoring 
At diagnosis: 
 Clinical assessment of HIV stage, 

weight, concomitant medical 
conditions and medicines. 

 CDʹ where possible 
 Pregnancy test 
 Haemoglobin if ZDV is considered 
 HIV confirmation 
Before ART: 
 Clinical monitoring 
 CDʹ count every six months 

Laboratory monitoring is not a 
prerequisite for initiating ART. 
At diagnosis: 
 HBsAg is desirable 
 CDʹ is recommended 
Before ART: 
 CDʹ is recommended 
Patients on ART: 
 Haemoglobin if ZDV 
 Creatinine clearance if TDF 
 ALT for NVP 
 CDʹ is recommended 
At clinical failure: 
 Viral load is desirable 
 CDʹ is recommended 

Clinical assessment and laboratory tests 
play a key role before ART is initiated and 
then monitoring their treatment response. 
At diagnosis, recommended: 
 HIV serology, CDʹ cell count, TB 

screening 
At diagnosis, desirable: 
 HBsAg, HCV serology, STI screening 
Before ART, recommended: 
 CDʹ cell count every Ͷ – ͱͲ months 
Initiating ART, desirable: 
 Haemoglobin if ZDV, Pregnancy test, 

Blood pressure, Urine dipstick, eGFR 
and serum creatinine if TDF, ALT for 
NVP 

Initiating ART, recommended: 
 CDʹ cell count 
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 ͲͰͰͳ WHO Guidelines [Ͳ͵] ͲͰͰͶ WHO Guidelines [ͲͶ] ͲͰͱͰ WHO Guidelines [Ͳʹ] ͲͰͱͳ WHO Guidelines [Ͳͷ] 
Clinical and 
laboratory 
monitoring 

 Patients on ART: 
 Monitor clinical progression at 

Ͳ,ʹ, , ͱͲ and Ͳʹ weeks then 
every Ͷ months 

 Routine monitoring of CDʹ 
every Ͷ months, if available 

 Viral load measurement not 
recommended in low-income 
settings 

 Patients on ART, desirable: 
 Urine dipstick and serum 

creatinine if TDF 
Patients on ART, recommended: 
 CDʹ cell counts every Ͷ months, 

viral load, at Ͷ months and then 
every ͱͲ months 

At treatment failure, desirable: 
 HBV serology 
 At treatment failure, 

recommended: 
 CDʹ cell count, HIV viral load 

Surveillance of 
HIV-ͱ drug 
resistance 

Drug resistance genotyping is not 
on the near-term or mid-term 
horizon for individual patient 
management in low-income 
settings, but country programmes 
are encouraged to develop or 
participate in drug resistance 
surveillance and monitoring 
programmes to assist with 
planning at the population level. 

Recommends the continued use 
of surveillance programmes to 
assess transmitted drug resistance 
and resistance at treatment 
failure. Notes that the use of 
standard highly active ART 
regimens should help in choosing 
second-line regimens. 

Monitoring surveys to assess the 
emergence of HIV drug resistance 
and associated factors in patients 
treated for at least ͱͲ months 
Surveillance for transmitted drug 
resistance among newly infected 
individuals 

Recommends the use of early warning 
indicators to help identify deficits in 
programme performance that favour 
the emergence of HIV drug resistance. 
Also, recommends that countries 
undertake surveillance of HIV drug 
resistance and provides specific 
guidance on how to do the surveys 
required. 
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1.3 The DART Trial 
1.3.1 Trial design 

The Development of Antiretroviral Therapy in Africa (DART) trial was a 

randomised non-inferiority trial [ͳͰ]. It principally investigated whether 

routine laboratory monitoring was necessary in HIV-ͱ positive patients 

who were starting antiretroviral therapy for the first time. The trial was 

open-label and conducted in three centres in Uganda and one centre in 

Zimbabwe. In all analyses, the Joint Clinical Research Centre, Kampala is 

combined with a satellite centre, the Infectious Disease Institute, Mulago. 

Research ethics committees in Uganda, Zimbabwe and the UK approved 

the DART trial. 

The DART trial randomly allocated ͳ,ͳͲͱ adults to receive either laboratory 

and clinical monitoring (LCM), or clinically driven monitoring (CDM) 

only. Randomisation was stratified by centre, pre-therapy CDʹ (Ͱ-, ͱͰͰ-

ͱ cells/mmͳ) and initial antiretroviral therapy regimen received. All 

patients had a full blood count (haemoglobin, white cells, and platelets), 

lymphocyte subset count (CDʹ and CD), and liver and renal tests (urea, 

bilirubin, creatinine and aspartate aminotransferase/alanine amino-

transferase) conducted at screening, weeks four, twelve and then every 

twelve weeks. However, these results were only returned to patients in the 

CDM arm if requested for clinical reasons (after review and authorisation 

by each centre’s project leader). A plasma sample was stored at each of 

these visits. Patients could switch treatment to second-line antiretroviral 

therapy in both groups if a new or recurrent WHO stage ʹ event occurred 

or at the clinician’s discretion if a WHO stage ͳ event occurred. In the LCM 

arm, patients could switch treatment if there was a confirmed CDʹ cell 

count less than ͱͰͰ cells/mmͳ (less than ͵Ͱ cells/mmͳ before July ͲͰͰͶ). 

Switching treatment before patients had received antiretroviral therapy for 

ʹ weeks was strongly discouraged. 
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Co-primary endpoints were a diagnosis of a new WHO stage ʹ event or 

death. An independent endpoint review committee, blinded to randomised 

group and CDʹ cell count, judged WHO stage ʹ events and the cause of 

death against pre-specified criteria. The committee accepted ͷͰ of the 

Ͳ (ͷ%) reported WHO stage ʹ events.  

Patients in DART received a first-line regimen of co-formulated 

zidovudine-lamivudine (ZDV-ͳTC) plus either tenofovir disoproxil 

fumarate (TDF), abacavir (ABC) or nevirapine (NVP). 

1.3.2 The main trial results 

The main trial results [ͳͰ] demonstrated that overall survival after five 

years was %. There was ͷ% (͵% CI: ͵-%) survival in the CDM arm 

and Ͱ% (͵% CI: -ͱ%) survival in the LCM arm. The trial found that 

ͱ,ͳʹͶ (ͱ%) patients on CDM, versus ͱ,Ͳ͵ (ͷ%) on LCM, were still on 

first-line antiretroviral therapy at their last clinic visit. A new WHO stage ʹ 

event or death occurred in ʹ͵ (Ͳ%) CDM patients compared to ͳ͵Ͷ 

(Ͳͱ%) LCM patients. This corresponds to a relative hazard ratio (HR) of ͱ.ͳͱ 

(͵% CI: ͱ.ͱʹ-ͱ.͵ͱ). The pre-defined non-inferiority margin was ͱ.ͱ so the 

upper but not lower ͵% confidence interval crossed this threshold. The 

trial team concluded that the high survival rate demonstrated that 

antiretroviral therapy could be delivered safely in low-income settings 

without routine laboratory monitoring. Clinically driven monitoring was 

not shown to be non-inferior, although it was also not formally shown to 

be inferior. Using routine CDʹ cell count monitoring led to a small but 

significant benefit in disease progression and mortality. 

1.3.3  DART substudies 

A flow chart for the DART trial substudies is shown in Figure ͷ (next page). 

 



 

 

ͳ͵ 

 

 

Figure ͷ: Flow chart of DART trial and substudy design 

 

CT=Continuous Treatment 

STI=Structured Treatment Interruption
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1.3.3.1 NORA 

The Nevirapine or Abacavir (NORA) substudy was conducted in two clinics 

in Uganda and was a randomised, double-blinded, phase II toxicity trial 

[ͳͱ]. Six hundred participants were randomised between co-formulated 

zidovudine-lamivudine and either abacavir with nevirapine placebo or 

abacavir placebo with nevirapine, for Ͳʹ weeks. Participants continued on 

their randomised arm after Ͳʹ weeks but received open-label drug. 

Randomisation was stratified by centre, pre-ART CDʹ count and 

monitoring randomisation. The primary endpoint was any serious adverse 

event (SAE) considered to be related to nevirapine or abacavir after Ͳʹ 

weeks of treatment. In the main NORA results, ͲͰ events were deemed to 

be related to drug, Ͷ (Ͳ.Ͱ%) abacavir and ͱʹ (ʹ.ͷ%) nevirapine, giving a 

hazard ratio of Ͱ.ʹͲ (͵% CI: Ͱ.ͱͶ-ͱ.Ͱ, p-value=Ͱ.ͰͶ). This substudy 

concluded that abacavir could be used more widely in low-income settings 

without major safety concerns. 

1.3.3.2 The structured treatment interruption substudy 

The structured treatment interruption (STI) substudy [ͳͲ] evaluated 

whether intermittent antiretroviral therapy could be used to reduce 

treatment costs and long-term toxicity. Treatment interruptions can be 

guided by either CDʹ count or of a fixed length. This substudy compared 

fixed length STIs and continuous treatment (CT) using a nested 

randomisation within the main DART trial. A pilot study informed the 

design of the main STI substudy. Participants who had CDʹ cell counts 

greater than or equal to Ͳ͵Ͱ cells/mmͳ at Ͳ weeks received one or two 

twelve week treatment interruptions. The pilot study recommended raising 

the CDʹ threshold for inclusion and increasing the length of continuous 

treatment before randomisation for the substudy. 

Participants in either arm of the main trial who had CDʹ cell counts 

greater than or equal to ͳͰͰ cells/mmͳ at ʹ or ͷͲ weeks were eligible for 

the main STI substudy. Participants were randomised to continuous 
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treatment or repeated twelve-week cycles on and off therapy, initiating 

these at weeks ͵Ͳ and ͷͶ. Randomisation was stratified by centre, weeks 

since starting antiretroviral therapy, and randomised monitoring strategy. 

However, randomisation was not stratified by the antiretroviral regimen 

patients received. This led to a chance imbalance for patients in the NORA 

substudy which complicates interpretation beyond the main substudy 

results. A greater proportion of participants on a nevirapine-containing 

regimen were randomised to STI (n=ͷͱ; Ͳʹ%) than continuous treatment 

(n=ʹͷ; ͱͶ%) compared to those on an abacavir-containing regimen [STI 

(n=ͳͷ; ͱͲ%) and CT (n=͵ͳ; ͱ%)]. The primary outcome of the substudy 

was progression to a new WHO stage ʹ event, death, or a serious adverse 

event not solely related to HIV. 

The STI randomisation was stopped after the second meeting of the Data 

Safety and Monitoring Committee on the ͱ͵th March ͲͰͰͶ. Rates of death 

were similar in the two groups, but the incidence of first new WHO stage ʹ 

event or death was higher in patients receiving a STI (n=Ͳʹ; Ͷ.ʹ per ͱͰͰ 

person-years) compared to CT (n=; Ͳ.ʹ per ͱͰͰ person-years). This gave a 

HR of Ͳ.ͷͳ (͵% CI: ͱ.Ͳͷ-͵.; p-value=Ͱ.ͰͰͷ). There was a sharp decrease 

in CDʹ cell counts during a STI and an overall net decrease in patients who 

underwent a STI, even after restarting antiretroviral therapy. Eight weeks 

after restarting antiretroviral therapy, CDʹ cell counts were still lower than 

before the interruption and each successive STI led to worse CDʹ recover. 

The substudy concluded that patients should remain on continuous 

treatment due to the greater rates of disease progression. 

1.3.3.3 Second-line substudies 

DART’s other substudies, SARA and OHFS, examined second-line 

treatment options and are described by Gilks et al. [ͳͳ] and Ivan et al. [ͳʹ]. 

Virological response and HIV-ͱ drug resistance on second-line treatment 

are not investigated in this thesis, so these results are not summarised. 
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1.3.4 DART Virology substudy 

1.3.4.1 History 
The main DART trial did not initially have the resources to retrospectively 

test the thousands of stored samples to determine viral load or to perform 

genotyping. Limited pharmaceutical funding generated viral load results, 

described below, for a small number of patients on tenofovir (known as 

part I/II) and NORA patients during the first ʹ weeks of follow-up.  

In April ͲͰͰͷ, a UK grant was awarded for a proposal with the objective of 

developing an evidence-based approach to public health in low-income 

settings. Using a “walk backwards” (“walkback”) testing algorithm it 

estimated that approximately ʹ,͵ͰͰ viral load samples (including 

approximately ͶͰͰ baseline samples) would be necessary. Genotypic 

resistance testing would be performed on approximately ͱ,ͰͰ samples 

with viral load (VL) greater than ͱ,ͰͰͰ copies/mL. The grant was extended 

from June ͲͰͱͱ to August ͲͰͱ͵ after several delays were experienced related 

to the complexity of the undertaking. Identifying and retrieving aliquots 

from the repository of over ͶͰ,ͰͰͰ stored samples was challenging after 

more than a decade since the trial’s conclusion. This was often due to 

incomplete and sub-optimal record systems for these samples, frequently 

heavily reliant on individual staff member’s expertise. 

There were three main grant objectives. First, to determine the evolution of 

HIV-ͱ drug resistance in the absence of virological monitoring. The 

identification of the cross-resistance mutations reducing susceptibility to 

NRTIs at virological failure could then inform which NRTIs should 

subsequently be used in second-line antiretroviral therapy regimens. 

Second, to evaluate simple markers of resistance during first-line 

antiretroviral therapy, these could guide treatment switch in low-income 

settings. Third, to study virological determinants of disease progression 

during first-line therapy in the absence of virological monitoring. 

Laboratory work was conducted in Uganda and Zimbabwe to support 
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capacity building. Sequencing was not possible in Zimbabwe, so samples 

had to be retrieved and sent to sites in Uganda.  

I have contributed to the testing process by identifying potential 

replacement viral load samples within the database, compiling these into 

lists for testing or shipment at individual sites, monitoring the 

completeness of testing and data entry. After viral load testing was 

complete and the data analysed, the time points of first virological failure 

and the last time point on first-line antiretroviral therapy were identified 

for genotypic testing. Frequently, plasma had either degraded, was low 

volume or viral load level was too low to amplify. In these cases 

successfully genotyping required attempts to amplify multiple plasma 

samples. I recorded which samples had definitively failed and generated 

genotype replacement lists for centres. I am extremely grateful to all the 

staff who conducted the viral load testing and HIV-ͱ genotyping, 

acknowledged in Appendix A. 

1.3.4.2 Previous DART virological results 
Prior to the additional viral load testing performed for the DART virology 

substudy; several analyses had been conducted retrospectively examining 

stored plasma samples. These analyses have consisted of cross-sectional 

investigations of virological response and patterns of HIV-ͱ drug resistance. 

1.3.4.3 Part I/II 
Three hundred patients on tenofovir were included in an earlier substudy 

(Part I/II) which examined longitudinal changes in viral load from 

initiating antiretroviral therapy to week ʹ [ͳ͵]. Patients in Part I/II were 

initially sampled after the first ͱͰͰ patients had been enrolled in the study. 

This was based on the next ͵Ͱ consecutively enrolled patients with a CDʹ 

cell count of either Ͱ to  cells/mmͳ or ͱͰͰ to ͱ cells/mmͳ
.  ͳͰͰ patients 

were selected, equally divided between centres. Stored plasma samples 

from pre-ART, weeks ʹ, ͱͲ, Ͳʹ, ͳͶ and ʹ were assayed for HIV RNA and 

week Ͳʹ samples were genotyped if HIV viral load was greater than ͱ,ͰͰͰ 
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copies/mL. In total, ͱ,Ͷ out of ͱ,ͰͰ (ʹ%) samples were available for 

analysis. The analysis approach was cross-sectional and found that ͷ% 

and ͷͲ% had a viral load less than ʹͰͰ copies/mL at weeks Ͳʹ and ʹ 

respectively. In total, ͳͶ (ͱͲ%) patients achieved viral load less than ʹͰͰ 

copies/mL, then had a confirmed rebound. Higher pre-ART CDʹ cell 

count, female gender and being older were all found to be predictive of 

HIV viral load less than ͵Ͱ copies/mL at week ʹ. There was no evidence 

that pre-ART HIV viral load was predictive. In total, ͲͰ out of ͵ͳ (ͳ%) 

patients with viral load greater than ͱ,ͰͰͰ copies/mL at week Ͳʹ were 

genotyped. Of these, ͱ of ͲͰ (Ͱ%) had major NRTI resistance mutations 

and the two patients without NRTI resistance had both interrupted 

antiretroviral therapy. The investigators concluded that a triple-NRTI 

regimen containing tenofovir demonstrated good antiviral efficacy and that 

this could be a useful first-line regimen in low-income settings. 

1.3.4.4 NORA 
Ndembi et al. [ͳͶ] investigated stored plasma samples pre-ART and at 

weeks ʹ, ͱͲ, Ͳʹ and ʹ for the ͶͰͰ patients in the NORA substudy. Patients 

with viral load greater than ͱ,ͰͰͰ copies at week ʹ had their week ʹ and 

pre-ART samples genotyped for HIV-ͱ drug resistance mutations. A 

multivariate logistic regression model was used to identify pre-therapy 

factors associated with viral load less than ͵Ͱ copies/mL at week ʹ. In 

total, Ͳ,ͱ͵ out of ͳ,ͰͰͰ (ʹ%) possible samples were analysed. There was 

no evidence of a difference in the reduction of HIV viral load levels 

between abacavir and nevirapine prior to week Ͳʹ. However, at weeks Ͳʹ 

and ʹ a higher proportion of patients on nevirapine had viral loads less 

than ͵Ͱ copies/mL (ͷͷ% versus ͶͲ%; p<Ͱ.ͰͰͱ). Furthermore, fewer 

patients on nevirapine had HIV viral load greater than ͱ,ͰͰͰ copies/mL at 

week ʹ. Pre-therapy CDʹ, RNA and initial antiretroviral therapy were 

strongly predictive while age, gender and WHO stage were not predictive 

of viral suppression. The mean residual activity of nevirapine-containing 
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regimens was lower than abacavir regimens, despite thymidine analogue 

mutations (TAMs) typically being more common in the abacavir group.  

Munderi et al. [ͳͷ] examined data from the NORA substudy for differences 

in immunology, virology, and clinical events during the first ʹ weeks of 

the study. Alongside the previously reported differences in virology, the 

study showed that after ʹ weeks of treatment the mean CDʹ cell count 

increase was ͱʹͷ cells/mmͳ for patients on abacavir compared to ͱͷͳ 

cells/mmͳ for patients on nevirapine (p=Ͱ.ͰͰͶ). However, ͲͰ patients on 

abacavir developed new or recurrent WHO ʹ events or died compared to 

ͳͲ patients receiving nevirapine (HR=Ͱ.ͶͰ; ͵% CI: Ͱ.ͳʹ-ͱ.Ͱ͵; p=Ͱ.Ͱͷ). 

Including WHO stage ͳ events, ʹ patients on abacavir and Ͷ on 

nevirapine had an event (HR=Ͱ.Ͷͷ; ͵% CI Ͱ.ʹͶ-Ͱ.Ͷ; p=Ͱ.Ͱͳ). Munderi et 

al. [ͳͷ] concluded that, despite the clear virological and immunological 

benefit of nevirapine over abacavir, this was not reflected in clinical 

outcomes at week ʹ and required further investigation. 

Other studies examining patients from the NORA substudy have used a 

longitudinal approach and extended the retrospective testing of plasma 

samples to week Ͷ. Gupta et al. [ͳ] investigated changes in viral load 

between weeks ʹ and Ͷ and performed resistance testing on week Ͷ 

samples with a viral load greater than ͱ,ͰͰͰ copies/mL. In total, ͱͰͷ 

patients who were randomised to an STI were excluded from analysis. 

Analyses were weighted to account for this bias. At week Ͷ, there 

remained a difference in viral load between the randomised treatments; on 

abacavir ͱͶͰ out of ͲͲͶ (ͷͱ%) had a viral load less than ͱ,ͰͰͰ copies/mL 

versus ͱ͵Ͷ out of ͱͰ (ͷ%) on nevirapine. However, this study also 

observed that patients suppressed at week ʹ were more likely to remain 

so if they received nevirapine compared to abacavir (ͱʹ out of ͱ͵Ͷ; Ͷ% 

compared to ͱʹ out of ͱͰ; Ͳ%; p=Ͱ.ͰͰͳ). The authors determined that 

ͱ out of ͷͰ (Ͳͷ%) patients, with viral load greater than ͱ,ͰͰͰ copies/mL at 

week ʹ, re-suppressed by week Ͷ and that this did not differ by 
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monitoring randomisation. The drug resistance analyses showed that 

patients with virological failure in the nevirapine arm typically had NNRTI 

resistance at week Ͷ (͵%) but that the proportion with MͱʹV (Ͱ% 

abacavir, % nevirapine) and three or more TAMs (ʹ% abacavir, ʹͲ% 

nevirapine) did not differ by treatment. 

1.3.4.5 TREAT 
Ugandan patients in DART were eligible for a viral load test shortly after 

trial closure as part of a national programme. Patients enrolled in either 

OHFS or SARA were excluded since the viral load was already being 

measured retrospectively for these studies. Kityo et al. [ͳ] examined this 

cross-sectional Ugandan data for the proportion of patients who switched 

to second-line antiretroviral therapy and the proportion with viral 

suppression (viral load less than ʹͰͰ copies/mL) at trial closure on first 

and second-line regimens. Among ͱ,ͲͰͷ first-line patients, Ͱ% were 

suppressed at trial closure and within the ͲʹͲ second-line patients, Ͱ% 

were suppressed at trial closure. There was evidence for a small difference 

between the main study monitoring strategies; ͷͶ% were suppressed in 

CDM versus ͳ% in LCM (Difference=ͷ.ͱ% ;͵% CI: Ͳ.͵-ͱͱ.͵%). 

Multivariate analyses demonstrated the superior virological outcome in 

first-line patients on nevirapine (ͱ% suppressed) compared to tenofovir 

(ͷ% suppressed) and abacavir (ͷ% suppressed). 

1.3.4.6 STI substudy 
McCormick et al. [ʹͰ] examined ͱ patients who underwent four full 

twelve week STI cycles. They found that mean HIV RNA off treatment 

ranged from ʹ.͵ to ʹ.ͷ logͱͰ copies/mL and that once treatment was 

resumed this declined to Ͳ.ͳ to Ͳ.Ͷ logͱͰ copies/mL. No KͶ͵R mutations 

were detected, and only one patient was found to have the MͱʹV 

mutation. The authors concluded that there was a low risk that treatment 

interruptions would lead to HIV-ͱ drug resistant mutations developing. 
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1.3.4.7 Summary 
To date, analyses of data from DART have typically been cross-sectional 

and have excluded patients who have switched treatment, died or been lost 

to follow-up before this time. There has only been a limited comparison of 

changes in viral load over time between antiretroviral regimens and 

monitoring strategies. Furthermore, the majority of the longitudinal 

analyses have focused on the randomised NORA patients and have not 

been able to make direct comparisons to patients on triple-NRTI regimens 

containing tenofovir. Finally, a longitudinal analysis of data in DART 

between weeks Ͷ and the end of the trial has not been performed. 

1.4 Thesis objective 
This thesis uses retrospectively collected virological and genotypic data 

from the DART trial to research how the absence of virological monitoring 

impacts virological failure and the development of HIV-ͱ drug resistance. 

Chapter Ͳ investigates the durability of virological suppression after ʹ 

weeks of antiretroviral therapy. Deaths that occur on first-line 

antiretroviral therapy have their virological status determined, and 

predictors explored in Chapter ͳ. In Chapter ʹ, HIV-ͱ drug resistance at the 

last time point on first-line antiretroviral therapy is evaluated. This data are 

assessed to investigate potential second-line regimens which retain the 

most susceptibility. Chapter ͵ explores the development of HIV-ͱ drug 

resistance mutations from the time of first virological failure, found in 

Chapter Ͳ, to the last time point. In Chapter Ͷ, a summary of findings, 

limitations and potential additional research is presented. 
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2 The durability and predictors of 
virological suppression 

2.1 Introduction 
The cost and logistics of monitoring HIV viral load have led to limited 

routine use within clinics in low-income settings. Clinical and 

immunological criteria are often used as an alternative to determine when 

treatment should be switched; however, these criteria frequently lead to 

both unnecessary treatment switches and patients remaining on a regimen 

with virological failure [ʹͱ]. This could compromise a patient’s immune 

response and may potentially limit the efficacy of subsequent regimens if 

HIV-ͱ drug resistance develops. 

Many experts have questioned whether it is ethical to provide antiretroviral 

therapy without laboratory monitoring. Alongside these concerns the 

competing priorities for limited resources needs to be considered. 

Enhanced laboratory monitoring could be at the expense of maximising the 

number of patients receiving antiretroviral therapy. Furthermore, 

enhanced laboratory monitoring leads to an increase in the use of 

expensive second-line regimens, yet potentially does not return the 

greatest public health benefit. 

A major parameter when considering the value of laboratory monitoring is 

the rate of virological failure. Virological failure is a proxy for HIV disease 

progression and is frequently used to evaluate the relative performance of 

new antiretroviral drugs. It is a vital factor in cost-effectiveness models 

which evaluate the optimal monitoring strategy in low-income settings by 

comparing clinical, CDʹ cell count, and viral load monitoring individually 

and as combinations. Cost-effectiveness models also evaluate a variety of 

monitoring testing frequencies and a range of cut-offs for determining the 

value at which patients should switch to a second-line regimen [ʹͲ]. 
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2.1.1 Virological suppression in low-income settings  

A literature review was conducted by searching PubMed and updated on 

August ͵th, ͲͰͱͶ for English-language publications investigating virological 

failure on first-line antiretroviral therapy in low-income countries. The 

search terms were “HIV” AND a term for virological failure (“virological 

failure” OR “viral failure” OR “virological suppression” OR “viral 

suppression”) AND terms for low-income countries (“resource-limited” OR 

“resource-low” OR “resource-constrained” OR “sub-Saharan” OR “low-

income” OR “low-“ OR “LMIC” OR Uganda OR Zimbabwe OR “South 

Africa”) AND (“first-line” OR “started ART”). 

This search (Figure ) identified a total of ͲͰͳ publications (listed in 

Appendix B and selectively summarised in this section), of which ͵Ͳ 

studies were conducted in untreated adults (more than ͱ͵ years old) where 

a reported outcome was the incidence or prevalence of virological failure 

after ʹ weeks of continuous first-line antiretroviral therapy. 

Figure : Search strategy 

  

ͲͰͳ full-text articles 

͵Ͳ studies included 

ͱ͵ͱ papers excluded: 

ͳͷ drug resistance 

ͳͲ not low-income 

Ͳ͵ children 

Ͳʹ other outcome measure 

ͱ͵ second- line 

 discussion 

͵ implementation 

ͳ not first-line 

ͱ case report 

ͱ protocol 
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Systematic reviews have examined the durability of virological suppression 

in low-income settings. Barth et al. [ʹͳ] used  journal articles and 

conference abstracts, including Ͷͳ,Ͷʹ first-line patients from eighteen 

countries, to describe virological suppression in Sub-Saharan Africa. The 

proportion with virological suppression after six months of antiretroviral 

therapy was ͷ% (ͱͰ,ͳ͵ͱ out of ͱͳ,Ͳ patients). Suppression was defined 

by a range of viral load values (forty-seven reports used less than ʹͰͰ 

copies/mL, six used less than ͵ͰͰ copies/mL and six used either less than 

ͲͰͰ or less than ͳͰͰ copies/mL). Virological suppression after one year 

was equivalent to six months (ͷ,ʹͱͳ out of ,ͷʹ; ͷͶ%) and declined after 

two years (ͳ,ʹͰ out of ͵,ͶͰ; Ͷͷ%). Data after three years of antiretroviral 

therapy was scarce (available in only five papers), and virological 

suppression remained at Ͷͷ% (ͳͷ out of ͱ,ͳͳͲ). 

Boender et al. [ʹʹ] conducted an updated systematic review and meta-

analysis by including papers up to the ͱʹth May ͲͰͱͳ. They examined Ͳ,ͳͱ 

research papers and conference abstracts to find research examining 

virological outcomes on first-line antiretroviral therapy in low and middle-

income countries. In total, ͱͶͳ studies were used to examine virological 

suppression at up to ͶͰ months of antiretroviral therapy. At least Ͱ% of 

participants in these studies were on a dual-class regimen containing an 

NNRTI. Analyses were either on-treatment (OT) or intention-to-treat (ITT) 

where all participants who were lost to follow-up, died or stopped 

antiretroviral therapy were assumed to have experienced virological failure. 

Patients who switched to second-line were not classified as virological 

failures in either analysis. In the on-treatment analysis, ͱͳ cohorts had data 

available at ʹ months of antiretroviral therapy. The random-effects meta-

analysis estimated that .Ͷ% (͵% CI: ʹ.Ͳ-ͳ.Ͱ%) were virologically 

suppressed. This dropped to ͵.͵% (͵% CI: ͷͷ.͵-ͳ.͵%) at ͶͰ months 

based on data from six cohorts. In the intention-to-treatment analysis, four 

cohorts had data at ʹ months, and Ͷͱ.% (͵% CI: ʹʹ.Ͱ-ͷ.ͷ%) were 
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virologically suppressed. There was no intention-to-treat data available 

after ͶͰ months of antiretroviral therapy. 

The cohorts included in Boender et al. [ʹʹ] with on-treatment analyses 

conducted after ͶͰ months of antiretroviral therapy or at ʹ months in 

intention-to-treat analyses are summarised in Table ͳ. All cohorts had 

regular viral load and CDʹ cell count monitoring, typically every six 

months. In total, the intention-to-treat analyses had ͵Ͱʹ patients available 

for analysis at ʹ months. There was substantial uncertainty in the 

proportion of patients virologically suppressed at this time point. 

Several important papers in this chapter’s systematic review were not 

included in either of the prior systematic reviews. Mermin et al. [ʹ͵] 

compared viral load monitoring (with CDʹ and clinical monitoring), CDʹ 

monitoring (with clinical monitoring) and clinical monitoring only in ͱ,Ͱʹ 

Ugandan patients starting antiretroviral therapy for the first time with over 

three years of follow-up. During the study period, Ͷͱ out of ͱ,Ͱʹ (Ͷ%) 

patients experienced virological failure (two consecutive values greater 

than ͵ͰͰ copies/mL). This study also demonstrated that patients may 

switch treatment without virological failure when treatment switch is 

determined by clinical criteria alone; two of the seventeen (ͱͲ%) switches 

in this arm occurred without failure compared to zero of the eleven (Ͱ%) 

in the other two arms.  

Haas et al. [ʹͶ] used data from Ͳͷ,Ͳ͵ patients in ͱͶ countries in east, 

south and west Africa from the international epidemiological database to 

evaluate AIDS (IeDEA) to determine the cumulative probability of 

treatment switch by monitoring strategy. They report that with routine 

viral load monitoring the rate of confirmed virological failure (two 

consecutive viral loads greater than ͱ,ͰͰͰ copies/mL) was ʹ.Ͳͳ per ͱͰͰ 

person-years and that the cumulative probability of confirmed virological 

failure at five years was ͱ͵%. 
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Table ͳ: Summary of previous analyses of virological suppression in low-income settings at ʹ or ͶͰ months 

Authors Number of  
patients 

Treatment Monitoring Analysis 
time point 

Analysis 
performed 

Result 

Boulle et 
al. [ʹͷ] 

ͱͲ,͵ͷ 
(ʹʹ at ʹ 
months) 

 Ͳ NRTI+NNRTI (ͱͰͰ%) Six-monthly CD4 
counts and viral load 
testing 

ʹ months OT and 
ITT 

ͱ% OT and  
Ͷͳ% in ITT were 
virologically 
suppressed after ʹ 
months 

Boulle et 
al. [ʹ] 

ͷ,ͳͲͳ 
(ͱʹ at ͶͰ 
months) 

 DʹT+ͳTC+EFV (ʹʹ%) 
 DʹT+ͳTC+NVP (ͳ%) 
 ZDV+ͳTC+EFV (%) 
 ZDV+ͳTC+NVP (%) 

Six-monthly viral load 
and CD4 cell count 
testing 

ͶͰ months OT ʹ% were 
virologically 
suppressed at ͶͰ 
months. 

Bussmann 
et al. [ʹ] 

Ͷͳͳ 
(ͶͰ at ͶͰ 
months) 

 ZDV+ͳTC+EFV (͵ͱ%) 
 ZDV+ͳTC+NVP (ʹʹ%) 

CD4+ cell counts and 
plasma viral load levels 
were initially obtained 
three-monthly and after 
November 2006, six-
monthly 

ͶͰ months OT After ͶͰ months 
% remained 
virologically 
suppressed 

Duong et 
al. [͵Ͱ] 

ͱ,͵ͷͲ 
(͵Ͱ͵ at ͶͰ 
months) 

 NRTIs+EFV (ͳͷ%) 
 NRTIs+NVP (ͱͳ%) 
 NRTIs+PIs (ʹͷ%) 
 Triple-class regimen (ͳ%) 

CD4+ cell count and 
plasma viral load were 
conducted at baseline, 3 
months and then six-
monthly. 

ͶͰ months OT Approximately ʹ% 
at ͶͰ months of 
antiretroviral 
therapy 
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Fatti et al. 
[͵ͱ] 

ͶͶ,͵ͳ 
(ͳ at ͶͰ 
months) 

 DʹT+ͳTC+EFV (Ͷ͵%) 
 DʹT+ͳTC+NVP (Ͳͳ%) 
 TDF+ͳTC+EFV (ͷ%) 

CD4 cell count and 
plasma viral load were 
measured six-monthly., 

ͶͰ months OT ͷ% virologically 
suppressed after ͶͰ 
months 

Hamers et 
al. [͵Ͳ] 

ͳ,Ͳͱ 
(ͱͷͲ at ʹ 
months, ͱ 
at ͶͰ 
months) 

 NNRTI-based (Ͱ%) 
 PI-based (ͱͰ%) 

All TASER sites have 
viral load testing. 8/13 
PASER-M sites have 
plasma viral load 
testing. Testing 
frequency unclear. 

ʹ and ͶͰ 
months 

ITT 
and 
OT 

% suppressed at 
ͶͰ months in OT. 
ʹ% suppressed 
after ʹ months in 
ITT.  

He et al. 
[͵ͳ] 

ʹͳͷ 
(͵ at ͶͰ 
months) 

 Ͳ NRTI+NNRTI (ͱͰͰ%) Measurements taken 
but frequency unclear 

ͶͰ months OT Ͷ% virologically 
suppressed at ͶͰ 
months. 

Manosuthi 
et al. [͵ʹ] 

ͱʹͰ (ͷ at 
ʹ 
months) 

 DʹT+ͳTC+NVP Plasma viral load and 
CD4+ counts measured 
every 24 weeks 

ʹ months ITT By ʹ months, ͵ʹ% 
were virologically 
suppressed. 

Soe et al. 
[͵͵] 

Ͳʹʹ 
(ͲͰͱ at ʹ 
months) 

 NVP based (͵%) 
 EFV based (͵%) 
 Predominantly 

DʹT+ͳTC (Ͷ.Ͷ%) 

CD4+ counts measured 
twice per year and 
plasma viral load levels 
at least once a year 

ʹ months ITT At ʹ months, ͱ% 
were virologically 
suppressed 
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Castelnuovo et al. [͵Ͷ] collected ten-year outcome data from a cohort of 

͵͵ patients at the Infectious Disease Institute, Uganda. CDʹ cell count 

and viral load measurements were made every six months. Patients 

initiated antiretroviral therapy with a dual-class regimen containing either 

stavudine, lamivudine and nevirapine (ͷʹ%) or zidovudine, lamivudine  

and efavirenz (ͲͶ%). Of these patients, ʹͳ (ͷ%) achieved viral 

suppression and the cumulative ten-year probability of treatment failure 

was Ͱ.ͳ (͵% CI: Ͱ.ͳʹ-Ͱ.ʹͳ). 

2.1.2 Choice of NRTI drugs 

The ACTG ͵ͲͰͲ study [͵ͷ] was a four-arm randomised trial which 

compared blinded abacavir + lamivudine to tenofovir + emtricitabine in a 

dual-class regimen with a third drug of either ritonavir-boosted atazanavir 

or efavirenz. The study was stratified at randomisation by a screening HIV 

viral load of less than or greater than ͱͰͰ,ͰͰͰ copies/mL. During the first 

efficacy review, the independent data monitoring committee 

recommended stopping comparison in the high HIV viral load stratum 

because there was a shorter time to virological failure (viral load greater 

than ͱ,ͰͰͰ copies/mL) for patients in the abacavir + lamivudine arms. In 

the lower viral load screening stratum, the study did not find a difference 

in time to virological failure between atazanavir and efavirenz regimens 

(atazanavir HR: ͱ.Ͳ͵; ͵% CI: Ͱ.ͷͶ-Ͳ.Ͱ͵, efavirenz HR: ͱ.Ͳͳ; ͵% CI: Ͱ.ͷͷ-

ͱ.Ͷ). However, there was earlier regimen modification and safety events in 

the abacavir + lamivudine arm. This study was conducted with real-time 

monitoring of CDʹ, viral load and other safety markers and this may have 

contributed to the earlier regimen modification in the abacavir arm. 

Other studies have also observed no difference in efficacy between 

tenofovir and abacavir. The BICOMBO study [͵] found no difference in 

efficacy between tenofovir and abacavir. Furthermore, the HEAT study [͵] 

compared abacavir + lamivudine + ritonavir-boosted lopinavir to tenofovir 

+ emtricitabine + ritonavir-boosted lopinavir in Ͷ antiretroviral therapy-
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naïve patients in a double-blinded placebo-controlled randomised study 

and showed no difference between abacavir and tenofovir. At week ʹ, 

Ͷ% on abacavir + lamivudine and Ͷͷ% on tenofovir + emtricitabine had 

viral load less than ͵Ͱ copies/mL. Similarly, at week Ͷ, the regimens 

remained non-inferior (ͶͰ% compared to ͵% respectively; p=Ͱ.ͶͰ). There 

was no difference reported in efficacy by pre-treatment viral load. 

Other studies have demonstrated that the combination of tenofovir + 

emtricitabine is superior to abacavir + lamivudine. The ASSERT study [ͶͰ] 

recruited ͳ͵ patients and both arms used efavirenz as the third drug. The 

study found that ͵% of patients on abacavir + lamivudine + efavirenz had 

viral load less than ͵Ͱ copies/mL at week ʹ compared to ͷͱ% in the 

tenofovir + emtricitabine + efavirenz arm (difference ͵% CI: Ͳ-Ͳͱ%). With 

a virological suppression definition of less than ʹͰͰ copies/mL, Ͷͷ% on 

abacavir + lamivudine + efavirenz versus ͷͷ% on tenofovir + emtricitabine 

+ efavirenz (͵% CI for difference: ͱ-ͱ%) were suppressed at week ʹ. 

Treatment response was reduced in patients with pre-treatment viral load 

greater than ͱͰͰ,ͰͰͰ copies/mL but did not differ by regimen. 

A meta-analysis of trials [Ͷͱ] investigated this difference between tenofovir 

+ emtricitabine and abacavir + lamivudine where a ritonavir-boosted PI 

was used. This meta-analysis included three trials with a head-to-head 

comparison and nine trials with one of the regimens. The primary 

endpoint was virological suppression (less than ͵Ͱ copies/mL) at week ʹ 

and patients on abacavir were found to have a lower HIV response rate 

(Ͷ% suppressed) compared to tenofovir (ͷͶ% suppressed; p=Ͱ.ͰͰͱ͵). Pre-

treatment viral load was predictive of viral suppression, and there was 

evidence for a difference between abacavir and tenofovir with a viral load 

less than (p=Ͱ.ͰͲ) and greater than ͱͰͰ,ͰͰͰ copies/mL (p=Ͱ.Ͱ͵). 
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2.1.3 Response to triple-NRTI regimens 

Significant differences in the virological response of patients on different 

triple-NRTI regimens were observed in the double-blinded placebo 

controlled ACTG ͵Ͱ͵ trial [ͶͲ], ͱ,ͱʹͷ antiretroviral therapy-naïve patients 

were randomised to receive either: zidovudine + lamivudine + abacavir, 

zidovudine + lamivudine + efavirenz, or zidovudine + lamivudine + 

abacavir + efavirenz. The data and safety monitoring board discontinued 

the triple-NRTI arm early, after deciding it was unlikely that it could be 

demonstrated to be non-inferior to regimens containing efavirenz with an 

NRTI backbone. Virological failure occurred in Ͳͱ% of the triple-NRTI 

regimen compared to ͱͱ% in the pooled efavirenz-containing regimens 

after a median of ͳͲ weeks. Furthermore, virological failure occurred 

earlier in patients on the triple-NRTI regimen. No significant differences in 

CDʹ response were found between the two types of regimen.  

In contrast, the ACTION study [Ͷͳ] investigated a triple-NRTI regimen and 

recruited Ͳͷ participants with viral loads between ͵,ͰͰͰ and ͲͰͰ,ͰͰͰ 

copies/mL and CDʹ cell count greater than ͱͰͰ cells/mmͳ. Participants 

were randomised in an open-label setting to receive either zidovudine + 

lamivudine + abacavir or zidovudine + lamivudine + atazanavir. The triple-

NRTI regimen was found to be non-inferior at ʹ weeks with ͶͲ% versus 

͵% achieving viral suppression less than ͵Ͱ copies/mL. The results were 

similar in the ͲͳͰ patients with pre-ART viral load less than ͱͰͰ,ͰͰͰ 

copies/mL, but the triple-NRTI regimen was not found to be non-inferior 

in participants with pre-ART viral load greater than ͱͰͰ,ͰͰͰ copies/mL 

(ͳ% versus ͶͰ% suppressed). 

Gallant et al. [Ͷʹ] compared tenofovir and efavirenz with an NRTI 

backbone of abacavir + lamivudine; they recruited ͳʹͰ antiretroviral 

therapy-naïve patients and found an unacceptably high rate of non-

response in the triple-NRTI regimen. Non-response was defined as (i) a less 

than two logͱͰ decrease from baseline by week eight, (ii) HIV viral load 



Chapter Ͳ: The durability and predictors of virological suppression 

͵ͳ 

rebound greater than or equal to one logͱͰ copies/mL above the nadir, (iii) 

for subjects with two consecutive viral loads less than ͵Ͱ copies/mL, a 

confirmed rebound of greater than ʹͰͰ copies/mL. Non-response occurred 

in ͵Ͱ of the ͱͰͲ (ʹ%) patients in the tenofovir arm compared to ͵ of the 

Ͳ (͵%) in the efavirenz arm (p<Ͱ.ͰͰͱ).  

Mugavero et al. [Ͷ͵] used the ART-CC cohort collaboration to compare 

data from cohorts to the results from the ACTG ͵Ͱ͵ trial. The primary 

outcome measure was viral load greater than ͲͰͰ copies/mL at Ͳʹ weeks. 

Analyses were adjusted for the year antiretroviral therapy was initiated, 

age, gender, prior AIDS diagnosis, CDʹ count and HIV viral load at the 

start of antiretroviral therapy. There were ʹ,ͶͱͰ patients in the cohort 

collaboration, ͱ,Ͷʹ on abacavir and Ͳ,ͱͶ on efavirenz. Adjusted estimates 

found that patients on efavirenz had an odds ratio of Ͱ.ʹͶ (͵% CI: Ͱ.ͳͷ-

Ͱ.͵ͷ) compared to patients receiving abacavir. This was similar to the 

results found in the ACTG ͵Ͱ͵ study itself, where there was an odds ratio  

of Ͱ.͵ͳ (͵% CI: Ͱ.ͳͶ-Ͱ.ͷ). This supports the conclusions of the ACTG 

͵Ͱ͵ trial that efavirenz-containing regimen are superior to a triple-NRTI 

regimen containing abacavir. 

Trial and cohort data advise that early (the first ʹ weeks of antiretroviral 

therapy) virological response is inferior in triple-NRTI regimens compared 

to NRTI-NNRTI regimens. The long-term virological response has not been 

investigated, nor has HIV-ͱ drug resistance in patients who remain on 

triple-NRTI regimens for sustained periods despite virological failure. 

2.1.4 Objective 

The main aim of this chapter is to describe the virological durability of 

first-line antiretroviral therapy among DART trial participants. Virological 

data over more than three years of follow-up in low-income settings are 

scarce and are usually in settings where viral load monitoring is routinely 

available. The data from DART provide valuable insight on the efficacy of 

first-line antiretroviral treatment in the absence of virological monitoring. 
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The selection of patients for the DART virology substudy is described in 

Section Ͳ.Ͳ.ͱ. Section Ͳ.Ͳ.ͳ describes the statistical methods employed to 

account for potential selection bias. Section Ͳ.ͳ.ͳ summarises HIV-ͱ viral 

load around the time of death and provides the motivation to investigate 

this further in Chapter ͳ. Section Ͳ.ͳ.ʹ describes virological status at the 

time of treatment switch. The distribution of time to virological failure and 

the predictors of failure are examined in Sections Ͳ.ͳ.Ͷ and Ͳ.ͳ.ͷ. The 

findings from this chapter are summarised and compared to other studies 

in Section Ͳ.ʹ. 

2.2 Methods 
2.2.1 Virology Substudy 

Only a small proportion of the approximately ͶͰ,ͰͰͰ plasma samples 

collected from ͳ,ͳͱͶ DART patients could be tested due to limited funds. 

The sampling scheme described in this section is illustrated in Figure  

(below). Patients were selectively sampled in favour of patients whose 

virological response was likely to be of the most current interest. Analytical 

techniques were used in analyses to account for potential selection bias 

(Section Ͳ.Ͳ.ͳ). 

Firstly, patients randomised to receive a structured treatment interruption 

were excluded as these are not recommended in treatment guidelines and 

are known to result in spikes of viremia during off-cycles (Section ͱ.ͳ.ͳ). All 

patients who died or switched treatment prior to ʹ weeks of antiretroviral 

therapy were also excluded from sampling. This was based on the rationale 

that most early deaths (many occurred in the first twelve weeks) were due 

to advanced immunodeficiency rather than treatment failure. Deaths in 

DART during the first year are described by Walker et al. [ͶͶ]. 

Apart from these exclusions, all patients who received either nevirapine or 

abacavir were selected for analysis. This maximised the power to compare 

different drug regimens. In total, Ͳ͵ʹ patients randomised to abacavir, Ͳͱͳ 
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patients randomised to nevirapine and ͱͱ patients who received open-

label nevirapine were selected. A proportion of patients who received 

tenofovir were sampled. Firstly, all patients on tenofovir who died after ʹ 

weeks were sampled. Secondly, a random sample of Ͱ patients who 

switched treatment during the study (ͳͰ from each centre) was chosen. 

Thirdly, all patients from the earlier virology substudy (part I/II) were 

sampled because these patients had existing viral loads and genotyping 

already conducted for pre-ART and week ʹ [ͳ͵]. Finally, all Ugandan 

patients with a first-line viral load results available from the TREAT study 

[ͳ] were sampled. This group consisted of ʹʹͲ patients with a viral load 

less than ͲͰͰ copies/mL at the end of the trial and ͱʹͰ with a detectable 

viral load. An additional random sample of ͷͰ Zimbabwean patients, who 

were on first-line treatment at the end of trial follow-up and who had been 

recruited before ͱst January ͲͰͰʹ, was also chosen to achieve approximately 

ͷͰ patients with a detectable viral load from each treatment centre. 



 

 

͵Ͷ 

 

Figure : Sampling flow chart for the DART virology substudy 
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Plasma samples for viral load testing were selected using a walkback 

procedure; beginning with plasma from the date of either treatment switch 

to second-line antiretroviral therapy, death, or the last time point in the 

trial. Patients with a suppressed viral load less than ͲͰͰ copies/mL at this 

time point did not have further retrospective annual viral load testing 

conducted. If the viral load was greater than or equal to ͲͰͰ copies/mL, 

then a sample collected ʹ weeks prior to this was also tested. This process 

was repeated until either a sample where viral load less than ͲͰͰ 

copies/mL was found or until plasma from week ʹ was tested. If a sample 

could not be located, or an assay failure occurred, the closest available 

alternative sample (usually within twelve weeks) was used as an 

alternative. For some designated samples a viral load result was already 

available from NORA or part I/II substudies; in this case, the original value 

was used rather than repeating the test. Additional viral load results 

available through other substudies, yet not designated for testing by this 

process, were not utilised in analyses in order to avoid potential bias. Pre-

ART viral loads were conducted for all patients, apart from Ugandan 

patients selected using TREAT study data with a suppressed viral load.  

Through this selection process, ͱ,ͷͶͲ patients were analysed. Of these 

patients, ͱ,ͳͲͰ had additional retrospective testing conducted (ͶͶͲ 

patients on tenofovir, ʹͰʹ on nevirapine and Ͳ͵ʹ on abacavir). 

2.2.2 Viral load testing 

Viral load assays were performed at several centres: Joint Clinical Research 

Centre (JCRC), Kampala; Uganda Virus Research Institute, Entebbe; the 

Infectious Diseases Institute (IDI), Mulago; The University of Zimbabwe-

University of California San Francisco Collaborative Research Program 

(UZ-UCSF) laboratory, Harare; and the University of Zimbabwe, Harare. 

Four different types of assay were used; (i) The Roche Cobas Amplicor 

HIV-ͱ Monitor Version ͱ.͵ with standard procedure (dynamic range of 

ʹͰͰ-ͷ͵Ͱ,ͰͰͰ copies/mL), (ii) The Roche Cobas Amplicor HIV-ͱ Monitor 
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Version ͱ.͵ with ultrasensitive procedure (͵Ͱ-ͱͰͰ,ͰͰͰ copies/mL), (iii) 

Roche Taqman vͱ.Ͱ (ʹͰ-ͱͰ,ͰͰͰ,ͰͰͰ copies/mL) and (iv) Roche Taqman 

vͲ.Ͱ (ͲͰ-ͱͰ,ͰͰͰ,ͰͰͰ copies/mL). 

In total, ͳ,ͳͷͳ viral load tests were conducted; ͵ͷͶ (ͱͷ%) were derived by 

the Roche Amplicor (standard), Ͷ (Ͳ%) by the Roche Amplicor 

(ultrasensitive) assay, ͱʹ (Ͳʹ%) by the Roche TaqMan vͱ.Ͱ assay, and ͱ,Ͱͱʹ 

(ͳͰ%) by the Roche TaqMan vͲ.Ͱ assay. The Roche Taqman vͱ.Ͱ and vͲ.Ͱ 

assays were exclusively performed after ͲͰͱͱ at Entebbe (n=ͳͱͷ and ͵ͱ͵), 

IDI, Kampala (n=Ͳ) and JCRC, Kampala (n=ʹͶ and ʹ), none were 

conducted in Harare. Roche Amplicor vͱ.͵ and vͱ.͵ ultrasensitive assays 

were performed at all testing sites: Entebbe (n=ͱͰ and n=ʹ respectively), 

JCRC, Kampala (n=Ͳʹ and n=͵Ͱͳ), Harare (n=Ͱ and n=ʹͱ), IDI, Kampala 

(n=ͱͰͶ) and Zvitambo (n=Ͳʹͷ and n=ʹʹ). 

Do et al. [Ͷͷ] have conducted research comparing these different viral load 

assays. They find that using a cut-off for virological suppression of ͵Ͱ 

copies/mL leads to significant discordance between the Roche Amplicor 

standard assay, the Taqman vͱ.Ͱ (Ͳ% agreement; p<Ͱ.Ͱͱ) and the Taqman 

vͲ.Ͱ (Ͳ% agreement; p=Ͱ.ͰͲ). However, these differences are attenuated 

when a cut-off of ͲͰͰ copies/mL is used (Taqman vͱ.Ͱ agreement=Ͷ%, 

p=Ͱ.Ͱ͵; Taqman vͲ.Ͱ agreement=͵%, p=Ͱ.ͱͶ). Therefore, the ͱͳͰ viral 

load tests performed using the Roche Amplicor standard assay found to be 

at the lower limit of quantification (e.g. less than ʹͰͰ copies/mL) were 

treated in analyses as also being at less than ͲͰͰ copies/mL to avoid 

discrepancy between assays. 

2.2.3 Weighting 

Analytical weights were calculated for each patient, based on the inverse 

probability that a patient was sampled for analysis [Ͷ], to correct for 

selection bias. This created a pseudo-population of all patients alive and on 

continuous first-line antiretroviral therapy at week ʹ. This pseudo-

population contains ͳ,ͰͰͷ patients and excludes the ͱͶ patients who died, 
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ͳ patients who switched treatment and ͱͳͷ patients from the STI pilot 

study who interrupted treatment prior to week ʹ.  

Weights were generated to adjust for several sampling processes:  

(i) Exclusion of patients randomised to receive a STI. 

(ii) Complete sampling of all deaths. 

(iii) Complete sampling of patients from the part I/II substudy. 

(iv) Incomplete and unequal sampling of patients on tenofovir. 

It was important to include all sampling factors within these models to 

ensure results are unbiased. For example, if switching antiretroviral 

therapy treatment regimen was ignored then weights generated for 

patients on tenofovir might lead to a pseudo-population being less likely to 

switch than the real DART population. 

To adjust for process (i) for patients on abacavir or nevirapine, a logistic 

regression model was fitted within each antiretroviral therapy regimen 

with sampling as the outcome variable and using the following covariates: 

treatment centre, randomisation date (treated as continuous), trial 

monitoring strategy (LCM or CDM) and CDʹ cell count at week ʹ. 

Weights were calculated for each subject as the inverse of their fitted value 

from this model, essentially the inverse probability of each patient being 

sampled. Patients on nevirapine or abacavir who died were excluded from 

the logistic regression analysis and were given a weight of one to account 

for process (ii). 

Similarly, because patients on tenofovir who either died (process ii) or were 

in the part I/II substudy (process iii) were guaranteed to be included by the 

sampling method these patients were excluded from logistic regression 

models and given a weight of one. To adjust for process (i) patients on 

tenofovir in the STI substudy had weights calculated using a logistic 

regression model with identical covariates to that used to adjust for process 

(i) for patients on abacavir or nevirapine. Through this method, weights 
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were only generated for patients randomised to continuous treatment. 

These patients were considered to be the closest possible match to patients 

who received a STI. To adjust for process (iv), patients on tenofovir who 

were not in the STI substudy had a logistic regression model fitted with the 

previously described covariates and an additional term of treatment switch, 

with an interaction effect with treatment centre. With this approach, each 

patient is included in only one model. 

As an example, the fitted model for the probability of being selected 

through process (iv) is displayed in Table ʹ. Patients who switched 

treatment were approximately equally likely to be selected for sampling at 

each treatment centre. Patients who remained on first-line antiretroviral 

therapy were more likely to be chosen for the virology substudy if they 

were from Uganda. This is a result of patients in the TREAT study being 

selected. The difference between Entebbe and Kampala is a further effect of 

this study, which preferentially conducted viral load testing on patients at 

Kampala compared to Entebbe. 

Table ʹ: Model for patients alive on TDF, not in the STI substudy (n=ͷ͵ͳ) 

Factor Odds 
Ratio ͵% CI p-value 

Week ʹ CDʹ (ͱͰͰ cells/mmͳ) Ͱ.ͳ Ͱ.ͷͷ-ͱ.ͱͳ Ͱ.ʹͶͶ 
Monitoring randomisation    
   LCM ͱ.ͰͰ - - 
   CDM ͱ.ͱͰ Ͱ.Ͷ-ͱ.ʹͱ Ͱ.ʹʹͶ 
Randomisation date ͱ.Ͱͱ ͱ.ͰͰ-ͱ.ͰͲ Ͱ.ͰͲͷ 
Interaction between centre  
and treatment switch 

 
 

   Entebbe # No ͱ.ͰͰ - - 
   Entebbe # Yes Ͱ.Ͳͷ Ͱ.ͱͶ-Ͱ.ʹʹ <Ͱ.ͰͰͱ 
   Kampala # No ͳ.Ͳͳ Ͳ.ͲͲ-ʹ.Ͷ <Ͱ.ͰͰͱ 
   Kampala # Yes Ͱ.ͱ Ͱ.ͱͲ-Ͱ.ͳͰ <Ͱ.ͰͰͱ 
   Harare # No Ͱ.ͱͷ Ͱ.ͱͱ-Ͱ.Ͳ͵ <Ͱ.ͰͰͱ 
   Harare # Yes Ͱ.Ͳͷ Ͱ.ͱͷ-Ͱ.ʹͱ <Ͱ.ͰͰͱ 

A summary of the actual number of virology substudy patients in each 

group and the sum of the total weights assigned to these patients 

(excluding deaths, switches and treatment interruptions before ʹ weeks) 
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are displayed in Table ͵. Summary statistics for the weights are presented 

in Table Ͷ. Weights for patients on tenofovir were the most variable, a 

result of the incomplete sampling of these patients. Patients who received 

tenofovir in the structured treatment interruption substudy had the largest 

weights assigned due to this group being the most sparsely sampled. 

Table ͵: Summary of weights assigned 

Initial 
ART  

STI 
randomisation 

ART 
Switch 

# of patients 
analysed 

Sum of weight 
assigned 

TDF In STI study NA ͱ͵͵ ͵ͲͲ.ͱ 
TDF Not randomised No ͷ͵ͳ ͱͱͳʹ.ͷ 
TDF Not randomised Yes ͱͶ ͵ͳ. 
NVP In STI study NA  ͲͰͳ.Ͷ 
NVP Not randomised NA ͳͱͶ ͳͱͶ.Ͱ 
ABC In STI study NA ͵ͳ . 
ABC Not randomised NA ͲͰͱ ͲͰͱ.Ͱ 
Total   ͱ,ͷʹͱ ͳ,ͰͰͶ.ͱ 

 

Table Ͷ: Weight summary statistics 

Initial 
ART  

STI 
randomisation 

ART 
Switch Mean SD Min Max 

TDF In STI study NA ͳ.ͳͷ ͱ.ʹ ͱ.ͰͰ ͱͱ.ͳͲ 
TDF Not randomised No ͱ.͵ͱ ͱ.ͰͰ ͱ.ͰͰ ͵.ʹͶ 
TDF Not randomised Yes Ͳ.ͷ͵ ͱ.ͳͳ ͱ.ͰͰ ʹ. 
NVP In STI study NA Ͳ.ͳͱ Ͱ.ͳͳ ͱ.Ͷͱ ͳ.ͰͲ 
NVP Not randomised NA ͱ.ͰͰ Ͱ.ͰͰ ͱ.ͰͰ ͱ.ͰͰ 
ABC In STI study NA ͱ.ͷͰ Ͱ.ͱ ͱ.ʹͲ Ͳ.ͱͲ 
ABC Not randomised NA ͱ.ͰͰ Ͱ.ͰͰ ͱ.ͰͰ ͱ.ͰͰ 
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2.2.4 Assumptions of viral load testing and analyses 

The following analyses assume that if a patient is virologically suppressed, 

then they are suppressed throughout the trial up to this time point. At the 

last time point, ͱ,ͱͳʹ of the ͱ,ͷͶͲ (Ͷʹ%) patients had a viral load less than 

ͲͰͰ copies/mL. For a further ͱͷ patients, the walkback process was 

stopped before the week ʹ time point was reached, this suppressed viral 

load was in the ʹ week period prior to the last time point for ͶͶ patients. 

This could indicate that the virological failure analysed was a “blip” and not 

indicative of persistent virological failure. 

The assumption of continued virological suppression was checked by 

analysing viral loads generated through other DART substudies. In these 

samples, ͱͱ͵ patients had ͲͰͷ detectable viral loads where a later 

measurement on the same regimen was less than ͲͰͰ copies/mL. Many of 

these specimens (ͱͰͷ/ͲͰͷ; ͵Ͳ%) were from week ʹ, indicating patients 

who were slow to achieve initial virological suppression. The remaining ͱͰͰ 

viral loads had a mean (SD) of ͵,ͳͷʹ (ͱ,ͳʹͲ) copies/mL, implying 

intermittent viremia. 

2.2.5 Statistical Methods 

Time to virological failure, defined as the first viral load measurement 

greater than or equal to ͲͰͰ copies/mL after ʹ weeks of antiretroviral 

therapy, was analysed using adjusted Kaplan-Meier estimators [Ͷ, ͷͰ] and 

Cox regression models incorporating the analytical weights [ͷͱ]. In these 

analyses, patients were considered to be at risk of virological failure after 

ͳͶ weeks since randomisation. This is the earliest time point at which 

virological failure could be detected with the walkback viral load testing 

method (a ͱͲ week sampling window was allowed and week ʹ was the 

earliest time point targeted). Patients were censored at treatment switch or 

death if they had not virologically failed by this time (assumption probed 

in Section Ͳ.ͳ.͵). Cox regression models included the following baseline 

covariates from the time antiretroviral therapy was initiated: monitoring 
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randomisation, gender, age, pre-ART CDʹ, pre-ART viral load, tuberculosis 

in the ͱͲ months prior to enrollment, adherence in the previous ʹ weeks 

and initial antiretroviral therapy received. Patients who received nevirapine 

in the open-label study in Zimbabwe and the NORA substudy were 

combined in analyses. Adherence was included as a time-dependent 

covariate summarising the estimated adherence in each ʹ week period, as 

measured by the proportion of visits where pill counts indicated greater 

than ͵% drug possession ratio. Drug possession ratio was defined as the 

days’ supply of drugs delivered minus the days’ supply of drugs returned 

divided by the number of days between clinic visits [ͷͲ]. Adherence could 

be considered a potential mediator of other covariates (for instance gender 

and age) so the inclusion was tested in sensitivity analyses. Cox models 

were stratified by trial centre, thus allowing a separate baseline hazard for 

each centre. Due to the strong correlation between initial antiretroviral 

therapy regimen and the date of randomisation, the latter could not be 

included in the models. Excluding the date of randomisation may lead to 

some confounding. Non-proportionality was investigated using Schoenfeld 

residuals. 

Patients from the TREAT substudy with suppressed viral load at the end of 

the study (ʹ͵Ͳ/ͱ,ͷͶͲ; ͲͶ%) were missing pre-ART viral load. Missing viral 

loads on the logͱͰ scale were multiply imputed ͳͰ times using a linear 

regression model which included all potential prognostic factors (terms of 

Cox model) and outcome variables (Nelson-Aalen estimator for time to 

virological failure, censoring indicator) [ͷͳ] to avoid a loss in efficiency. 

This assumes that missing values do not depend on unobserved variables 

conditional on the observed data, such as the outcome variable. Analyses 

were performed on each imputed dataset, and the imputation-specific 

coefficients were combined using Rubin’s rules [ͷʹ]. Pre-ART CDʹ cell 

count, age and adherence were not categorised to avoid a loss in power and 
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were included in multiple imputation analyses as fractional polynomials 

[ͷ͵]. All analyses were conducted using Stata ͱʹ.ͱ [ͷͶ]. 

2.2.6 Sensitivity Analyses 

Sensitivity analyses were conducted with virological failure definitions of 

greater than or equal to ͱ,ͰͰͰ copies/mL or ͱͰ,ͰͰͰ copies/mL. An 

additional sensitivity analysis assumed that censored patients experienced 

virological failure to determine the impact of censoring on the analysis. 

2.3 Results 
2.3.1 Baseline Characteristics 

Baseline characteristics of the ͱ,ͷͶͲ DART virology substudy patients were 

compared to all ͳ,ͳͱͶ patients in DART (Table ͷ). The substudy sample was 

not designed to be completely representative of the overall trial but 

achieved similar characteristics for the monitoring randomisation, gender 

and pre-ART CDʹ. The complete sampling of patients on nevirapine and 

abacavir ensured these patients were proportionally over-represented 

compared to patients who received tenofovir. There were comparatively 

fewer patients from Harare due to the use of TREAT viral loads. 

Table ͷ: Comparison of baseline characteristics 
Factor DART Trial VL substudy 
Monitoring randomisation   
   LCM ͱ,Ͷ͵Ͷ (͵Ͱ%) Ͳ (͵Ͱ%) 
   CDM ͱ,ͶͶͰ (͵Ͱ%) Ͱ (͵Ͱ%) 
Gender   
   Male ͱ,ͱͶͰ (ͳ͵%) ͵ͷ (ͳͳ%) 
   Female Ͳ,ͱ͵Ͷ (Ͷ͵%) ͱ,ͱͷ͵ (Ͷͷ%) 
Pre-ART CDʹ (Cells/mmͳ)   
   Ͱ-͵Ͱ ͱ,ͱͰ (ͳͳ%) ͵͵ (ͳͳ%) 
   ͵Ͱ-ͱͰͰ ͷ͵ (Ͳʹ%) ʹʹͰ (Ͳ͵%) 
   ͱͰͰ-ͱ͵Ͱ ͷ͵ (Ͳͳ%) ʹͰͰ (Ͳͳ%) 
   ͱ͵Ͱ-ͲͰͰ ͶͶͳ (ͲͰ%) ͳͳͷ (ͱ%) 
Pre-ART viral load (Copies/mL)   
   Missing - ʹ͵Ͳ (ͲͶ%) 
   <ͳͰ,ͰͰͰ - ͱͳͲ (ͱͰ%) 
   ͳͰ,ͰͰͰ - ͱͰͰ,ͰͰͰ - ͱͱ (ͱͰ%) 
   ͱͰͰ,ͰͰͰ - ͳͰͰ,ͰͰͰ - ͳͷͳ (Ͳͱ%) 
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   ͳͰͰ,ͰͰͰ – ͷͰͰ,ͰͰͰ - ͳʹͰ (ͱ%) 
   >ͷͰͰ,ͰͰͰ - Ͳʹ (ͱͶ%) 
Initial ART   
   TDF Ͳ,ʹͶ (ͷʹ%) ͱ,ͱͰʹ (Ͷͳ%) 
   NVP ͵ʹͷ (ͱͶ%) ʹͰʹ (Ͳͳ%) 
   ABC ͳͰͰ (%) Ͳ͵ʹ (ͱʹ%) 
TB in previous ͱͲ months ͳͱ (Ͳ͵%) ʹͲͱ (Ͳʹ%) 
Centre   
   Entebbe, Uganda ͱ,ͰͲͰ (ͳͱ%) ͵ʹͳ (ͳͱ%) 
   Kampala, Uganda ͱ,Ͳͷ (ͳ%) Ͱ (ʹͶ%) 
   Harare, Zimbabwe  (ͳͰ%) ʹͱͰ (Ͳͳ%) 

2.3.2 Missing viral loads 

A total of ͳ,͵͵͵ plasma samples were designated for retrospective viral load 

testing. A result was obtained for ͳ,ͳͷͳ (͵%) samples, including 

replacements. Of the ͱ,ͷͶͲ patients in the virology substudy, ͱ,Ͷͱ (Ͳ%) 

had a complete set of viral load data, as defined by the testing schedule and 

ͱ,ͷʹͱ (%) had one or more viral loads available for analysis.  

2.3.3 Virological status at the time of death 

On continuous first-line antiretroviral therapy, ͱͱͲ deaths occurred after ʹ 

weeks (Ͷͳ in the CDM arm and ʹ in the LCM arm). These deaths occurred 

a median (IQR) of ͱͱͶ (ͷͶ-ͱͰ) weeks after randomisation. Viral load, 

measured within ͱͲ days of death, was available for ͱͰͲ of the ͱͱͲ patients 

(ͱ%). In total, Ͷͱ of these ͱͰͲ (ͶͰ%) patients who died on first-line 

antiretroviral therapy had viral load greater than ͲͰͰ copies/mL at death. 

These comprised of ͱ of the ʹʹ (ʹͱ%) patients in the LCM arm and ʹͳ of 

the ͵ (ͷʹ%) in the CDM arm (p<Ͱ.ͰͰͱ) (Figure ͱͰ). Virological status at 

death is investigated further in Chapter ͳ. 
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Figure ͱͰ: Virological status at death by monitoring randomisation 

 

2.3.4 Virological status at the time of treatment switch 

During DART, there were ͶͷͲ treatment switches to second-line 

antiretroviral therapy. In the main analysis [ͳͰ], switches are shown to be 

more common in the LCM arm than the CDM arm (HR=ͱ.ͱ; ͵% CI: ͱ.ͰͲ-

ͱ.ͳ; p=Ͱ.Ͱͳ), particularly during the second and third years after starting 

antiretroviral therapy. 

In the virology substudy, Ͳͱ patients who switched treatment were 

available for analysis. There were ͱ͵ͳ (͵ͳ%) treatment switches in the LCM 

arm and ͱͳ (ʹͷ%) in the CDM arm. Treatment switch occurred a median 

(IQR) of ͱͶͰ (ͱͱʹ-ͲͰͰ) weeks after randomisation. Viral loads, measured in 

the ͱͲ days prior to treatment switch, were available for ͲͶͷ of the Ͳͱ 

(Ͳ%) patients and ͱͲ of the Ͳͱ (ͶͶ%) had a viral load from the same 

day. Overall, ͱͲ of the ͱʹ͵ (%) switches in the LCM arm were with 

virological failure and ʹ of the ͱͲͲ (ͷͷ%) in the CDM arm (p=Ͱ.ͰͲ). For 

those who switched treatment without virological failure, viral load was 

typically less than ͵Ͱ copies/mL (ʹͰ of the ʹ͵; %). Table  gives the 
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reported reasons for treatment switch. Only five treatment switches 

without virological failure were due to a CDʹ criterion, and these all 

occurred in the LCM arm per trial protocol. Many treatment switches 

(ʹʹ%) were due to new or recurrent WHO stage ʹ events, where switching 

was recommended irrespective of CDʹ count [Ͳͷ]. Switching due to a new 

or recurrent WHO ʹ event was more common in the CDM arm than the 

LCM arm. A complete description of CDʹ cell count in DART at the time of 

treatment switch is reported by Gilks et al. [ͷͷ]. 

Table : Reasons for treatment switch among patients who switched 
to second-line ART without virological failure 

Reason for switch LCM CDM Total 
New WHO ʹ event ʹ (Ͳʹ%) ͱͶ (͵ͷ%) ͲͰ (ʹʹ%) 
Recurrent WHO ʹ event ͳ (ͱ%) ͱ (ʹ%) ʹ (%) 
Ͳ × CDʹ≤͵Ͱ(ͱͰͰ) ͵ (Ͳ%) Ͱ (Ͱ%) ͵ (ͱͱ%) 
Multiple WHO ͳ Ͱ (Ͱ%) ͳ (ͱͱ%) ͳ (ͷ%) 
Single WHO ͳ Ͳ (ͱͲ%)  (Ͳ%) ͱͰ (ͲͲ%) 
Other CDʹ ͳ (ͱ%) Ͱ (Ͱ%) ͳ (ͷ%) 
Total ͱͷ Ͳ ʹ͵ 

2.3.5 Censoring at death or switch without virological failure 

In total, ʹͱ deaths and ʹ͵ treatment switches occurred without virological 

failure. In the following analysis of time to virological failure, patients are 

censored at their last virological measurement. While such an analysis 

could be biased, the extent of this is limited by the relatively small number 

of patients (Ͷ/ͱ,ͷʹͱ; ͵%). This potential bias is quantified using sensitivity 

analyses in Section Ͳ.ͳ.. 

2.3.6 Durability of virological suppression 

Overall, ͶͰ of the ͱ,ͷʹͱ (ͳ͵%) patients experienced virological failure 

(viral load greater than or equal to ͲͰͰ copies/mL at ʹ weeks or later). 

The time to virological failure by monitoring randomisation and initial 

antiretroviral therapy received are displayed in Figure ͱͱ and Figure ͱͲ 

respectively. According to the Kaplan-Meier survival function, ͳͷ% of 

patients were estimated to have virological failure by week ͲʹͰ (Table ). 

Findings at week Ͳ are limited to patients who received tenofovir. 
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Figure ͱͱ: Weighted Kaplan-Meier curves  
by monitoring randomisation 

 

Figure ͱͲ: Weighted Kaplan-Meier curves by initial ART 
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Table : Kaplan-Meier failure estimates by week and ART 

Week TDF NVP ABC Overall 
ʹ Ͳͱ% ͱͱ% ͱ% ͱ% 
Ͷ ͳͱ% ͱ͵% Ͳ% Ͳ% 
ͱʹʹ ͳ͵% ͱ% ͳͶ% ͳͲ% 
ͱͲ ͳ% ͲͰ% ʹͰ% ͳ͵% 
ͲʹͰ ʹͰ% Ͳͱ% ʹ͵% ͳͷ% 
Ͳ ʹͷ% - - ʹ͵% 

Virological failure rates over time, unadjusted for differences in baseline 

covariates, for the different initial antiretroviral therapy regimens are 

presented in Table ͱͰ. 

Table ͱͰ: Virological failure rate (ͱͰͰ person-years) (͵% CI) 

Time 
(t, weeks) TDF NVP ABC 

Ͱ<t≤ʹ ͲͲ.ͳ (ͱ.ͳ-Ͳ͵.) ͱͱ. (.ͱ-ͱ͵.) ͱ.ͱ (ͱʹ.ͷ-Ͳ͵.ͳ) 
ʹ<t≤Ͷ ͱʹ.ͷ (ͱͱ.-ͱ.Ͷ) ʹ.͵ (Ͳ.-ͷ.) ͱ͵.Ͱ (ͱͰ.Ͳ-ͲͲ.) 
Ͷ<t≤ͱʹʹ ͷ.Ͳ (͵.Ͱ-ͱͰ.) ͳ.Ͷ (Ͳ.Ͳ-Ͷ.͵) ͱͰ.ʹ (Ͷ.ͳ-ͱ.Ͳ) 
ͱʹʹ<t≤ͱͲ ͳ. (Ͳ.ͱ-.ͱ) ͳ.Ͱ (ͱ.Ͷ-Ͷ.Ͳ) Ͷ.ͱ (ͳ.ͱ-ͱʹ.ͱ) 
ͱͲ<t≤ͲʹͰ ͳ.ͷ (Ͳ.ͱ-ͷ.Ͱ) ͱ. (Ͱ.-ʹ.) .͵ (ʹ.Ͷ-ͱͷ.ͳ) 
ͲʹͰ<t≤Ͳ .Ͳ (͵.-ͱ͵.ʹ) .͵ (Ͳ.ʹ-ʹ.ʹ) ͱͰ.ͱ (Ͳ.Ͳ-͵.͵) 

2.3.7 Predictors of virological failure 

Predictors of time to virological failure were analysed using Cox regression 

analyses (Table ͱͱ). There was no evidence that monitoring strategy 

influenced the time to virological failure (p=Ͱ.Ͳ͵). However, both gender 

and age were strong predictors of virological failure. Female patients had a 

Ͳͱ% lower incidence of virological failure (p=Ͱ.Ͱͱ) and each additional ͱͰ-

year increase in a patient’s age reduced incidence of virological failure by 

Ͳͷ% (p<Ͱ.ͰͰͱ). Each additional ͱͰͰ cell increase in patient’s pre-

antiretroviral therapy CDʹ cell count reduced incidence of virological 

failure by ͳͶ% (p<Ͱ.ͰͰͱ). Pre-antiretroviral therapy viral load did not affect 

the incidence of virological failure (p=Ͱ.). There was no evidence of non-

linearity in the multivariable fractional polynomial model, and there was 

no indication of non-proportionality for either monitoring strategy 

(p=Ͱ.ͳ) or initial antiretroviral therapy (p=Ͱ.Ͳ͵). Compared with the 

tenofovir reference group, patients who received a nevirapine-containing 
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regimen had a ͵ͱ% (p<Ͱ.ͰͰͱ) lower incidence of virological failure and 

patients prescribed abacavir have a Ͳ% (p=Ͱ.Ͱͳ) higher incidence of 

virological failure. Adherence was associated with virological failure, with 

ͱͱ% lower incidence of virological failure for every ͱͰ% increase in the 

proportion of visits with drug possession ratio greater than ͵% (p<Ͱ.ͰͰͱ). 

It should be noted that adherence could act as a mediation factor for other 

variables included in the model, such as initial ART, and the inclusion of 

this variable was investigated in sensitivity analyses in Section Ͳ.Ͳ.Ͷ. 

Table ͱͱ: Cox model of time to virological failure 

Factor Uni 
HR ͵% CI p-value Multi  

HR ͵% CI p-value 

Monitoring randomisation      
   LCM ͱ.ͰͰ - - ͱ.ͰͰ - - 
   CDM ͱ.Ͱͷ Ͱ.-ͱ.Ͳ Ͱ.ʹ͵ ͱ.ͱͱ Ͱ.ͳ-ͱ.ͳʹ Ͱ.Ͳ͵ 
Gender       
   Male ͱ.ͰͰ - - ͱ.ͰͰ - - 
   Female Ͱ.Ͱ Ͱ.ͶͶ-Ͱ.Ͷ Ͱ.ͰͲ Ͱ.ͷ Ͱ.Ͷ͵-Ͱ.͵ Ͱ.Ͱͱ 
Initial ART       
   TDF ͱ.ͰͰ - <Ͱ.ͰͰͱ ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   NVP Ͱ.ʹ Ͱ.ͳ-Ͱ.ͶͲ - Ͱ.ʹ Ͱ.ͳ-Ͱ.ͶͲ - 
   ABC ͱ.ͱ Ͱ.͵-ͱ.ʹͶ - ͱ.Ͳ ͱ.ͰͲ-ͱ.͵ - 
TB in ͱͲ months 
prior to enrolment ͱ.ͱͳ Ͱ.ͱ-ͱ.ʹͰ Ͱ.ͲͶ ͱ.Ͱͷ Ͱ.ͷ-ͱ.ͳͳ Ͱ.͵Ͳ 

Age  
(per ͱͰ years older) Ͱ.ͷͳ Ͱ.Ͷʹ-Ͱ.ͳ <Ͱ.ͰͰͱ Ͱ.ͷͳ Ͱ.Ͷʹ-Ͱ.ʹ <Ͱ.ͰͰͱ 

Pre-ART CDʹ  
(per ͱͰͰ cells/mmͳ higher) Ͱ.ͶͰ Ͱ.͵Ͱ-Ͱ.ͷͱ <Ͱ.ͰͰͱ Ͱ.Ͷʹ Ͱ.͵ʹ-Ͱ.ͷ͵ <Ͱ.ͰͰͱ 

Pre-ART viral load  
(logͱͰ copies/mL) ͱ.ͰͲ Ͱ.Ͷ-ͱ.ͲͰ Ͱ.ͱ ͱ.ͰͲ Ͱ.͵-ͱ.Ͳͱ Ͱ. 

Adherence in  
previous ʹ weeks* 
(per ͱͰ% higher) 

Ͱ. Ͱ.ʹ-Ͱ.ͳ <Ͱ.ͰͰͱ Ͱ. Ͱ.ʹ-Ͱ.ʹ <Ͱ.ͰͰͱ 

This Cox model was extended to explore the incidence of virological failure 

over time in ʹ week periods (Table ͱͲ). Based on these results, follow-up 

time was divided into Ͱ to Ͷ weeks and Ͷ to Ͳ weeks to allow for 

easier interpretation (Table ͱͳ). Up to week Ͷ, patients on nevirapine had 

a significantly lower incidence of virological failure than patients receiving 

tenofovir (HR=Ͱ.ʹʹ). After week Ͷ, patients on nevirapine continued to 

have a lower incidence of virological failure (HR=Ͱ.Ͷͱ), although the 
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difference was not as large. In contrast, patients receiving abacavir had a 

similar incidence of virological failure to those on tenofovir up to week Ͷ 

(HR=ͱ.ͰͲ). After week Ͷ, patients on abacavir had an approximately Ͳ.͵-

fold higher incidence of virological failure. 

Table ͱͲ: Cox regression analysis investigating initial ART over time 

Time 
(t, weeks) TDF NVP ABC 

ͳͶ<t≤ʹ ͱ.ͰͰ Ͱ.͵ʹ (Ͱ.ͳ-Ͱ.ͷʹ) ͱ.Ͱͳ (Ͱ.ͷͶ-ͱ.ʹͱ) 
ʹ<t≤Ͷ ͱ.ͰͰ Ͱ.Ͳͷ (Ͱ.ͱ͵-Ͱ.ʹͶ) ͱ.ͱͰ (Ͱ.Ͷ-ͱ.ͷ) 
Ͷ<t≤ͱʹʹ ͱ.ͰͰ Ͱ.ʹͶ (Ͱ.Ͳʹ-Ͱ.Ͱ) Ͳ.ͰͲ (ͱ.ͰͶ-ͳ.͵) 
ͱʹʹ<t≤ͱͲ ͱ.ͰͰ Ͱ.Ͷ (Ͱ.ͲͶ-ͱ.ͷͷ) Ͳ.ͱ (Ͱ.ͷ-͵.͵͵) 
ͱͲ<t≤ͲʹͰ ͱ.ͰͰ Ͱ.͵ (Ͱ.Ͳͱ-ͱ.ͶͲ) ͳ.ͳ (ͱ.ʹͱ-.Ͱ) 
ͲʹͰ<t≤Ͳ ͱ.ͰͰ ͳ.ʹ (Ͱ.͵-ͲͰ.ʹͶ) .Ͳ (ͱ.ʹͳ-Ͷͷ.ͳͶ) 

Table ͱͳ: Cox regression analysis with collapsed time periods 

Time 
(t, weeks) TDF NVP ABC 

ͳͶ<t≤Ͷ ͱ.ͰͰ Ͱ.ʹʹ (Ͱ.ͳͳ-Ͱ.͵) ͱ.ͰͲ (Ͱ.ͷ-ͱ.ͳͳ) 
Ͷ<t≤Ͳ ͱ.ͰͰ Ͱ.Ͷͱ (Ͱ.ͳ-Ͱ.) Ͳ.ʹͷ (ͱ.͵-ͳ.ͷ) 

Previous research suggests that abacavir-based regimens may be more 

prone to virological failure for pre-ART viral loads greater than or equal to 

ͱͰͰ,ͰͰͰ copies/mL. In a test for interaction there was no evidence of an 

association between initial antiretroviral therapy and a pre-ART viral load 

greater than or equal to ͱͰͰ,ͰͰͰ copies/mL in this data (p=Ͱ.Ͳͳ; Table ͱʹ). 

Patients on abacavir-based regimens had a higher incidence of virological 

failure with a pre-ART viral load≥ͱͰͰ,ͰͰͰ copies/mL (HR=ͱ.͵͵; ͵% CI: 

Ͱ.-Ͳ.Ͷ) but neither this nor the main effect of pre-ART viral 

load≥ͱͰͰ,ͰͰͰ copies/mL were statistically significant. 
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Table ͱʹ: Cox model of time to virological failure with baseline viral 
load and initial ART interaction 

Factor HR ͵% CI p-value 
Monitoring randomisation  
   LCM ͱ.ͰͰ - - 
   CDM ͱ.ͱͳ Ͱ.ʹ-ͱ.ͳͶ Ͱ.ͱ 
Gender    
   Male ͱ.ͰͰ - - 
   Female Ͱ.ͷ Ͱ.Ͷ͵-Ͱ.͵ Ͱ.Ͱͱ 
Age (Decades) Ͱ.ͷͳ Ͱ.Ͷʹ-Ͱ.ͳ <Ͱ.ͰͰͱ 
Pre-ART CDʹ  
(per ͱͰͰ cells/mmͳ) Ͱ.Ͷʹ Ͱ.͵ʹ-Ͱ.ͷͶ <Ͱ.ͰͰͱ 
Adherence in previous ʹ weeks 
(per ͱͰ%) Ͱ. Ͱ.͵-Ͱ.ʹ <Ͱ.ͰͰͱ 
Initial ART    
   TDF ͱ.ͰͰ - Ͱ.Ͱʹ 
   NVP Ͱ.͵ͳ Ͱ.ͳͲ-Ͱ.Ͷ - 
   ABC Ͱ.ͱ Ͱ.͵͵-ͱ.ʹ - 
Pre-ART VL≥ͱͰͰ,ͰͰͰ copies/mL ͱ.Ͳ͵ Ͱ.ͳ-ͱ.ͷͰ Ͱ.ͱʹ 
Initial ART#Pre-ART VL≥ͱͰͰ,ͰͰͰ copies/mL   
   TDF  ͱ.ͰͰ - Ͱ.Ͳͳ 
   NVP Ͱ.Ͳ Ͱ.͵Ͳ-ͱ.Ͷͱ - 
   ABC ͱ.͵͵ Ͱ.-Ͳ.Ͷ - 
TB in previous ͱͲ months ͱ.ͰͶ Ͱ.Ͷ-ͱ.ͳͲ Ͱ.͵ 

 

The relationship between CDʹ cell count and virological failure over the 

time on antiretroviral therapy was investigated (Table ͱ͵). The results 

showed that evidence for an effect of pre-ART CDʹ cell count on the 

incidence of virological failure was limited to the first Ͷ weeks of 

treatment. During the first ʹ weeks of antiretroviral therapy, each 

additional ͱͰͰ cell/mmͳ increase in pre-antiretroviral therapy CDʹ cell 

count led to a ʹͱ% decrease in the incidence of virological failure. After Ͷ 

weeks, there was no evidence of an effect of pre-ART CDʹ cell count on the 

incidence of virological failure (p=Ͱ.). More than ͵% of patients who 

started a regimen containing nevirapine with a baseline CDʹ count greater 

than ͱͰͰ cells/mmͳ remained virologically suppressed at ͲʹͰ weeks.  
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Table ͱ͵: Cox model investigating pre-ART CDʹ cell count over time 

Time 
(Weeks) 

Pre-ART CDʹ 
(per ͱͰͰ cells/mmͳ) 

p-value 

ͳͶ<t≤ʹ Ͱ.͵ (Ͱ.ʹʹ-Ͱ.ͷ) <Ͱ.ͰͰͱ 
ʹ<t≤Ͷ Ͱ.ʹ (Ͱ.ͳͱ-Ͱ.ͷʹ) Ͱ.ͰͰͱ 
Ͷ<t≤Ͳ Ͱ.ͷ (Ͱ.Ͷͷ-ͱ.ʹͱ) Ͱ. 

2.3.8 Sensitivity Analyses 

Firstly, sensitivity analyses were used to explore the potential mediator 

effect of adherence. A mediator variable, displayed in Figure ͱͳ, is 

influenced by the independent variable which in turn influences the 

dependent variable. There may remain a residual direct causal relationship 

between the independent and dependent variables. Including adherence in 

the model could either weaken or strengthen the effects of other variables. 

This was explored in Table ͱͶ; the exclusion of adherence had no material 

effect on any of the other regression coefficients. 

Figure ͱͳ: Example of a mediation relationship 

Sensitivity analyses were also conducted to determine the effect of 

alternative virological failure thresholds (Table ͱͷ). Increasing the 

threshold of virological failure, resulted in a small increase in the difference 

between patients who received clinically driven monitoring only versus 

patients with laboratory and clinical monitoring. Nonetheless, the 

difference remained non-significant (p=Ͱ.ͱͱ) for the highest VL threshold, 

confirming the conclusion of no evidence of an effect of monitoring 

randomisation. The comparison of tenofovir and nevirapine as initial 

 

Independent Variable 

(e.g. Gender) 

Dependent Variable 

(e.g. Virological failure) 

Mediator Variable 

(e.g. Adherence) 
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antiretroviral therapy was unaffected by altering the virological failure 

threshold. However, patients who received abacavir were found to have a 

similar incidence of virological failure to patients who received tenofovir 

when a threshold for virological failure of ͱͰ,ͰͰͰ copies/mL was used 

(HR=ͱ.ͰͰ). This implies that a disproportionate number of patients on 

abacavir fail with a viral load between ͲͰͰ to ͱͰ,ͰͰͰ copies/mL compared 

to other antiretroviral regimens. 

The impact of censoring was investigated by assuming that the Ͷ patients 

who died or switched treatment without virological failure would have 

virologically failed at this time point (Table ͱ). This assumption led to a 

higher incidence of virological failure in patients with clinical disease 

monitoring only compared to laboratory and clinical monitoring (HR=ͱ.ͱͶ; 

͵% CI: Ͱ.-ͱ.ͳͷ), reflecting the greater proportion of patients with 

laboratory and clinical monitoring who died or switched treatment with 

virological suppression. This sensitivity analysis reduced the impact of 

gender; a result of a greater proportion of female patients dying or 

switching treatment with virological suppression. The findings for initial 

antiretroviral therapy remained similar to Section Ͳ.ͳ.ͷ. 
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 Table ͱͶ: Cox model without adherence in previous ʹ weeks 

 With adherence Without adherence 

Factor Adjusted  
HR ͵% CI p-value Adjusted  

HR ͵% CI p-value 

Monitoring Randomisation   
   LCM ͱ.ͰͰ - - ͱ.ͰͰ - - 
   CDM ͱ.ͱͱ Ͱ.ͳ-ͱ.ͳʹ Ͱ.Ͳ͵ ͱ.ͱͲ Ͱ.ͳ-ͱ.ͳʹ Ͱ.Ͳͳ 
Gender       
   Male ͱ.ͰͰ - - ͱ.ͰͰ - - 
   Female Ͱ.ͷ Ͱ.Ͷ͵-Ͱ.͵ Ͱ.Ͱͱ Ͱ.ͷͷ Ͱ.Ͷͳ-Ͱ.ͳ <Ͱ.ͰͰͱ 
Initial ART       
   TDF ͱ.ͰͰ - <Ͱ.ͰͰͱ ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   NVP Ͱ.ʹ Ͱ.ͳ-Ͱ.ͶͲ - Ͱ.ʹ Ͱ.ͳ-Ͱ.Ͷͳ - 
   ABC ͱ.Ͳ ͱ.ͰͲ-ͱ.͵ - ͱ.Ͳ ͱ.ͰͲ-ͱ.Ͷͱ - 
TB in ͱͲ months  
prior to enrolment ͱ.Ͱͷ Ͱ.ͷ-ͱ.ͳͳ Ͱ.͵Ͳ ͱ.Ͱͷ Ͱ.Ͷ-ͱ.ͳʹ Ͱ.͵Ͳ 

Age (per ͱͰ years older) Ͱ.ͷͳ Ͱ.Ͷʹ-Ͱ.ʹ <Ͱ.ͰͰͱ Ͱ.ͷͲ Ͱ.Ͷͳ-Ͱ.ͳ <Ͱ.ͰͰͱ 
Pre-ART CDʹ  
(per ͱͰͰ cells/mmͳ higher) Ͱ.Ͷʹ Ͱ.͵ʹ-Ͱ.ͷ͵ <Ͱ.ͰͰͱ Ͱ.Ͷʹ Ͱ.͵ʹ-Ͱ.ͷͶ <Ͱ.ͰͰͱ 

Pre-ART viral load  
(logͱͰ copies/mL) ͱ.Ͱͱ Ͱ.͵-ͱ.Ͳͱ Ͱ. ͱ.ͰͲ Ͱ.͵-ͱ.ͲͲ Ͱ.ͳ 

Adherence in  
previous ʹ weeks* 
(per ͱͰ% higher) 

Ͱ. Ͱ.ʹ-Ͱ.ʹ <Ͱ.ͰͰͱ - - - 
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Table ͱͷ: Cox model results for alternative virological failure definitions 

 VL≥ͲͰͰ cps/mL VL≥ͱ,ͰͰͰ cps/mL VL≥ͱͰ,ͰͰͰ 
cps/mL 

Factor HR ͵% CI p-value HR ͵% CI p-value HR ͵% CI p-value 
Monitoring randomisation         
   LCM ͱ.ͰͰ - - ͱ.ͰͰ - - ͱ.ͰͰ - - 
   CDM ͱ.ͱͱ Ͱ.ͳ-ͱ.ͳʹ Ͱ.Ͳ͵ ͱ.ͱʹ Ͱ.ʹ-ͱ.ͳͷ Ͱ.ͱ ͱ.ͱ Ͱ.Ͷ-ͱ.ʹ͵ Ͱ.ͱͱ 
Gender          
   Male ͱ.ͰͰ - - ͱ.ͰͰ - - ͱ.ͰͰ - - 
   Female Ͱ.ͷ Ͱ.Ͷ͵-Ͱ.͵ Ͱ.Ͱͱ Ͱ.ͷ Ͱ.Ͷʹ-Ͱ.͵ Ͱ.Ͱͱ Ͱ.ͷͷ Ͱ.ͶͲ-Ͱ.͵ Ͱ.Ͱͱ 
Initial ART         
   TDF ͱ.ͰͰ - <Ͱ.ͰͰͱ ͱ.ͰͰ - <Ͱ.ͰͰͱ ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   NVP Ͱ.ʹ Ͱ.ͳ-Ͱ.ͶͲ - Ͱ.ʹ Ͱ.ͳ-Ͱ.Ͷͳ - Ͱ.͵Ͱ Ͱ.ͳ-Ͱ.Ͷ͵ - 
   ABC ͱ.Ͳ ͱ.ͰͲ-ͱ.͵ - ͱ.Ͳͳ Ͱ.ͷ-ͱ.͵͵ - ͱ.ͰͰ Ͱ.ͷͶ-ͱ.ͳͱ - 
TB in previous ͱͲ 
months ͱ.Ͱͷ Ͱ.ͷ-ͱ.ͳͳ Ͱ.͵Ͳ ͱ.Ͱ Ͱ.Ͷ-Ͱ.ʹ Ͱ.ʹ ͱ.ͱ͵ Ͱ.ͱ-ͱ.ʹͶ Ͱ.Ͳʹ 

Age  
(per ͱͰ years older) Ͱ.ͷͳ Ͱ.Ͷʹ-Ͱ.ʹ <Ͱ.ͰͰͱ Ͱ.ͷͰ Ͱ.ͶͲ-Ͱ.Ͱ <Ͱ.ͰͰͱ Ͱ.Ͷ Ͱ.ͶͰ-Ͱ.Ͱ <Ͱ.ͰͰͱ 

Pre-ART CDʹ  
(per ͱͰͰ cells/mmͳ) Ͱ.Ͷʹ Ͱ.͵ʹ-Ͱ.ͷ͵ <Ͱ.ͰͰͱ Ͱ.ͶͰ Ͱ.͵Ͱ-Ͱ.ͷͲ <Ͱ.ͰͰͱ Ͱ.͵Ͳ Ͱ.ʹͳ-Ͱ.Ͷʹ <Ͱ.ͰͰͱ 

Pre-ART viral load 
(logͱͰ copies/mL) ͱ.Ͱͱ Ͱ.͵-ͱ.Ͳͱ Ͱ. ͱ.ͰͲ Ͱ.͵-ͱ.Ͳͳ Ͱ.Ͱ ͱ.ͰͲ Ͱ.ͳ-ͱ.Ͳ͵ Ͱ.ͷ 

Adherence in previous 
ʹ weeks (per ͱͰ%) Ͱ. Ͱ.ʹ-Ͱ.ʹ <Ͱ.ͰͰͱ Ͱ. Ͱ.ʹ-Ͱ.ʹ <Ͱ.ͰͰͱ Ͱ. Ͱ.Ͳ-Ͱ.ʹ <Ͱ.ͰͰͱ 
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Table ͱ: Cox model assuming all deaths and switches occurred with virological failure 

 Deaths/switch no VF Deaths/switch also VF 
Factor HR ͵% CI p-value HR ͵% CI p-value 
Monitoring randomisation      
   LCM ͱ.ͰͰ - - ͱ.ͰͰ - - 
   CDM ͱ.ͱͱ Ͱ.ͳ-ͱ.ͳʹ Ͱ.Ͳ͵ ͱ.ͱͶ Ͱ.-ͱ.ͳͷ Ͱ.Ͱ 
Gender       
   Male ͱ.ͰͰ - - ͱ.ͰͰ - - 
   Female Ͱ.ͷ Ͱ.Ͷ͵-Ͱ.͵ Ͱ.Ͱͱ Ͱ.Ͷ Ͱ.ͷͳ-ͱ.Ͱͳ Ͱ.ͱͰ 
Initial ART      
   TDF ͱ.ͰͰ - <Ͱ.ͰͰͱ ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   NVP Ͱ.ʹ Ͱ.ͳ-Ͱ.ͶͲ - Ͱ.ʹ Ͱ.ͳ-Ͱ.Ͷͱ - 
   ABC ͱ.Ͳ ͱ.ͰͲ-ͱ.͵ - ͱ.ͲͰ Ͱ.-ͱ.ʹͶ - 
TB in previous ͱͲ months ͱ.Ͱͷ Ͱ.ͷ-ͱ.ͳͳ Ͱ.͵Ͳ ͱ.Ͱ Ͱ.-ͱ.ͳͱ Ͱ.ʹ͵ 
Age  
(per ͱͰ years older) Ͱ.ͷͳ Ͱ.Ͷʹ-Ͱ.ʹ <Ͱ.ͰͰͱ Ͱ.ͷ Ͱ.ͷͰ-Ͱ. <Ͱ.ͰͰͱ 

Pre-ART CDʹ  
(per ͱͰͰ cells/mmͳ) Ͱ.Ͷʹ Ͱ.͵ʹ-Ͱ.ͷ͵ <Ͱ.ͰͰͱ Ͱ.Ͷ Ͱ.͵-Ͱ.Ͱ <Ͱ.ͰͰͱ 

Pre-ART viral load 
(logͱͰ copies/mL) ͱ.Ͱͱ Ͱ.͵-ͱ.Ͳͱ Ͱ. Ͱ. Ͱ.ʹ-ͱ.ͱʹ Ͱ.ͷ 

Adherence in previous  
ʹ weeks (per ͱͰ%) Ͱ. Ͱ.ʹ-Ͱ.ʹ <Ͱ.ͰͰͱ Ͱ. Ͱ.͵-Ͱ.ͳ <Ͱ.ͰͰͱ 
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2.4 Discussion 
2.4.1 Durability of virological suppression 

Overall, this analysis found that Ͷͳ% of patients starting antiretroviral 

therapy for the first time in a low-income setting remained virologically 

suppressed at ͲʹͰ weeks. For patients who remained alive on a first-line 

NRTI-NNRTI regimen, ͷ% were virologically suppressed at ͲʹͰ weeks. 

These findings extend a previous cross-sectional analysis of the DART trial 

investigating virological suppression at trial closure [ͳ] by accounting for 

loss to follow-up, treatment switches and deaths and by describing the 

time of virological failure. In the part I/II substudy, Ͳ% of patients had 

viral load greater than ʹͰͰ copies/mL at week ʹ [ͳ͵]. An earlier 

comparison of abacavir and nevirapine [ͳͷ] found that Ͳ͵% of patients 

receiving abacavir and Ͳͳ% of patients receiving nevirapine had a viral load 

greater than ʹͰͰ copies/mL at week ʹ. The durability of virological 

suppression after ͲʹͰ weeks of antiretroviral therapy was higher than 

expected based on these earlier DART analyses. This is a result of the lower 

rate of virological failure after the first ʹ weeks of antiretroviral therapy. 

The analysis in this chapter excluded deaths, treatment switches and 

treatment interruptions prior to week ʹ, so the findings show more 

favourable rates of virological suppression than if the overall DART 

population had been studied. However, the population examined is the 

most relevant to the current HIV-ͱ positive population initiating 

antiretroviral therapy for the first time in low-income settings. For 

example, an analysis including patients with treatment interruption would 

be irrelevant now that planned treatment interruptions are widely avoided. 

Furthermore, the majority of the excluded early deaths in DART occurred 

in patients initiating HAART with a CDʹ cell count less than ͵Ͱ cells/mmͳ 

[ͶͶ]. This situation is now less common in low-income settings, where the 

median CDʹ cell count at HAART initiation has increased from Ͱ to ͱʹ͵ 

cells/mmͳ between ͲͰͰͲ and ͲͰͰ [ͷ]. 
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The walkback approach will lead to an underestimation of patients who 

have experienced virological failure of any duration. Specifically, a patient 

with virologically failure at week ʹ but who re-suppresses from week Ͷ 

onwards is treated as being continually virologically suppressed. Research 

by Gupta et al. [ͳ] in the NORA substudy found that Ͳͷ% of patients with 

viral loads greater than ͱ,ͰͰͰ copies/mL at week ʹ re-suppressed by week 

Ͷ. This analysis focuses on persistent virological failure, where the clinical 

consequences are clear, rather than intermittent virological failure, where 

interpretation is more complex. The proportion of patients with virological 

suppression found in this chapter will appear superior to other studies 

which have true time to event data, where patients are censored at the time 

virological failure is first detected. 

A similar overall proportion of patients in this analysis remained 

virologically suppressed after three and four years of antiretroviral therapy 

compared to Barth et al. [ʹͳ] and Boender et al. [ʹʹ] where Ͷͷ% and ͶͲ% 

remained virologically suppressed respectively. However, a greater 

proportion of patients on NRTI-NNRTI regimens in this analysis (ͷ%) 

were suppressed at these time points compared to these studies. 

Furthermore, ͵% of patients with a pre-ART CDʹ cell count between ͱͰͰ 

to ͲͰͰ cells/mmͳ were suppressed on NRTI-NNRTI regimens. 

The level of virological response in DART is remarkable compared to these 

meta-analyses where cohorts included at least real-time CDʹ cell count 

monitoring, and sometimes real-time viral load monitoring. In the DART 

trial, virological response was observed over a longer follow-up time in 

patients starting therapy with lower pre-antiretroviral therapy CDʹ cell 

counts and with ʹ% of patients initiating a triple-NRTI regimen. 

Furthermore, this analysis included virological failure in patients who 

subsequently switched to second-line regimens. One possible explanation 

for the extent of virological suppression is that the level of care received in 

DART, a randomised trial, might be superior to that found in routine 
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clinical settings. It could be argued that this might make these findings less 

generalizable to low-income settings; however, this also demonstrates that 

high levels of suppression are possible without laboratory monitoring, 

providing that drugs are readily available, without stock-outs. 

Cost-effectiveness studies evaluating alternative monitoring strategies 

require assumptions about the long-term effectiveness of antiretroviral 

therapy treatment in low-income settings. Keebler et al. [ʹͲ] use three 

independent models [ͷ-ͱ] to evaluate a range of monitoring strategies to 

inform the WHO ͲͰͱͳ guidelines for low-income settings. The first model 

by Phillips et al. [ͷ] uses an estimate for the risk of virological failure 

(greater than ͵ͰͰ copies/mL) after five years of Ͳ%. Virological failure 

after ͲʹͰ weeks for patients in DART on an NRTI-NNRTI regimen in DART 

was Ͳͱ%, so the assumed rate of virological failure rate used in the Phillips 

et al. synthesis model could be reduced. The second model by Estill et al. 

[ͱ] assumes that failure (greater than ͵ͰͰ copies/mL) after one year 

would be approximately ͱͰ% without virological monitoring, in this 

chapter the rate in patients on a NRTI-NNRTI regimen containing 

nevirapine was ͱͱ%. Braithwaite et al. [Ͱ] model the trajectory of CDʹ and 

viral load based on the current effectiveness of the antiretroviral therapy 

regimen. However, they do not explicitly describe the expected rate of 

virological failure after five years, so a comparison cannot be made. 

2.4.2 Predictors of virological failure 

There was no evidence that monitoring randomisation influenced the rate 

of virological failure. While CDʹ monitoring could result in 

immunologically failing patients switching treatment earlier, 

immunological failure is usually found to be a consequence of virological 

failure. Since the majority of treatment switches occurred with virological 

failure, the lack of an effect of trial monitoring strategy on the rate of 

virological failure was expected. 
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There was a higher incidence of virological failure in patients receiving 

abacavir compared to tenofovir. When analysed for an interaction with 

pre-ART viral load there was higher incidence with pre-ART viral load 

greater than ͱͰͰ,ͰͰͰ copies/mL but this did not reach statistical 

significance. There was a lower incidence of virological failure for patients 

receiving a NRTI-NNRTI regimen compared to either triple-NRTI regimen 

during the first Ͷ weeks of the trial. However, after Ͷ weeks there was no 

evidence of a difference between triple-NRTI regimen and NRTI-NNRTI 

regimens. Comparisons by initial antiretroviral therapy regimen are not 

protected by randomisation, raising the possibility of bias, although 

analyses controlled for known potential confounders. While these findings 

are not as rigorous as those from a randomised comparison, they support 

the randomised trial results discussed in Sections Ͳ.ͱ.Ͳ and Ͳ.ͱ.ͳ. The ACTG 

͵Ͱ͵ trial demonstrated that NRTI-NNRTI regimens (zidovudine + 

lamivudine + efavirenz) were associated with a lower likelihood (OR=Ͱ.ʹͶ) 

of viral load greater than ͲͰͰ copies/mL at week Ͳʹ compared to a triple-

NRTI regimen (zidovudine + lamivudine + abacavir). This chapter 

establishes that achieving and maintaining virological suppression on 

triple-NRTI regimens is possible after five years, but NRTI-NNRTI 

regimens are superior and should be recommended for first-line 

antiretroviral therapy. 

Abacavir was found to have a higher incidence of virological failure than 

tenofovir, particularly after Ͷ weeks of antiretroviral therapy. However, 

there was no evidence of an interaction with pre-ART viral load greater 

than ͱͰͰ,ͰͰͰ copies/mL. Previous studies [͵ͷ, ͶͰ, Ͷͱ] comparing abacavir 

to tenofovir in NRTI-NNRTI regimens demonstrate a difference during the 

first Ͷ weeks of antiretroviral therapy. Sax et al. [͵ͷ] find a shorter time to 

virological failure for patients on abacavir compared to tenofovir in the 

high pre-ART viral load stratum of more than ͱͰͰ,ͰͰͰ copies/mL 

(HR=Ͳ.ʹͶ, ͵% CI=ͱ.ͲͰ-͵.Ͱ͵ for abacavir- + lamivudine + efavirenz versus 
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tenofovir + emtricitabine + efavirenz). They found no evidence for a 

difference in the failure rate in the low pre-ART viral load group (HR=ͱ.Ͳͳ; 

͵% CI=Ͱ.ͷͷ-ͱ.Ͷ). A systematic review and meta-analysis [Ͳ] of six trials 

finds no evidence for a difference between abacavir and tenofovir at week 

ʹ in terms of virological suppression in either high (Rate Ratio (RR)=Ͱ.Ͷ; 

͵% CI=Ͱ.Ͱ-ͱ.Ͱͳ) or low pre-ART viral load strata (RR=ͱ.Ͱͱ; ͵% CI=Ͱ.-

ͱ.Ͱͳ). Overall, the DART trial was not able to demonstrate a statistically 

significant interaction between abacavir and pre-ART viral load. 

Nonetheless, treatment guidelines [ͳ] which recommend that abacavir is 

only an acceptable NRTI backbone in patients who start antiretroviral 

therapy with a pre-ART viral load less than ͱͰͰ,ͰͰͰ copies/mL should still 

be followed.  

In the DART trial, older patients were less likely to experience virological 

failure (HR for failure=Ͱ.ͷͳ per decade). Other research has shown that 

older patients are more likely to achieve a virological response to HAART 

[ʹ, ͵], although often with a poorer immunological response. Paredes et 

al. [Ͷ] demonstrated that older patients were at a decreased hazard for 

virological failure (Relative hazard=Ͱ.Ͷ per year older). In contrast, other 

studies [ͷ, ] have found no effect of age on virological failure. It is often 

speculated that older patients have better adherence to HAART than 

younger patients []; however, reported adherence in DART during the 

first year was not found to differ by age or gender [ͷͲ]. Furthermore, the 

multivariate analyses which included a measurement for adherence still 

found evidence for an effect of age. Other studies have also demonstrated 

an effect of older age on lower viral load after controlling for adherence 

[Ͱ]. Adherence is often difficult to reliably measure, with no “gold 

standard” [ͱ], so some residual confounding may account for the influence 

of age with younger patients possibly over reporting adherence. 

Alternatively, a decreased metabolism with age could contribute to these 
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findings. From this data, it is recommended that younger patients require 

more careful monitoring on HAART. 

Female patients were shown to have significantly lower incidence of 

virological failure than male patients (HR=Ͱ.ͷ per decade). In a recent 

systematic review of gender differences in HIV outcomes, Castilho et al. 

[Ͳ] reported a decreased risk of death in female patients (RR=Ͱ.ͷͲ; ͵% 

CI: Ͱ.Ͷ-Ͱ.ͷ͵) and a decreased risk of immunologic failure for female 

patients compared to male patients (RR=Ͱ.ͳ; ͵% CI: Ͱ.ͷͰ-Ͱ.Ͷ). They 

did not find sufficient evidence for a decreased risk of virological failure in 

female patients (RR=Ͱ.ͳ; ͵% CI: Ͱ.͵-ͱ.Ͱͱ). Castelnuovo et al. [͵Ͷ] found 

no evidence of a difference in the ten-year probability of treatment failure 

by gender. Male patients had a probability of Ͱ.ͳͷ (͵% CI: Ͱ.ͳͲ-Ͱ.ʹͳ) 

compared to Ͱ.ʹ͵ (͵% CI: Ͱ.ͳͶ-Ͱ.͵ͳ; p=Ͱ.Ͱ). Like age, the influence of 

gender remained after accounting for differences in adherence during the 

previous ʹ weeks. This could be a result of inaccurate adherence 

measurements, although some pharmacological effects could account for 

this difference such as female patients having a decreased metabolism. 

In this analysis, pre-antiretroviral therapy CDʹ was predictive of virological 

failure during the first Ͷ weeks of antiretroviral therapy but pre-ART viral 

load was not. This is supported by a systematic review conducted by 

Skowron et al. [ͳ] which show that across ͳͰ studies of NRTI+NNRTI 

regimens there was evidence of a correlation (p=Ͱ.Ͱͱ) between pre-ART 

CDʹ cell count and virological suppression (<ͲͰͰ-͵ͰͰ copies/mL) after 

twelve months of antiretroviral therapy. However, they found no evidence 

that pre-ART viral load was correlated (p=Ͱ.ͲͲ). Patients in DART entered 

the trial with a pre-ART CDʹ cell count less than ͲͰͰ cells/mmͳ, so this 

trial provides no evidence for patients initiating antiretroviral therapy at 

CDʹ cell counts above ͲͰͰ cells/mmͳ. Nevertheless, our findings support 

guidelines recommending initiating HAART at higher CDʹ cell counts. 
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The time of virological failure was interval censored but treated in analyses 

as the time where failure occurred. Analysing interval censored data in this 

way may underestimate the incidence of virological failure. A variety of 

statistical methods are available which handle interval-censored data [ʹ] 

but currently none of the available statistical software implementations can 

work with data that requires both analytical weights and multiple 

imputation. A less sophisticated alternative approach could have analysed 

the midpoint of the censoring interval [͵], but this was not applied in this 

dataset because the fixed sampling time points would have simply shifted 

the analysis forward by Ͳʹ weeks. 

2.4.3 Treatment switch 

The majority of treatment switches occurred with virological failure. After 

excluding switches made due to a new or recurrent WHO stage ʹ event 

there was no difference between the main trial monitoring strategies and 

the proportion of patients switching while virologically suppressed. 

Previous research [Ͷ] in the DART trial has found that WHO stage ʹ 

events are more common in the CDM arm than the LCM arm at high CDʹ 

counts. The authors speculate that this may be due to a CDʹ-dependent 

reporting bias where patients with similar clinical events but a high CDʹ 

cell count are more likely to have this clinical event determined to be a 

WHO stage ʹ event in the CDM arm where CDʹ cell count is unknown. 

This explanation may also explain the imbalance by monitoring strategy for 

WHO stage ʹ events at treatment switch without virological failure.  

The findings on virological failure at treatment switch adds to the research 

of Gilks et al. [ͷͷ], where retrospective viral loads were only available for 

͵͵% of the DART participants who switched treatment. The findings in this 

chapter support the conclusion that viral load “tie-breaker” tests would be 

of limited value to confirm clinical or immunological failure. In the 

majority of cases where treatment switch has been indicated, virological 

failure has occurred. Patients with poor immunological response but 
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suppressed viral load (less than ʹͰͰ copies) can still benefit by switching to 

a second-line regimen despite virological suppression [ͷͷ], so the results of 

a “tie-breaker” test in either direction may not change clinical decision 

making. 

2.4.4 Conclusions 

Recent WHO guidelines [Ͳͷ] recommend routine viral load monitoring is 

performed after six months of antiretroviral therapy and then every twelve 

months where possible. This chapter has shown that many patients on a 

NRTI-NNRTI regimen can have durable virological suppression after five 

years without virological monitoring. This suggests that a consistent drug 

supply enabling high levels of adherence is more crucial for success on 

therapy than upgrading clinical and laboratory infrastructure. Focus in 

low-income settings should remain on expanding access to antiretroviral 

therapy to patients with higher pre-ART CDʹ cell counts. Nonetheless, 

laboratory monitoring may be required to reach the UNAID’s “Ͱ-Ͱ-Ͱ” 

target for virological suppression in Ͱ% of patients on ART. 

Our analysis adds to the existing research by being the first to feature an 

intention to treat analysis of virological failure in low-income settings 

beyond ʹ months on antiretroviral therapy and includes patients without 

laboratory monitoring. The results for NRTI-NNRTI regimens can inform 

cost-effectiveness models of laboratory monitoring with additional long-

term data. A substantial proportion of patients who died after ʹ weeks on 

first-line antiretroviral therapy did so while virologically suppressed (ʹ͵%). 

This is surprising because deaths after ʹ weeks of antiretroviral therapy 

have typically been thought to be a result of virological failure, so this is 

investigated further in Chapter ͳ. 



 

Ͷ 

3 Predictors of death with and without 
virological failure after one year of first-
line ART 

3.1 Introduction 
HAART is estimated to have averted ͷ.Ͷ million deaths between ͱ͵ and 

ͲͰͱͳ, including ʹ. million in sub-Saharan Africa [ͷ]. However, there 

remained ͱ.͵ million AIDS-related deaths in ͲͰͱͳ [ͷ]. Granich et al. [] 

calculated that Ͱ% of global HIV mortality occurred in sub-Saharan 

Africa, Asia and the Pacific. In high-income settings, patients who start 

HAART with a high CDʹ cell count are expected to have near normal life 

expectancy [, ͱͰͰ]. However, life-expectancy may remain lower in low-

income settings due to higher background mortality, lower CDʹ cell count 

at treatment initiation and an increased risk of infectious diseases. There is 

approximately a threefold higher mortality during the first year of HAART 

in sub-Saharan Africa compared to high-income countries [ͱͰͱ]. 

3.1.1 Predictors of late mortality in low-income settings 

Predictors of mortality in resource-rich [ͱͰͲ-ͱͰͶ] and low-income settings 

[ͱͰͷ-ͱͱʹ] have been extensively studied. These studies [ͱͰͳ, ͱͰʹ, ͱͰͷ, ͱͱͲ, 

ͱͱͳ] have typically concluded that current (time-dependent) CDʹ cell 

counts are the strongest predictors of late mortality, although the 

estimated effect size varies between studies. Typically, a gradient of effect 

is observed; Lawn et al. [ͱͱͳ] found that patients with a current CDʹ cell 

count of less than ͵Ͱ cells/mmͳ had an Incidence Rate Ratio (IRR) of ͱͱ.Ͷͳ 

when compared to the reference group of greater than ͵ͰͰ cells/mmͳ, 

whereas patients with ͵Ͱ- cells/mmͳ had an IRR of ʹ.ͳ. 

Other factors shown to be predictive of late mortality include older age 

[ͱͰͷ-ͱͱʹ], male gender [ͱͰͷ-ͱͰ, ͱͱͱ, ͱͱͲ, ͱͱʹ], higher current (time-

dependent) viral load [ͱͰͷ-ͱͱͱ, ͱͱͳ, ͱͱʹ], higher baseline viral load [ͱͱͲ],  
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baseline WHO stage ͳ or ʹ events [ͱͰͷ-ͱͱͰ, ͱͱͲ, ͱͱͳ], anaemia [ͱͱͱ, ͱͱʹ] and 

lower body mass index [ͱͰͷ, ͱͱͰ-ͱͱͲ]. 

3.1.2 Virological status at late mortality 

A literature review was conducted using PubMed, on the ͱth April ͲͰͱͶ, to 

find English language publications investigating the risk of death by 

virological status in low-income settings. Search terms for HIV, low-

income settings (resource* or “sub-Saharan” or “low-income” or Uganda or 

Zimbabwe or "South Africa”), death (death or mortality) and virological 

response (“virological failure” or “virological suppression” or "virological 

response" or “viral suppression” or “viral failure" or "viral response" or "viral 

load suppression" or "viral load failure" or "viral load response" or "virologic 

suppression" or "virologic failure" or "virologic response" or "HIV RNA 

suppression" or "HIV RNA failure" or "HIV RNA response") were used. The 

search identified ͲͱͶ publications and ͳͱ were found to be relevant (Figure 

ͱʹ). Notable results are discussed in this section; the full list is available in 

Appendix C. 

Figure ͱʹ: Search strategy 

Mermin et al. [ʹ͵] randomised ͱ,Ͱʹ participants in rural Uganda starting a 

first-line NRTI-NNRTI regimen to either a viral load monitoring arm 

(clinical monitoring, quarterly CDʹ counts and viral load measurements), 

CDʹ arm (clinical monitoring and CDʹ counts) or clinical arm (clinical 

monitoring alone). In total, ͱͲͶ participants died, and ͶͰ deaths (ʹ%) 

ͲͱͶ full-text articles 

ͳͱ studies included 

ͱ͵ papers excluded: 

ͱͲ do not examine mortality 

by virological status 

ͳͳ children 

ͱͱ not low-income 

ͱͰ second-line 

Ͳ commentary/case report 
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occurred during the first three months. Mortality was higher in the clinical 

arm than either the viral load arm (ʹ. vs ͳ.ͷ per ͱͰͰ person-years; aHR: 

ͱ.͵ͷ; ͵% CI: ͱ.ͰͰ-Ͳ.ʹͶ) or the CDʹ arm (ʹ. vs ʹ.Ͱ per ͱͰͰ person-years; 

aHR: ͱ.ʹͳ; ͵% CI: Ͱ.Ͳ-Ͳ.Ͳͱ). In the clinical arm, two of the seventeen 

(ͱͲ%) participants who experienced virological failure (greater than ͵ͰͰ 

copies/mL) died; the other ʹͷ deaths in clinical arm occurred without 

virological failure being detected. 

Keiser et al. [ͱͱ͵] compared patients from the IeDEA Collaboration in South 

Africa, who received routine viral load monitoring to patients in Malawi 

and Zambia, who received CDʹ cell count monitoring. Mortality was lower 

in South Africa (HR=Ͱ.͵; ͵% CI: Ͱ.͵Ͱ-Ͱ.ͶͶ; p<Ͱ.ͰͰͱ) after three years 

(ʹ.ͳ%; ͵% CI: ͳ.-ʹ.) than Malawi and Zambia (Ͷ.ͳ%; ͵% CI: Ͷ.Ͱ-Ͷ.͵), 

despite a lower median CDʹ cell count at the time of ART initiation (ͳ 

compared to ͱͳͲ cells/mmͳ; p<Ͱ.ͰͰͱ). Analyses suggested that differences 

in background mortality accounted for approximately ͲͰ% of the observed 

difference and the rest was the result of earlier switches to second-line ART 

in patients with routine viral load monitoring. 

Petersen et al. [ͱͰ] examined the risk of mortality among Ugandan and 

South African patients with virological failure (greater than or equal to ʹͰͰ 

copies/mL). The relative odds of death were significantly lower for patients 

with a higher CDʹ cell count at the most recent measurement (Ͱ.͵ͳ; ͵% 

CI: Ͱ.ͳͷ-Ͱ.ͷͶ per ͱͰͰ cells/mmͳ) and at CDʹ nadir (Ͱ.͵Ͷ; ͵% CI: Ͱ.ͳͶ-

Ͱ. per ͱͰͰ cells/mmͳ). Additionally, there was higher mortality for 

patients with a greater CDʹ decline since virological failure (ͱ.ͱͷ; ͵% CI: 

ͱ.Ͱ-ͱ.Ͳͷ per ͱͰ% decline). 

Hoffmann et al. [ͱͱͲ] analysed ͱ͵,ͰͶͰ patients from South Africa who 

started HAART. CDʹ count and viral load were monitored every six 

months, and Ͳ,Ͷ͵ patients died during follow-up. Low CDʹ count and a 

lack of virological suppression were associated with mortality after more 

than twelve months on HAART. Patients with time-dependent CDʹ cell 
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count less than or equal to ͵Ͱ, ͵ͱ-ͱͰͰ, ͱͰͱ-ͲͰͰ and ͲͰͱ-ͳ͵Ͱ cells/mmͳ had 

an aHR of Ͷ.ͷ, ʹ.͵, Ͳ.͵ and ͱ.Ͷ for mortality respectively (p<Ͱ.Ͱͱ) compared 

to patients with greater than ͳ͵Ͱ cells/mmͳ. Patients with a time-

dependent viral load greater than or equal to ʹͰͰ copies/mL had an aHR 

of ͵.Ͷ (ʹ.ʹ-ͷ.Ͱ) for mortality. In total, ͱͰͰ of the ͵ʹͳ (ͱ%) deaths after one 

year of HAART had a suppressed viral load at their last measurement 

(recorded in the six months prior to death). 

Brennan et al. [ͱͱͰ] used data from a prospective South African cohort of 

ͱʹ,ͳͲ antiretroviral therapy-naïve patients to investigate predictors of 

ͱ,͵ mortalities. They also examined the interaction between CDʹ cell 

count and viral loads, which were monitored annually. Brennan et al. 

divided follow-up into twelve month periods, with one paired 

measurement per patient in each period. A Poisson model was used to 

determine predictors of mortality, with an interaction between CDʹ, viral 

load and the time on antiretroviral therapy. Among patients who died, the 

viral load at the start of the twelve-month period was less than ʹͰͰ 

copies/mL for ͱ,ͱ͵ (ͶͰ%) patients. Figure ͱ͵ displays the predicted 

mortality by this three-way interaction and demonstrates that the effect of 

CDʹ count was strongest during the first-year and decreased over time. At 

lower CDʹ cell counts and in patients who had an unsuppressed viral load 

there was increased mortality. The authors concluded that time-dependent 

CDʹ cell count was the main predictor of late mortality, but that there was 

a strong interaction between viral suppression and time on treatment.  
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Figure ͱ͵: Predicted mortality by the current CDʹ cell count (x-axis) 
and time on ART (z-axis) for patients with a suppressed viral load 

 

3.1.3 Cause of death 

The cause of death among patients on HAART has been extensively 

examined in high-income settings [ͱͱͶ], but data are more limited for sub-

Saharan Africa. Within Senegal, Etard et al. [ͱͱͷ] investigated the cause of 

death in ͳ patients who died on first-line antiretroviral therapy. The 

leading cause of death was mycobacterial infections (n=ͱͷ), neurotropic 

infections (n=ͱͷ) and septicaemia (n=ͱͷ). However, a distinction was not 

made between deaths which occurred during the first year (n=ʹͷ; ͵ͱ%) and 

later. Castelnuovo et al. [ͱͱ] determined the cause of death in  patients 

who died during the first ͳͶ months of treatment in Kampala, Uganda. The 

majority (n=Ͱ) of deaths occurred during the first year and in total ͷͶ 

deaths were thought to be HIV-related. The leading causes of HIV-related 

deaths were central nervous system infections (ͱ; Ͳ͵%), active 

tuberculosis (ͱͳ; ͱͶ%), Kaposi sarcoma (ͷ; ͱͰ%) and Pneumocystis jiroveci 

pneumonia (͵; ͷ%). Further studies in Uganda by Moore et al. [ͱͱ] 

investigated ͱͱͲ deaths on antiretroviral therapy from a cohort of ͱ,ͱͳͲ 

patients in Tororo. The majority of deaths occurred during the first year of 

therapy (n=ͷ; ͷͱ%). The overall leading cause of death was tuberculosis 

(Ͳͱ% of deaths), followed by oral or oesophagal candidiasis (ͱ͵%), 

cryptococcal disease (ͱͲ%), Pneumocystis jiroveci pneumonia (%) and 

Kaposi sarcoma (Ͷ%). 
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The DART trial has previously reported on the ͱͷ deaths (͵.ʹ%) which 

occurred during the first year of antiretroviral therapy [ͶͶ]. The most 

common causes of early death were septicaemia or meningitis (ͳͶ; ͲͰ%), 

extrapulmonary cryptococcus (ͱ%), non-WHO stage ʹ brain disease (ͱͶ; 

%) and tuberculosis (ͱʹ; %). Higher mortality during the first year was 

strongly associated with lower baseline CDʹ cell count (p<Ͱ.Ͱͱ). Viral load 

testing on stored samples had not yet been conducted at the time this 

paper was published. 

In summary, there are limited data on the cause of death, particularly 

beyond the first year on treatment. As access to HAART improves in low-

income settings, reducing long-term mortality is of increasing importance. 

3.1.4 Objective 

It is widely assumed that deaths in low-income settings among HIV-

infected individuals who are receiving antiretroviral therapy (apart from 

early deaths) are mainly due to virological failure or non-adherence. 

However, data from low-income settings without routine viral load 

monitoring are limited and a patient’s virological status at death is likely to 

differ in these settings. Studies comparing laboratory monitoring strategies 

can use retrospective virological data to determine the virological status at 

death among patients who received no laboratory monitoring. This is likely 

to be informative for low-income countries determining the value of 

increasing the availability of laboratory monitoring. The relationship 

between mortality, time-dependent CDʹ and viral load is complex and has 

not been studied in detail. 

In Section Ͳ.ͳ.ͳ, ʹͰ% of patients who died on first-line antiretroviral 

therapy after ʹ weeks of antiretroviral therapy were found to be 

virologically suppressed at a measurement close to death. This was 

investigated further and work in progress was presented at the ͲͰͱͶ 

Conference on Retroviruses and Opportunistic Infections (CROI) 

(Appendix D) [ͱͲͰ]. However, analyses of the predictors of death with 



Chapter ͳ: Predictors of death with and without virological failure 

Ͳ 

virological suppression were performed conditional on the occurrence of 

death after ʹ weeks of ART. Ignoring other competing events, such as 

treatment switch after ʹ weeks of ART, could give misleading results 

because patients who switch treatment are not able to die on first-line 

ART. The aim of this chapter is to determine predictors of deaths with and 

without virological failure after more than one year of first-line 

antiretroviral therapy in the DART trial population.  

The statistical methods required to account for censoring due to treatment 

switch and to include time-dependent CDʹ cell count in analyses are 

described in Section ͳ.Ͳ. Section ͳ.ͳ.ͱ summarises the virological and 

immunological status of late deaths on first-line antiretroviral therapy and 

examines patient’s reported cause of death. Section ͳ.ͳ.Ͳ investigates 

predictors of death by virological status. The implications of this research 

are summarised in Section ͳ.ʹ. 

3.2 Methods 
3.2.1 Viral load testing 

Viral load testing was conducted on all patients who died on continuous 

first-line antiretroviral therapy. For this analysis, viral load samples within 

ͲͶ weeks of the time of death were used. If a sample was unavailable, but a 

viral load sample after ʹ weeks of antiretroviral therapy indicated 

virological failure (viral load greater than or equal to ͲͰͰ copies/mL), then 

virological failure was assumed. This approach was based on the rationale 

that patients with virological failure after ʹ weeks of antiretroviral therapy 

were likely to remain viraemic. This assumption was required for only ten 

(ͱͰ%) patients using viral load measurements from a median (QͱͰ-QͰ) of 

ʹͰ (ͲͶ-ͱͱ) weeks prior to death. Three patients with virological 

suppression, recorded prior to week ͲͶ, did not have this observation 

carried forward. Among these patients, virological failure could reasonably 

still occur, so they were treated as lost to follow-up at their time of death. 
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3.2.2 Statistical Methods 

3.2.2.1 Competing risks models 

Competing events are outcomes (such as different causes of death) where 

the occurrence of one will prevent another event from occurring. All 

patients in the DART trial were included in analyses to determine 

predictors of death with virological suppression (<ͲͰͰ copies/mL) on first-

line antiretroviral therapy. Treatment switch or interruptions were 

considered to act as competing events. Similarly, deaths with virological 

failure were also considered as competing events because patients cannot 

then go on to die with virological suppression. Methods to analyse 

competing events data include cause-specific hazard and subdistribution 

hazard models (also known as cumulative incidence models) [ͱͲͱ]. 

Cause-specific hazards (CSH) describe “the instantaneous rate of 

occurrence of a given event among patients still event free at time, t” [ͱͲͲ]. 

This can be calculated by a naïve analysis where observations with events 

other than the cause of interest are censored, and a standard Cox 

proportional hazard model is fitted. Covariate effects in cause-specific 

hazard models describe the association of a covariate with an event where 

competing events only contribute by removing individuals from the risk-

set. Therefore, covariate effects in cause-specific hazard models report an 

increase or decrease of instantaneous hazard rate conditional on 

individuals having not had the event of interest by time t [ͱͲͳ]. 

Subdistribution hazard (SH) models describe the “probability of 

occurrence of a given event, by time t” [ͱͲͲ], in the presence of all other 

events. The risk-set for the cumulative incidence of a given event at time t 

includes both patients who have not had the event of interest yet and 

patients who have failed from other events. In the DART trial, it may seem 

counterintuitive to keep patients in the analysis dataset who switch to 

second-line antiretroviral therapy in the risk-set, since they cannot possibly 

die on first-line antiretroviral therapy. However, doing so has been shown 
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to be a mathematically valid construction of the relationship between a 

covariate and the cumulative incidence [ͱͲͱ]. Covariate effects in a 

subdistribution hazard model can be considered as an effect on the 

cumulative incidence function that reflects the direct association of a 

covariate with an event and the contribution of other events removing 

patients from the risk-set. 

Under the assumption of administrative censoring only, the 

subdistribution hazard can be modelled with a Cox proportional hazards 

model. In this model patients censored due to other events have their 

failure time replaced with their administrative censoring time. In the 

DART trial, only Ͳͳʹ (ͷ%) participants were lost to follow-up before 

December ͳͱst, ͲͰͰ, and completeness of nurse and doctor visits were 

high (more than ͷ%). Therefore, simulation studies indicate that this 

assumption should have a small effect on parameter estimates and 

confidence interval coverage [ͱͲʹ]. 

Latouche et al. [ͱͲͲ] as well as Bakoyannis and Touloumi [ͱͲʹ] argue that 

to understand data with competing events, both types of model need to be 

considered simultaneously. Differences between these models have been 

investigated in simulation studies [ͱͲ͵], and covariate effects may differ 

substantially between models if dependent competing events exist. In 

particular, if a cause-specific model demonstrates that male gender has no 

impact on the cause-specific hazard of death, but a large effect on the 

cause-specific hazard of treatment switch, then there could still be an 

effect of gender on the cumulative incidence of death. This is a result of the 

number of male patients at risk of death being reduced by those switching 

treatment. In extreme cases, a higher cause-specific hazard of an event can 

be reversed and lead to a lower subdistribution hazard if the cause-specific 

hazard of a competing event is sufficiently strong [ͱͲ͵]. Finding consistent 

and significant effects for both cause-specific hazard and subdistribution 

hazards provides stronger evidence of a causal association than finding an 
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effect for one measure only. Latouche et al. [ͱͲͲ] recommend that results 

from both models should be reported with clear distinction and 

terminology and this proposal is followed for the results presented later. 

3.2.2.2 Joint models 

Previous studies have clearly established that time-dependent CDʹ cell 

count is a strong predictor of late mortality. However, standard time to 

event models, such as the Cox model, can give misleading results if the 

time-dependent covariates are not considered to be “external” to the 

model. External covariates are those where “the value of the covariate at 

time point t is not affected by the occurrence of an event at time point u, 

with t>u” [ͱͲͶ]. Examples include the time-dependent age of a patient, 

which is not related to whether a patient switches treatment. In contrast, 

patients who experience a decline in immunological function are more 

likely to die or switch treatment. As a consequence, there are likely to be 

fewer CDʹ measurements and a sharper rate of decline. To correctly 

include longitudinal data, a more sophisticated approach such as a joint 

model of longitudinal and survival data is necessary [ͱͲͷ]. 

Joint models simultaneously use a mixed effect model for the longitudinal 

process and a time to event model, such as the Cox model, to handle 

informative censoring. Both models have shared parameters which are 

used to account for the associations between outcomes [ͱͲ]. Joint model 

methodology is described in detail by Rizopoulos [ͱͲ]. 

Briefly, a standard mixed effects model is fitted for the longitudinal 

outcome, ݕ(ݐ) such that: 

(ݐ)ݕ = ݉(ݐ) +  (ݐ)ߝ

Where ݉(ݐ) = ߚ(ݐ)்ݔ + (ݐ)்ݖ ܾ and ߝ(ݐ)~ܰ(0,  ଶ). β terms are theߜ

unknown fixed effect parameters and bi are the vector of random effects 

which are normally distributed with mean zero and covariance matrix D. xi 

and zi are the design matrices for the fixed and random effects respectively. 
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Then for the event process: 

ℎ(ܯ|ݐ(ݐ),ݓ) = ℎ(ݐ)exp [ݓ்ߛ +  [(ݐ)݉ߙ

Where ℎ(ݐ) is the baseline risk function, wi is a vector of the baseline 

covariates, ߛ the corresponding vector of regression coefficients and α the 

parameter for the association with the longitudinal outcome. 

When the focus of a joint model is the interpretation of the event model, 

care should be taken to produce a good estimate of the longitudinal 

process. CDʹ trajectories are a highly non-linear process [ͱͳͰ], and 

Rizopoulos [ͱͲͷ] recommends that high-order polynomials or splines are 

used in these cases for functions of time. Joint models have previously been 

used alongside competing risk analyses with cause-specific hazard [ͱͳͱ, ͱͳͲ] 

and subdistribution hazard models [ͱͳͳ]. 

3.2.2.3 Analysis 

An overall death rate on first-line antiretroviral therapy excluding the 

initial ʹ weeks of antiretroviral therapy was calculated using person-years 

spent on first-line antiretroviral therapy and by individually weighting 

patients using the analytical weights presented in Chapter Ͳ. Person-years 

were further divided into time spent with suppressed and non-suppressed 

viral load. Person-years with suppressed viral load were cumulated from 

week ʹ up until the first time point of death, treatment switch, loss to 

follow-up, virological failure or the end of the trial. Person-years with 

detectable viraemia were counted from the time virological failure was first 

detected after week ʹ to the first of death, treatment switch, loss to 

follow-up or the end of the trial. This allowed the estimation of a mortality 

rate per ͱ,ͰͰͰ person-years with viraemia. 

For patients who died, a mixed effect generalised linear model with a log 

link was fitted for CDʹ cell count data measured during the ʹ weeks prior 

to death. Time was treated as the number of weeks prior to death, leading 

to what Kurland et al. [ͱͳʹ] describe as a terminal decline model which 
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appropriately handles drop-out due to death. Patients were treated as 

levels within the model with random intercepts and linear trajectories. 

Fixed effects included monitoring randomisation, gender, initial 

antiretroviral regimen, centre and baseline body mass index (BMI) and 

each was tested for an interaction with the linear term of time prior to 

death. Fixed effects with a p-value>Ͱ.Ͳ were removed from the model in a 

backwards stepwise approach with the objective of achieving a 

parsimonious model, motivated by the limited number of deaths available 

for analysis. 

Separate competing risk models were fitted to examine deaths with 

virological failure and deaths with virological suppression on continuous 

first-line antiretroviral therapy after ʹ weeks. Competing risks included 

death before week ʹ, initiating a structured treatment interruption and 

switching treatment to second-line antiretroviral therapy at any time. 

These analyses were extended using a joint model to determine the 

influence of time-dependent CDʹ cell count. 

Covariates considered in univariate analyses included monitoring 

randomisation, gender, initial antiretroviral therapy regimen, tuberculosis 

at enrolment, centre, age at baseline, baseline BMI, baseline WHO stage 

and baseline CDʹ cell count where baseline is the closest value prior to the 

time of antiretroviral therapy initiation. Continuous variables were 

included in the model as fractional polynomials [ͱͳ͵] to avoid the 

biologically implausible and statistically inefficient use of dichotomisation 

[ͱͳͶ]. The proportionality of hazards were investigated using Schoenfeld 

residuals in cause-specific hazard analyses and the log-minus-log of the 

subdistribution hazard. If non-proportionality was observed, the baseline 

hazard was stratified by these covariates. The cumulative incidence 

function was calculated after fitting each model. 

The JM package [ͱͲͷ] in R [ͱͳͷ] was used to fit joint models. In the joint 

model, the square root of CDʹ cell count was modelled as a function of 
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time since randomisation using a natural cubic spline. Monitoring 

randomisation, gender, age, centre and baseline CDʹ cell count were 

included in the model, each with an interaction with trial time. CDʹ cell 

count was censored at the first event to occur; death, treatment 

interruption or switching to second-line antiretroviral therapy. The 

association between the longitudinal model of CDʹ and the survival model 

was parameterised as the true underlying value of the CDʹ cell count, 

estimated from the longitudinal model. The decision to switch treatment, 

one of the competing risks in this analysis, is strongly influenced by time-

dependent CDʹ cell count in the LCM arm; therefore, we excluded 

monitoring randomisation from the joint model and included it only as an 

interaction with time-dependent CDʹ cell count. The baseline risk 

function was estimated using a spline function. The JM package obtains the 

maximum likelihood estimate by maximising the log-likelihood function 

where the integrals are approximated using the adaptive Gauss-Hermite 

rule. Cumulative predicted incidences for different patients, conditional on 

their longitudinal CDʹ measurements, were computed using a Monte Carlo 

estimate from the fitted joint models. 

3.3 Results 
3.3.1 Virological status at death 

There were a total of ͳͲ deaths during DART, of which ͱͷͲ occurred 

within ʹ weeks of starting first-line antiretroviral therapy and are 

discussed in a previous paper [ͶͶ]. Of the ͲͱͰ (͵͵%) deaths which occurred 

after week ʹ, ͷ were on second-line antiretroviral therapy and ͲͰ deaths 

occurred in patients who had received a structured treatment interruption. 

Therefore, there was a total of ͱͱͲ late deaths over ͱͰ,͵Ͳ person-years of 

follow-up on continuous first-line antiretroviral therapy after week ʹ, 

giving an overall mortality rate of ͱͰ.Ͷ per ͱ,ͰͰͰ person years. 

The baseline characteristics of patients who died after ʹ weeks on first-

line antiretroviral therapy are displayed in Table ͱ.  
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Table ͱ: Baseline characteristics of patients who died 

Factor Died after week 
ʹ (n=ͱͱͲ) 

Alive  
(n=ͱ,Ͷ͵Ͱ) 

Monitoring randomisation   
   LCM ʹ (ʹʹ%) ͳͳ (͵Ͱ%) 
   CDM Ͷͳ (͵Ͷ%) ͱͷ (͵Ͱ%) 
Gender   
   Male ʹʹ (ͳ%) ͵ʹͳ (ͳͳ%) 
   Female Ͷ (Ͷͱ%) ͱ,ͱͰͷ (Ͷͷ%) 
Age (years) Median (IQR) ͳ (ͳͲ-ʹʹ) ͳͷ (ͳͲ-ʹͳ) 
Baseline CDʹ (Cells/mmͳ)   
Median (IQR) ͷͳ (Ͳͳ-ͱͲͳ) ͳ (ͳͲ-ͱͳͷ) 
Baseline viral load (Copies/mL)1  
   <ͳͰ,ͰͰͰ ͱͳ (ͱͲ%) ͱͱ (ͱͰ%) 
   ͳͰ,ͰͰͰ - ͱͰͰ,ͰͰͰ ͱͱ (ͱͰ%) ͱͷͰ (ͱʹ%) 
   ͱͰͰ,ͰͰͰ - ͳͰͰ,ͰͰͰ ͳͶ (ͳͲ%) ͳͳͷ (Ͳ%) 
   ͳͰͰ,ͰͰͰ – ͷͰͰ,ͰͰͰ ͳͲ (Ͳ%) ͳͰ (Ͳ͵%) 
   >ͷͰͰ,ͰͰͰ ͱ (ͱͷ%) ͲͶ͵ (ͲͲ%)  
Initial ART   
   TDF ͱ (ͱ%) ͱ,Ͱͱͳ (Ͷͱ%) 
   NVP ͱͱ (ͱͰ%) ͳͳ (Ͳʹ%) 
   ABC ͱͰ (%) Ͳʹʹ (ͱʹ%) 
Centre   
   Entebbe, Uganda ͳʹ (ͳͰ%) ͵Ͱ (ͳͱ%) 
   Kampala, Uganda ʹ͵ (ʹͰ%) ͷͶʹ (ʹͶ%) 
   Harare, Zimbabwe ͳͳ (ͳͰ%) ͳͷͷ (Ͳͳ%) 

Viral load measurements were available for ͱͰͲ/ͱͱͲ (ͱ%) deaths taken a 

median (IQR) of ͱͰ (Ͷ-ͱͳ) weeks prior to death. In total ʹͱ/ͱͰͲ (ʹͰ%) 

patients were virologically suppressed at the time of death. The mortality 

rate on first-line antiretroviral therapy, while virologically suppressed, was 

͵.Ͱ per ͱ,ͰͰͰ person-years (Table ͲͰ). In contrast, the mortality rate on 

first-line antiretroviral therapy when patients have detectable viral load 

was Ͳ͵.Ͷ per ͱ,ͰͰͰ person-years.  

Table ͲͰ: Death rate by person-years with virological status 

Virological Status Number 
of deaths 

Person-
years 

Death rate  
(per ͱ,ͰͰͰ PYs) 

͵% CI 

All ͱͱͲ ͱͰ,͵Ͳ ͱͰ.Ͷ .-ͱͲ. 
VL<ͲͰͰ copies/mL ʹͱ ,ͱͷ ͵.Ͱ ͳ.-ͷ.ͱ 
VL≥ͲͰͰ copies/mL Ͷͱ Ͳ,ͳͷ Ͳ͵.Ͷ ͱ.Ͳ-ͳͳ.ͳ 

                                            
1 Available in n=ͱͱͱ amd ͱ,ͱ respectively 
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Reported causes of death were adjudicated by an independent endpoint 

review committee and are shown by virological failure status in Table Ͳͱ. 

Patients who died while virologically suppressed were more likely to die 

due to a gastrointestinal event2 or an HIV-related malignancy (e.g. cervical 

cancer; n=ʹ or Kaposi’s sarcoma; n=ͱ). No patients died from wasting, 

diarrhoea or other types of cancer with virological failure, although there 

was not sufficient evidence to show a difference by virological status. 

Patients who died due to Cryptococcus were more likely to die with 

virological failure. While more patients died due to either malaria, cholera, 

or lung events with virological failure, there no evidence for a difference by 

virological status. Approximately a quarter of patients could not have their 

cause of death determined; this did not differ by virological failure status. 

Table Ͳͱ: Cause of death by virological failure status 

Cause of Death Virological 
suppression 

Virological 
failure 

p-value Total 

Neurological Event Ͷ (ͱ͵%) ʹ (Ͷ%) Ͱ.ͲͰ ͱͰ (%) 
TB ͳ (ͷ%) ͷ (ͱͱ%) Ͱ.ͷʹ ͱͱ (ͱͰ%) 
Gastrointestinal ͵ (ͱͲ%) ͱ (Ͳ%) Ͱ.Ͱʹ Ͷ (͵%) 
HIV-related malignancy ʹ (ͱͰ%) ͱ (Ͳ%) Ͱ.ͱͶ ͷ (Ͷ%) 
Septicaemia/Neutropenia Ͳ (͵%) ʹ (Ͷ%) ͱ.ͰͰ Ͷ (͵%) 
Trauma/Suicide ͱ (Ͳ%) ͵ (%) Ͱ.ʹͰ Ͷ (͵%) 
Cryptococcus ͱ (Ͳ%) ʹ (ͷ%) Ͱ.Ͷ͵ ͵ (͵%) 
Renal Ͳ (͵%) ͳ (͵%) ͱ.ͰͰ ͵ (ʹ%) 
Cardiovascular disease ͳ (ͷ%) Ͳ (ͳ%) Ͱ.ͳ ͵ (ʹ%) 
Lung Event Ͱ (Ͱ%) ʹ (Ͷ%) Ͱ.ͱ͵ ͵ (ʹ%) 
Lactic acidosis ͱ (Ͳ%) Ͳ (ͳ%) ͱ.ͰͰ ͵ (ʹ%) 
Malaria/Cholera Ͱ (Ͱ%) ͳ (͵%) Ͱ.Ͳͷ ͳ (ͳ%) 
Anae/Pan/Thromb Ͱ (Ͱ%) ͱ (Ͳ%) ͱ.ͰͰ Ͳ (Ͳ%) 
Cancer (Other) Ͳ (͵%) Ͱ (Ͱ%) Ͱ.ͱͶ Ͳ (Ͳ%) 
Hepatic Ͱ (Ͱ%) Ͳ (ͳ%) Ͱ.͵ͱ Ͳ (Ͳ%) 
Wasting/Diarrhoea Ͳ (͵%) Ͱ (Ͱ%) Ͱ.ͱͶ Ͳ (Ͳ%) 
Unknown  (ͲͲ%) ͱ (Ͳ%) Ͱ.ʹ ͳͰ (Ͳͷ%) 
Total ʹͱ Ͷͱ - ͱͱͲ 

Cumulative incidence curves (Figure ͱͶ) depict when deaths on continuous 

first-line antiretroviral therapy occurred and also when patients stopped 
                                            
2 Gastroduodenitis, acute gastrointestinal bleed, pancreatic, perforated gastric ulcer, paralytic 
ileus 
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continuous first-line antiretroviral therapy due to either a treatment switch 

or interruption. The median time of death with virological failure was ͱͱͱ 

(IQR: ͷʹ-ͱͰ) weeks. The median time of death with virological 

suppression was ͱͲͲ (ͷͶ-ͱͷͲ) weeks. 

Figure ͱͶ: Cumulative incidence of death and censoring events 

 
3.3.2 CD4 cell counts prior to death 

CDʹ cell counts were available a median of ͷ (͵-ͱͱ) weeks prior to death. A 

scatter plot (Figure ͱͷ) displays viral load and CDʹ cell count for patients 

who died after ʹ weeks of continuous first-line ART. CDʹ cell count at the 

time of death was highly variable, although a greater proportion of patients 

who died with virological failure had fewer than ͱͰͰ CDʹ cells/mmͳ at the 

time of death compared to patients who died while virologically 

suppressed (Ͷ͵% versus ͱ%; p<Ͱ.Ͱͱ). Median CDʹ cell count was lower in 

patients who died with virological failure than virological suppression (ͷͳ 

versus Ͳͳ cells/mmͳ; p<Ͱ.Ͱͱ). 
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Figure ͱͷ: Scatter plot of viral load and CDʹ at the time of death 

 

Figure ͱ displays observed CDʹ cell count trajectories in the ʹ weeks 

prior to death by virological status for individual patients. In black are 

predicted marginal trajectories from a mixed-effects generalised linear 

model (Table ͲͲ) with a log link function. This mixed effect model was 

conducted including all patients who died after ʹ weeks of continuous 

first-line ART. The predicted marginal CDʹ trajectory declined by Ͳ͵ CDʹ 

cells/mmͳ (͵% CI: -͵ͷ to ͷ; p=Ͱ.ͱͳ) in patients with virological failure and 

increased by ͳͲ CDʹ cells/mmͳ (͵% CI: -ͳͷ to ͱͰͰ; p=Ͱ.ͳͶ) in patients 

with virological suppression. There was evidence of a decline in CDʹ cell 

count in patients who died with virological failure (Coef=-Ͱ.ͳ; ͵% CI: -

ͱ.ʹʹ to -Ͱ.Ͳͳ; p=Ͱ.ͰͰͷ). However, there was insufficient evidence to 

suggest that CDʹ cell count changed among patients who died with 

virological suppression (Coef=-Ͱ.͵Ͱ; ͵% CI: -ͱ.ͱͱ to Ͱ.ͱͱ; p=Ͱ.ͱͱ). 
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Figure ͱ: CDʹ trajectory in the ʹ weeks before death 

 
 

Table ͲͲ: Generalised mixed-effects model of CDʹ trajectory 

Variable Coef ͵% CI p-value 
Constant ʹ.͵ͷ ʹ.ͱ to ʹ.ͷ <Ͱ.ͰͰͱ 
Monitoring randomisation 
   LCM Ͱ.ͰͰ - - 
   CDM -Ͱ.ͷͳ -ͱ.ͱͶ to -Ͱ.ͳͱ Ͱ.ͰͰͱ 
Virological  Status at death 
   Virological failure Ͱ.ͰͰ - - 
   Virological suppression Ͱ. Ͱ.͵ʹ to ͱ.ʹͱ <Ͱ.ͰͰͱ 
Time prior to death (ʹ weeks) -Ͱ.ͳ -ͱ.ʹʹ to -Ͱ.Ͳͳ Ͱ.ͰͰͷ 
Monitoring randomisation # 
time before death (ʹ weeks) 

   

   LCM - - - 
   CDM -Ͱ.ʹ͵ -Ͱ.Ͱ to -Ͱ.ͱͰ Ͱ.Ͱͱ 
Age # time before death  
(ʹ weeks) 

Ͱ.ͱ͵ Ͱ.Ͱͱ to Ͱ.Ͳ Ͱ.Ͱͳ 

Virological status at death # 
time before death 
(ʹ weeks) 

   

   Virological failure Ͱ.ͰͰ - - 
   Virological suppression Ͱ.ͳͳ -Ͱ.Ͱʹ to Ͱ.ͷͱ Ͱ.Ͱ 

Death with virological failure
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3.3.3 Predictors of death by virological status 

Throughout follow-up, ͱ,ʹͰ/ͳ,ͳͱͶ (ʹͲ%) patients experienced a 

competing event (͵ʹ STI, ͱͷͲ deaths before week ʹ, Ͷ treatment 

switches). 

3.3.3.1 Death with virological suppression 

Table Ͳͳ presents the results from univariate and multivariate cause-

specific and subdistribution hazard models of death with virological 

suppression. The results from a joint model, which includes an interaction 

between trial monitoring randomisation and time-dependent CDʹ cell 

count, are presented in Table Ͳʹ. 

Including time-dependent CDʹ cell count, increased the aSHR for baseline 

CDʹ cell count but did not have a substantive effect on other covariates. 

Interpretation of the predictors of death with virological suppression will 

focus on the joint model of Table Ͳʹ. The hazard ratios in Table Ͳʹ for both 

multivariate cause-specific and subdistribution hazard are similar. There 

was no evidence that monitoring randomisation had an effect on the aSHR 

in either model through the interaction with time-dependent CDʹ cell 

count (aSHR=Ͱ.ͷ; ͵% CI: Ͱ.ͳ-ͱ.Ͱͱ; p=Ͱ.ͱ͵). There was evidence of an 

association between death with virological suppression and time-

dependent CDʹ cell count in the cause-specific hazard model 

(aCSHR=Ͱ.Ͳ; ͵% CI: Ͱ.ʹ-ͱ.ͰͰ; p=Ͱ.Ͱ͵). However, in the subdistribution 

hazard model there was a slightly smaller effect size and overall insufficient 

evidence to declare an association (aSHR=Ͱ.Ͷ; ͵% CI: Ͱ.-ͱ.Ͱͳ; p=Ͱ.Ͳʹ). 

This suggests that, when patients who died with virological failure are 

accounted for, there is no evidence that patients with higher time-

dependent CDʹ cell count have a reduced time to death with virological 

suppression. 

Patients in Harare, Zimbabwe, had a lower cumulative incidence of death 

with virological suppression compared to patients in Entebbe, Uganda 

(aSHR=Ͱ.ʹͰ; ͵% CI: Ͱ.ͱ͵-ͱ.ͰͲ). There was no evidence that patients in 
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Kampala, Uganda, had a different cumulative incidence of death with 

virological suppression (aSHR=Ͱ.Ͳ; ͵% CI: Ͱ.ʹͶ-ͱ.ͱ). The effects of 

baseline BMI and CDʹ cell count were highly significant in both cause-

specific and subdistribution hazard models. Each additional ͱͰͰ CDʹ 

cells/mmͳ at baseline led to a ͵% increase (aSHR=ͱ.͵; ͵% CI: ͱ.ͰͶ-ͳ.͵͵; 

p=Ͱ.Ͱͳ) in the cumulative incidence of death with virological suppression; 

while a one kg/mͲ increase in BMI predicted a ͱͲ% reduction (aSHR=Ͱ.; 

͵% CI: Ͱ.Ͱ-Ͱ.; p=Ͱ.ͰͲ) and a ten-year increase in age predicted a ʹͱ% 

increase (aSHR=ͱ.ʹͱ; ͵% CI: Ͱ.ͷ-Ͳ.ͰͶ; p=Ͱ.Ͱͷ). 
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Table Ͳͳ: Predictors of death with virological suppression 
Variable CSH p-value aCSH ͵% CI p-value SH p-value aSH ͵% CI p-value 
Monitoring randomisation           
   LCM ͱ.ͰͰ Ͱ.Ͱ ͱ.ͰͰ - Ͱ.Ͱ ͱ.ͰͰ Ͱ.ͱͱ ͱ.ͰͰ - Ͱ.ͱͱ 
   CDM Ͱ.͵ͷ - Ͱ.͵ͷ Ͱ.ͳͰ-ͱ.Ͱͷ - Ͱ.ͶͰ - Ͱ.ͶͰ Ͱ.ͳͲ-ͱ.ͱͳ - 
Gender           
   Male ͱ.ͰͰ Ͱ.ʹ - - - ͱ.ͰͰ Ͱ.͵Ͱ - - - 
   Female ͱ.Ͳͷ - - - - ͱ.ͲͶ - - - - 
Initial ART           
   TDF ͱ.ͰͰ Ͱ.͵ͱ - - - ͱ.ͰͰ Ͱ.ʹͰ - - - 
   NVP ͱ.Ͱʹ - - - - ͱ.Ͱʹ - - - - 
   ABC ͱ.ͷʹ - - - - ͱ.ͳ - - - - 
TB at enrolment ͱ.ͱͱ Ͱ.ͷͶ - - - ͱ.ͱͱ Ͱ.ͷͷ - - - 
Centre           
   Entebbe ͱ.ͰͰ Ͱ.Ͱ͵ ͱ.ͰͰ - Ͱ.Ͱʹ ͱ.ͰͰ Ͱ.ͱͲ ͱ.ͰͰ - Ͱ.ͱ͵ 
   Kampala Ͱ.ͷ - Ͱ. Ͱ.ʹͶ-ͱ.ͷʹ - Ͱ.ͷ - Ͱ.ͷ Ͱ.͵Ͱ-ͱ.Ͱ - 
   Harare Ͱ.ͳʹ - Ͱ.ͳͷ Ͱ.ͱʹ-Ͱ.͵ - Ͱ.ͳ - Ͱ.ʹͲ Ͱ.ͱͶ-ͱ.Ͱ - 
Age (ͱͰ years) ͱ.ͳ Ͱ.Ͱͷ ͱ.ʹʹ Ͱ.-Ͳ.Ͱ Ͱ.Ͱ͵ ͱ.ʹͱ Ͱ.Ͱ͵ ͱ.ʹ͵ ͱ.ͰͰ-Ͳ.Ͱ Ͱ.Ͱ͵ 
Baseline BMI 
(kg/mͲ) 

Ͱ.Ͱ Ͱ.Ͱ Ͱ. Ͱ.ͷͷ-ͱ.Ͱͱ Ͱ.ͰͶ Ͱ.ͱ Ͱ.ͱͱ Ͱ. Ͱ.ͷ-ͱ.Ͱͱ Ͱ.Ͱ 

WHO Stage           
   Ͳ ͱ.ͰͰ Ͱ.ͶͰ - - - ͱ.ͰͰ Ͱ.Ͷ - - - 
   ͳ ͱ.͵ͱ - - - - ͱ.ʹʹ - - - - 
   ʹ ͱ.͵ - - - - ͱ.ʹʹ - - - - 
Baseline CDʹ cell count 
(ͱͰͰ Cells/mmͳ) 

ͱ.͵ Ͱ.Ͱ ͱ.Ͷ Ͱ.ͷ-Ͳ. Ͱ.ͰͶ ͱ.ʹͷ Ͱ.ͱͲ ͱ.͵Ͷ Ͱ.ͳ-Ͳ.ͶͲ Ͱ.Ͱ 
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Table Ͳʹ: Joint model determining predictors of death with virological suppression 

Variable aCSH ͵% CI p-value aSH ͵% CI p-value 
Centre       
   Entebbe ͱ.ͰͰ - Ͱ.Ͱ͵ ͱ.ͰͰ - Ͱ.Ͱ 
   Kampala Ͱ.Ͳ Ͱ.ʹͱ-ͱ.Ͷͱ - Ͱ.Ͳ Ͱ.ʹͶ-ͱ.ͱ - 
   Harare Ͱ.ͳʹ Ͱ.ͱͳ-Ͱ. - Ͱ.ʹͰ Ͱ.ͱ͵-ͱ.ͰͲ - 
Age (ͱͰ years) ͱ.ͳͶ Ͱ.ͳ-Ͳ.ͰͰ Ͱ.ͱͲ ͱ.ʹͱ Ͱ.ͷ-Ͳ.ͰͶ Ͱ.Ͱͷ 
Baseline BMI (kg/mͲ) Ͱ.ͷ Ͱ.ͷ-Ͱ.ͷ Ͱ.Ͱͱ Ͱ. Ͱ.Ͱ-Ͱ. Ͱ.ͰͲ 
Baseline CDʹ cell count  
(ͱͰͰ Cells/mmͳ) 

Ͳ.ͱ ͱ.ͲͰ-ͳ. Ͱ.Ͱͱ ͱ.͵ ͱ.ͰͶ-ͳ.͵͵ Ͱ.Ͱͳ 

Association with time-dependent CDʹ 
(√Cells/mmͳ) 

Ͱ.Ͳ Ͱ.ʹ-ͱ.ͰͰ Ͱ.Ͱ͵ Ͱ.Ͷ Ͱ.-ͱ.Ͱͳ Ͱ.Ͳʹ 

Association with time-dependent CDʹ 
# CDM (√Cells/mmͳ) 

Ͱ.ͷ Ͱ.ͳ-ͱ.Ͱͱ Ͱ.ͱͲ Ͱ.ͷ Ͱ.ͳ-ͱ.Ͱͱ Ͱ.ͱ͵ 
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3.3.3.2 Death with virological failure 

Table Ͳ͵ presents the cause-specific and subdistribution hazard ratios for 

death with virological failure from a model which did not include time-

dependent CDʹ cell count. Female patients had a lower cumulative 

incidence than male patients (aSHR=Ͱ.Ͷͷ; ͵% CI: Ͱ.ʹͱ-ͱ.ͱͱ; p=Ͱ.ͱͲ), but 

this effect was lost (aSHR=Ͱ.͵; ͵% CI: Ͱ.͵ͷ-ͱ.͵; p=Ͱ.ͳ) after inclusion 

of time-dependent CDʹ cell count. This implies that male patients may 

have poorer immunological recovery which mediated the gender effect. 

Joint cause-specific and subdistribution hazard models produced similar 

results. Higher baseline CDʹ cell count had a strong effect reducing the 

cumulative incidence of death with virological failure in models without 

time-dependent CDʹ cell count (aSHR=Ͱ.ʹ; ͵% CI Ͱ.ͳͰ-Ͱ.ͷͷ; p=Ͱ.ͰͰͲ). 

However, after inclusion of time-dependent CDʹ cell count, there was no 

evidence of an effect (aSHR=ͱ.ʹͳ; ͵% CI: Ͱ.ʹ-Ͳ.ʹͳ; p=Ͱ.ͱ). This likely 

reflects strong correlation between baseline and time-dependent CDʹ cell 

counts and is discussed further in Section ͳ.ʹ. To allow for easier 

comparison, summaries of the results from the joint cause-specific and 

subdistribution hazard models for deaths with virological suppression and 

deaths with virological failure are available in Table Ͳͷ. 

Higher time-dependent CDʹ cell count reduced the cumulative incidence 

of death with virological failure (aSHR=Ͱ.ͷͶ; ͵% CI: Ͱ.ͷͲ-Ͱ.Ͳ; p<Ͱ.ͰͰͱ). 

There was no evidence of an interaction with trial monitoring 

randomisation (aSHR=ͱ.ͰͲ; ͵% CI: Ͱ.ͷ-ͱ.ͰͶ; p=Ͱ.͵ͱ). Patients in the 

clinically driven monitoring only arm were at an increased risk of death 

with virological failure (aSHR=Ͳ.ͲͶ; ͵% CI: ͱ.ͳͲ-ͳ.; p=Ͱ.ͰͰͳ). 
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Table Ͳ͵: Predictors of death with virological failure  

Variable CSH p-value aCSH ͵% CI p-value SH p-value aSH ͵% CI p-value 
Monitoring randomisation           
   LCM ͱ.ͰͰ Ͱ.ͰͰ͵ ͱ.ͰͰ - Ͱ.ͰͰͶ ͱ.ͰͰ Ͱ.ͰͰͳ ͱ.ͰͰ - Ͱ.ͰͰͳ 
   CDM Ͳ.ͱ - Ͳ.ͱͲ ͱ.Ͳ͵-ͳ.ͶͲ - Ͳ.Ͳ - Ͳ.ͲͶ ͱ.ͳͲ-ͳ. - 
Gender           
   Male ͱ.ͰͰ Ͱ.ͰͶ ͱ.ͰͰ - Ͱ.ͱͳ ͱ.ͰͰ Ͱ.ͰͶ ͱ.ͰͰ - Ͱ.ͱͲ 
   Female Ͱ.ͶͲ - Ͱ.Ͷ Ͱ.ʹͱ-ͱ.ͱͲ - Ͱ.Ͷͱ - Ͱ.Ͷͷ Ͱ.ʹͱ-ͱ.ͱͱ - 
Initial ART           
   TDF ͱ.ͰͰ Ͱ.ͲͰ - - - ͱ.ͰͰ Ͱ.ͲͲ - - - 
   NVP Ͱ.ʹ - - - - Ͱ.ʹ - - - - 
   ABC Ͱ.Ͷͷ - - - - Ͱ.ͷͳ - - - - 
TB at enrolment Ͱ.ͳ Ͱ.Ͱ - - - Ͱ.Ͳ Ͱ.ͷ - - - 
Centre           
   Entebbe ͱ.ͰͰ Ͱ.ʹͶ - - - ͱ.ͰͰ Ͱ.ͳͶ - - - 
   Kampala Ͱ.ͷ - - - - ͱ.Ͱ͵ - - - - 
   Harare ͱ.ͳͶ - - - - ͱ.͵Ͱ - - - - 
Age (ͱͰ years) Ͱ.Ͱ Ͱ.͵ʹ - - - Ͱ.Ͳ Ͱ.Ͷͳ - - - 
BMI (kg/mͲ) Ͱ.ͷ Ͱ.ʹͰ - - - Ͱ.ͷ Ͱ.ʹ - - - 
WHO Stage           
   Ͳ ͱ.ͰͰ Ͱ.Ͳ - - - ͱ.ͰͰ Ͱ. - - - 
   ͳ ͱ.ͱͰ - - - - ͱ.Ͱ͵ - - - - 
   ʹ ͱ.ͱ - - - - ͱ.Ͱͷ - - - - 
Baseline CDʹ cell count  
(ͱͰͰ Cells/mmͳ) 

Ͱ.ʹͷ Ͱ.ͰͰͳ Ͱ.ʹ Ͱ.ͳͰ-Ͱ.ͷ Ͱ.ͰͰʹ Ͱ.ʹͶ Ͱ.ͰͰͱ Ͱ.ʹ Ͱ.ͳͰ-Ͱ.ͷͷ Ͱ.ͰͰͲ 
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Table ͲͶ: Joint model determining predictors of death with virological failure 

Variable aCSH ͵% CI p-value aSH ͵% CI p-value 
Gender       
   Male ͱ.ͰͰ - Ͱ. ͱ.ͰͰ - Ͱ.ͳ 
   Female ͱ.ͰͰ Ͱ.ͶͰ-ͱ.ͶͶ - Ͱ.͵ Ͱ.͵ͷ-ͱ.͵ - 
Baseline CDʹ cell count  
(ͱͰͰ Cells/mmͳ) 

ͱ.ʹͷ Ͱ.ͷ-Ͳ.ʹ Ͱ.ͱ͵ ͱ.ʹͳ Ͱ.ʹ-Ͳ.ʹͳ Ͱ.ͱ 

Association with time-dependent CDʹ 
(√Cells/mmͳ) 

Ͱ.ͷͱ Ͱ.ͶͶ-Ͱ.ͷͶ <Ͱ.ͰͰͱ Ͱ.ͷͶ Ͱ.ͷͲ-Ͱ.Ͳ <Ͱ.ͰͰͱ 

Association with time-dependent CDʹ  
# CDM (√Cells/mmͳ) 

Ͱ. Ͱ.ʹ-ͱ.Ͱʹ Ͱ.ͷͱ ͱ.ͰͲ Ͱ.ͷ-ͱ.ͰͶ Ͱ.͵ͱ 
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Table Ͳͷ: Comparison table of cause-specific and subdistribution hazard models 

 Death with virological suppression Death with virological failure 
Variable aCSH p-value aSH p-value aCSH p-value aSH p-value 
Gender         
   Male - - - - ͱ.ͰͰ Ͱ. ͱ.ͰͰ Ͱ.ͳ 
   Female - - - - ͱ.ͰͰ - Ͱ.͵ - 
Centre         
   Entebbe ͱ.ͰͰ Ͱ.Ͱ͵ ͱ.ͰͰ Ͱ.Ͱ - - - - 
   Kampala Ͱ.Ͳ - Ͱ.Ͳ - - - - - 
   Harare Ͱ.ͳʹ - Ͱ.ʹͰ - - - - - 
Age (ͱͰ years) ͱ.ͳͶ Ͱ.ͱͲ ͱ.ʹͱ Ͱ.Ͱͷ     
Baseline BMI (kg/mͲ) Ͱ.ͷ Ͱ.Ͱͱ Ͱ. Ͱ.ͰͲ - - - - 
Baseline CDʹ cell count  
(ͱͰͰ Cells/mmͳ) 

Ͳ.ͱ Ͱ.Ͱͱ ͱ.͵ Ͱ.Ͱͳ ͱ.ʹͷ Ͱ.ͱ͵ ͱ.ʹͳ Ͱ.ͱ 

Association with time-dependent CDʹ 
(√Cells/mmͳ) 

Ͱ.Ͳ Ͱ.Ͱ͵ Ͱ.Ͷ Ͱ.Ͳʹ Ͱ.ͷͱ <Ͱ.ͰͰͱ Ͱ.ͷͶ <Ͱ.ͰͰͱ 

Association with time-dependent CDʹ 
# CDM 
(√Cells/mmͳ) 

Ͱ.ͷ Ͱ.ͱͲ Ͱ.ͷ Ͱ.ͱ͵ Ͱ. Ͱ.ͷͱ ͱ.ͰͲ Ͱ.͵ͱ 
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3.3.4 Predicted cumulative incidence 

Figure ͱ displays differences in the predicted cumulative incidence of 

death with virological suppression for four illustrative patients after ʹ 

weeks of antiretroviral therapy. The lower panel displays these patient’s 

associated CDʹ counts during the first ʹ weeks. Shaded regions depict 

͵% confidence intervals. The scenario in the left panel displays two 

patients with different monitoring randomisations, but with an identical 

immunological response during the first ʹ weeks. Similarly, the right 

panel shows two patients with a limited immunological response during 

the first ʹ weeks. Despite substantial differences in CDʹ cell count 

trajectory, there were no difference in the predicted cumulative incidence 

of death with virological suppression. 

Figure ͱ: Predicted cumulative incidence of death with suppression  
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Figure ͲͰ demonstrates the effect of lower time-dependent CDʹ cell 

counts on the cumulative incidence of death with virological failure. For 

patients with a good immunological response during the first ʹ weeks, 

there was a near identical predicted cumulative incidence of death with 

virological failure by monitoring randomisation. In contrast, patients in 

scenario Ͳ had a poorer CDʹ response during the first ʹ weeks and had a 

higher cumulative incidence of death with virological failure. 

Figure ͲͰ: Predicted cumulative incidence of death with failure 
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3.3.5 Sensitivity Analyses 

Two analytical sensitivity analyses were conducted to assess the robustness 

of the findings. Firstly, the Fine and Gray subdistribution hazard regression 

method (stcrreg command in Stata vͱʹ) was used, rather than manually 

specifying the survival times for competing risks using the JM package in R. 

The underlying assumptions for these two estimation methods appear to 

be identical although the numerical maximisation algorithms differ. As the 

stcrreg command does not appropriately accommodate non-external time-

dependent covariates, the comparison was limited to the analysis of 

baseline covariates, i.e. the non-joint model. Second, sampling weights 

analogous to those used in Chapter Ͳ were applied, so that the results of 

analysis reflect the entire population enrolled in the DART trial rather than 

those who were included in the virology substudy. The results are shown in 

Table Ͳ and Table Ͳ and should be compared with Table Ͳͳ and Table Ͳ͵ 

respectively. 

The differences between the results of the analyses from the two programs 

are, in general, vanishingly small. For example, the adjusted SHR for 

baseline CDʹ cell count in the model of deaths with virological suppression 

was ͱ.͵Ͷ (͵% CI: Ͱ.ͳ-Ͳ.ͶͲ; p=Ͱ.Ͱ) under both the analysis in Stata and 

R. In conclusion, these sensitivity analyses confirmed that the main results 

of this chapter were robust to the statistical software used. 

In the adjusted subdistribution hazard model for patients who died with 

virological suppression an adjusted SHR for CDM compared to LCM of 

Ͱ.͵ʹ (͵% CI: Ͱ.Ͳ-ͱ.Ͱͳ; p=Ͱ.ͰͶ) was found using sampling weights 

compared to Ͱ.ͶͰ (Ͱ.ͳͱ-ͱ.ͱͳ; p=Ͱ.ͱͱ) in the original approach. Both effects 

are similar in magnitude, but with the sampling weights model this would 

be interpreted as more clearly demonstrating that patients with CDM have 

a lower incidence of death with virological suppression. Higher baseline 

CDʹ cell count was associated with a higher incidence of death with 

virological suppression in the sampling weights model compared to the 
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original analysis (aSHR=ͱ.ͶͲ; ͵% CI=Ͱ.ʹ-Ͳ.ͱ compared to aSHR=ͱ.͵Ͷ; 

͵% CI: Ͱ.ͳ-Ͳ.ͶͲ). This result was not expected but was robust to the 

analysis method used, so may reflect a chance finding due to the small 

number of patients analysed within this group (n=ʹͰ). 

In the adjusted subdistribution hazard model for patients who died with 

virological failure there were small differences in the adjusted SHR for 

monitoring randomisation and baseline CDʹ cell count. There was a lower 

incidence of death with virological failure for female patients in the 

sampling weights approach (aSHR=Ͱ.ͶͰ; ͵% CI=Ͱ.ͳͶ-ͱ.Ͱͱ; p=Ͱ.Ͱ͵) 

compared to the original analysis (aSHR=Ͱ.Ͷͷ; ͵% CI=Ͱ.ʹͱ-ͱ.ͱͱ; p=Ͱ.ͱͲ). In 

Chapter Ͳ, female patients were observed to have a lower incidence of 

virological failure so this result is reasonable. However, differences in the 

analysis population may contribute to this difference. A greater proportion 

of male patients (n=ͷͱ; Ͷ% vs n=ͱͰͰ; ͵%) died before week ʹ. The original 

analysis method for this chapter accounted for this as a competing risk, 

whereas this difference is not adjusted for with the sampling weights 

approach. 

Overall, these sensitivity analyses revealed that the main results of this 

chapter were robust to the use of statistical software package and analysis 

approach although there was minor variation in the exact estimated 

subdistribution hazard ratios. 
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Table Ͳ: Sensitivity analyses of competing risks for deaths with virological suppression conducted in Stata 
Variable Analysis without sampling weights (n=ͳ,ͳͱͶ) Analysis with sampling weights (n=ͱ,ͷʹͱ) 

SHR ͵% CI p-value aSHR ͵% CI p-value SHR ͵% CI p-value aSHR ͵% CI p-value 
Monitoring 
randomisation 

            

   LCM ͱ.ͰͰ - Ͱ.ͱͱ ͱ.ͰͰ - Ͱ.ͱͱ ͱ.ͰͰ - Ͱ.ͱͱ ͱ.ͰͰ - Ͱ.ͰͶ 
   CDM Ͱ.ͶͰ Ͱ.ͳͱ-ͱ.ͱͳ - Ͱ.ͶͰ Ͱ.ͳͱ-ͱ.ͱͳ - Ͱ.͵ Ͱ.ͳͱ-ͱ.ͱͲ - Ͱ.͵ʹ Ͱ.Ͳ-ͱ.Ͱͳ - 
Gender             
   Male ͱ.ͰͰ - Ͱ.ʹ - - - ͱ.ͰͰ - Ͱ.Ͷ - - - 
   Female ͱ.Ͳͷ Ͱ.Ͷʹ-Ͳ.ʹ - - - - ͱ.ͱͶ Ͱ.͵-Ͳ.Ͳ - - - - 
Initial ART             
   TDF ͱ.ͰͰ - Ͱ.ͳͷ - - - ͱ.ͰͰ - Ͱ.ͳʹ - - - 
   NVP ͱ.Ͱͱ Ͱ.ʹͲ-Ͳ.ʹͳ - - - - Ͱ. Ͱ.ʹͰ-Ͳ.ͳͷ - - - - 
   ABC ͱ.ͷ Ͱ.ͷ-ʹ.͵Ͳ - - - - ͱ.ͳ Ͱ.ͷ-ʹ.ͷͲ - - - - 
TB at enrolment ͱ.ͱͱ Ͱ.͵Ͷ-Ͳ.ͲͲ Ͱ.ͷͶ - - - ͱ.ͱͱ Ͱ.͵͵-Ͳ.Ͳʹ Ͱ.ͷͷ - - - 
Centre             
   Entebbe ͱ.ͰͰ - Ͱ.ͱͲ ͱ.ͰͰ - Ͱ.ͱ͵ ͱ.ͰͰ - Ͱ.ͱͰ ͱ.ͰͰ - Ͱ.ͱͰ 
   Kampala Ͱ. Ͱ.ʹ͵-ͱ.ͷͱ - Ͱ. Ͱ.͵Ͱ-ͱ.ͱ - Ͱ.ͱ Ͱ.ʹͶ-ͱ.Ͱ - Ͱ. Ͱ.͵Ͱ-ͱ.ͳ - 
   Harare Ͱ.ͳ Ͱ.ͱ͵-Ͱ.ͷ - Ͱ.ʹͲ Ͱ.ͱͶ-ͱ.Ͱͷ - Ͱ.ͳͷ Ͱ.ͱʹ-Ͱ.ʹ - Ͱ.ͳͷ Ͱ.ͱʹ-Ͱ. - 
Age (ͱͰ years) ͱ.ʹͱ ͱ.ͰͰ-ͱ. Ͱ.Ͱ͵ ͱ.ʹ͵ ͱ.ͰͰ-Ͳ.Ͱ Ͱ.Ͱ͵ ͱ.ͳ Ͱ.ͷ-ͱ.Ͷ Ͱ.Ͱͷ ͱ.ʹͲ Ͱ.ͷ-Ͳ.Ͱ Ͱ.Ͱͷ 
BMI (kg/mͲ) Ͱ.ͱ Ͱ.ͱ-ͱ.ͰͲ Ͱ.ͱͱ Ͱ. Ͱ.ͷ-ͱ.Ͱͱ Ͱ.Ͱ Ͱ.ͱ Ͱ.ͱ-ͱ.Ͱʹ Ͱ.ͱͶ Ͱ. Ͱ.ͷͷ-ͱ.ͰͲ Ͱ.Ͱ 
WHO Stage             
   Ͳ ͱ.ͰͰ - Ͱ.ͷͱ - - - ͱ.ͰͰ - Ͱ.Ͷ - - - 
   ͳ ͱ.ʹʹ Ͱ.͵-ͳ.͵ͳ - - - - ͱ.ʹͷ Ͱ.͵-ͳ.Ͷ͵ - - - - 
   ʹ ͱ.ʹ͵ Ͱ.͵ͳ-ͳ.ͷ - - - - ͱ.͵Ͳ Ͱ.͵ʹ-ʹ.Ͳʹ - - - - 
Baseline CDʹ 
cell count  
(ͱͰͰ Cells/mmͳ) 

ͱ.ʹ Ͱ.Ͱ-Ͳ.ʹͲ Ͱ.ͱͲ ͱ.͵Ͷ Ͱ.ͳ-Ͳ.ͶͲ Ͱ.Ͱ ͱ.͵ͳ Ͱ.ͱ-Ͳ.͵ Ͱ.ͱͱ ͱ.ͶͲ Ͱ.ʹ-Ͳ.ͱ Ͱ.Ͱ 
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Table Ͳ: Sensitivity analyses of competing risks for deaths with virological failure conducted in Stata 
Variable Analysis without sampling weights (n=ͳ,ͳͱͶ) Analysis with sampling weights (n=ͱ,ͷʹͱ) 

SHR ͵% CI p-value aSHR ͵% CI p-value SHR ͵% CI p-value aSHR ͵% CI p-value 
Monitoring 
randomisation 

            

   LCM ͱ.ͰͰ - Ͱ.ͰͰͳ ͱ.ͰͰ - Ͱ.ͰͰͳ ͱ.ͰͰ  Ͱ.ͰͰ͵ ͱ.ͰͰ - Ͱ.ͰͰʹ 
   CDM Ͳ.Ͳ ͱ.ͳͳ-ͳ.Ͱ - Ͳ.Ͳ͵ ͱ.ͳͲ-ͳ.ͷ - Ͳ.ͲͲ  - Ͳ.Ͳͷ ͱ.ͳͰ-ͳ.͵ - 
Gender             
   Male ͱ.ͰͰ - Ͱ.ͰͶ ͱ.ͰͰ - Ͱ.ͱͲ ͱ.ͰͰ  Ͱ.Ͱͳ ͱ.ͰͰ - Ͱ.Ͱ͵ 
   Female Ͱ.ͶͲ Ͱ.ͳͷ-ͱ.Ͱͱ - Ͱ.Ͷͷ Ͱ.ʹͱ-ͱ.ͱͱ - Ͱ.͵Ͷ  - Ͱ.ͶͰ Ͱ.ͳͶ-ͱ.Ͱͱ - 
Initial ART             
   TDF ͱ.ͰͰ - Ͱ.Ͳͱ - - - ͱ.ͰͰ  Ͱ.Ͳ - - - 
   NVP Ͱ.ʹͶ Ͱ.ͱ-ͱ.ͱ͵ - - - - Ͱ.͵ͱ  - - - - 
   ABC Ͱ.Ͷ Ͱ.Ͳ͵-ͱ.Ͱ - - - - Ͱ.ͶͶ  - - - - 
TB at enrolment Ͱ.ͳ Ͱ.͵Ͳ-ͱ.Ͷͷ Ͱ.ͱ - - - Ͱ.ͳ  Ͱ.Ͳ    
Centre          - - - 
   Entebbe ͱ.ͰͰ - Ͱ.ͳ͵ - - - ͱ.ͰͰ  Ͱ.ʹͱ - - - 
   Kampala ͱ.ͰͶ Ͱ.͵Ͷ-Ͳ.ͰͲ - - - - ͱ.Ͱͷ  - - - - 
   Harare ͱ.͵ͱ Ͱ.Ͱ-Ͳ.ͳ - - - - ͱ.ʹ  - - - - 
Age (ͱͰ years) Ͱ.Ͳ Ͱ.ͶͶ-ͱ.Ͳ Ͱ.Ͷͳ - - - Ͱ.  Ͱ.͵ͳ - - - 
BMI (kg/mͲ) Ͱ.ͷ Ͱ.Ͱ-ͱ.Ͱ͵ Ͱ.͵Ͱ - - - Ͱ.Ͷ  Ͱ.ͳ - - - 
WHO Stage             
   Ͳ ͱ.ͰͰ - Ͱ. - - - ͱ.ͰͰ  Ͱ.͵ - - - 
   ͳ ͱ.Ͱ͵ Ͱ.͵ʹ-Ͳ.ͰͲ - - - - ͱ.ͱ  - - - - 
   ʹ ͱ.Ͱ Ͱ.͵ͱ-Ͳ.ͳͱ - - - - ͱ.Ͳʹ  - - - - 
Baseline CDʹ 
cell count  
(ͱͰͰ Cells/mmͳ) 

Ͱ.ʹͶ Ͱ.Ͳ-Ͱ.ͷʹ Ͱ.ͰͰͱ Ͱ.ʹ Ͱ.ͳͰ-Ͱ.ͷͷ Ͱ.ͰͰͲ Ͱ.ʹ͵  Ͱ.ͰͰͱ Ͱ.ʹ͵ Ͱ.Ͳ-Ͱ.ͷʹ Ͱ.ͰͰͲ 
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3.4 Discussion 
3.4.1 Deaths with virological suppression 

The mortality rate while virologically suppressed was ͵.ͱ per ͱ,ͰͰͰ person-

years, while the mortality rate during periods of viremia was Ͳ͵.ͱ per ͱ,ͰͰͰ 

person-years. In comparison, mortality rates of ʹ.ͳ (͵% CI: ͳ.Ͷ–͵.ͱ) and 

ͳ.Ͷ (ͳ.Ͱ–ʹ.ͳ) per ͱ,ͰͰͰ person-years were observed in men and women 

respectively in an HIV-negative population cohort in Masaka, Uganda 

[ͱͳ]. A separate study estimated the mortality rate in Rakai, Uganda as ͳ.Ͳ 

and Ͳ.͵ per ͱ,ͰͰͰ person-years in HIV-negative men and women 

respectively [ͱͳ]. The observation that death rates during periods of 

virological suppression in DART were only marginally higher than 

observed in these two HIV-negative studies during the same period, 

suggests that non-HIV-related background mortality explains most deaths 

that occurred with virological suppression. 

Patients with a low body mass index at ART initiation were at an increased 

risk of death with virological suppression. However, there was no clear 

excess of deaths due to diarrhoea or wasting disease among patients who 

died with virological suppression. Body mass index was not associated with 

the cumulative incidence of death with virological failure. 

Masiira et al. [ͱͰͷ] categorised baseline body mass index into three 

categories and found that patients with a body mass index of less than ͱͷ.͵ 

and ͱͷ.͵ to ͱ.͵ had adjusted rate ratios for mortality of Ͷ.ͱͱ (Ͳ.ͳͰ-ͱͶ.ͲͰ) 

and ʹ.͵Ͳ (ͱ.͵ʹ-ͱͳ.ͳͲ) respectively compared to those with a body mass 

index greater than or equal to ͱ.͵. Brennan et al. [ͱͱͰ] and Fregonese et al. 

[ͱͱͱ] both concluded lower body mass index increased mortality when they 

dichotomized BMI with a cut-off of ͱ.͵ kg/mͲ. Converting continuous 

variables into categorical variables is widely criticised as both an 

unnecessary simplification for statistical analyses and statistically 

inefficient (approximately Ͷ͵% efficiency compared to ungrouped analyses 

[ͱͳͶ]). Our analysis expands upon these by using fractional polynomials for 
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body mass index, allowing for a non-linear relationship, and by providing a 

distinction between the virological status at mortality and the effect of 

baseline body mass index. 

Hoffmann et al. [ͱͱͲ] observed that ͱ% of deaths after one year of 

antiretroviral therapy in a South African cohort had a suppressed viral load 

at the time of the last measurement. However, their analysis used viral 

loads measured up to six months prior to death. It is likely that the actual 

proportion of patients with virological suppression at the time of death 

would be lower in this cohort. Brennan et al. [ͱͱͰ] observed that ͶͰ% of 

deaths occurred with a suppressed viral load, although this viral load was 

measured within one year of death. While Hoffmann et al. [ͱͱͲ] and 

Brennan et al. [ͱͱͰ] both report the proportion of deaths which occurred 

while virological suppressed, the analysis presented in this chapter is the 

first to our knowledge to investigate whether predictors of death differ by 

virological status. 

In current low-income populations, the proportion of deaths occurring 

with virological suppression is likely to be greater than those observed in 

the DART trial due to three considerations. Firstly, WHO guidelines now 

recommend patients initiate antiretroviral therapy with dual-class 

treatment regimens containing efavirenz. While not statistically significant 

in our findings, probably due to small numbers, NRTI-NNRTI regimens 

were observed to have a lower cumulative incidence of death with 

virological failure (SH=Ͱ.ʹ) compared to triple-NRTI regimens containing 

tenofovir. The analyses in this chapter indicate that increased use of NRTI-

NNRTI regimens would reduce the number of deaths with virological 

failure. Secondly, recent changes to treatment guidelines [ͱʹͰ] recommend 

starting antiretroviral therapy irrespective of CDʹ cell count. In analyses 

without time-dependent CDʹ cell count, patients who initiated 

antiretroviral therapy at higher CDʹ cell counts experienced lower 

mortality with virological failure although similar mortality with virological 
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suppression. However, the inclusion criteria in DART specified a baseline 

CDʹ cell count less than ͲͰͰ cells/mmͳ
, and our inferences may not apply 

to higher values. Finally, increasing access to CDʹ cell count or viral load 

monitoring is likely to lead to higher CDʹ cell count at time of death, as 

patients switch treatment at higher immunological thresholds. This is 

expected to result in a decrease in deaths with virological failure while 

having no impact on deaths with virological suppression.  

3.4.2 The role of laboratory monitoring 

There was not clear evidence that randomisation to CDʹ cell count 

monitoring had an effect on the incidence of deaths with virological 

suppression in the non-joint model (aSHR: Ͱ.ͶͰ; ͵% CI: Ͱ.ͳͲ-ͱ.ͱͳ; p=Ͱ.ͱͱ). 

In the joint model, there was no evidence that time-dependent CDʹ cell 

count had an effect on the cumulative incidence of death with virological 

suppression (aSHR=Ͱ.Ͷ; ͵% CI: Ͱ.-ͱ.Ͱͳ; p=Ͱ.Ͳʹ) nor that this differed 

by trial monitoring randomisation. A linear mixed model demonstrated 

that there was no evidence of a decline in CDʹ cell count in the ʹ weeks 

before death among patients who died with virological suppression. Only 

ͱ% of patients who died with virological suppression met the 

immunological criteria for treatment switch used in DART (<ͱͰͰ 

cells/mmͳ) and, by definition, none had reached virological criteria. In 

conclusion, more intensive laboratory monitoring than was used in DART, 

both immunological or virological, would have had a limited impact in 

preventing the occurrence of deaths with virological suppression. 

Patients in the CDM arm had a higher incidence of death with virological 

failure (aSHR: Ͳ.ͲͶ; p=Ͱ.ͰͰͳ) in analyses without time-dependent CDʹ cell 

count. A strong association with time-dependent CDʹ cell count was 

shown in the joint model (aSHR=Ͱ.ͷͶ; ͵% CI: Ͱ.ͷͲ-Ͱ.Ͳ; p<Ͱ.ͰͰͱ). There 

was no evidence that the effect of time-dependent CDʹ cell count differed 

by trial monitoring randomisation (aSHR=ͱ.ͰͲ; ͵% CI: Ͱ.ͷ-ͱ.ͰͶ; p=Ͱ.͵ͱ). 

Patients who died with virological failure had a decline in CDʹ cell count 
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before death. The inclusion of CDʹ cell count monitoring would be 

expected to reduce the number of deaths with virological failure. 

Other techniques to examine the impact of different laboratory monitoring 

strategies on mortality in low-income settings have been used. Ford et al. 

[ͱʹͱ] used dynamic marginal structural models applied to DART CDʹ cell 

count data, to determine the impact of different CDʹ cell count monitoring 

strategies. Defining baseline as ʹ weeks of antiretroviral therapy, the 

estimated survival probabilities at ͲʹͰ weeks of antiretroviral therapy were 

Ͱ.Ͳ (͵% CI: Ͱ.ͱ – Ͱ.ʹ) with no CDʹ cell count monitoring, Ͱ.͵ (͵% 

CI: Ͱ.ͳ – Ͱ.Ͷ) with a single CDʹ test at week ʹ and Ͱ.Ͷ (͵% CI: Ͱ.ʹ – 

Ͱ.ͷ) with testing every twelve weeks. The findings from this chapter imply 

that this small improvement is likely achieved by preventing deaths with 

virological failure. More frequent testing had a limited impact on mortality 

since most patients who die with virological suppression would not have a 

treatment switch indicated, even with enhanced monitoring. 

3.4.3 Conclusions 

A surprisingly high proportion (ʹͰ%) of deaths after one year of first-line 

ART in DART were observed among patients who were virologically 

suppressed. Separate analyses were conducted of predictors of deaths that 

occurred with and without virological failure using a competing risks 

framework. Predictors of death with virological failure were largely as 

expected, the most powerful individual predictor being time-dependent 

CDʹ count. It is presumed that most deaths without virological failure 

were due to non-HIV related causes, backed by the fact that the incidence 

rates of such deaths were broadly similar to background mortality rates in 

these populations. Increased laboratory monitoring would likely have a 

limited impact on the incidence of such deaths. Two baseline factors were 

identified that were significantly associated with the risk of death with 

virological suppression: low BMI and high CDʹ cell count. Whether 

providing nutritional counselling and food supplements in patients 
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initiation antiretroviral therapy with low CDʹ cell count is one of the 

objectives of the REALITY trial. The finding that the risk of death with 

virological suppression increased with baseline CDʹ cell count, in both 

cause-specific and subdistribution hazard models, is paradoxical and 

remains unexplained. However, the number of such deaths was small 

(n=ʹͰ) and the possibility that this was a chance observation cannot be 

excluded. 

 



 

ͱͲͳ 

4 HIV-1 drug resistance after persistent 
virological failure 

4.1 Introduction 
One of the principal concerns with clinical or CDʹ cell monitoring is that 

patients may remain on a regimen with virological failure for longer 

compared to regular virological monitoring. This has the potential to lead 

to an accumulation of acquired HIV-ͱ drug resistance mutations which 

could compromise subsequent regimens. Furthermore, drug resistant HIV 

may be transmitted to others if a patient has high viral load. 

Recent research [ͱʹͲ] has estimated the prevalence of transmitted drug 

resistance to be ͵.ͷ% in Africa and ͷ.Ͷ% in Asia, with patients ͱ.ͷ times 

more like to have transmitted drug resistance in a country where 

antiretroviral therapy had been available for more than five years. Another 

study by Gupta et al. [ͱʹͳ] found that drug resistance was increasing by 

Ͳ% per year in East Africa, particularly NNRTI resistance [ͱʹͳ]. 

4.1.1 Acquired HIV-1 Drug Resistance 

A literature review was conducted on the ͱͲth August ͲͰͱͶ using PubMed 

to find English language publications which investigated acquired HIV-ͱ 

drug resistance in low-income settings. Search terms for HIV, low-income 

settings (resource* OR “sub-Saharan” OR “low-income” OR Uganda OR 

Zimbabwe OR "South Africa"), resistance and first-line were used. The 

search identified ͳͰͰ publications and ͱͰͰ were found to be relevant 

(Figure Ͳͱ). Notable results from these publications are discussed below, 

and the full list is available in Appendix E. 
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Figure Ͳͱ: Search strategy for HIV-ͱ drug resistance publications 

Sigaloff et al. [ͱʹʹ] examined HIV-ͱ drug resistance in a cross-sectional 

analysis of Ͳ͵Ͱ patients in multiple sub-Saharan African countries. These 

patients initiated treatment on a first-line regimen containing either 

nevirapine or efavirenz and were switching treatment at the time of 

testing. Patients switched treatment based on either clinic immunological 

criterion only (either a new WHO clinical stage ͳ or ʹ condition, a fall of 

CDʹ cell count below pre-treatment value, a CDʹ cell count decrease of 

greater than ͵Ͱ% or a persistent CDʹ cell count less than ͱͰͰ cells/mmͳ) or 

with additional targeted viral load testing (local real-time HIV RNA test to 

confirm suspected treatment failure). Treatment was switched after a 

median of Ͳ months in the group monitored with clinic immunological 

criterion only and after Ͳ͵ months in the group with targeted viral load 

testing. Extensive NRTI cross-resistance was observed in both groups. The 

MͱʹI/V mutation was present in Ͳ% of patients, often alongside 

thymidine analogue mutations (TAMs) (͵ͳ%). Patients frequently had 

multiple TAMs, ͳ% of patients had two or more TAMs and Ͳʹ% had three 

or more. Multiple TAMs were associated with an increased duration on 

antiretroviral therapy and a history of zidovudine use. NRTI cross-
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resistance was associated with a higher viral load at the time of the 

resistance test, longer duration on antiretroviral therapy and either 

zidovudine or tenofovir use. The researchers noted that while their 

research was representative of the current clinical practice in Africa, it was 

limited by focusing on individuals who were switching treatment. 

Hamers et al. [ͱʹ͵] examined HIV-ͱ drug resistance in a retrospective cross-

sectional analysis of Ͳ,͵ patients who had virologically failed (viral load 

greater than ͱ,ͰͰͰ copies/mL) a NRTI + NNRTI treatment after twelve 

months of antiretroviral therapy in six sub-Saharan African countries. They 

found that ͷͰ% of patients had one or more mutation; ͵% had NRTI and 

Ͷͱ% had NNRTI mutations. The MͱʹV mutation was the most prevalent 

(͵%) and, as a combination, was less frequently observed with a TAM 

(%) but more often seen in conjunction with an NNRTI mutation (ʹ͵%). 

TAMs were rarer in this study compared to Sigaloff et al. [ͱʹʹ], with ͱͳ% of 

patients having one or more. In patients with exposure to nevirapine, Ͷͳ% 

of those with virological failure had an NNRTI mutation and common 

mutations included KͱͰͳN (Ͳ͵%) and YͱͱC (Ͳͳ%). Patients with drug 

resistance mutations had lower viral load at the time of resistance test 

(p=Ͱ.Ͱʹ), in particular, patients with the MͱʹV mutation (ʹ.Ͳͱ versus ʹ.͵ 

logͱͰ copies/mL; p=Ͱ.ͰͲ). 

The findings of Hamers et al. differ to Sigaloff et al. [ͱʹʹ] and are likely a 

result of lower adherence during the first twelve months of therapy, 

reflected in the prevalence of the MͱʹV mutation. Sigaloff et al. [ͱʹʹ] 

examined patients who had been on treatment for longer, who had met 

either clinical or immunological criteria for treatment switch and who 

frequently had HIV-ͱ drug resistance, so virological failure was less likely to 

be due to non-adherence. 

The TenoRes Study Group [ͱʹͶ] conducted a global study examining the 

prevalence of tenofovir resistance (defined as KͶ͵R/N or KͷͰE/G/Q) after 

virological failure on regimens containing tenofovir with lamivudine or 
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emtricitabine and either nevirapine or efavirenz. The highest prevalence of 

tenofovir resistance was observed in sub-Saharan Africa (ͳͷͰ out of Ͷ͵ʹ 

patients; ͵ͷ%). Tenofovir resistance was strongly associated with a CDʹ 

cell count at antiretroviral therapy initiation of less than ͱͰͰ cells/mmͳ 

(OR: ͱ.͵Ͱ; ͵% CI: ͱ.Ͳͷ-ͱ.ͷͷ) but not associated with a higher viral load at 

antiretroviral therapy initiation. The use of lamivudine compared to 

emtricitabine (OR: ͱ.ʹ; ͵% CI: ͱ.ͲͰ-ͱ.Ͳ) and nevirapine compared to 

efavirenz (OR: ͱ.ʹͶ; ͱ.Ͳͷ-ͱ.Ͷͷ) were associated with higher prevalence of 

tenofovir resistance. Unlike the other studies discussed, there was no 

association between viral load at treatment failure and tenofovir resistance 

(p=Ͱ.Ͷͳ). This could be a result of other studies comparing viral load at 

treatment failure with any detectable resistance rather than these specific 

tenofovir resistance mutations. 

Pinoges et al. [ͱʹͷ] examined first-line drug resistance using a cross-

sectional survey of patients without routine virological monitoring from 

three sub-Saharan African countries and Cambodia. In total, ͱ͵ͱ out of ͱͰ 

(ʹ%) patients had major drug-resistance as defined using the Stanford 

interpretation algorithm, and ͱͳͳ of ͱͰ (ͷʹ%) had resistance to NRTI and 

NNRTIs. Patients had a median of ͳ mutations, and these were commonly 

MͱʹV (ͷʹ%), KͱͰͳN (ͳ͵%), YͱͱC (ͳͱ%), VͱͷI (ͳͰ%), TͲͱ͵Y (ͱͳ%) and 

MʹͱL (ͱͱ%), while Ͳͷ% of patients had one or more TAMs. There was 

higher viral load at the time of failure in those with more mutations, but no 

relationship was observed with the duration of antiretroviral therapy. 

Jiamsakul et al. [ͱʹ] evaluated patients in the TREAT Asia cohort who had 

a resistance test in the six months before switching to second-line 

antiretroviral therapy. Of the ͱͰ͵ patients, Ͳ% had drug resistance to any 

class, and ͳͷ% had multi-drug NRTI resistance (classified as either Qͱ͵ͱM, 

the Ͷ insertion mutation, two or more TAMs or MͱʹV and one or more 

TAM). TAMs were frequent, with ͳͳ% having one or more and Ͳͳ% having 

two or more. The most common individual mutation was MͱʹV (ͷ͵%) 
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although NNRTI mutations were also common (YͱͱC; ͳ͵% and KͱͰͳN; 

ͳͳ%). 

4.1.2 Resistance by HIV-1 Subtype 

Sigaloff et al. [ͱʹʹ] found a univariate association between two or more 

TAMs and NRTI cross-resistance with a patient’s HIV-ͱ subtype. In 

univariate logistic regression analyses there were increased odds of 

resistance for subtype D compared to subtype C (OR: Ͳ.ʹ; ͵% CI: ͱ.Ͱͳ-

͵.ͷ for two or more TAMs and Ͳ.Ͳ; ͵% CI: Ͱ.͵-͵.͵Ͳ for NRTI cross-

resistance). In addition, there was increased resistance for subtype A 

compared to subtype D. However, this association with HIV-ͱ subtype was 

no longer significant after accounting for the duration of antiretroviral 

therapy use and the NRTI backbone. The KͶ͵R mutation was associated 

with tenofovir use and higher HIV viral load but not with HIV-ͱ subtype. 

In Hamers et al. [ͱʹ͵] there was no association between subtype and the 

presence of one or more drug resistance mutations. Univariate analyses 

initially suggested that the KͶ͵R mutation may be more frequent in 

patients with subtype C (ͱͷ%) than non-C (ͷ%). However, after adjusting 

for the use of tenofovir and stavudine, there was no evidence of a 

difference in multivariate analyses (p=Ͱ.Ͷ). The KͱͰͳN mutation was 

more frequent in subtype D than subtype A after adjusting for efavirenz 

and nevirapine use (OR for D versus non-D: ͳ.ʹͰ; ͵% CI: ͱ.Ͳͱ-.͵; 

p=Ͱ.Ͱͱʹ). VͱͰͶM was exclusively found in patients with subtype C virus, 

but no other mutations were associated with HIV-ͱ subtype. 

The TenoRes study group conducted an analysis within immigrant 

populations in western Europe and observed an association between 

subtype C and tenofovir resistance compared with non-C, non-B subtypes 

in unadjusted analyses (OR: Ͳ.ʹʹ; ͵% CI: ͱ.ͶͶ-ͳ.͵). 
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4.1.3 Objective 

The purpose of this chapter is to determine the extent of HIV-ͱ drug 

resistance at the end of first-line antiretroviral therapy in patients observed 

to have experienced persistent virological failure (using the definition of 

Chapter Ͳ). The proportion of patients with virological failure in whom 

HIV drug resistance develops will be evaluated by antiretroviral therapy 

regimen and HIV-ͱ subtype. The number and combinations of mutations 

will be quantified leading to recommendations about the antiretroviral 

drugs which retain the most susceptibility after a patient has potentially 

had prolonged periods with persistent viraemia. 

4.2 Methods 
Patients with virological failure (viral load greater than ͲͰͰ copies/mL) 

had genotypic sequencing attempted at the last stored plasma sample on 

first-line antiretroviral therapy, i.e. the first sample tested as part of the 

walkback procedure described in Section Ͳ.Ͳ.ͱ. If a stored plasma sample 

could not be located, or if RNA could not be amplified, then the next 

available stored plasma sample was requested. At least two additional 

replacement samples were requested for each sequence which could not be 

obtained. Samples were sequenced using reverse transcriptase-polymerase 

chain reaction and sequencing of the pol gene using an in-house 

sequencing method. Sequencing was carried out at either the MRC/URVI 

Uganda Research Unit on AIDS, Entebbe, Uganda or the Joint Clinical 

Research Centre, Kampala, Uganda. 

Sequences were processed using the Stanford Sierra HIVdb algorithm vͷ.Ͱ. 

Resistance to an HIV-ͱ drug class was defined as one or more major IAS-

USA [ͱʹ] mutations for that class. Susceptibility to individual 

antiretroviral drugs was determined using the Stanford drug resistance 

mutation penalty scores with categories of susceptible (Ͱ-), potential low-

level resistance (ͱͰ-ͱʹ), low-level resistance (ͱ͵-Ͳ), intermediate resistance 

(ͳͰ-͵) and high-level resistance (≥ͶͰ). Thymidine analogue mutations 
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(TAMs) were classified as MʹͱL, DͶͷN, KͷͰR, LͲͱͰW, TͲͱ͵Y, TͲͱ͵F, KͲͱE 

and KͲͱQ. 

All sequences had HIV-ͱ subtype determined using the REGA vͳ subtyping 

algorithm [ͲͰ]. This tool uses a phylogenetic-based approach to define 

HIV-ͱ subtype. HIV-ͱ sub-subtypes, such as HIV-ͱ Subtype Aͱ and AͲ, were 

combined in analyses and treated as a pure HIV-ͱ subtype. Sequences 

identified as potential recombinants, such as “HIV-ͱ Subtype C-like”, were 

dealt with as complex/recombinant subtypes in analyses alongside 

recognised CRFs (e.g. CRFͰͱ_AE). 

4.2.1 Quality control 

Retrieving and sequencing plasma samples, several years after the DART 

trial originally concluded, has been a lengthy and time-consuming process. 

During this period, there have been multiple occasions where samples 

from different patients could have been switched in error. A longitudinal 

analysis of the evolution of HIV-ͱ drug resistance within an individual 

(Chapter ͵) would be severely compromised if a sequence from a different 

patient was used. Similarly, cross-sectional analyses in this chapter relating 

patient characteristics to the evolution of HIV-ͱ drug resistance could be 

misleading. 

Phylogenetic analyses are typically used to provide inference about 

transmission networks, clustering patients whose transmission is likely 

linked. Phylogenetic analyses use the genetic distance between sequences 

and a model for HIV-ͱ evolution to construct a phylogenetic tree. These 

group sequences related together to form clusters, the length of each 

branch in the tree representing the genetic distance between a pair of 

sequences. Within DART, sequences from the same patient should appear 

to be more closely related to each other than those from a separate patient. 

When sequences appear highly dissimilar, this indicates that an error may 

have occurred and this sequence is removed from subsequent analyses. 
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All sequences in the DART database were used to investigate inter-patient 

sequence similarity, including sequences from patients not part of the 

DART Virology study. These sequences offer additional information for the 

structure of the tree and increase the potential for errors to be identified. A 

total of Ͳ,ͳͶͲ sequences from ͲͰ patients were included, and Ͷͱʹ patients 

had more than one sequence. The average length of the sequences 

included was ͱ,Ͳʹͷ nucleotides. Clustal Omega [ͱ͵Ͱ] was used to align the 

sequences, including six additional sequences representing an “outgroup”. 

These outgroup sequences were selected from the NCBI Genbank using 

HIV BLAST and were all pol regions of subtype B sequences from the UK 

HIV Drug Resistance Database. They were chosen as they were genetically 

distinct from HIV sequences in both Uganda and Zimbabwe, known apriori 

to be predominantly subtype A and C, while still being high-quality 

sequences from the same major HIV-ͱ group. All amino acid positions 

related to HIV-ͱ drug resistance (according to the IAS-USA ͲͰͱͳ mutation 

list [ͱ͵ͱ]) were removed using BioEdit vͷ.Ͳ.͵ from aligned sequences. 

Phylogenetic analyses were conducted using the Kimura Ͳ-parameter 

model of genetic distance using the third codon position since this is better 

approximated by a neutral model of HIV-ͱ evolution [ͱ͵Ͳ]. Ambiguous 

positions were removed for each pair of sequences when genetic distance 

was calculated.  

The phylogenetic tree (Figure ͲͲ) and pairwise distance calculations were 

conducted in MEGAͶ [ͱ͵ͳ]. The colours in the tree represent HIV-ͱ subtype 

and are predominantly clustered together. The top left and top right areas 

of the phylogenetic tree feature long branches which may be misclassified 

subtypes. As an example, towards the top right is a cluster of apparent 

subtype A, D and complex/recombinant sequences branching from the 

subtype C clade. This group is genetically distant from the subtype C clade, 

as indicated by the long length of this branch, so may be unidentified 

complex recombinants. Nonetheless, samples are consistently clustered by 
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patients within these groups, so this does not indicate errors were made 

with patient samples. 

Figure ͲͲ: Phylogenetic tree of pol region data from DART colour 
coded by HIV-ͱ Subtype (plotted using the R [ͱͳͷ] ape package [ͱ͵ʹ]) 

 
Within this phylogenetic tree, ͱ,ͳ sequences from the ͶͰ individual 

DART Virology study patients were examined to determine if they were 

clustered. Figure Ͳͳ illustrates an example where all sequences are 

grouped, and there is no suspicion that a sequence has been mislabelled. If 

a sequence from one patient appeared to be more closely related to the 

sequence from another patient, then the pairwise genetics distance was 

examined. When the sequence was substantially closer to another patient’s 

(a difference of more than Ͱ.Ͱͳ was used as a cut-off), then the sequence 

was dropped from subsequent analyses. For patients with just two 

sequences, both were dropped. Figure Ͳʹ illustrates a case where sequence 
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ͱͳͲ 

EͱͲͰͷͰ.Ͷͷʹͷʹͳ is dissimilar to others from the same patient, with a 

distance of Ͱ.ʹ͵, whereas it is a distance of Ͱ.Ͱʹ from patient TͱͲͰʹͱ’s 

sequences. The subtypes of these sequences also differ, with the first 

assigned a pure subtype D virus and others, supposedly from the same 

patient, a complex subtype C recombinant. In total, ͶͲ (ͳ%) sequences 

from ʹͶ (%) patients were removed from further analyses based on this 

quality control procedure. Of these, ͱͲ (Ͳ%) sequences were from the last 

time point and so were excluded from analyses in this chapter. 

Figure Ͳͳ: Sequences from patient BͱͲͰͷͳ are clustered 
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ͱͳͳ 

Figure Ͳʹ: Sequences from patient EͱͲͰͷͰ are distantly related 

 

4.3 Results 
4.3.1 Resistance tests available 

In total, resistance tests were available for ͵ʹͲ patients (%) of the ͶͰ 

patients with virological failure (Chapter Ͳ) within Ͳʹ weeks of the last 

time point on first-line antiretroviral therapy. The median (IQR) viral load 

at this time was ͳ͵,Ͷ (ͳ,ͳͲ-ͱͱͶ,Ͷ) copies/mL. Resistance tests were 

missing due to either a plasma sample not being located (ͲͶ; ͳ%), a 

failure to amplify the sample (Ͳ; ʹͳ%) or due to a sequence failing 

phylogenetic quality control (ͱͲ; ͱ%). Resistance tests were more likely to 

be missing depending on the type of treatment failure observed (χͲ test: 

p<Ͱ.Ͱͱ). Patients who virologically failed before death were the most likely 

to be missing a resistance test (ͱͱ/ͶͲ; ͱ%), followed by patients who were 

on first-line antiretroviral therapy at the end of the DART trial (ʹͱ/ͳͱͱ; ͱͳ%) 
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and patients who switched antiretroviral therapy (ͱ͵/ͲͳͶ; Ͷ%). The higher 

proportion missing a resistance test among patients who died is a result of 

fewer plasma samples with virological failure being available for testing. 

Tests were more likely to fail in patients with lower viral load at the time of 

resistance test. Of the ͷͳ patients with a viral load of ͲͰͰ-ͱ,ͰͰͰ copies/mL, 

ͳͰ% were missing a resistance test due to difficulties amplifying stored 

plasma samples with low viral load levels. There was no difference in the 

proportion missing by any baseline characteristic (Table ͳͰ). 

Table ͳͰ: Proportion missing by baseline and test characteristic 

Variable Number (%) Missing (%) χͲ test p-value 
Gender    
   Male ͲʹͰ (ͳ%) Ͳʹ (ͱͰ%) Ͱ.͵Ͳ 
   Female ͳͶ (Ͷͱ%) ʹͳ (ͱͲ%) - 
Monitoring randomisation   
   LCM Ͳʹ (ʹ%) ͳͳ (ͱͱ%) Ͱ.ͷ 
   CDM ͳͱ͵ (͵Ͳ%) ͳʹ (ͱͱ%) - 
Centre    
   Entebbe ͲͰʹ (ͳʹ%) ͲͰ (ͱͰ%) Ͱ.ͳͲ 
   Kampala Ͳͳͱ (ͳ%) ͳͱ (ͱͳ%) - 
   Harare ͱͷʹ (Ͳ%) ͱͶ (%) - 
First-line ART 
   TDF ʹͰͰ (Ͷͷ%) ʹͷ (ͱͲ%) Ͱ.ͳͶ 
   NVP ͱͰͱ (ͱͷ%) ͷ (ͷ%) - 
   ABC ͱͰ (ͱ%) ͱͳ (ͱͲ%) - 
Baseline CDʹ Cell Count 
   Ͱ-ʹ ͲͶ͵ (ʹʹ%) ͳͰ (ͱͱ%) Ͱ.͵ 
   ͵Ͱ- ͱʹ͵ (Ͳʹ%) ͱ (ͱͲ%) - 
   ͱͰͰ-ͱʹ ͱͱͱ (ͱ%) ͱͱ (ͱͰ%) - 
   ͱ͵Ͱ-ͱ  (ͱʹ%)  (%) - 
Patient status at test 
   Death ͶͲ (ͱͰ%) ͱͱ (ͱ%) Ͱ.ͰͲ 
   Switch ͲͳͶ (ͳ%) ͱ͵ (Ͷ%) - 
   First-line ͳͱͱ (͵ͱ%) ʹͱ (ͱͳ%) - 
VL at target test (copies/mL) 
   ͲͰͰ-ͱ,ͰͰͰ ͷͳ (ͱͲ%) Ͳͳ (ͳͲ%) <Ͱ.ͰͰͱ 
   ͱ,ͰͰͰ-ͱͰ,ͰͰͰ ͱʹͳ (Ͳͳ%) ͲͲ (ͱ͵%) - 
   ͱͰ,ͰͰͰ-ͱͰͰ,ͰͰͰ ͲͰͰ (ͳͳ%) ͱͱ(Ͷ%) - 
   ≥ͱͰͰ,ͰͰͰ ͱͳ (ͳͲ%) ͱͱ (Ͷ%) - 

The subtype distribution within country (Table ͳͱ) revealed that the vast 

majority of patients in Zimbabwe had subtype C virus. The subtype 
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distribution within Uganda was more varied than in Zimbabwe with a 

mixture of subtype A and D. The existence of multiple pure subtypes 

within the region has led to the development of several 

complex/recombinant forms, although these are still a minority. 

Table ͳͱ: HIV-ͱ Subtype by country 

HIV-ͱ Subtype Uganda Zimbabwe Overall 
Subtype A Ͳͱʹ (͵Ͷ%) Ͱ (Ͱ%) Ͳͱʹ (ͳ%) 
Subtype C Ͷ (Ͳ%) ͱ͵ͷ (%) ͱͶͳ (ͳͰ%) 
Subtype D ͱͲͲ (ͳͲ%) Ͱ ͱͲͲ (Ͳͳ%) 
Subtype G Ͱ (Ͱ%) ͱ (ͱ%) ͱ (Ͱ%) 
Complex ʹͲ (ͱͱ%) Ͱ (Ͱ%) ʹͲ (%) 

4.3.2 Treatment switches 

Analyses in previous chapters have used an intention to treat approach and 

analysed patients according to the initial antiretroviral therapy regimen 

assigned at randomisation. In the DART trial protocol, a switch to a 

second-line regimen was defined as the inclusion of a protease inhibitor. 

Antiretroviral drugs could otherwise be substituted for adverse events, 

preferably within antiretroviral class, without this fulfilling the definition 

of a switch to second-line. Within this analysis, substitutions from an NRTI 

to an NNRTI are treated as a treatment switch and a separate regimen. 

Of the ͳ,ͳͱͶ patients in the DART trial, a stavudine (DʹT) substitution was 

made in ʹ͵ patients (ͱʹ%), a switch to nevirapine was made in ͱͲ (͵%), a 

efavirenz substitution from nevirapine was made in Ͳͷ (͵%) patients and a 

switch to efavirenz was made in ͲͲ͵ (%) patients. A stavudine 

substitution was not associated with initial antiretroviral therapy regimen 

(χͲ test p=Ͱ.͵ͲͶ). A nevirapine switch was more likely in patients on 

abacavir than tenofovir (ͷ% versus ʹ%; p=Ͱ.Ͱͱ). Switches to efavirenz 

were more likely in patients on either tenofovir or abacavir than patients 

who started on nevirapine (% and ͷ% versus ͵% respectively; p=Ͱ.ͰͲͷ). 

There was no evidence of a difference in the time to stavudine substitution 

by initial antiretroviral therapy regimen (Nonparametric equality-of-

median test p=Ͱ.ʹͰ) which occurred after a median (IQR) of ͲͰ (ͱͲ-ͶͰ) 
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weeks. A switch to nevirapine occurred earlier in patients on abacavir 

(n=ͲͲ; Median=ͱͱͶ; IQR=Ͳʹ-ͱͷ weeks) compared to those on tenofovir 

(n=ͱͰͶ; Median=ͲͰ; IQR=ͱͱ-ͲʹͰ weeks) (Nonparametric equality-of-

median test p=Ͱ.ͰͱͰ). A substitution including efavirenz occurred earlier 

in patients on nevirapine (n=Ͳͷ; Median: ͱʹͱ; IQR=ͱͱͲ-ͲͲʹ weeks) than 

either tenofovir (n=ͲͰʹ; Median: ͲͱͲ; ͱ͵Ͷ-Ͳʹ weeks) or abacavir (n=Ͳͱ; 

Median: ͲͰͳ; IQR=ͱͳ-Ͳͳͱ weeks) (Nonparametric equality-of-median test 

p=Ͱ.Ͱʹ).  

Switches from a triple-NRTI regimen to one containing an NNRTI were 

reported as being due to adverse events (ͲͶ/ͳͲͳ; %), starting a non-PI-

containing second-line regimen (ͱ/ͳͲͳ; Ͷ%, erroneously reported since 

this didn’t fulfil the definition), a patient decision (Ͳ/ͳͲͳ; ͱ%) or another 

reason (wrong dispensation (n=), antiretrovirals from another source 

(n=ʹ) or unknown (n=ʹ)).  

Within patients who were selected for HIV-ͱ drug resistance testing, ͳͶ 

patients on tenofovir and ͱʹ patients on abacavir switched to a regimen 

containing an NNRTI. Of these, patients who switched on tenofovir 

received the NNRTI for a median of ͳͶ weeks (IQR=Ͳʹ-ʹ weeks) at the 

time of resistance test; ͱ% (IQR=ͱͰ-ͳͷ%) of the time spent on first-line 

antiretroviral therapy. Patients on abacavir who switched had received the 

NNRTI for a median of ͵ weeks (IQR=ͳͶ-ͱͱͷ weeks) at the time of 

resistance test;  Ͳ% (IQR=ͱ͵-ͶͶ%) of the time on first-line antiretroviral 

therapy before the HIV-ͱ drug resistance test. 

To account for the complete individual drug history of patients in the 

following analyses is infeasible due to the limited sample size. However, a 

substitution to a regimen containing NNRTIs when analysing resistance by 

antiretroviral therapy regimen may influence findings, so this will be 

included alongside initial antiretroviral therapy regimen. 
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4.3.3 Resistance by drug class 

Resistance to a drug class was defined as one or more major IAS mutations 

[ͱʹ] to that class (Table ͳͲ). NRTI resistance was high with Ͱ% of 

patients with virological failure having one or more major NRTI mutations 

at the last time in the trial on first-line antiretroviral therapy. Major NNRTI 

resistance mutations were lower and observed in ͶͶ% of virologically 

failing patients who received first-line nevirapine. Both NRTI and NNRTI 

resistance mutations were highest among participants who switched to a 

regimen including an NNRTI, ͷ% and ͱͰͰ% of these participants who 

started on tenofovir and abacavir respectively had NRTI resistance while 

ͷͲ% and Ͷ% had NNRTI resistance. Nonetheless, even in virologically 

failing patients with no reported NNRTI exposure, there remained ʹͱ/ͳ 

(ͱͰ%) with NNRTI resistance. There was no evidence for a difference by 

gender in these patients (Ͳͳ of ʹͱ were female; ͵Ͷ%; p=Ͱ.Ͷ), suggesting 

that undocumented NNRTI use to prevent mother to child transmission 

was not a factor. 

Table ͳͲ: Resistance to drug class by ARTs received 

ARTs received 
(ZDV+ͳTC+) 

NRTI Resistance NNRTI Resistance 

TDF ͲͶ/ͳͱͷ (Ͱ%) ͳͱ/ͳͱͷ (ͱͰ%) 
TDF & NNRTI ͳ͵/ͳͶ (ͷ%) ͲͶ/ͳͶ (ͷͲ%) 
NVP ͳ/ʹ (%) ͶͲ/ʹ (ͶͶ%) 
ABC ͷͰ/ͱ (Ͷ%) ͱͰ/ͱ (ͱͲ%) 
ABC & NNRTI ͱʹ/ͱʹ (ͱͰͰ%) ͱͲ/ͱʹ (Ͷ%) 
Total ʹ/͵ʹͲ (Ͱ%) ͱʹͱ/͵ʹͲ (ͲͶ%) 

 

  



Chapter ʹ: HIV-ͱ drug resistance after persistent virological failure 

ͱͳ 

Figure Ͳ͵ displays the major IAS mutations observed among all patients 

with a HIV-ͱ drug resistance test. The prevalence of MͱʹV mutations was 

high among those with NRTI resistance, ʹʹͲ (Ͳ%) patients had this 

mutation. One or more TAMs were found in ʹͱ (ͷ%) patients and these 

were, in order of frequency, MʹͱL (n=ͳͱ͵; ͵%), DͶͷN (n=Ͳͷ; ͵Ͳ%), KͷͰR 

(n=ͲʹͶ; ʹͶ%), TͲͱ͵Y (n=ͱͰ; ͳ͵%), LͲͱͰW (n=ͱͳ; ͲͶ%), TͲͱ͵F (n=ͱͲͱ; 

Ͳͳ%), KͲͱQ (n=ͱͲͰ; ͲͲ%) and KͲͱE (n=ͱͱ; ͲͲ%). 

Figure Ͳ͵: Mutations observed 

 

Predictors of one or more major NRTI mutations were examined in Table 

ͳͳ among all patients with a HIV-ͱ drug resistance test. Variables from 

univariate analyses with a p-value less than Ͱ.Ͳ were included in 

multivariate analyses. The patient status at the time of resistance test was a 

significant predictor in univariate analyses, with patients genotyped at the 

end of the trial or at the time of second line switch having more NRTI 

resistance than patients who died with virological failure. In multivariate 

analyses, this variable was no longer significant, likely due to correlation 

with the time since virological failure. Time since virological failure 
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significantly predicted NRTI resistance; each additional ʹ weeks was 

associated with a ͷͰ% increase in the odds of NRTI resistance. Patients 

who started antiretroviral therapy with a higher CDʹ cell count were less 

likely to develop NRTI resistance at virological failure (OR=Ͱ.Ͳ per ͱͰͰ 

cells/mmͳ). Patients with higher viral load at the time virological failure 

was first detected were less likely to develop NRTI resistance (OR=Ͱ.͵ͷ). 

This suggests that patients with very high viral loads at failure were non-

adherent. Viral load at the time of test was no longer included in 

multivariate analyses due to strong correlation with the viral load at the 

time virological failure was first detected. 

The logistic regression model results, shown in Table ͳʹ, expand upon 

these findings by excluding MͱʹI/V and examining for the presence of any 

other major IAS NRTI mutation among all patients with a HIV-ͱ drug 

resistance test. Findings were similar to the overall analysis of NRTI 

resistance, except there was no evidence that either viral load at failure or 

gender predicted the presence of NRTI resistance in univariate analyses. 

Time since virological failure was first detected and the baseline CDʹ cell 

count were predictive of NNRTI resistance (Table ͳ͵). Each additional ʹ 

weeks of antiretroviral therapy was associated with a ͳʹ% increase in the 

odds of NNRTI resistance. In contrast to NRTI resistance, there was no 

evidence that the viral load at the time of virological failure was predictive 

of NNRTI resistance in either univariate or multivariate analyses. Both age 

and baseline viral load were predictive of NNRTI resistance. Older patients 

had reduced odds of NNRTI resistance (͵% lower per year) possibly due to 

improved adherence. Patients with a higher baseline viral load were less 

likely to develop NNRTI resistance (ʹͷ% per logͱͰ copies/mL), although 

this latter finding is not currently explained and could be due to chance. 
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Table ͳͳ: Logistic regression model of NRTI Resistance 

Variable N (% with NRTI Res) Uni
OR 

p-value Multi 
OR 

͵% CI p-value 

ARTs received       
   TDF ͲͶ/ͳͱͷ (Ͱ%) ͱ.ͰͰ Ͱ.ͳ͵ - - - 
   TDF & NNRTI ͳ͵/ͳͶ (ͷ%) ͳ.ͷ - - - - 
   NVP ͳ/ʹ (%) Ͱ.Ͳ - - - - 
   ABC ͷͰ/ͱ (Ͷ%) Ͱ.Ͷ - - - - 
   ABC & NNRTI ͱʹ/ͱʹ (ͱͰͰ%) NA - - - - 
Patient status at test       
   First-line ͲʹͶ/ͲͷͰ (ͱ%) ͱ.ͰͰ Ͱ.Ͱͷ ͱ.ͰͰ - Ͱ.͵Ͳ 
   Death ʹͲ/͵Ͳ (ͱ%) Ͱ.ʹͱ - ͱ.Ͱͱ Ͱ.ͳ-Ͳ.Ͷʹ - 
   Switch ͲͰͰ/ͲͲͰ (ͱ%) Ͱ. - ͱ.ʹ Ͱ.ͷͰ-ͳ.ͱͲ - 
Gender       
   Male ͱͰ/ͲͱͶ (%) ͱ.ͰͰ Ͱ.ͱ ͱ.ͰͰ - Ͱ.ͱ 
   Female Ͳ/ͳͲͶ (ͱ%) ͱ.ʹͶ - ͱ.͵ͳ Ͱ.ͳ-Ͳ.ͳ  
Monitoring randomisation       
   LCM Ͳͳʹ/ͲͶͱ (Ͱ%) ͱ.ͰͰ Ͱ.ͷ - - - 
   CDM Ͳ͵ʹ/Ͳͱ (Ͱ%) ͱ.Ͱ - - - - 
 Median (IQR)      
Age (years) ͳͶ (ͳͱ-ʹͲ) Ͱ. Ͱ.Ͳͳ - - - 
Time since failure (per ʹ weeks) Ͳ.Ͳ͵ (Ͱ.ͷ͵-ͳ.ͷͰ) ͱ.Ͷͳ <Ͱ.Ͱͱ ͱ.ͷͰ ͱ.ͳ͵-Ͳ.ͱͶ <Ͱ.Ͱͱ 
Baseline CDʹ Cell Count (per ͱͰͰ cells/mmͳ) Ͷͳ (ͲͲ–ͱͲͰ) Ͱ.ʹͷ <Ͱ.Ͱͱ Ͱ.Ͳ Ͱ.ͱͶ-Ͱ.ʹ <Ͱ.Ͱͱ 
Baseline Viral Load (LogͱͰ copies/mL) ͵.͵ͱ (͵.ͰͲ–͵.ʹ) Ͱ.͵ Ͱ.ͷ - - - 
Viral load at failure (LogͱͰ copies/mL) ʹ.ͲͲ (ͳ.ͳͲ-ʹ.Ͱ) Ͱ.͵Ͳ <Ͱ.Ͱͱ Ͱ.͵ͷ Ͱ.ͳͶ-Ͱ.Ͱ Ͱ.ͰͲ 
Viral load at test (LogͱͰ copies/mL) ʹ.ͷͰ (ͳ.ʹ-͵.ͱͱ) Ͱ.Ͷ Ͱ.Ͱͳ Ͱ.͵ Ͱ.͵ͳ-ͱ.ͳͳ Ͱ.ʹͷ 
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Table ͳʹ: Logistic regression model of NRTI Resistance (excluding MͱʹI/V) 

Variable N (% with NRTI Res 
excl MͱʹI/V) 

Uni 
OR 

p-value Multi 
OR 

͵% CI p-value 

ARTs received       
   TDF Ͳͳ/ͳͱͷ (%) ͱ.ͰͰ <Ͱ.ͰͰͱ - - - 
   TDF & NNRTI ͳ͵/ͳͶ (ͷ%) ʹ.ͲͰ - - - - 
   NVP Ͷ/ʹ (ͷͳ%) Ͱ.ͳͳ - - - - 
   ABC ͶͲ/ͱ (ͷͷ%) Ͱ.ͳ - - - - 
   ABC & NNRTI ͱʹ/ͱʹ (ͱͰͰ%) NA - - - - 
Patient status at test      
   First-line ͲͳͰ/ͲͷͰ (͵%) ͱ.ͰͰ Ͱ.ͱʹ ͱ.ͰͰ - Ͱ.ͱͶ 
   Death ʹͰ/͵Ͳ (ͷͷ%) Ͱ.͵ - ͱ.Ͳ Ͱ.͵͵-ͳ.Ͱͱ - 
   Switch ͱͲ/ͲͲͰ (%) ͱ.Ͳʹ - ͱ.Ͳ Ͱ.-ͳ.ͳͶ - 
Gender       
   Male ͱʹ/ͲͱͶ (͵%) ͱ.ͰͰ Ͱ.Ͱ - - - 
   Female Ͳͷ/ͳͲͶ (Ͷ%) ͱ.Ͱͳ - - - - 
Monitoring randomisation       
   LCM ͲͲͱ/ͲͶͱ (͵%) ͱ.ͰͰ Ͱ.Ͷͳ - - - 
   CDM ͲʹͲ/Ͳͱ (Ͷ%) ͱ.ͱͲ - - - - 
 Median (IQR)   - - - 
Age (years) ͳͶ (ͳͱ-ʹͲ) Ͱ. Ͱ.͵ - - - 
Time since failure (per ʹ weeks) Ͳ.Ͳ͵ (Ͱ.ͷ͵-ͳ.ͷͰ) ͱ.͵ͷ <Ͱ.ͰͰͱ ͱ.ͶͶ ͱ.ͳͷ-Ͳ.ͰͰ <Ͱ.ͰͰͱ 
Baseline CDʹ Cell Count (per ͱͰͰ cells/mmͳ) Ͷͳ (ͲͲ–ͱͲͰ) Ͱ.͵ͱ Ͱ.ͰͰͱ Ͱ.ͳͶ Ͱ.Ͳͳ-Ͱ.͵ <Ͱ.ͰͰͱ 
Baseline Viral Load (LogͱͰ copies/mL) ͵.͵ͱ (͵.ͰͲ–͵.ʹ) ͱ.ͱͱ Ͱ.ʹ - - - 
Viral load at failure (LogͱͰ copies/mL) ʹ.ͲͲ (ͳ.ͳͲ-ʹ.Ͱ) Ͱ.ͶͶ Ͱ.ͰͰʹ Ͱ.Ͷͳ Ͱ.ʹͶ-Ͱ.Ͷ Ͱ.ͰͰʹ 
Viral load at test (LogͱͰ copies/mL) ʹ.ͷͰ (ͳ.ʹ-͵.ͱͱ) Ͱ.Ͷ Ͱ.Ͳͷ - - - 
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Table ͳ͵: Logistic regression model of NNRTI Resistance among patients who received an NNRTI 

Variable N (% with NNRTI Res) Uni 
OR 

p-value Multi 
OR 

͵% CI p-value 

ARTs received       
   NVP ͶͲ/ʹ (ͶͶ%) ͱ.ͰͰ Ͱ.ͳͲ - - - 
   TDF & NNRTI ͲͶ/ͳͶ (ͷͲ%) ͱ.ͳʹ - - - - 
   ABC & NNRTI ͱͲ/ͱʹ (Ͷ%) ͳ.ͱͰ - - - - 
Patient status at test      
   First-line ͵Ͷ/ͱ (Ͷ%) ͱ.ͰͰ Ͱ.ͷ - - - 
   Death Ͷ/ (Ͷͷ%) Ͱ. - - - - 
   Switch ͳ/͵ʹ (ͷͰ%) ͱ.ͰͶ - - - - 
Gender       
   Male ͳͷ/͵ͳ (ͷͰ%) ͱ.ͰͰ Ͱ.ʹ - - - 
   Female Ͷͳ/ͱ (Ͷ%) Ͱ.ͷ - - - - 
Monitoring randomisation       
   LCM ͵Ͱ/ͷͲ (Ͷ%) ͱ.ͰͰ ͱ.ͰͰ - - - 
   CDM ͵Ͱ/ͷͲ (Ͷ%) ͱ.ͰͰ - - - - 
 Median (IQR)      
Age (years) ͳͶ (ͳͱ-ʹͲ) Ͱ.ʹ Ͱ.ͰͲ Ͱ.͵ Ͱ.Ͱ-ͱ.ͰͰ Ͱ.Ͱͷ 
Time since failure (per ʹ weeks) Ͳ.Ͳ͵ (Ͱ.ͷ͵-ͳ.ͷͰ) ͱ.ͲͶ Ͱ.ͰͶ ͱ.ͳʹ ͱ.Ͱͳ-ͱ.ͷ͵ Ͱ.Ͱͳ 
Baseline CDʹ Cell Count (per ͱͰͰ cells/mmͳ) Ͷͳ (ͲͲ–ͱͲͰ) Ͱ.͵͵ Ͱ.ͰͶ Ͱ.ͶͰ Ͱ.ͳͱ-ͱ.ͱ Ͱ.ͱʹ 
Baseline Viral Load (LogͱͰ copies/mL) ͵.͵ͱ (͵.ͰͲ–͵.ʹ) Ͱ.Ͷͱ Ͱ.ͱͱ Ͱ.͵ͳ Ͱ.Ͳͷ-ͱ.ͰͲ Ͱ.ͰͶ 
Viral load at failure (LogͱͰ copies/mL) ʹ.ͲͲ (ͳ.ͳͲ-ʹ.Ͱ) ͱ.ͳͳ Ͱ.ͱ ͱ.ͳͱ Ͱ.ͳ-Ͳ.Ͱ Ͱ.Ͳ͵ 
Viral load at test (LogͱͰ copies/mL) ʹ.ͷͰ (ͳ.ʹ-͵.ͱͱ) ͱ.ͱ Ͱ.ʹʹ - - - 
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4.3.4 Resistance by antiretroviral therapy received 

Figure ͲͶ displays the number of NRTI and NNRTI mutations by the initial 

first-line antiretroviral therapy received among all patients with a HIV-ͱ 

drug resistance test. The p-values displayed are the results from a χͲ test. 

Patients on nevirapine had fewer TAMs than patients who started on 

triple-NRTI regimens, particularly MʹͱL, DͶͷN and LͲͱͰW. Patients who 

received a first-line antiretroviral therapy containing tenofovir had the 

most KͶ͵R mutations. This is not surprising because KͶ͵R is selected for 

most strongly by tenofovir. The MͱʹV mutation was universally high, 

regardless of first-line antiretroviral therapy regimen. 

Figure ͲͶ: Mutations observed by first-line ART received 

 
4.3.5 Resistance by HIV-1 subtype 

Figure Ͳͷ displays the specific mutations observed by HIV-ͱ subtype among 

all patients with a HIV-ͱ drug resistance test. There was no apparent 

difference in the proportion of patients with KͶ͵R by HIV-ͱ subtype. The 

KͷͰR and TͲͱ͵F mutations had the greatest prevalence among patients 

with subtype A virus and the lowest prevalence among patients with the 
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subtype D virus. The LͲͱͰW mutation was infrequently observed in 

patients with subtype C compared to either subtype A or D. There was 

some evidence that AͶͲV and FͱͱͶY were more likely to occur in patients 

with subtype C virus, although these were less frequently occurring 

mutations. 

Figure Ͳͷ: Mutations by HIV-ͱ subtype 

 

For mutations where the χͲ test suggested a difference by HIV-ͱ subtype 

(p<Ͱ.ͱ) a multivariate logistic regression model (Table ͳͶ) was conducted 

with all patients with a HIV-ͱ drug resistance test (n=͵ʹͲ) including 

covariates (time since virological failure, viral load at the time of resistance 

test and baseline CDʹ cell count) which affected the multivariate odds of 

any NRTI resistance in Table ͳͳ. Furthermore, KͶ͵R was also analysed due 

to the strong a priori belief from other research that KͶ͵R’s prevalence is 

influenced by HIV-ͱ subtype. 

After adjustment, there was no evidence that HIV-ͱ subtype affected the 

proportion of patients with either the KͶ͵R or the FͱͱͶY mutations. 
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compared to patients with subtype A virus (OR=Ͱ.͵ͷ; ͵% CI: Ͱ.ͳͶ-Ͱ.ͱ), 

although the global test in a multivariate logistic regression model showed 

no evidence of an overall effect of HIV-ͱ subtype (p=Ͱ.ͱͳ). Patients with 

subtype C virus were less likely to have the MͱʹV mutation compared to 

patients with subtype A (OR=Ͱ.ʹͶ; ͵% CI: Ͱ.ͲͶ-Ͱ.ͱ). This is a surprising 

result not previously suggested in the literature and is probably a false 

positive. Since HIV-ͱ subtype is highly correlated with countries, this 

finding may indicate a country effect where patients in Zimbabwe develop 

less HIV-ͱ drug resistance mutations. Subtype C virus was also predictive of 

fewer LͲͱͰW, TͲͱ͵F and KͲͱE mutations compared to subtype A virus in 

multivariate analyses, although this may still reflect the effect of country. 

More robustly, there was evidence that patients with subtype D virus were 

less likely to develop the TͲͱ͵F mutation (OR=Ͱ.Ͳ͵; ͵% CI: Ͱ.ͱͳ-Ͱ.ʹ). 

 



 

 

ͱʹͶ 

 

 

Table ͳͶ: Logistic regression model for selected NRTI mutations 
Variables KͶ͵R KͷͰR FͱͱͶY MͱʹV 
 OR (͵% CI) p-value OR (͵% CI) p-value OR (͵% CI) p-value OR (͵% CI) p-value 
Subtype         
   A ͱ.ͰͰ Ͱ.ͳͶ ͱ.ͰͰ Ͱ.ͱͳ ͱ.ͰͰ Ͱ.ʹʹ ͱ.ͰͰ Ͱ.Ͱͱ 
   C ͱ.ʹ (Ͱ.ʹ-Ͳ.Ͷʹ) - Ͱ.͵ (Ͱ.͵Ͷ-ͱ.Ͳ) - Ͳ.͵Ͱ (Ͱ.Ͷͱ-ͱͰ.ͲͲ) - Ͱ.ʹͶ (Ͱ.ͲͶ-Ͱ.ͱ) - 
   D Ͱ.͵ (Ͱ.͵Ͱ-ͱ.ͳ) - Ͱ.͵ͷ (Ͱ.ͳͶ-Ͱ.ͱ) - - - Ͱ.͵͵ (Ͱ.Ͳ-ͱ.Ͱͷ) - 
   Complex Ͱ.ͷʹ (Ͱ.Ͳ͵-Ͳ.ͱ) - Ͱ.ͷ (Ͱ.ʹͰ-ͱ.͵͵) - ͱ.Ͷʹ (Ͱ.ͱͷ-ͱͶ.ͳͶ) - ͱ.ͳ (Ͱ.͵ͳ-Ͷ.) - 
Time since 
virological failure  
(ʹ weeks) 

Ͱ.ͷ (Ͱ.Ͳ-ͱ.ͱʹ) Ͱ.ͷͰ ͱ.ͱͰ (Ͱ.-ͱ.Ͳͳ) Ͱ.ͱͰ Ͱ.͵ (Ͱ.ͶͲ-ͱ.ʹͶ) Ͱ.Ͱ ͱ.Ͷ (ͱ.ʹͱ-Ͳ.ͰͲ) <Ͱ.ͰͰͱ 

Baseline CDʹ  
Cell Count  
(per ͱͰͰ cells/mmͳ) 

Ͱ.ʹͱ (Ͱ.ͲͶ-Ͱ.ͶͶ) <Ͱ.ͰͰͱ Ͱ.ʹ (Ͱ.Ͷ-ͱ.Ͳ) Ͱ.ͷͰ Ͱ.͵ͱ (Ͱ.ͱ͵-ͱ.ͷ͵) Ͱ.Ͳ Ͱ.ʹʹ (Ͱ.Ͳ-Ͱ.Ͷ) <Ͱ.ͰͰͱ 

Viral load at  
virological failure  
(logͱͰ copies/mL) 

Ͱ.ʹͰ (Ͱ.ͳͰ-Ͱ.͵ʹ) <Ͱ.ͰͰͱ ͱ.ͱͰ (Ͱ.Ͱ-ͱ.ͳʹ) Ͱ.ͳ͵ Ͱ.Ͳ (Ͱ.ʹͳ-ͱ.͵) Ͱ.Ͳ Ͱ.ͶͲ (Ͱ.ʹͶ-Ͱ.ͳ) Ͱ.ͰͰͱ 



 

 

ͱʹͷ 

 

 

Table ͳ (continued): Logistic regression model for selected NRTI mutations 

Variables LͲͱͰW TͲͱ͵F KͲͱE 
 OR (͵% CI) p-value OR (͵% CI) p-value OR (͵% CI) p-value 
Subtype       
   A ͱ.ͰͰ <Ͱ.ͰͰͱ ͱ.ͰͰ <Ͱ.ͰͰͱ ͱ.ͰͰ Ͱ.Ͱ 
   C Ͱ.ʹ͵ (Ͱ.ͲͶ-Ͱ.ͷͶ) - Ͱ.ʹ (Ͱ.ͳͰ-Ͱ.ͱ) - Ͱ.ͶͰ (Ͱ.ͳͷ-ͱ.ͰͰ) - 
   D ͱ.ͲͲ (Ͱ.ͷʹ-Ͳ.Ͱͳ) - Ͱ.Ͳ͵ (Ͱ.ͱͳ-Ͱ.ʹ) - Ͱ.Ͷ (Ͱ.ʹͰ-ͱ.ͱ) - 
   Complex Ͳ.ͰͶ (ͱ.ͰͲ-ʹ.ͱ) - Ͱ.ͷͷ (Ͱ.ͳͶ-ͱ.ͶͶ) - Ͱ.ͳͷ (Ͱ.ͱʹ-ͱ.ͰͰ - 
Time since 
virological failure  
(ʹ weeks) 

ͱ.Ͳͱ (ͱ.ͰͶ-ͱ.ͳ) Ͱ.Ͱͱ ͱ.Ͳͷ (ͱ.ͱͱ-ͱ.ʹͷ) <Ͱ.ͰͰͱ ͱ.ͱʹ (Ͱ.-ͱ.ͳͰ) Ͱ.ͰͶ 

Baseline CDʹ Cell 
Count (per ͱͰͰ 
cells/mmͳ) 

Ͱ.Ͳ (Ͱ.͵Ͷ-ͱ.ͱ) Ͱ.ͳͰ Ͱ.Ͷ (Ͱ.ʹͷ-ͱ.ͰͲ) Ͱ.ͰͶ ͱ.ͱͷ (Ͱ.ͱ-ͱ.Ͷ) Ͱ.ʹͱ 

Viral load at 
virological failure  
(logͱͰ copies/mL) 

ͱ.͵ͷ (ͱ.Ͳʹ-Ͳ.ͰͰ) <Ͱ.ͰͰͱ ͱ.Ͱ (Ͱ.͵-ͱ.ͳ) Ͱ.͵ͱ ͱ.Ͱʹ (Ͱ.Ͳ-ͱ.ͳͲ) Ͱ.ͷͳ 
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4.3.6 Number of mutations 

Virologically failing patients typically had multiple NRTI mutations at their 

last time point on first-line antiretroviral therapy in the DART trial. These 

are shown by antiretroviral therapy received in Figure Ͳ. In the ʹ 

patients with one or more NRTI mutations, there was a median (IQR) of ͵ 

(ͳ-Ͷ) major NRTI mutations, as measured by the ͲͰͱͳ IAS-USA mutation 

list [ͱʹ]. In contrast, for the ͱʹͱ patients with one or more NNRTI 

mutations, there was a median (IQR) of ͱ (ͱ-Ͳ) major NNRTI mutations. 

Predictors for the number of NNRTI mutations were not examined further 

because there was insufficient variability in the number of NNRTI 

mutations (Figure Ͳ) to distinguish this from the analysis of  

any NNRTI resistance. 

Figure Ͳ: Number of NRTI mutations by ARTs received 
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Figure Ͳ: Number of NNRTI mutations by ARTs received 

A Poisson model of the number of NRTI mutations demonstrated signs of 

overdispersion [ͱ͵͵]. Therefore, a negative binomial model was used to 

investigate predictors of the number of NRTI mutations among all patients 

with a HIV-ͱ drug resistance test result (n=͵ʹͲ). The results are reported as 

rate ratios (RR) which are applied in combination on the multiplicative 

scale (Table ͳͷ). 

The multivariate analysis results showed that patients on nevirapine had a 

ͱͶ% decrease in the number of NRTI mutations compared to those on 

tenofovir. There was no evidence that the number of NRTI mutations 

differed in those who received abacavir. Patients who switched treatment 

at the time of resistance test had a ͳͳ% increase in the number of NRTI 

mutations compared to patients who remained alive on first-line 

antiretroviral therapy, even after adjusting for the time since virological 

failure. There was no evidence of a difference in the number of NRTI 

mutations for patients who died. Each additional ʹ weeks since virological 

failure was first detected led to a ͱͲ% increase in the number of NRTI 

mutations. In the multivariate model, the viral load at the time of 
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resistance test did not influence the number of NRTI mutations. Each ͱͰͰ 

cell/mmͳ increase in baseline CDʹ cell count reduced the number of NRTI 

mutations by %. 

Table ͳͷ: Negative binomial regression 
model for the number of NRTI mutation 

Variable Uni 
RR 

p-value Multi 
RR 

͵% CI p-value 

ARTs received      
   TDF ͱ.ͰͰ Ͱ.Ͱʹ ͱ.ͰͰ - Ͱ.ͰͲ 
   TDF & NNRTI Ͱ.Ͷ - Ͱ.͵ Ͱ.ͷ-ͱ.ͱͳ - 
   NVP Ͱ.Ͳ - Ͱ.ʹ Ͱ.ͷʹ-Ͱ.͵ - 
   ABC ͱ.Ͱͳ - ͱ.Ͱ Ͱ.͵-ͱ.ͲͲ - 
   ABC & NNRTI ͱ.ͱͰ - ͱ.ͱͲ Ͱ.ͷ-ͱ.ʹ͵ - 
Patient status at test      
   First-line ͱ.ͰͰ <Ͱ.ͰͰͱ ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   Death Ͱ.ͳ - ͱ.Ͱͷ Ͱ.-ͱ.Ͳ - 
   Switch ͱ.Ͳͳ - ͱ.ͳͳ ͱ.ͲͰ-ͱ.ʹ - 
Gender      
   Male ͱ.ͰͰ Ͱ.͵ͳ - - - 
   Female Ͱ.ͷ - - - - 
Monitoring randomisation    
   LCM ͱ.ͰͰ Ͱ.͵ - - - 
   CDM ͱ.Ͱͳ - - - - 
Age (ͱͰ years) ͱ.ͰͰ Ͱ.͵Ͳ - - - 
Time since failure 
(ʹ weeks) 

ͱ.Ͱ <Ͱ.ͰͰͱ ͱ.ͱͲ ͱ.Ͱ-ͱ.ͱ͵ <Ͱ.ͰͰͱ 

Baseline CDʹ Cell 
Count (ͱͰͰ cells/mmͳ) 

Ͱ.Ͳ Ͱ.Ͱʹ Ͱ.Ͳ Ͱ.͵-ͱ.ͰͰ Ͱ.Ͱʹ 

Viral load at failure 
(logͱͰ copies/mL) 

ͱ.Ͱͱ Ͱ.ͷ͵ - - - 

Viral load at test 
(logͱͰ copies/mL) 

ͱ.Ͱ Ͱ.Ͱͱ ͱ.Ͱͳ Ͱ.ͷ-ͱ.Ͱ Ͱ.ͳ͵ 

4.3.7 Combinations of mutations 

In total, Ͱ% of patients had one or more NRTI mutations. The overlap 

between major NRTI mutations is plotted using Gephi vͰ. [ͱ͵Ͷ] and 

displayed in Figure ͳͰ. In this visualisation, the size of bubbles corresponds 

to the proportion of patients with this combination of mutations at the last 

time point. Patients can only appear in one group in the diagram. Arrows 

link groups of mutations which are subsets and were chosen using an ad 
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hoc basis, such that each group could have at most three parent groups. 

For example, patients with ʹͱ+Ͷͷ+ͷͰ+ͱʹ+Ͳͱ͵+Ͳͱ are a subset of those 

with Ͷͷ+ͷͰ+ͱʹ+Ͳͱ͵+Ͳͱ and this group is a subset of Ͷͷ+ͷͰ+ͱʹ+Ͳͱ. The 

hue of each circle corresponds to proximity (by the number of links) to 

patients with wild-type virus. This figure is clarified in Figure ͳͱ by 

removing subsets of mutations occurring in less than five patients and 

dividing patients with these subsets of mutations equally between the 

parent nodes. 

The largest set of mutation combinations observed at the last time-point 

was ʹͱ+Ͷͷ+ͷͰ+ͱʹ+Ͳͱ͵+Ͳͱ. In total, there were ͷͷ (ͱʹ%) patients with this 

combination of mutations exactly and ͱͲͱ (ͲͲ%) patients with at least these 

mutations. Specific combinations, such as KͶ͵R/E/N mutation, were less 

common, and there was a greater diversity of secondary mutations. In 

total, Ͳ (ͱͷ%) patients had at least this mutation and the largest specific 

combination of mutations was Ͷ͵+ͱʹ (n=Ͳͳ; ʹ%). Distinctive mutations 

from the ͱ͵ͱ complex, which confer cross-resistance to all the main NRTIs 

apart from tenofovir, appeared alongside KͶ͵R/E/N and were otherwise 

infrequent. AͶͲV appeared ͱͷ times with KͶ͵R/E/N and ʹ times without, 

Qͱ͵ͱM appeared  times with KͶ͵R/E/N and ͱ time without, Yͱͱ͵F 

appeared ͱͳ times with KͶ͵R/E/N and Ͷ without and FͱͱͶY appeared ͱͱ 

times with KͶ͵R/E/N and never without. 

Mutations at codon ͲͱͰ often appeared with mutations at codon Ͳͱ͵ 

(n=ͱͳ; ͲͶ%) and rarely without (n=ͳ; ͱ%). The second most common 

combination of mutations for all patients contained ͲͱͰ+Ͳͱ͵ as 

ʹͱ+Ͷͷ+ͱʹ+ͲͱͰ+Ͳͱ͵ (n=ʹʹ; %). Another common mutation pair was 

Ͳͱ͵+Ͳͱ (n=ͱͷͳ; ͳͲ%) and these three mutations occurred together in ͵Ͳ 

(ͱͰ%) patients. Mutations at codons ͲͱͰ and Ͳͱ seldom occurred without 

a mutation at codon Ͳͱ͵ (n=Ͳ times as a solo combination). 



 

 

ͱ͵Ͳ 

Figure ͳͰ: Overlap between NRTI mutations 



 

 

ͱ͵ͳ 

Figure ͳͱ: Simplified overlap between NRTI mutations 
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Figure ͳͲ: Overlap between NNRTI mutations 

 

The overlap between NNRTI mutations is displayed in Figure ͳͲ for 

patients who received an NNRTI during follow-up. There were 

substantially fewer combinations of mutations than for NRTIs. The most 

common mutation to appear in conjunction with others was KͱͰͳN/S 

which appeared in ͶͰ% of patients with two or more NNRTI mutations. 

This was followed by YͱͱC/I/V which appeared in ʹ͵% of patients with 

two or more NNRTI mutations. 
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4.3.8 Predicted susceptibility 

Susceptibility to NRTI and NNRTIs were defined using the Stanford 

algorithm for predicted drug susceptibility based on the individual 

mutations observed. The results for NRTI and NNRTIs are shown in Table 

Table ͳ and Table ͳ respectively and are displayed graphically in Figure 

ͳͳ. Possible low level and low resistance were combined as low resistance 

in the tables. There was less susceptible, low level and intermediate 

resistance to zidovudine compared to tenofovir (ͳ% compared to ͵ʹ%) 

although there was greater high-level resistance to zidovudine (ͶͲ% 

compared to ʹͶ%). Remaining susceptibility to emtricitabine and 

lamivudine was low, just ͱͲ% had low-level resistance or less. 

Table ͳ: Susceptibility to NRTIs (N=͵ʹͲ) 

NRTI Susceptible Low Intermediate High 
Abacavir ͵Ͷ (ͱͰ%) ͳʹ (Ͷ%) ͱ (ͱ͵%) ͳͷͱ (Ͷ%) 
Didanosine ͵͵ (ͱͰ%) ʹ (%) ͷͲ (ͱͳ%) ͳͶͷ (Ͷ%) 
Emtricitabine ͵ (ͱͱ%) Ͷ (ͱ%) Ͳͱ (ʹ%) ʹ͵Ͷ (ʹ%) 
Stavudine ͷ (ͱͶ%) ͱͳ (Ͳ%) ͷͲ (ͱͳ%) ͳͷͰ (Ͷ%) 
Tenofovir ͱͰͶ (ͲͰ%) ʹͲ (%) ͱʹʹ (Ͳͷ%) Ͳ͵Ͱ (ʹͶ%) 
Zidovudine ͱ͵͵ (Ͳ%) ͱ͵ (ͳ%) ͳͶ (ͷ%) ͳͳͶ (ͶͲ%) 

Table ͳ: Susceptibility to NNRTIs (N=͵ʹͲ) 

NNRTI Susceptible Low Intermediate High 
Nevirapine Ͳ͵ (͵ʹ%) ͲͰ (ʹ%) ͵ (ͱͶ%) ͱʹͲ (ͲͶ%) 
Efavirenz Ͳ͵ (͵ʹ%) ͱͰͶ (ͲͰ%) ͵ʹ (ͱͰ%) ͷ (ͱͶ%) 
Etravirine ͳͱͰ (͵ͷ%) ͱ͵ (Ͳ%) Ͷʹ (ͱͲ%)  (Ͳ%) 

NNRTI resistance was greatest for nevirapine; in total ʹͲ% of patients who 

experienced virological failure had intermediate or greater nevirapine 

resistance at the last time point. The NNRTI which retained the greatest 

activity was etravirine. This is unsurprising since there is limited crossover 

in resistance mutations between efavirenz, nevirapine and etravirine. 
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Figure ͳͳ: Overall susceptibility to NRTI and NNRTIs 

 

Susceptibility was also examined by antiretroviral therapy received (Figure 

ͳʹ to Figure ͳͶ below). Patients who received either tenofovir or abacavir 

as a triple-NRTI first-line regimen had similar levels of high-level 

resistance. For both regimens, the NRTIs which retained the most 

susceptibility were zidovudine and tenofovir. Tenofovir had the lowest 

level of high-level drug resistance across the NRTIs and zidovudine had the 

greatest proportion of patients with virus susceptible to low-level drug 

resistance. Patients who received an NRTI-NNRTI regimen had greater 

susceptibility to NRTIs and reduced susceptibility to NNRTIs. 

Nevertheless, both tenofovir and zidovudine retained the greatest 

susceptibility. 
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Figure ͳʹ: Susceptibility in patients who received 
triple-NRTI first-line ART including tenofovir 

 

Figure ͳ͵: Susceptibility in patients who received 
triple-NRTI first-line ART including abacavir 
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Figure ͳͶ: Susceptibility in patients who received 
dual-class first-line ART including nevirapine 

 

4.3.9 HIV-1 Drug Resistance and Viral Load 

A linear regression of viral load at the time of test and individual mutations 

was conducted to determine whether mutations increase or decrease viral 

replication fitness. Viral load was transformed using a zero-skewness log 

transformation (selected to be ln(rna+ͲͱͰ)) [ͱ͵ͷ] to satisfy the linear 

regression model’s assumption that errors are normally distributed. Models 

were fitted to patients who had one or more NRTI or NNRTI mutations, 

excluding patients who were potentially non-adherent. Models were 

stratified by the regimen received at the time the plasma sample was taken. 

The regimens examined were triple-NRTI including tenofovir (Table ʹͰ, 

allowing for stavudine substitution), triple-NRTI including abacavir (Table 

ʹͱ) and a dual-class regimen containing an NNRTI (Table ʹͲ, either 

efavirenz or nevirapine). Multivariate analyses were conducted with and 

without variables for patient status at test (gender, monitoring 

randomisation, age, time since virological failure and baseline CDʹ cell 

count) to reduce confounding. 
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Table ʹͰ: Linear regression model for transformed viral load among 
patients on tenofovir-containing triple-NRTI regimens with any HIV-ͱ drug resistance 

Variable N=ͲͶ Multi Coef ͵% CI p-value Multi Coef ͵% CI p-value 
ʹͱ ͱͶ (Ͷ%) Ͱ.Ͳʹ -Ͱ.Ͳͱ to Ͱ.ͷͰ Ͱ.Ͳ Ͱ.Ͳͳ -Ͱ.ͲͰ to Ͱ.Ͷͷ Ͱ.ͳͰ 
ͶͲ ͱ͵ (͵%) Ͱ.ͲͶ -Ͱ.ͷͳ to ͱ.Ͳʹ Ͱ.Ͷͱ Ͱ.Ͳ -Ͱ.͵͵ to ͱ.ͱͳ Ͱ.ʹ 
Ͷ͵ Ͷ (Ͳʹ%) -Ͱ.͵ͳ -ͱ.Ͳ͵ to Ͱ.ͲͰ Ͱ.ͱͶ -Ͱ.ʹͲ -ͱ.ͱͲ to Ͱ.Ͳͷ Ͱ.Ͳͳ 
Ͷͷ ͱͶ (͵%) Ͱ.ͷͱ Ͱ.Ͳ to ͱ.ͱʹ Ͱ.ͰͰͱ Ͱ.ͳ -Ͱ.Ͱͳ to Ͱ.Ͱ Ͱ.Ͱͷ 
ͷͰ ͱʹ (͵Ͳ%) Ͱ.Ͱ -Ͱ.͵͵ to Ͱ.ͷͱ Ͱ.Ͱ -Ͱ.Ͱ -Ͱ.ͶͶ to Ͱ.ʹ Ͱ.ͷͶ 
ͱͱ͵ ͱͰ (ͳ%) -ͱ.ͲͲ -Ͳ.͵Ͷ to Ͱ.ͱͱ Ͱ.Ͱͷ -Ͱ.͵͵ -ͱ.ͷͲ to Ͱ.Ͷͳ Ͱ.ͳͶ 
ͱͱͶ  (ͳ%) Ͱ.ͱͰ -ͱ.ͳ to ͱ.͵ Ͱ.Ͱ -Ͱ.Ͳͷ -ͱ.ʹʹ to Ͱ.ͱ Ͱ.ͶͶ 
ͱ͵ͱ  (ͳ%) Ͳ.ͱͶ Ͱ.ͷͰ to ͳ.Ͷͱ Ͱ.ͰͰʹ ͱ.͵ Ͱ.Ͳ͵ to Ͳ.ʹ Ͱ.ͰͲ 
ͱʹ ͲͶͰ (ͱ%) -Ͱ.ͱ -ͱ.Ͷͷ to -Ͱ.ͱʹ Ͱ.ͰͲ -Ͱ.ʹͱ -ͱ.ͱͰ to Ͱ.Ͳ Ͱ.Ͳ͵ 
ͲͱͰ ʹ (Ͳ%) Ͱ.ͳͱ -Ͱ.ͱ to Ͱ.Ͱ Ͱ.Ͳͱ Ͱ.Ͳ͵ -Ͱ.ͱͷ to Ͱ.Ͷ Ͱ.Ͳʹ 
Ͳͱ͵ ͱͷͷ (ͶͲ%) Ͱ.͵Ͷ -Ͱ.ͰͲ to ͱ.ͱʹ Ͱ.ͰͶ Ͱ.Ͳ -Ͱ.Ͳͷ to Ͱ.ͳ Ͱ.ͳͲ 
Ͳͱ ͱʹͱ (ʹ%) -Ͱ.ͳͲ -Ͱ.Ͱ to Ͱ.ͱͶ Ͱ.ͱ -Ͱ.ͱͱ -Ͱ.͵͵ to Ͱ.ͳͳ Ͱ.ͶͲ 
Patient status at test        
   First-line ͱͳͶ (ʹ%) - - - Ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   Death ͳͱ (ͱͱ%) - - - ͱ.͵ʹ Ͱ. to Ͳ.ͱͰ - 
   Switch ͱͱ (ʹͲ%) - - - ͱ.ʹ͵ ͱ.Ͱͳ to ͱ.ͷ - 
Gender        
   Male ͱͲͳ (ʹͳ%) - - - Ͱ.ͰͰ - Ͱ.ͳͰ 
   Female ͱͶͳ (͵ͷ%) - - - Ͱ.ͱͶ -Ͱ.ʹͷ to Ͱ.ͱ͵ - 
Monitoring randomisation        
   LCM ͱͲ (ʹ͵%) - - - Ͱ.ͰͰ - Ͱ.Ͱ 
   CDM ͱ͵ (͵͵%) - - - Ͱ.Ͳ -Ͱ.Ͱͳ to Ͱ.Ͷͱ - 
Age (ͱͰ years) ͳ͵ (ͳͱ-ʹͲ) - - - -Ͱ.ͰͰ -Ͱ.ͰͲ to Ͱ.ͰͲ Ͱ.Ͷ 
Time since failure (per ʹ weeks) Ͳ.ʹ (Ͱ.-ͳ.) - - - Ͱ.Ͱ͵ -Ͱ.Ͱͷ to Ͱ.ͱͶ Ͱ.ʹͰ 
Baseline CDʹ Cell Count  
(per ͱͰͰ cells/mmͳ) 

ͶͰ (ͲͲ-ͱͱͷ) - - - Ͱ.ͱʹ -Ͱ.ͱͷ to Ͱ.ʹ͵ Ͱ.ͳ 

Constant - ͱͰ.Ͷʹ .Ͷͳ to ͱͱ.ͶͶ  .Ͷʹ .ͳͷ to ͱͰ.ͱ  



 

 

ͱͶͰ 

Table ʹͱ: Linear regression model for transformed viral load among 
patients on abacavir-containing triple-NRTI regimens with any HIV-ͱ drug resistance 

Variable N=ͷͱ Multi Coef ͵% CI p-value Multi Coef ͵% CI p-value 
ʹͱ ʹ (Ͷ%) -Ͱ.Ͱͱ -ͱ.Ͳͳ to ͱ.ͲͰ Ͱ. -Ͱ.Ͱ -ͱ.ʹ͵ to ͱ.Ͳ Ͱ.Ͱ 
ͶͲ Ͳ (ͳ%) Ͱ.ͱͰ -ͱ.Ͳͷ to ͱ.ʹͶ Ͱ. ͱ.ͲͰ -Ͱ.͵ to Ͳ. Ͱ.ͱ 
Ͷ͵ ͳ (ʹ%) -Ͳ.ͳͱ -ͳ.ʹʹ to -ͱ.ͱ <Ͱ.ͰͰͱ -Ͳ.͵ͱ -ͳ.ͷ to -ͱ.Ͳʹ <Ͱ.ͰͰͱ 
Ͷͷ ʹʹ (ͶͲ%) Ͱ.Ͳʹ -Ͱ.ͷ͵ to ͱ.Ͳͳ Ͱ.Ͷͳ Ͱ.ͱʹ -Ͱ.ͳ to ͱ.Ͳͱ Ͱ.Ͱ 
ͷͰ ͳͶ (͵ͱ%) -Ͳ.Ͳͱ -ʹ.ͰͶ to -Ͱ.ͳͶ Ͱ.ͰͲ -Ͳ.Ͳͷ -ʹ.ͲͶ to -Ͱ.Ͳͷ Ͱ.Ͱͳ 
ͱͱ͵ ͷ (ͱͰ%) Ͱ.Ͳ͵ -ͱ.ͰͶ to ͱ.͵͵ Ͱ.ͷͱ Ͱ.Ͱͱ -ͱ.ͳͷ to ͱ.ʹͰ Ͱ. 
ͱͱͶ3 ͱ (ͱ%) Ͷ.ͱ ʹ.ͱͳ to .ͲͰ <Ͱ.ͰͰͱ ͵. ͳ.ͱͰ to .Ͷ <Ͱ.ͰͰͱ 
ͱ͵ͱ ͱ (ͱ%) - - - - - - 
ͱʹ Ͷ (Ͷ%) Ͱ.ͷͳ -ͱ.Ͷͱ to ͳ.Ͱͷ Ͱ.͵ʹ Ͱ.ͷ -Ͳ.ͱͷ to ͳ.ͱ Ͱ.͵ͷ 
ͲͱͰ Ͳ (ʹͱ%) Ͱ.͵͵ -Ͱ.ͳ to ͱ.ʹ Ͱ.Ͳʹ Ͱ.ͲͰ -Ͱ.ʹ to ͱ.Ͳͳ Ͱ.ͷͰ 
Ͳͱ͵ ͵͵ (ͷͷ%) -Ͱ.ʹ -ͱ.ͷͲ to Ͱ.ͷͷ Ͱ.ʹ͵ -Ͱ.ͳͶ -ͱ.ͷʹ to ͱ.Ͱͱ Ͱ.ͶͰ 
Ͳͱ ͳʹ (ʹ%) ͱ. -Ͱ.Ͱ to ͳ.Ͷ Ͱ.ͰͶ Ͳ.ͰͰ -Ͱ.ͱͶ to ʹ.ͱ͵ Ͱ.Ͱͷ 
Patient status at test        
   First-line ͳ͵ (ʹ%) - - - Ͱ.ͰͰ - Ͱ.ͰͶ 
   Death ͳ (ʹ%) - - - -ͱ.͵Ͳ -ͳ.ͷͱ to Ͱ.Ͷͷ - 
   Switch ͳͳ (ʹͶ%) - - - Ͱ.ͷ -Ͱ.ʹʹ to Ͳ.ͰͲ - 
Gender        
   Male Ͳͳ (ͳͲ%) - - - Ͱ.ͰͰ - Ͱ.ʹʹ 
   Female ʹ (Ͷ%) - - - -Ͱ.ͳ -ͱ.ʹͱ to Ͱ.ͶͲ - 
Monitoring randomisation        
   LCM ʹͰ (͵Ͷ%) - - - Ͱ.ͰͰ - Ͱ.ͷͶ 
   CDM ͳͱ (ʹʹ%) - - - Ͱ.ͱͶ -Ͱ. to ͱ.Ͳͱ - 
Age (ͱͰ years) ͳ (ͳͱ-ʹͳ) - - - -Ͱ.ͰͰ -Ͱ.ͰͶ to Ͱ.Ͱ͵ Ͱ. 
Time since failure (per ʹ weeks) Ͳ.Ͱ (Ͱ.-Ͳ.) - - - -Ͱ.ͰͶ -Ͱ.͵ to Ͱ.ʹͷ Ͱ.Ͳ 
Baseline CDʹ Cell Count  
(per ͱͰͰ cells/mmͳ) 

Ͳ (ͳ͵-ͱʹͳ) - - - Ͱ.ͱʹ -Ͱ.ͷͰ to Ͱ.ͷ Ͱ.ͷʹ 

Constant - .ͱ ͷ. to ͱͱ.͵  . Ͷ.ʹͳ to ͱͳ.͵͵  
                                            
3 ͱ͵ͱ not included because the model failed to converge for this variable due to an insufficient number of mutations. 
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Table ʹͲ: Linear regression model for transformed viral load among 
patients on NRTI-NNRTI regimens with any HIV-ͱ drug resistance  

Variable N=ͱͳ͵ Multi Coef ͵% CI p-value Multi Coef ͵% CI p-value 
ʹͱ Ͷ (͵ͱ%) -Ͱ.Ͳ͵ -Ͱ.Ͱ to Ͱ.ʹͰ Ͱ.ʹ͵ -Ͱ.ͳ͵ -ͱ.ͰͰ to Ͱ.ͳͱ Ͱ.ͳͰ 
ͶͲ ʹ (ͳ%) -Ͱ.ͳͰ -ͱ.ͳͷ to Ͱ.ͷͷ Ͱ.͵ -Ͱ.ͳͷ -ͱ.͵ͱ to Ͱ.ͷͷ Ͱ.͵Ͳ 
Ͷ͵ ͲͰ (ͱ͵%) Ͱ.͵ -Ͱ.ͳͰ to ͱ.ʹͷ Ͱ.ͱ Ͱ.ͷʹ -Ͱ.ͱ͵ to ͱ.Ͷʹ Ͱ.ͱͰ 
Ͷͷ Ͷʹ (ʹͷ%) Ͱ.Ͳʹ -Ͱ.͵ to ͱ.Ͱ͵ Ͱ.͵ͷ Ͱ.ͰͰ -Ͱ.ʹ to Ͱ.͵ Ͱ. 
ͷͰ Ͷͱ (ʹ͵%) -Ͱ.ʹͶ -ͱ.ͲͲ to Ͱ.ͳͰ Ͱ.Ͳͳ -Ͱ.ͳʹ -ͱ.ͱͰ to Ͱ.ʹͲ Ͱ.ͳ 
ͱͰͳ ͳ (Ͳ%) Ͱ.͵ͷ Ͱ.Ͱͱ to ͱ.ͱͳ Ͱ.Ͱ͵ -Ͱ.͵ Ͱ.Ͱ to ͱ.ͱͱ Ͱ.Ͱͳ 
ͱͰ ͱ (ͱͳ%) -Ͱ.͵ͱ -ͱ.Ͳ to Ͱ.ͲͶ Ͱ.ͱ -Ͱ.Ͷ -ͱ.ͳͳ to -Ͱ.ͰͲ Ͱ.Ͱʹ 
ͱͱ͵ Ͳ (ͱ%) -Ͳ.Ͱ -Ͳ.ʹ to -ͱ.ͲͲ <Ͱ.ͰͰͱ -ͱ.Ͷ -Ͳ.͵ to -ͱ.Ͱͷ <Ͱ.ͰͰͱ 
ͱͱͶ4 ͱ (ͱ%) Ͳ.Ͱ ͱ.Ͱͷ to ͳ.ͱͱ <Ͱ.ͰͰͱ Ͳ.ʹ͵ ͱ.ͳͶ to ͳ.͵ʹ <Ͱ.ͰͰͱ 
ͱͱ ʹͰ (ͳͰ%) Ͱ.ͳͷ -Ͱ.ͲͲ to Ͱ.ͷ Ͱ.Ͳͱ Ͱ.ͳ -Ͱ.ͱ to Ͱ.ʹ Ͱ.ͱ 
ͱʹ ͱͲͶ (ͳ%) -ͱ. -Ͳ.ͷ͵ to -ͱ.Ͳͱ <Ͱ.ͰͰͱ -ͱ.ͲͶ -Ͳ.ͰͲ to -Ͱ.ʹ Ͱ.ͰͰͱ 
ͱͰ Ͳʹ (ͱ%) Ͱ.ʹ͵ -Ͱ.ͱ to ͱ.Ͱ Ͱ.ͱͷ Ͱ.ʹ͵ -Ͱ.ͲͰ to ͱ.ͱͱ Ͱ.ͱͷ 
ͲͱͰ Ͳ (Ͳͱ%) Ͱ.ͳͷ -Ͱ.ͳ to ͱ.ͱͲ Ͱ.ͳʹ Ͱ.ͱ͵ -Ͱ.͵͵ to Ͱ.ʹ Ͱ.Ͷ 
Ͳͱ͵ ͷͷ (͵ͷ%) ͱ.ͱͳ Ͱ.ʹͰ to ͱ.Ͷ Ͱ.ͰͰͳ ͱ.ͰͰ Ͱ.Ͳ to ͱ.ͷͳ Ͱ.ͰͰͷ 
Ͳͱ ͵ (ʹʹ%) Ͱ.ͷͱ Ͱ.ͰͲ to ͱ.ʹͰ Ͱ.Ͱʹ Ͱ.ͶͲ -Ͱ.ͰͲ to ͱ.ͲͶ Ͱ.ͰͶ 
Patient status at test        
   First-line ͷͶ (͵Ͷ%) - - - Ͱ.ͰͰ - <Ͱ.ͰͰͱ 
   Death  (Ͷ%) - - - ͱ.ʹ ͱ.Ͱͷ to Ͳ.ͶͰ - 
   Switch ͵ͱ (ͳ%) - - - ͱ.Ͱͷ Ͱ.͵ͳ to ͱ.Ͷͱ - 
Gender        
   Male ʹ (ͳͶ%) - - - Ͱ.ͰͰ - Ͱ.ʹͷ 
   Female ͷ (Ͷʹ%) - - - Ͱ.ͲͰ -Ͱ.ͳʹ to Ͱ.ͷʹ - 
Monitoring randomisation        
   LCM Ͷ (͵Ͱ%) - - - Ͱ.ͰͰ - Ͱ.ͱͲ 
   CDM Ͷͷ (͵Ͱ%) - - - Ͱ.ͳͶ -Ͱ.ͱͰ to Ͱ.Ͳ - 
Age (ͱͰ years) ͳ͵ (ͳͱ-ʹͱ) - - - -Ͱ.ͰͲ -Ͱ.ͰͶ to Ͱ.ͰͲ Ͱ.ͳͲ 
Time since failure (per ʹ weeks) Ͳ.ͳ (ͱ.Ͱ-ͳ.͵) - - - Ͱ.Ͱͱ -Ͱ.ͱ͵ to Ͱ.ͱ Ͱ. 
Baseline CDʹ Cell Count  
(per ͱͰͰ cells/mmͳ) 

͵ͳ (ͱ-ͱͰͷ) - - - -Ͱ.ͱͲ -Ͱ.͵͵ to Ͱ.ͳͱ Ͱ.͵ 

Constant - ͱͱ.ͳ ͱͰ.ͶͰ to ͱͲ.ͱ  ͱͰ.ͳ .ͱͳ to ͱͲ.ͷͳ  

                                            
4 ͱ͵ͱ not included because the model failed to converge for this variable due to an insufficient number of mutations. 
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The mutation with the largest impact on viral load in multivariate analyses 

across all three regimen types was Qͱ͵ͱM, which was predicted to increase 

viral load by Ͳʹʹ,Ͷͳ copies/mL (͵% CI: -ͱͶͱ,ͷʹͷ to Ͷ͵ͱ,ͰͲ͵ copies/mL; 

p=Ͱ.Ͳʹ) in patients on tenofovir. This mutation was observed in eight 

patients on tenofovir and is known to lead to high-level resistance to all 

NRTIs apart from tenofovir when combined with mutations at codons ͶͲ, 

ͷ͵, ͷͷ and ͱͱͶ [ͱʹ]. The DͶͷN mutation increased the viral load of patients 

on tenofovir by a predicted Ͳͳ,͵ͷͱ copies/mL (͵% CI: -ͱ,ͳͱͳ to ʹ,ʹ͵Ͷ 

copies/mL; p=Ͱ.ͰͶ). There was no evidence that other mutations 

influenced viral load in patients on tenofovir. However, in multivariate 

analyses which did not adjust for patient variables, mutations at codons ͱͱ͵ 

and ͱʹ reduced viral load and mutations at codon Ͳͱ͵ increased viral load. 

Among these five mutations (Ͷͷ, ͱͱ͵, ͱ͵ͱ, ͱʹ and Ͳͱ͵) the Stanford HIV 

drug resistance interpretation algorithm [ͱʹ] suggests that mutations at 

ͱͱ͵+ͱʹ and ͱ͵ͱ+ͱʹ may have interaction effects for tenofovir and 

zidovudine respectively, increasing the levels of drug resistance when 

simultaneously observed. These were examined in separate multivariate 

models adjusting for other variables. No interaction effect was observed for 

ͱ͵ͱ+ͱʹ (Coef=-ͱ.ʹͲ, ͵% CI: -ͳ. to ͱ.Ͱʹ; p=Ͱ.ͲͶ) but evidence for an 

interaction was observed for ͱͱ͵+ͱʹ (Coef=Ͳ.Ͱ; ͵% CI: -Ͱ.Ͱͷ to ʹ.Ͳ͵; 

p=Ͱ.ͰͶ). There was some evidence that mutations at codons ͱͱ͵ and ͱʹ 

individually reduced viral load by Ͳ,ͶͲͱ copies/mL (͵% CI: -ͱͷͰ,ͳͶͲ to 

͵,ͱͱ copies/mL; p=Ͱ.Ͱͷ) and ͵Ͷ,Ͷ͵͵ copies/mL (͵% CI: -ͱͳ,Ͱ͵ͷ to 

Ͳʹ,ͷʹͶ copies/mL; p=Ͱ.ͱͷ) respectively, but in combination there was no 

evidence for a change in viral load (ʹ,ͲͰͲ copies/m; ͵% CI:-ͲͷͲ,ʹͳͶ to 

ͳͷͰ,ʹͰ copies/mL; p=Ͱ.ͷͶ) 

Few patients on abacavir were observed to have mutations at codons Ͷ͵ 

(n=ͳ) or ͱͱͶ (n=ͱ), so the large observed influence on viral load should be 

interpreted cautiously. Patients on abacavir with mutations at codon ͷͰ 

had a predicted decrease in viral load of ͱͶ,ʹ copies/mL  
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(͵% CI: -͵ʹͳ,ʹͳ to ͱͶ,͵Ͳʹ copies/mL; p=Ͱ.ͳͰ), indicating a fitness 

decrease, while patients with mutations at codon Ͳͱ had an increase in 

viral load of ͱͲ,Ͷ͵ copies/mL (͵% CI: -Ͳͱͱ,Ͷͷͱ to ͵ͷͷ,ͰͶͰ copies/mL; 

p=Ͱ.ͳͶ). The Stanford HIV drug resistance interpretation algorithm [ͱʹ] 

suggests that the combination of mutations at codons ͷͰ and Ͳͱ will 

further decrease susceptibility to all NRTIs. Evidence for an interaction 

effect was observed in the multivariate model (Coef=-ʹ.͵; ͵% CI: -ͷ.ʹ to 

-ͱ.Ͷ; p=Ͱ.ͰͰͳ), but individual coefficients had a p-value larger than Ͱ.Ͱ͵. 

Patients on an NNRTI with mutations at codons ͱͱ͵ or ͱͱͶ had evidence for 

a change in viral load, but these findings were based on few patients (n=Ͳ 

and n=ͱ respectively). Mutations at codon ͱʹ reduced the viral load by 

ͱ͵ͷ,ͳͳͱ copies/mL (͵% CI: -ͳͱͳ,Ͳ to -ͱ,ͳͷͳ; p=Ͱ.Ͱ͵) and mutations at 

codon Ͳͱ͵ increased the predicted viral load by ͷͷ,Ͷʹͳ copies/mL (͵% CI: 

Ͷ,ͳͳ to ͱʹ,ͰͲ; p=Ͱ.Ͱͳ). There was limited evidence that mutations at 

codon Ͳͱ, increased viral load (p=Ͱ.ͰͶ), and there was no evidence for an 

effect at codon Ͷͷ after adjusting for other variables (p=Ͱ.Ͱ). An 

interaction between mutations at codons ͱʹ and Ͳͱ͵ was not tested for 

because there was no prior evidence. NNRTI mutations KͱͰͳN and VͱͰI 

both influenced viral load. KͱͰͳN increased viral load by ͵ͱ,ͷͶͲ copies/mL 

(͵% CI: -ͳ,ͲͲ to ͱͰͶ,ͱͷ; p=Ͱ.Ͱͷ) and VͱͰI decreased viral load by 

ͳ,ͳ copies (͵% CI: -ͷͳ,ͷͳ to -͵,ͳ; p=Ͱ.ͰͲ). 

4.4 Discussion 
4.4.1 Predictors of HIV-1 drug resistance 

This analysis has shown that patients who remain on regimens which they 

are virologically failing, for a median of ͱͰ weeks after virological failure 

was first detected, typically develop extensive HIV-ͱ drug resistance. NRTI 

resistance was nearly universal, and a lack of any HIV-ͱ drug resistance 

mutations (approximately % of patients) is likely to reflect a lack of 

adherence. There was no difference in the occurrence or extent of HIV-ͱ 

drug resistance by monitoring strategy, suggesting that routine CDʹ cell 
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count monitoring offers no improvement over clinically driven monitoring 

for reducing HIV-ͱ drug resistance. However, there was evidence that 

reducing the time spent with virological failure decreased the number of 

mutations detected. This suggests that if virological monitoring lead to 

earlier treatment switches then HIV-ͱ drug resistance would be reduced. 

4.4.1.1 Duration of virological failure 

The time since virological failure was first detected was a predictive 

variable for the presence of NRTI (Multivariate OR=ͱ.ͷͰ per ʹ weeks) and 

NNRTI resistance (Multivariate OR=ͱ.ͳʹ per ʹ weeks) as well as the 

number of NRTI mutations (Multivariate RR=ͱ.ͱͲ per ʹ weeks). 

Sigaloff et al. [ͱʹʹ] found that two to three years of first-line antiretroviral 

therapy use increased the odds of two or more TAMs by ͱͰ% compared to 

less than two years of antiretroviral therapy. Similarly, the odds of NRTI 

cross-resistance were increased by %, while more than three years of 

antiretroviral therapy use increased the odds of two or more TAMs by 

ͳͳͷ% and the odds of NRTI cross-resistance by Ͳ͵%. Jiamsakul et al. [ͱʹ] 

demonstrated that patients with more than two years since antiretroviral 

therapy initiation had a multivariate odds ratio of Ͷ.Ͳ͵ (͵% CI: Ͳ.ͳ-ͱͶ.ͳͶ) 

for multi-NRTI resistance mutations. Sigaloff et al. [ͱ͵] concluded that 

Ͱ.Ͱͷ TAMs accumulated per month in patients with continued virological 

failure. In contrast, Pinoges et al. [ͱʹͷ] found that there was no association 

between HIV-ͱ drug resistance and the duration of antiretroviral therapy. 

Previous studies have typically examined the duration of antiretroviral 

therapy use. This analysis was able to directly examine the time spent with 

virological failure in patients where virological status was unknown at the 

time. This analysis is limited by the ʹ-week viral load measurement 

intervals, so the duration of virological failure could be inaccurate. 

Nonetheless, monitoring patients immunologically or clinically compared 

to virologically is likely to increase the duration of virological failure and 

this analysis has shown that this leads to the presence of HIV-ͱ drug 
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resistance and the further accumulation of TAMs. Chapter ͵ will further 

quantify the rate at which HIV-ͱ drug resistance mutations develop on a 

virologically failing regimen using paired HIV resistance test data. 

4.4.1.2 Antiretroviral therapy regimen 

The use of a triple-NRTI regimen was not a significant predictor of any 

NRTI or NNRTI resistance (p=Ͱ.ͳ͵ and p=Ͱ.ͳͲ in univariate analyses 

respectively) compared to an NRTI-NNRTI regimen, although triple-NRTI 

did predict an increased number of NRTI mutations (Multivariate 

RR=Ͱ.ʹ; ͵% CI: Ͱ.ͷʹ-Ͱ.͵). A third of patients on a dual-class regimen 

containing nevirapine had no NNRTI resistance and patients with NNRTI 

resistance typically had one or two NNRTI mutations. 

Other studies have observed differences in the prevalence of resistance by 

antiretrovirals used. Sigaloff et al. [ͱʹʹ] found that using zidovudine 

compared to stavudine increase the odds of two or more TAMs being 

detected at the time of treatment switch by ͳ.ʹ (͵% CI: ͱ.ʹͶ-.ͳͲ) and 

the odds of NRTI cross-resistance by Ͳ.ͶͶ (͵% CI: ͱ.ͱͲ-Ͷ.Ͳ). Tenofovir 

use was shown to increase the odds of NRTI cross-resistance by ͵.ͰͰ (͵% 

CI: ͱ.Ͷͷ-ͱʹ.ʹ) although had no impact on the odds of two or more TAMs. 

Pinoges et al. [ͱʹͷ] observed that more patients who had received 

zidovudine had at least one TAM (ʹ%) compared to stavudine (Ͳͱ%). 

In this analysis, ͱ% of patients on an NRTI-NNRTI first-line regimen had 

drug resistance, ͷ% had MͱʹI/V, ͷͲ% had one or more TAMs, and ͵% 

had more than one TAM. Sigaloff et al. [ͱʹʹ] observed that % of patients 

with virological failure at treatment switch had drug resistance, Ͳ% had 

MͱʹI/V, ͵͵% had one or more TAMs and ͳ% had more than one TAM. 

After ͱͲ months of antiretroviral therapy, Hamers et al. [ͱʹ͵] found that 

ͷͰ% of those with virological failure had drug resistance, ʹ% had NRTI 

and NNRTI resistance, ͵ʹ% had MͱʹV, and % had at least one TAM.  
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In conclusion, the level of HIV-ͱ drug resistance observed in DART is 

similar to the level found in these other studies, but more TAMs were 

observed. This is potentially a result of a longer period on virologically 

failing regimens and the use of a zidovudine-lamivudine backbone 

compared to a tenofovir or stavudine-containing NRTI backbone. 

4.4.1.3 Pre-ART CD4 Cell Count 

Patients with a higher pre-antiretroviral therapy CDʹ cell count were less 

likely to develop NRTI resistance (Multivariate OR=Ͱ.Ͳ per ͱͰͰ 

cells/mmͳ) and to have fewer NRTI mutations (Multivariate RR=Ͱ.Ͳ per 

ͱͰͰ cells/mmͳ). There was no evidence of an association with NNRTI 

resistance in this analysis (OR=Ͱ.ͶͰ; ͵% CI: Ͱ.ͳͱ-ͱ.ͱ). 

This provides further support for guidelines which suggest that 

antiretroviral therapy should be started at higher baseline CDʹ cell counts. 

However, all patients in DART started antiretroviral therapy with a CDʹ 

cell count less than ͲͰͰ cells/mmͳ, so these findings might not be 

generalisable at baseline counts higher than this. These results agree with 

those from the TenoRes study [ͱʹͶ] where patients in Southern Africa with 

a baseline CDʹ cell count less than ͱͰͰ cells/mmͳ
 had an odds ratio of ͱ.ͳ 

(ͱ.ͰͰ-ͱ.ͳ) for tenofovir resistance. However, the TenoRes study also found 

that a baseline CDʹ cell count less than ͱͰͰ cells/mmͳ increased the odds 

of NNRTI resistance (OR=ͱ.Ͳͷ; ͵% CI: ͱ.Ͱ-ͱ.ʹ). 

4.4.2 Active second-line antiretroviral therapy regimens 

Patients who switched from a triple-NRTI regimen to one including an 

NNRTI had higher levels of resistance than patients who remained on 

triple-NRTI regimens. This suggests that NNRTIs should be used 

cautiously with potentially compromised NRTI backbones due to a lower 

genetic barrier to HIV-ͱ drug resistance. 

The EARNEST trial [ͱ͵] evaluated second-line antiretroviral therapy 

regimens in patients who had advanced treatment failure (ʹͲ% had a viral 
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load greater than or equal to ͱͰͰ,ͰͰͰ copies/mL, and ͶͲ% had a CDʹ cell 

count less than ͱͰͰ cells/mmͳ) in sub-Saharan Africa. Patients were 

randomised to receive either boosted PI (lopinavir/ritonavir) with NRTIs 

(two-thirds selected by clinicians), boosted PI with raltegravir (an integrase 

inhibitor) or a boosted PI as monotherapy (after a twelve week induction 

period with raltegravir). Despite extensive NRTI resistance (͵% had no 

predicted active NRTIs, and ͳͳ% had one predicted active NRTI), the 

proportion of patients with virological suppression (less than ͵Ͱ 

copies/mL) at week ͱʹʹ was similar in the arm containing NRTIs (ͷͶ% in 

those with zero or one active NRTIs) compared to the arm containing 

integrase inhibitors (ͷͲ%; p=Ͱ.Ͳ) and superior to the monotherapy arm 

(ʹʹ%; p<Ͱ.ͰͰͱ). The EARNEST trial demonstrates that despite extensive 

NRTI drug resistance an NRTI-sparing second-line regimen may not offer 

improved virological durability. If NRTIs are used as part of a second-line 

regimen, then these results suggest that tenofovir and zidovudine are likely 

to be the NRTIs which retain the most susceptibility. 

Patients who used first-line NRTI-NNRTI regimens were likely to develop 

NNRTI mutations (ͶͶ%). Due to the cross-over in resistance profile 

between mutations which developed on nevirapine compared to efavirenz, 

any future NNRTI use should include etravirine. 

4.4.3 Individual mutation prevalence 

The KͶ͵R and KͷͰR mutations were observed in ͱͷ% and Ͳͳ% of patients 

in DART who received a triple-NRTI regimen including tenofovir. In 

comparison, ͲͰ% of patients in Europe and ͵Ͱ% of patients in sub-Saharan 

Africa in the TenoRes Study [ͱʹͶ] were observed to have KͶ͵E/R or 

KͷͰE/G/Q at virological failure and ͱͲ% had KͶ͵R in the analysis by 

Hamers et al. [ͱʹ͵]. This discrepancy could be a result of the use of 

zidovudine and lamivudine alongside tenofovir. This may lead to the 

development of TAMs rather than KͶ͵R, which in this analysis typically 

occurred with few other mutations (Figure ͳͱ). Extended periods on 
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virologically failing regimens lead to an increased accumulation of 

additional TAMs as opposed to KͶ͵R. This is thought to be due to an 

antagonistic relationship between these mutations [ͱͶͰ]. The order 

mutations develop in will be examined in Chapter ͵. 

4.4.4 Mutation prevalence by HIV-1 Subtype 

In DART, there was no significant difference in the prevalence of KͶ͵R by 

subtype C compared to non-B, non-C subtypes (ͲͰ% versus ͱ͵%; p-

value=Ͱ.ͱ͵). However, while patients received standardised care, this 

comparison is limited because subtype C virus was almost exclusively 

observed in Zimbabwe. It has been suggested that subtype C virus may be 

more likely to develop the KͶ͵R mutation due to a different template 

sequence in this region, which leads to greater transcription errors [ͱͶͱ]. 

Other studies have found a difference; The TenoRes Study Group [ͱʹͶ] 

evaluated the prevalence of KͶ͵R/N and KͷͰE/G/Q by HIV-ͱ subtype, and 

tenofovir resistance was greater in patients with subtype C compared with 

non-C, non-B infections (OR=Ͳ.ʹʹ; ͵% CI: ͱ.ͶͶ-ͳ.͵). The TenoRes 

analysis was restricted to patients in Western Europe, due to the 

consistency of treatment in this region. Hamers et al. [ͱʹ͵] observed that 

KͶ͵R was detected more frequently in patients with subtype C virus 

compared to subtypes A or D (p=Ͱ.Ͱ͵), although evidence was limited after 

adjusting for differences in use of tenofovir (p=Ͱ.Ͷ). 

Unlike Hamers et al. [ͱʹ͵], we observed several other differences in the 

proportion of mutations by HIV-ͱ subtype. In agreement with some 

previous studies [ͱͶͲ, ͱͶͳ], TAMs such as LͲͱͰW and TͲͱ͵F were less likely 

to occur in patients with subtype C virus. Unlike other studies, the DART 

data also suggested that the MͱʹV mutation was less common in patients 

with subtype C virus and KͷͰR was less likely to occur in patients with 

subtype D virus. These findings are previously unreported and are likely to 

be either a false positive or due to the strong correlation between subtype 

C and Zimbabwe. MͱʹV is an extensively studied major mutation, so it is 
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unlikely that a subtype effect could exist which has not 

been previously shown. 

In this analysis, the VͱͰͶM mutation was exclusively observed in three 

patients with subtype C virus. This is supported by previous studies where 

VͱͰͶM has been identified as a subtype-C specific mutation which reduces 

susceptible to both nevirapine and efavirenz [ͱͶʹ]. Subtype C patients 

typically have RNA GTG at codon ͱͰͶ, whereas subtypes A, B and D have 

RNA GTA. For a valine to methionine (ATG) mutation to occur, two 

transitions are required for subtype A, B and D compared to just one for 

subtype C. 

4.4.5 Relationship between mutations and viral load 

Patients receiving virological monitoring has confounded previous analyses 

[ͱͶ͵-ͱͶͷ] examining the relationship between specific mutations and viral 

load. Specifically, patients who are maintained on regimens which 

clinicians know are virologically failing and who have HIV-ͱ drug resistance 

may be highly selective compared to populations in low-income countries 

without virological monitoring. Nonetheless, these studies support the 

findings of Section ʹ.ͳ. and are outlined below. 

In general, an increased number of resistance mutations have been 

associated with a reduced viral load. Chin et al. [ͱͶ͵] observed that the 

mean sum of the average resistance scores was lower in patients with a 

viral load greater than or equal to ͱͰͰ,ͰͰͰ copies/mL compared to less 

than ͱͰͰ,ͰͰͰ copies/mL (p=Ͱ.Ͱͳ), although there was no evidence of 

individual mutations having a detectable effect. De Mendoza et al. [ͱͶͷ] 

concluded that patients with drug-resistant viruses had significantly lower 

median viral load values than those carrying wild-type virus (p<Ͱ.ͰͰͰͱ). 

Machouf et al. [ͱͶͶ] demonstrated a more nuanced non-linear “U-shaped” 

relationship, where up to five mutations reduced viral load by Ͱ. logͱͰ 

copies/mL compared to wild-type, but where six or more mutations lead to 

an increase in viral load. 
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This analysis identified specific mutations association with viral load. 

MͱʹV was associated with a reduced viral load in patients on NRTI-

NNRTI regimens (Coef=-ͱ.ͳͲ; p=Ͱ.ͰͰͲ) and had no influence on viral load 

in patients on triple-NRTI regimens containing tenofovir (Coef=-Ͱ.ʹͱ; 

p=Ͱ.Ͳ͵) or abacavir (Coef=Ͱ.ͷ; p=Ͱ.͵ͷ). de Mendoza et al. [ͱͶͷ] observed 

that patients with the MͱʹV mutation had a median viral load of ͳ. logͱͰ 

copies/mL compared to ʹ.ͳ logͱͰ copies/mL in patients with wild-type virus 

(p<Ͱ.ͰͰͰͱ). Similarly, Machouf et al. [ͱͶͶ] concluded that MͱʹV/I was 

associated with a Ͱ.ͳ͵ logͱͰ copies/mL lower viral load (p<Ͱ.ͰͰͱ). Machouf 

et al. [ͱͶͶ] also observed that KͷͰR and VͱͰI reduced viral load. This 

agrees with findings from this analysis for patients on triple-NRTI regimens 

containing abacavir and NRTI-NNRTI regimens respectively, although was 

not shown for triple-NRTI regimens containing tenofovir. 

Unlike other analyses, an increase in viral load for mutations at codons Ͷͷ 

and ͱ͵ͱ in patients on triple-NRTI regimens containing tenofovir, codon 

Ͳͱ in patients on triple-NRTI regimens containing abacavir and at codons 

ͱͰͳ and Ͳͱ in patients on NRTI-NNRTI regimens was observed. These 

findings may be a result of the U-shaped relationship reported by Machouf 

et al. [ͱͶͶ] where more heavily mutated virus overcomes viral fitness 

impairments. Further analyses in datasets without routine virological 

monitoring are required to rule out chance findings. 

The results from Section ʹ.ͳ. are the first to have been obtained from 

patients without routine virological monitoring. This analysis benefits from 

being conducted in patients with one or more mutation, so differences in 

viral load are unlikely to be a result of differences in adherence. Some of 

the differences in viral load by mutation are remarkable and may reflect 

the order in which mutations are acquired. 
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4.4.6 Conclusions 

This analysis has demonstrated that patients may accumulate mutations on 

a virologically failing regimen, leading to extensive HIV-ͱ drug resistance in 

the absence of virological monitoring. The inclusion of CDʹ cell count 

monitoring did not reduce the extent or prevalence of resistance in any of 

the analyses conducted. Time since virological failure was a strong 

predictor, suggesting that virological monitoring could reduce the 

prevalence and number of mutations occurring on first-line antiretroviral 

therapy. The use of a zidovudine and lamivudine backbone typically 

resulted in an accumulation of TAMs. KͶ͵R mutations were less frequent, 

even if tenofovir was included as part of a triple-NRTI regimen. For 

patients who received a first-line antiretroviral therapy regimen of 

zidovudine, lamivudine and nevirapine, a second-line antiretroviral 

therapy regimen consisting of tenofovir, lamivudine (or emtricitabine) and 

a ritonavir-boosted protease inhibitor will be the most potent, supporting 

WHO guidelines [Ͳͷ]. 



 

ͱͷͲ 

5 The development of  
HIV-1 drug resistance mutations 

5.1 Introduction 
Prolonged use of antiretroviral therapy with replicating viremia leads to an 

accumulation of HIV-ͱ drug resistance mutations. The specific mutations 

which develop are influenced by the combinations of antiretrovirals used, 

the order in which mutations occur, interactions between mutations, 

random genetic variation and HIV-ͱ subtype. Research on HIV-ͱ drug 

resistance has focused on data from high-income settings due to the 

availability of routinely conducted HIV-ͱ drug resistance tests. However, 

patients in high-income settings also receive regular virological 

monitoring; therefore virological failure is typically detected earlier than in 

low-income settings. Data is more limited from low-income settings, yet 

highly relevant for the future of antiretroviral therapy in these regions. 

5.1.1 Literature search 

A PubMed search was conducted on the ͳͱst April ͲͰͱͶ to find studies 

examining how HIV-ͱ drug resistance develops. This search was not 

restricted to low-income settings and reviewed all English language 

research. The PubMed search used the terms (HIV AND (resistance OR 

mutation) AND (accumulation[Title] OR development[Title] OR 

pathway*[Title]) and found Ͷ publications. These publications were 

filtered using a relevance feedback tool called RefMed [ͱͶ]. This tool 

learns from a user’s rankings which publications from a search are the most 

relevant and orders PubMed search results. This was found to be necessary, 

since this PubMed search returned hundreds of articles which were not 

relevant. As an example, “Lipodystrophy in HIV-ͱ-positive patients is 

associated with insulin resistance in multiple metabolic pathways” by van 

der Valk et al. [ͱͶ]. This fulfilled the search criteria but is irrelevant for 

examining the development of HIV-ͱ drug resistance mutations. 
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After filtering papers using RefMed, ʹ relevant publications were 

identified (Appendix F) and described in the following sections. 

5.1.2 Mutagenic Tree Methodology 

5.1.2.1 Single mutagenic tree model 

A HIV-ͱ drug resistance test gives a set of mutations, which occurred in an 

unknown order. The ordering is not random, since certain mutations are 

likely to occur directly from wild-type virus and increase the probability of 

subsequent mutations. Directed graphs were initially used in HIV research 

to represent the order in which mutations developed on zidovudine 

monotherapy [ͱͷͰ]. Mutagenic trees formalise this approach with 

“vertices”, or “nodes”, representing binary events (Figure ͳͷ), such as a 

mutation occurring. “Edges” represent conditional events, where a 

mutation cannot occur unless the predecessor mutation has also taken 

place. Probabilities attached to each edge display the conditional 

probability of a mutation given the parent mutation has occurred. 

Figure ͳͷ: Example mutagenic tree 
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Bayesian tree models were introduced by Desper et al. [ͱͷͱ] to describe 

tumour progression in cross-sectional data. Mutagenic or Bayesian tree 

models are a specialised version of the more general Bayesian network 

models. The former have the added constraints that each mutation has 

only one entering edge, that mutations are irreversible and that there is a 

root node (wild-type) with no entering edges. These constaints ensure that 

the number of parameters in the model is equal to the number of 

mutations, whereas a Bayesian network model has an exponential 

relationship between the number of mutations and parameters. 

Succinctly, trees are constructed by initially calculating weights for all 

possible combinations of pairs from the total, n, mutations: 

w(j, k) = log( Pr(j, k)) − log(Pr(j) + Pr(k)) − log (Pr(k)) 

where Pr(j) is the marginal probability of mutation j, j=ͱ…n, Pr(k) is the 

marginal probability of mutation k, k=ͱ…n, and Pr(j,k) is the joint 

probability of events j and k, j=ͱ…n, k=ͱ…n, j≠k. This initial choice gives 

large weights for mutations j and k which frequently occur together, 
୰(୨,୩)

୰(୨)୰(୩)
, and a preference for an edge from j to k if Pr(j) > Pr(k) by 

including ୰ (୨)
୰(୨)ା୰ (୩)

. Multiplied these give ୰(୨,୩)
(୰(୨)ା୰(୩))୰ (୩)

 and the logarithm 

of this is a monotone increasing function. Desper et al. [ͱͷͱ] show that by 

maximising the sum of the edge weights that this choice of initial weights 

finds the optimal tree. Despite the computational ease of constructing 

mutagenic trees there are limitations. For instance, only a proportion of 

the mutational patterns observed in a dataset can be represented by a 

single tree. This may lead to a lack of fit if the underlying biological 

mechanism is more complicated than the model or has more natural 

variation. 

5.1.2.2 Mixture mutagenic tree models 

To overcome this limitation, Beerenwinkel et al. [ͱͷͲ] introduced mixture 

models. In these, there are multiple (K) trees with an associated probability 
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of each occurring. A star tree is also included, essentially a tree which 

assumes all mutations other than the root are independent (Figure ͳ). 

This ensures that all combinations of mutations are possible and occur 

with non-zero probability. Beerenwinkel et al. [ͱͷͲ] discuss the 

methodology for fitting mixture models in detail. They are implemented 

through an expectation-maximisation (EM)-like algorithm which 

maximises the log-likelihood of the data. Beerenwinkel et al. developed the 

software mtreemix, run under Linux or Unix, to fit these models [ͱͷͳ]. This 

method uses cross-validation to determine the number of trees which give 

the most parsimonious model, while still being within a sufficient margin 

of the maximum mean log-likelihood.  

Figure ͳ: Example of a star tree 

5.1.2.3 Longitudinal mutagenic tree models 

Montazeri et al. [ͱͷʹ] analyse cross-sectional data but incorporate the 

additional information of time on antiretroviral therapy to estimate the 

rate at which mutations occurred. However, while their Bayesian Network 

model controlled for the time a measurement was taken, it did not account 

for data where patients had multiple genotypes conducted at multiple time 

points. Cross-sectional approaches need to be adapted for longitudinal 

mutagenic data. Ignoring the correlation between genotypes performed on 

the same patient in a model would overestimate the probability of earlier 

mutations occurring. 

Beerenwinkel and Drton [ͱͷ͵] expanded upon the cross-sectional approach 

of mutagenic trees (described at the start of Section ͵.ͱ.Ͳ above) by 
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utilising a hidden Markov model to analyse longitudinal clonal data. They 

also presented a Perl program, mtreehmm, for fitting these models. This 

method uses the additional data from longitudinal measurements to 

determine which ordering of mutations is the most likely. Firstly, the 

topology of the mutagenic tree is calculated treating the longitudinal data 

as cross-sectional and fitting a mutagenic tree. Secondly, the longitudinal 

element is fitted assuming that mutations occur as independent Poisson 

processes with parameter λm>Ͱ. The probability that a mutation, m, occurs 

providing that the parent mutation of m, pa(m), has already happened, 

during a time period of length Δt is: 

൫ܺݎܲ = 1หܺ() = 1൯ = 1 − ݁ିఒ௧ 

Beerenwinkel and Drton [ͱͷ͵] applied this method to longitudinal clonal 

data to evaluate resistance to efavirenz in ͱͶͳ patients with ͳ,ͳ͵Ͱ clones at 

a median of three time points. They identified two distinct pathways, 

involving mutation KͱͰͳN and GͱͰS respectively, and calculated that 

KͱͰͳN had an expected waiting time (defined as ͱ/λm, the mean time of 

mutation m occurring) of ͱ weeks compared to ʹͷ weeks for GͱͰS. The 

naïve cross-sectional approach consistently overestimated the progression 

rate of mutations. 

5.1.2.4 Bayesian network models 

Bayesian network models do not include the restrictions of mutagenic tree 

models. In these models, mutations are no longer considered permanent 

and may be lost. Furthermore, mutations may have more than one edge 

entering them, allowing for associations with multiple parent mutations. 

Bayesian network models are often built using the B-course software [ͱͷͶ]. 

The lack of restrictions can make Bayesian network models challenging to 

interpret. As a case in point, the model presented by Theys et al. [ͱͷͷ] 

includes ͱͰͰ mutations and ͲͳͰ edges, so key associations can be difficult 

to identify. 
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Figure ͳ: Example Bayesian network model 

 

From the methods outlined in this section, the approach of Beerenwinkel 

and Drton [ͱͷ͵] was felt to be the most suitable for the DART data. This 

method uses the multiple genotypes from within patients and the time 

after antiretroviral therapy initiation at which genotypes were conducted. 

Other approaches discussed were either not able to correctly account for 

the correlation between genotypes on the same patient or ignored the 

information provided by the time of measurement. 

5.1.3 Development of HIV-1 drug resistance mutations 

This section summarises key research from the literature review which 

analysed the development of resistance without using a mutagenic tree or a 

Bayesian network model. 

Kuritzkes et al. [ͱͷ] utilised data from ͱͲͰ patients in the US ACTG ͳͰͶ 

and ͳͷͰ trials and compared the development of resistance on zidovudine 

+ lamivudine, stavudine + lamivudine and stavudine monotherapy arms. 

HIV-ͱ genotyping was performed if HIV viral load was greater than ͵ͰͰ 

copies/mL at weeks Ͱ, Ͳʹ, ʹ or ͷͲ. After ͷͲ weeks of therapy, TAMS were 

detected at similar frequencies for both thymidine analogues (͵Ͱ% on 

zidovudine and ʹ͵% on stavudine; p=Ͱ.ͷ). The KͷͰR and TͲͱ͵Y 
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mutations were observed in a similar proportion of patients (Ͳ͵% and ͱͲ% 

respectively), but MʹͱL was observed more frequently in patients treated 

with zidovudine (ͲͲ% versus Ͷ%; p=Ͱ.ͰͳͲ). Despite having repeated 

measurements within patients, the authors did not calculate the rate of 

mutational development. 

Barth et al. [ͱͷ] investigated the accumulation of HIV-ͱ drug resistance 

mutations in a South African cohort of ͳͶ patients on a dual-class 

regimen containing an NNRTI. Patients received biannual monitoring, and 

ͱʹ͵ of ͶʹͲ (Ͳͳ%) were on a regimen they were virologically failing (viral 

load greater than ͱ,ͰͰͰ copies/mL) after previously achieving virological 

suppression. Of these patients, ͵ (ʹͰ%) remained on the same regimen 

with continued virological failure six to twelve months later. Genotyping 

was conducted at the time virological failure was first detected and at 

either six months (n=ͱ) or twelve months (n=) for ͲͶ patients; ͱ 

patients were excluded because no blood sample was available and ͱʹ had a 

gap between measurements longer than twelve months. In general, there 

was a ͵ʹ% increase in major IAS mutations and this was predominantly 

driven by an increase in NRTI resistance (% increase) rather than NNRTI 

resistance (ͳͶ% increase). The largest increase was in the number of TAMs 

(Ͳ͵Ͱ% increase), and these were more frequently observed in patients who 

received zidovudine compared to stavudine (͵ͷ% compared to %; 

p<Ͱ.Ͱͱ). The MͱʹV and KͱͰͳN mutations were the most frequently 

observed (ͷͳ% and Ͷ͵% at the second time point respectively) but the 

proportional increase in these mutations was lower (ͲͲ% and ʹͲ% 

respectively). The proportion of patients on zidovudine and stavudine with 

TAMs differed to the previous study; this could be a result of using an 

NNRTI as part of the treatment regimen. 

Cozzi-Lepri et al. [ͱͰ] used data from ͳͳ patients in the EuroSIDA study 

and investigated the accumulation of TAMs on predominantly NRTI-

NNRTI regimens containing either stavudine or zidovudine. Pairs of 
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resistance tests (n=ͶͰͳ) were analysed while patients remained 

virologically failing (viral load greater than ͵ͰͰ copies/mL) on the same 

regimen. Patients had virologically failed a median of four antiretrovirals 

before their first resistance test. There was a median (range) of Ͷ (ͱ-) 

months between HIV-ͱ drug resistance tests. ͱͲͶ TAMs accumulated 

during ͵ʹ person-years of follow-up, an accumulation rate of Ͳͳ.Ͱ per 

year (͵% CI: ͱ.͵-ͲͶ.ͷ per year). The calculated mutation accumulation 

rate assumed a constant rate over time. Mutations from the TAM-ͱ 

pathway (MʹͱL, LͲͱͰW and TͲͱ͵F/Y) accumulated approximately twofold 

faster than mutations from the TAM-Ͳ pathway (DͶͷN, Ͷ insertion, KͷͰR 

and KͲͱE/Q). The authors estimated that ͱͳ.Ͷ (͵% CI: .Ͳ-ͱ.Ͱ) MʹͱL 

mutations, ͱͳ.ͱ (.-ͱ.͵) TͲͱ͵Y mutations and .ͳ (Ͷ.͵-ͱͲ.) LͲͱͰW 

mutations accumulated per ͱͰͰ person years. Mutations from the TAM-Ͳ 

profile were predominantly DͶͷN (ͷ.Ͷ per ͱͰͰ person-year; ͵% CI: ʹ.-

ͱͱ.Ͳ) and TͲͱ͵F (ʹ. per ͱͰͰ person-years; ͵% CI: ͳ.Ͳ-ͷ.ͳ). The authors 

note that this data may suffer from selection bias, since patients received 

routine laboratory monitoring yet were maintained on regimens with 

virological failure. 

Cozzi-Lepri et al. [ͱͱ] established the rate at which NNRTI mutations 

developed in ͲͲͷ patients (ʹͶͷ pairs) on dual-class regimens containing 

either nevirapine or efavirenz from the EuroSIDA study. There was a 

median (range) of Ͷ months (ͱ-ͷʹ) between HIV-ͱ drug resistance tests. 

Major IAS NNRTI mutations [ͱͲ] developed at a rate of ͷ.Ͷ (Ͷ͵.Ͷ-.) 

per ͱͰͰ person-years. The highest rate of accumulation for an individual 

mutation occurred for KͱͰͳN (Ͳͷ.Ͷ mutations per ͱͰͰ person-years; ͵% 

CI: ͲͰ.ͷ-ͳ͵.͵), followed by YͱͱC (ͱͲ.Ͳ; ͵% CI: .Ͱ-ͱͷ.ͷ), GͱͰA (.ʹ; ͵.-

ͱʹ.ͳ) and VͱͰI (Ͷ.ͷ; ʹ.Ͱ-ͱͰ.Ͷ). The authors found that mutations 

accumulated more rapidly during the first six months following virological 

failure and concluded that NNRTI mutations develop at an average rate at 
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least threefold higher than TAMs. In this study, just Ͷ% of patients were 

antiretroviral therapy naïve at the time they initiated the NNRTI. 

Lawyer et al. [ͱͳ] utilised a Cox model and data from ͱ,ʹ͵ patients who 

had ͱ,ͱ reverse-transcriptase based episodes of therapy where genotyping 

was conducted before initiating therapy and also before the end of therapy. 

The paper does not record whether genotyping guided the choice of 

antiretroviral therapy or why patients remained on failing regimens. The 

Cox proportional hazards model was formulated to allow individual pre-

existing mutations to alter the hazard of a mutation developing. Mutations 

known to influence drug susceptibility and codons with mutations in more 

than five percent of patient at antiretroviral therapy initiation were 

investigated. Mutations from wild-type were treated as a single variable, 

irrespective of the specific amino acid change which had occurred. Lawyer 

et al. presented the results as mutational pathways. The TAM-ͱ pathway 

was observed with an association between mutations at codons Ͳͱ͵ and ʹͱ 

(HR=ͳ.Ͳͳ; ͵% CI: Ͳ.ͱ͵-ʹ.͵). The TAM-Ͳ pathway was also noted with an 

association between mutations at codons Ͷͷ and ͷͰ (HR=ͳ.͵Ͳ; ͵% CI: 

Ͳ.Ͱ-͵.) and codons ͷͰ and Ͳͱ (HR=Ͳ.Ͷ; ͵% CI: ͱ.ͶͰ-ʹ.ʹͷ). Similarly, 

the two TAM pathways were found to inhibit each other as mutations at 

codon ͲͱͰ were associated with a tenfold reduction in the risk of mutation 

at codon ͷͰ. Several associations were found between mutations 

considered to be NRTI-associated and mutations considered to be NNRTI-

associated (e.g. ʹͱ →108, 67 →190, 74 →100 and 77 →103). 

Boender et al. [ͱʹ] utilised data from Ͷͳ adults and ͵Ͷ children in sub-

Saharan Africa to examine the accumulation of HIV-ͱ drug resistance 

mutations on an NNRTI-based first-line antiretroviral therapy. Plasma viral 

load testing was retrospectively performed and resistance tests were 

conducted if viral load was greater than ͱ,ͰͰͰ copies/mL. Samples were 

available after ͱͲ and Ͳʹ months of therapy in all sites and after ͳͶ months 

in Ͱ% of locations. There was a median of ͳͰͳ (IQR: ͱͳ-ͳͶ͵) days 
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between resistance tests on the same patient. Analyses examined the 

change in predicted susceptibility between tests, and the rate individual 

mutations were accumulated per year. On average, ͱ.ʹ͵ new drug 

resistance mutations (Ͱ.ʹ NRTI mutations and Ͱ.ͶͲ NNRTI mutations) 

accumulated per ͵Ͳ weeks. 

5.1.4 Bayesian Network Models 

This section summarises some of the key research found in the literature 

review, outlined in Section ͵.ͱ.ͱ, which analysed the development of 

resistance using either mutagenic trees or Bayesian network models. 

Deforche et al. [ͱ͵] used a Bayesian network model to examine patients 

on NRTI-NNRTI regimens with a variety of HIV-ͱ subtypes (approximately 

a quarter of patients on nevirapine had subtype B virus) to determine the 

order in which mutations develop. The dataset included ͳ,ͳͷ 

antiretroviral-naïve patients, of which ʹͶͲ were treated with an efavirenz-

containing regimen and ͵ͳͳ patients were treated with a nevirapine-

containing regimen. Unlike a previous analysis conducted on patients on 

protease inhibitors [ͱͶ], very few interactions were found between 

subtype-dependent polymorphisms and NNRTI resistance mutations. 

Mutations EͲͰͳK, LͲͲH/R were associated with the TAMs KͲͱE/Q. For 

resistance to nevirapine, a number of associations between known NNRTI 

mutations were observed. The KͱͰͳN pathway was associated with 

mutations VͰI, LͱͰͰI, KͱͰͱP, YͱͰI, YͱͱC, HͲͲͱY, PͲͲ͵H, KͲͳT, and 

GͱͰA. The GͱͰE/S/A mutations were further associated with KͱͰͱE/Q, 

KͱͰͳN, YͱͱC, and HͲͲͱY. The authors concluded that Bayesian network 

learning provided useful insights into the simultaneous selection of HIV-ͱ 

drug resistance mutations to two separate classes of inhibitors as 

part of combination therapy. 

Theys et al. [ͱͷͷ] applied Bayesian network learning to a dataset consisting 

of ͱ,ͱͲʹ sequences to determine the order in which resistance develops in 

patients on a regimen containing zidovudine and lamivudine. They found 
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that MʹͱL, KͷͰR, MͱʹV and TͲͱ͵F/Y were directly linked to vertices 

representing drug experience so were likely to be the first resistance 

mutations to occur. TAM pathways were not found to be exclusive, since a 

number of patients were observed with combinations of TAM pathway 

mutations TͲͱ͵Y (TAM-ͱ) and KͷͰR (TAM-Ͳ). 

Hernandez-Leal et al. [ͱͷ] used a temporal node Bayesian network model 

with data from Ͳ,ͳͷͳ patients who had used a regimen containing a 

protease inhibitor. Ten protease mutations were analysed, and the method 

was able to confirm known associations between specific protease 

inhibitors and mutations as well as between mutations, particularly for 

resistance to lopinavir. 

Buendia et al. [ͱ] used a two-phase approach, combining a phylogenetic 

and a Markov model, to examine mutational pathways to HIV-ͱ drug 

resistance. By combining models, this approach was able to include 

longitudinal clonal sequence data. The model was applied to ͱͲͰ patients 

from a phase II efavirenz study. The results were similar to those obtained 

from a mutagenic tree model but, by modelling the different combinations 

of mutations as states of a Markov model, the loss of mutations could also 

be determined. This revealed that sequences with KͱͰͳN and a mutation 

other than PͲͲ͵H mutation were more likely to lose this additional 

mutation than if the patient developed both KͱͰͳN and PͲͲ͵H. The loss of 

mutations cannot be determined using the mutagenic tree method. 

5.1.5 Mathematics of antiretroviral agents 

Soriano et al [ͱ] describe the viral dynamics of HIV in comparison to 

hepatitis B and C virus and explain how HIV’s very rapid viral dynamics 

and shorter half-life of intracellular virions leads to a faster selection of 

drug resistance in HIV compared to hepatitis B. Shen et al [ͱͰ] suggest 

that the dose-response curve slope has substantial effects on antiviral 

activity and will generally correlate better with clinical outcomes. They 

show that different antiretroviral drug classes have characteristic dose-
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response curve slopes with NRTIs typically having a slope of approximately 

ͱ, “characteristic of non-cooperative reactions”, while NNRTIs had a slope 

of approximately ͱ.ͷ and PIs had a slope of ͱ. to ʹ.͵ indicative of more 

potent antiviral activity. 

Vaidya et al [ͱͱ] use mathematical modelling to describe the relationship 

between HIV-ͱ drug resistance, viral load, CDʹ cell count and clinical 

outcomes in patients treated with enfuvirtide, a fusion inhibitor. 

Mathematical modelling demonstrated that when treatment was 

interrupted it is outgrowth of drug-resistant virus by previously latent 

wild-type virus which results in the rapid loss in detectability of HIV-ͱ drug 

resistance rather than backwards mutation towards the wild-type strain. In 

this study, the authors describe how, despite drug resistance, the use of an 

antiretroviral can lead to increases in CDʹ cell count. After a treatment 

interruption, re-administering the same antiretroviral to patients resulted 

in the resistant virus rapidly becoming the dominant detectable strain. 

However, patients who re-received a drug to which they had developed 

HIV-ͱ drug resistance were measured to have ͳ͵% higher CDʹ cell counts 

after three months compared to patients who had not. This should lead to 

some clinical benefit and has been shown for a variety of HIV-ͱ mutations 

such as DͳͰN, KͶ͵R and MͱʹV [ͱͲ-ͱͳ]. 

Rong et al [ͱʹ] use a mathematical pharmacokinetic model to study the 

emergence of drug-resistant HIV and support Vaidya et al's findings. In 

these models, perfect adherence can suppress wild-type virus but drug-

resistant variants develop slowly, perhaps in areas of the body lacking 

adequate drug exposure. In contrast, intermediate adherence can lead to 

the dominance of drug-resistant HIV within several months. With low 

levels of adherence, wild-type virus will quickly emerge and there will be a 

relatively slow increase in drug-resistant viral load. 

Mathematical modelling demonstrates how patients in DART with 

virological failure and extensive drug resistance may have continued to 
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derive benefit from their antiretroviral regimens. Similarly, they describe 

how the pharmacokinetics of different antiretroviral drug classes can 

influence the emergence of HIV-ͱ drug resistance. 

5.1.6 Objective 

The rate at which mutations accumulate will help to quantify how delayed 

diagnosis of virological failure may influence the susceptibility to second-

line regimens. Furthermore, understanding the order in which mutations 

develop will guide the choice of antiretrovirals for first-line and subsequent 

regimens by maximising their potency. Finally, this work can inform cost-

effectiveness analyses evaluating alternative types and frequencies of 

laboratory monitoring strategies. 

The objective of this chapter is to determine the rate at which mutations 

develop by comparing genotypic testing conducted within patients 

experiencing persistent virological failure at repeated time points. This 

analysis will also explore the extent of HIV drug resistance at the time 

point where virological failure was first detected. Using this rich data, the 

order and favoured pathways of HIV-ͱ drug resistance mutations will be 

determined by antiretroviral regimen. 

5.2 Methods 
All patients who experienced virological failure greater than ͲͰͰ 

copies/mL had HIV-ͱ drug resistance tests conducted at the 

time virological failure was first detected as well as the last time-point on 

first-line antiretroviral therapy. Genotypic testing methodology for  

selected plasma samples were conducted using the approach previously 

described in Section ʹ.Ͳ. 

5.2.1 Analysis 

The accumulation of mutations was examined in patients with two HIV-ͱ 

drug resistance tests performed on separate dates. Major NRTI and NNRTI 

mutations were classified using the IAS-USA ͲͰͱͳ list [ͱʹ]. Due to the 
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extended period on a regimen with continued virological failure, there was 

the potential to examine the development of secondary compensatory 

mutations. These are mutations which do not directly impact the 

susceptibility of the virus to antiretrovirals but potentially restore 

replication fitness of the virus. Compensatory mutations examined due to 

an a priori interest included AͶͲV [ͱ͵], SͶG [ͱ͵], Vͷ͵I [ͱͶ], FͷͷL [ͱͶ], 

SͱͶͲA [ͱͷ], SͱͶͳN [ͱ] and QͲͰͷD [ͱ]. VͶͰI [ͱͷ] was considered, but 

is a natural polymorphism for subtype D and extremely common among 

subtype A and C virus [ͲͰͰ], so was excluded. 

The rate of accumulation was calculated for each person as the number of 

new major mutations divided by the difference in time between tests. The 

loss of detectable mutations, observed in some patients, was ignored as 

mutations are assumed to be archived. Predictors for the number of 

mutations were examined using mixed effect generalised linear regression 

model with a Poisson link and included time since ART initiation, gender, 

age, trial monitoring randomisation, centre, trial regimen (either triple-

NRTI or NRTI-NNRTI if any exposure to NNRTIs) and HIV-ͱ subtype as 

covariates. All variables were assessed for an interaction with study time. A 

random intercept term for each patient was included in the model. 

Susceptibility to antiretrovirals was measured using Stanford HIV drug 

resistance database scores. Antiretrovirals with low level or intermediate 

resistance were given a score of Ͱ.͵, and where there was high-level 

resistance were given a score of Ͱ. Antiretrovirals to which a virus was fully 

susceptible, or to which there was possible low-level resistance, were given 

a score of ͱ. The difference in genotypic sensitivity scores (GSSs) [ͲͰͱ] 

summarised the changes in susceptibility between time points. 

HIV-ͱ subtype was determined for each patient by REGA vͳ. If the 

classification between the paired tests disagreed, with one genotype 

classified as a pure HIV-ͱ subtype and a second as Complex/Recombinant, 

then a pure subtype determination was used since the virus was likely to be 
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genetically closest to this (ͱ patients). If there were different pure HIV-ͱ 

subtypes, then a Complex/Recombinant definition was used due to a lack 

of consensus (Ͳ patients). 

The model proposed by Beerenwinkel and Drton [ͱͷ͵] (Section ͵.ͱ.Ͳ above) 

was utilised to investigate the development of NRTI mutations among 

patients receiving triple-NRTI therapy and to determine if this differed by 

NRTI backbone used. Similarly, the models were used to describe the 

development of NRTI and NNRTI mutations on NRTI-NNRTI regimens. 

Firstly, mutational data from both time points was grouped and used to 

calculate the structure of a single mutagenic tree using the mtreemix vͱ.ͳ 

software. Secondly, this structure was used with the mtreehmm Perl 

program to calculate the rate at which mutations occurred. One hundred 

bootstraps with replacements were applied to each tree to calculate ͵% 

confidence intervals. This software was run on the UCL Legion high 

performance and high throughput computing cluster due to the large 

amount of CPU time required. For the abacavir and NRTI-NNRTI regimen 

mutagenic trees, the mtreehmm program was relatively quick, probably 

due to the smaller number of patients. A hundred bootstraps could be 

performed in approximately Ͳʹ hours of single core computing time on this 

cluster. In contrast, the tenofovir mutagenic tree was slow, and ͱͰͰ 

bootstraps took approximately ͳͰͰ days of single core computing time so 

bootstraps were run in parallel. 

Mutations were included in a model if they occurred in more than ͳ% of 

patients. Analyses which included rarer mutations created problems during 

the bootstrap process, since they were sometimes not selected within a 

bootstrap, leading to undefined values for λm. This lead to the exclusion of 

mutations Vͷ͵I, FͷͷL, SͱͶͲA, SͱͶͳN and Qͱ͵ͱM from the model for 

patients who received triple-NRTI regimens including tenofovir. AͶͲV, 

KͶ͵R, SͶG, Vͷ͵I, FͷͷL, Qͱ͵ͱM and SͱͶͳN were excluded for patients who 

received triple-NRTI regimens including abacavir. AͶͲV, KͶ͵R, Vͷ͵I,  



Chapter ͵: The development of HIV-ͱ drug resistance mutations 

ͱͷ 

FͷͷL, Qͱ͵ͱM and SͱͶͳN were excluded for patients who received NRTI-

NNRTI regimens. 

5.3 Results 
5.3.1 Missing tests 

Paired HIV-ͱ resistance tests were available within Ͳʹ weeks of target dates 

for ʹͱʹ of ͶͰ (Ͷ%) patients. For ͱͰʹ (ͱͷ%) patients, the last time point on 

first-line antiretroviral therapy was identical to the first time point with 

virological failure. Among these were ʹͲ patients who died at the time of 

virological failure, Ͳͷ who switched treatment and ͳ͵ who were alive on 

first-line antiretroviral therapy at the end of the DART trial. These patients 

were included in Section ͵.ͳ.ͷ but were otherwise not analysed. There were 

ͱ (ͱ͵%) patients who were missing one or more sequences. 

Sequences were available only for the time virological failure was first 

detected in Ͳʹ patients and at the last time point on first-line antiretroviral 

therapy for Ͳʹ patients. Sequences were unavailable at both time points for 

ͱͲ patients. For ͳͱ patients the last time point on first-line antiretroviral 

therapy coincided with the first time point with virological failure and a 

sequence was not available. Overall, ͱͰͳ genotypes were not available for 

analysis. The ͳͶ additional missing resistance tests, not discussed in 

Section ʹ.ͳ.ͱ, were missing from the first time point due to either an 

amplification failure (n=ͳͲ; %) or due to a sequence failing phylogenetic 

quality control (n=ʹ; ͱͱ%). 

5.3.2 Accumulation of mutations by class 

The median (IQR) time between tests among the ʹͱʹ patients was ͱͳͲ (ͷͲ-

ͱͰ) weeks. Patients on triple-NRTI regimens containing tenofovir and 

NRTI-NNRTI regimens had a median time between tests of ͱͳͲ (ͷͳ-ͱʹ) 

and ͱͳͲ (Ͷ-ͱͶͶ) weeks respectively. Patients on triple-NRTI regimens 

containing abacavir had a shorter time difference between tests of ͱͰʹ 

weeks (ͷʹ-ͱʹʹ; Nonparametric equality-of-medians test p-value=Ͱ.Ͱ͵). The 
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range was  to ͲͶͰ weeks. The first resistance test was conducted after a 

median (IQR) of ʹ (ʹ-Ͷ) weeks of antiretroviral therapy. The time after 

initiating antiretroviral therapy for each pair of test is shown in Figure ʹͰ. 

Figure ʹͱ displays a boxplot of the number of mutations at each test by 

antiretroviral therapy regimen. 

Figure ʹͰ: Time of each resistance test 

 

Figure ʹͱ: Boxplot of mutations by time point 
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Overall, NRTI mutations developed at a mean (Standard Deviation) rate of 

Ͱ.Ͳ (ͱ.ͱͱ) per ͵Ͳ weeks and TAMs developed at a mean rate of Ͱ.ͱ (ͱ.ͰͶ) 

per ͵Ͳ weeks. There was a mean (SD) increase of ͱ.ʹ (ͱ.Ͷͱ) NRTI 

mutations and ͱ.Ͷʹ (ͱ.͵ʹ) TAMs. Among patients on triple-NRTI regimens, 

NRTI mutations developed at a rate of Ͱ.Ͱ (ͱ.ͱ͵) per ͵Ͳ weeks and TAMs 

developed at a rate of Ͱ.Ͱ (ͱ.Ͱ) per ͵Ͳ weeks; there was a mean increase 

of ͱ.Ͱ (ͱ.ͶͰ) NRTI mutations and ͱ.ͶͲ (ͱ.͵Ͱ) TAMs. Among patients on 

NRTI-NNRTI regimens, NNRTI mutations developed at a rate of Ͱ.Ͳͱ 

(Ͱ.ʹͰ) per ͵Ͳ weeks; NRTI mutations developed at a rate of Ͱ.Ͷ (ͱ.Ͱͱ) per 

͵Ͳ weeks and TAMs developed at a rate of Ͱ.Ͳ (Ͱ.) per ͵Ͳ weeks. There 

was no evidence of a difference in the rate of NRTI mutations and TAMs 

compared to patients on triple-NRTI regimens (t-test p-value=Ͱ.ͶͰ and 

Ͱ.ͱ respectively). There was a mean increase of ͱ.ͳ (ͱ.Ͷʹ) NRTI 

mutations, Ͱ.ʹʹ (Ͱ.ͷͶ) NNRTI mutations and ͱ.Ͷ (ͱ.Ͷʹ) TAMs. 

Figure ʹͲ: Boxplot of mutations by time point and subtype 
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Figure ʹͲ displays this information by HIV-ͱ subtype. There were ͱͶͰ 

(ͳ%), ͱͱͶ (Ͳ%) and ͵ (Ͳͳ%) patients with subtype A, C and D virus 

respectively. Not shown in this image were ʹͲ (ͱͰ%) patients with 

complex/recombinant subtypes and ͱ (Ͱ%) patient with subtype G virus. 

There was little difference by subtype on the overall number, or the 

proportional growth, of mutations. 

Predictors of the number of TAMs, NRTI and NNRTI mutations were 

examined using a Poisson mixed effect generalised linear models, and the 

results are displayed in Table ʹͳ. All patients with paired HIV-ͱ drug 

resistance tests were analysed. Time since antiretroviral therapy initiation 

was transformed so that week ʹ, the earliest date resistance tests were 

conducted, was the baseline. In these models, only treatment regimen, 

time since antiretroviral therapy initiation and their interaction had an 

impact on the number of TAMs, NRTI and NNRTI mutations. 

Patients on NRTI-NNRTI regimens had fewer NRTI mutations at week ʹ 

(Coef=-Ͱ.Ͳ) but a greater increase over time since ʹ weeks of 

antiretroviral therapy compared to triple-NRTI regimens containing 

tenofovir (Coef=Ͱ.Ͱ͵). These results were similar for the number of TAMs. 

There was not sufficient evidence for a change in the number of NNRTI 

mutations between tests over time to be significant, probably a result of 

the smaller number of patients in this group. There was no evidence that 

HIV-ͱ subtype influenced the absolute number or change in the number of 

TAMs, NRTI or NNRTI mutations, supporting the conclusions drawn from 

Figure ʹͲ. 

 



 

 

ͱͱ 

Table ʹͳ: Poisson mixed effect generalised linear models for number of mutations 
Variable Number of NRTI mutations 

(n=ʹͱʹ) 
Number of NNRTI mutations 
(n=ʹͱʹ) 

Number of TAMs 
(n=ʹͱʹ) 

Coef ͵% CI p-value Coef ͵% CI p-value Coef ͵% CI p-value 
Fixed effects at week ʹ         
Constant Ͱ.Ͳ Ͱ.͵Ͱ to ͱ.ͳ͵ <Ͱ.ͰͰͱ -ͱ.Ͱ -ͳ.ʹ͵ to -Ͱ.ͳͶ Ͱ.ͰͱͶ Ͱ.ͳͰ -Ͱ.ͳͰ to Ͱ.Ͱ Ͱ.ͳͲ 
Time since ART 
(ʹ weeks) 

Ͱ.ͱͶ Ͱ.Ͱͳ to Ͱ.Ͳ Ͱ.ͰͱͶ Ͱ.ͱ -Ͱ.ͳ͵ to Ͱ.ͷͱ Ͱ.͵ͱ Ͱ.Ͳͱ Ͱ.Ͱ͵ to Ͱ.ͳ Ͱ.Ͱͱͳ 

Regimen          
Triple-NRTI Ͱ.ͰͰ - Ͱ.ͰͰͱ Ͱ.ͰͰ - Ͱ.͵ͱ Ͱ.ͰͰ - Ͱ.ͰͰͳ 
NRTI-NNRTI -Ͱ.Ͳ -Ͱ.ʹͶ to -Ͱ.ͱͳ - Ͱ.ͰͶ -Ͱ.ͱͳ to Ͱ.ͲͶ - -Ͱ.ͳ -Ͱ.Ͷͳ to -Ͱ.ͱͳ - 
Gender          
Male Ͱ.ͰͰ - Ͱ.ͳͷ Ͱ.ͰͰ - Ͱ.ͱ Ͱ.ͰͰ - Ͱ.ͱ 
Female -Ͱ.Ͱͷ -Ͱ.Ͳͱ to Ͱ.Ͱ - -Ͱ.ͳͷ -Ͱ.Ͱ to Ͱ.ͱͷ - -Ͱ.ͱʹ -Ͱ.ͳͶ to Ͱ.Ͱͷ - 
Age (ͱͰ years) Ͱ.Ͱͱ -Ͱ.ͰͰ to Ͱ.Ͱͱ Ͱ.Ͳ -Ͱ.ͰͲ -Ͱ.Ͱ͵ to Ͱ.ͰͲ Ͱ.Ͳ Ͱ.Ͱͱ -Ͱ.Ͱͱ to Ͱ.ͰͲ Ͱ.ͳ͵ 
Trial Monitoring Randomisation        
LCM Ͱ.ͰͰ - Ͱ.ͳ Ͱ.ͰͰ - Ͱ.ͲͶ Ͱ.ͰͰ - Ͱ. 
CDM Ͱ.ͰͲ -Ͱ.ͱͳ to Ͱ.ͱͶ - -Ͱ.ͳͰ -Ͱ.Ͳ to Ͱ.ͲͲ - Ͱ.ͰͰ -Ͱ.ͲͰ to Ͱ.Ͳͱ - 
HIV-ͱ Subtype          
A Ͱ.ͰͰ - Ͱ.ͳͳ Ͱ.ͰͰ - Ͱ. Ͱ.ͰͰ - Ͱ.ͲͲ 
C -Ͱ.ͱ -ͱ.ͶͲ to ͱ.Ͳʹ - Ͱ.ʹͶ -ͱ.Ͱ to Ͳ.Ͳ - -Ͱ.͵ -Ͳ.Ͷͱ to ͱ.ʹʹ - 
D -Ͱ.ͱͲ -Ͱ.ͳͱ to Ͱ.Ͱͷ - Ͱ.Ͱʹ -Ͱ.Ͷʹ to Ͱ.ͷͱ - -Ͱ.Ͳͱ -Ͱ.͵ͱ to Ͱ.Ͱ - 
G -ʹ.ͱ͵ -ͱ͵.͵Ͳ to ͷ.Ͳͱ - -ͱͷ.͵ͱ -ͳʹͲ to ͳʹ͵ͷ - -ͱ.ͷͱ -ͱ͵ͷ to ͱ͵ʹͲ - 
Complex Ͱ.ͱʹ -Ͱ.ͱͰ to Ͱ.ͳ - -Ͱ.ͲͶ -ͱ.ͳͳ to Ͱ.Ͳ - Ͱ.Ͳʹ -Ͱ.ͱͰ to Ͱ.͵ - 
Centre          
Entebbe Ͱ.ͰͰ - Ͱ.ͳ Ͱ.ͰͰ - Ͱ.ͳ Ͱ.ͰͰ - Ͱ.ͷͷ 
Kampala Ͱ.Ͱͱ -Ͱ.ͱ͵ to Ͱ.ͱ - -Ͱ.ʹ͵ -ͱ.ͱͰ to Ͱ.ͲͰ - -Ͱ.ͰͶ -Ͱ.Ͱ to Ͱ.Ͱʹ - 
Harare Ͱ.Ͳͷ -ͱ.ͱͶ to ͱ.ͷͰ - -Ͱ.Ͳ͵ -Ͳ.͵ to Ͳ.Ͱ - Ͱ.Ͷͱ  -Ͱ.ͶͲ to Ͱ.͵Ͱ - 



 

 

ͱͲ 

       

Interaction with time since week ʹ       
Regimen          
Triple-NRTI Ͱ.ͰͰ - Ͱ.ͰͰͱ Ͱ.ͰͰ - Ͱ.͵ͱ Ͱ.ͰͰ - Ͱ.ͱͱ 
NRTI-NNRTI Ͱ.Ͱ͵ -Ͱ.ͰͰ to Ͱ.ͱͰ - Ͱ.ͰͶ -Ͱ.ͱͳ to Ͱ.ͲͶ - Ͱ.ͰͶ -Ͱ.Ͱͱ to Ͱ.ͱͳ - 
Gender          
Male Ͱ.ͰͰ - Ͱ.ͷͷ Ͱ.ͰͰ - Ͱ.ͷͱ Ͱ.ͰͰ - Ͱ.ͶͲ 
Female Ͱ.Ͱͱ -Ͱ.Ͱʹ to Ͱ.Ͱ͵ - Ͱ.Ͱͳ -Ͱ.ͱ͵ to Ͱ.ͲͲ - Ͱ.ͰͲ -Ͱ.Ͱʹ to Ͱ.Ͱ - 
Age (ͱͰ years) -Ͱ.ͰͰ -Ͱ.ͰͰ to Ͱ.ͰͰ Ͱ.ͶͲ -Ͱ.Ͱͱ -Ͱ.ͰͲ to Ͱ.Ͱͱ Ͱ.ͳͳ -Ͱ.ͰͰ -Ͱ.ͰͰ to Ͱ.ͰͰ Ͱ.ʹ 
Trial Monitoring Randomisation        
LCM Ͱ.ͰͰ - Ͱ.͵Ͷ Ͱ.ͰͰ - Ͱ.ʹͱ Ͱ.ͰͰ - Ͱ.ʹ͵ 
CDM -Ͱ.Ͱͱ -Ͱ.ͰͶ to Ͱ.Ͱͳ - Ͱ.Ͱͷ -Ͱ.ͱͰ to Ͱ.Ͳʹ - -Ͱ.ͰͲ -Ͱ.Ͱ to Ͱ.Ͱʹ - 
HIV-ͱ Subtype          
A Ͱ.ͰͰ - Ͱ. Ͱ.ͰͰ - Ͱ.Ͱ Ͱ.ͰͰ - Ͱ.Ͱ 
C -Ͱ.ͱͱ -Ͱ.ʹ to Ͱ.ͲͶ - -Ͱ.ͱ -Ͱ.ͷ to Ͱ.͵ - -Ͱ.Ͱͳ -Ͱ.͵ to Ͱ.͵ͳ - 
D Ͱ.Ͱͱ -Ͱ.Ͱ͵ to Ͱ.Ͱͷ - Ͱ.Ͱ -Ͱ.ͱͳ to Ͱ.ͳͱ - Ͱ.ͰͲ -Ͱ.ͰͶ to Ͱ.ͱͰ - 
G Ͱ.͵Ͱ -ͱ.Ͳ to Ͳ.Ͳ - -Ͱ.ͱʹ -͵ͰͶͲ to ͵ͰͶͱ - -Ͱ.ͱ -ͱͰʹͳ to ͱͰʹͳ  - 
Complex -Ͱ.ͰͲ -Ͱ.ͱͰ to Ͱ.Ͱ͵ - Ͱ.Ͱ -Ͱ.Ͳͳ to Ͱ.ͳ - -Ͱ.Ͱʹ -Ͱ.ͱͳ to Ͱ.Ͱ͵ - 
Centre          
Entebbe Ͱ.ͰͰ - Ͱ.ͷ͵ Ͱ.ͰͰ - Ͱ.ͷ Ͱ.ͰͰ - Ͱ.ͷ 
Kampala -Ͱ.ͰͲ -Ͱ.Ͱͷ to Ͱ.Ͱͳ - -Ͱ.ͰͲ -Ͱ.Ͱ to Ͱ.Ͱʹ - -Ͱ.ͰͲ -Ͱ.Ͱ to Ͱ.Ͱʹ - 
Harare Ͱ.ͰͶ -Ͱ.ͳͱ to Ͱ.ʹͲ - -Ͱ.ͰͶ -Ͱ.ͶͲ to Ͱ.͵Ͱ - -Ͱ.ͰͶ -Ͱ.ͶͲ to Ͱ.͵Ͱ - 
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5.3.3 Accumulation of individual mutations 

Table ʹʹ to Table ʹͶ display the overall number and proportion of patients 

with each mutation at the first and second time point by antiretroviral 

regimen. The number and proportion of patients who had a mutation at 

the first time point in whom this was undetectable at the second time 

point (“lost”) are shown, and this is discussed further in Section ͵.ͳ.ʹ. The 

individual mean rate of each mutation per year and the standard deviation 

(SD) is calculated based on the number of new mutations gained, treating 

mutations no longer detectable as still present. 

Table ʹʹ: Overall accumulation and persistence of mutations 
Mutation # at ͱst 

time 
point 

# who 
gained 
mutation 

# who 
lost 
mutation5 

# at Ͳnd 
time 
point 

Accumulation rate 
(new muts/year) 
Mean SD 

NRTI Mutations     
MʹͱL ͱͳͲ (ͳͲ%) ͱʹͳ (ͳʹ%)  (ͷ%) ͲͶͶ (Ͷʹ%) Ͱ.ͱͷ Ͱ.ͳ 
AͶͲV ͱͱ (ͳ%) ͱͲ (ͳ%) Ͷ (͵͵%) ͱͷ (ʹ%) Ͱ.Ͱͱ Ͱ.Ͱ 
KͶ͵R Ͱ (ͱ%) ͳ (ͱ%) Ͳ͵ (ͳͱ%) ͵ (ͱʹ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
DͶͷN ͱͷͳ (ʹͲ%) ͷͷ (ͱ%) ͱ (ͱͰ%) ͲͳͲ (͵Ͷ%) Ͱ.Ͱ Ͱ.ͲͲ 
KͷͰE Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
KͷͰR ͱͶͶ (ʹͰ%) Ͷͳ (ͱ͵%) Ͳʹ (ͱʹ%) ͲͰ͵ (ʹ%) Ͱ.Ͱ Ͱ.Ͳʹ 
LͷʹV ͱ (Ͱ%) Ͳ (Ͱ%) Ͱ (Ͱ%) ͳ (ͱ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
Vͷ͵I ͳ (ͱ%) ͱͳ (ͳ%) ͱ (ͳͳ%) ͱ͵ (ʹ%) Ͱ.Ͱͳ Ͱ.ͳͰ 
Yͱͱ͵F ͱͶ (ʹ%) Ͳ (Ͱ%)  (͵Ͷ%)  (Ͳ%) Ͱ.ͰͰ Ͱ.Ͱͳ 
FͱͱͶY Ͳ (Ͱ%) ͷ (Ͳ%) Ͱ (Ͱ%)  (Ͳ%) Ͱ.Ͱͱ Ͱ.Ͱ 
Qͱ͵ͱM ʹ (ͱ%) ʹ (ͱ%) Ͱ (Ͱ%)  (Ͳ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
MͱʹI ͱ (Ͱ%) ʹ (ͱ%) Ͱ (Ͱ%) ͵ (ͱ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
MͱʹV ͳͳʹ (Ͱ%) ͳ͵ (%) ͱʹ (ʹ%) ͳͶ͵ (%) Ͱ.Ͱʹ Ͱ.ͱͷ 
LͲͱͰW Ͳ (ͷ%)  (Ͳʹ%) Ͳ (ͷ%) ͱͲʹ (ͳͰ%) Ͱ.ͱͲ Ͱ.Ͳ 
TͲͱ͵F ͵Ͱ (ͱͲ%) ͷ (ͱ%) ͱ (ͳ%) ͱͱͰ (Ͳͷ%) Ͱ.Ͱ Ͱ.ͳͰ 
TͲͱ͵Y Ͳ (ͲͰ%) Ͷ (Ͳͱ%) Ͷ (ͷ%) ͱͶͲ (ͳ%) Ͱ.ͱͱ Ͱ.ͳʹ 
KͲͱE ͳ͵ (%) Ͷ (ͱͷ%) ͵ (ͱʹ%)  (Ͳʹ%) Ͱ.Ͱ Ͱ.Ͳͳ 
KͲͱQ ͶͰ (ͱͷ%) ͶͶ (ͱͶ%) ͱ (ͳͲ%) ͱͰͷ (ͲͶ%) Ͱ.Ͱ Ͱ.ͲͲ 
NNRTI Mutations     
LͱͰͰI Ͱ (Ͱ%) ʹ (ͱ%) Ͱ (Ͱ%) ʹ (ͱ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
KͱͰͳN Ͳʹ (Ͷ%) ͱ (͵%) ʹ (ͱͷ%) ͳ (%) Ͱ.ͰͲ Ͱ.ͱͳ 
VͱͰͶA ʹ (ͱ%) ͱ (Ͱ%) ͳ (ͷ͵%) Ͳ (Ͱ%) Ͱ.Ͱͱ Ͱ.Ͳ 
VͱͰͶM ʹ (ͱ%) ͱ (Ͱ%) Ͳ (͵Ͱ%) ͳ (ͱ%) Ͱ.ͰͰ Ͱ.Ͱͱ 
VͱͰI ͷ (Ͳ%) ͱͷ (ʹ%) Ͳ (Ͳ%) ͲͲ (͵%) Ͱ.Ͱͳ Ͱ.ͱ 
YͱͱC Ͳ͵ (Ͷ%) ͵ (ͱ͵) ͳ (ͱͲ%) Ͳͷ (ͷ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
YͱC ͱ (Ͱ%) Ͱ (Ͱ%) ͱ (ͱͰͰ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
GͱͰA ͱͶ (ʹ%) ͱͰ (Ͳ%) ͵ (ͳͱ%) Ͳͱ (͵%) Ͱ.Ͱͱ Ͱ.Ͱ 
GͱͰS Ͳ (Ͱ%) ʹ (ͱ%) Ͱ (Ͱ%) Ͷ (ͱ%) Ͱ.ͰͰ Ͱ.Ͱ͵ 
PͲͲ͵H Ͱ (Ͱ%) ʹ (ͱ%) Ͱ (Ͱ%) ʹ (ͱ%) Ͱ.ͰͰ Ͱ.Ͱʹ 

                                            
5 Percentage is of those with a mutation at the first time point, other percentages are of total. 
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Table ʹ͵: Accumulation and persistence of 
mutations on triple-NRTI regimens 

Mutation # at ͱst 
time 
point 

# who 
gained 
mutation 

# who 
lost 
mutation6 

# at Ͳnd 
time 
point 

Accumulation rate 
(new muts/year) 
Mean SD 

NRTI Mutations     
MʹͱL  (ͳͳ%) ͱͱͳ (ͳ%) ͵ (͵%) ͲͰͷ (Ͷ%) Ͱ.ͱ Ͱ.ʹͳ 
AͶͲV ͷ (Ͳ%)  (ͳ%) ͳ (ʹͳ%) ͱͳ (ʹ%) Ͱ.Ͱͱ Ͱ.Ͱ 
KͶ͵R ͶͲ (Ͳͱ%) Ͱ (Ͱ%) ͱ (ͳͱ%) ʹͳ (ͱʹ%) Ͱ.ͰͰ Ͱ.ͰͰ 
DͶͷN ͱͳͷ (ʹͶ%) ͵ͱ (ͱͷ%) ͱʹ (ͱͰ%) ͱͷʹ (͵%) Ͱ.Ͱͷ Ͱ.ͲͰ 
KͷͰE Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
KͷͰR ͱͳͷ (ʹͶ%) ͳʹ (ͱͱ%) ͲͲ (ͱͶ%) ͱʹ (͵Ͱ%) Ͱ.ͰͶ Ͱ.ͲͰ 
LͷʹV ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
Vͷ͵I Ͳ (ͱ%) ͱͰ (ͳ%) Ͱ (Ͱ%) ͱͲ (ʹ%) Ͱ.Ͱͳ Ͱ.ͳʹ 
Yͱͱ͵F ͱͳ (ʹ%) Ͳ (ͱ%)  (ͶͲ%) ͷ (Ͳ%) Ͱ.ͰͰ Ͱ.Ͱͳ 
FͱͱͶY Ͳ (ͱ%) Ͷ (Ͳ%) Ͱ (Ͱ%)  (ͳ%) Ͱ.Ͱͱ Ͱ.ͱͰ 
Qͱ͵ͱM ͳ (ͱ%) ʹ (ͱ%) Ͱ (Ͱ%) ͷ (Ͳ%) Ͱ.Ͱͱ Ͱ.Ͱ͵ 
MͱʹI ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
MͱʹV ͲʹͶ (Ͳ%) Ͳͳ (%) ͱͱ (ʹ%) Ͳ͵ (Ͷ%) Ͱ.Ͱͳ Ͱ.ͱͲ 
LͲͱͰW Ͳͳ (%) ͷ (ͲͶ%) ͱ (ʹ%) ͱͰͰ (ͳͳ%) Ͱ.ͱʹ Ͱ.ͳͱ 
TͲͱ͵F ʹͱ (ͱʹ%) ͵͵ (ͱ%) ͱ (ʹʹ%) ͷ (ͲͶ%) Ͱ.Ͱ Ͱ.ͳͳ 
TͲͱ͵Y Ͷͳ (Ͳͱ%) Ͷ͵ (ͲͲ%) ʹ (Ͷ%) ͱͲʹ (ʹͱ%) Ͱ.ͱͲ Ͱ.ͳ 
KͲͱE Ͳͷ (%) ʹͶ (ͱ͵%) Ͳ (ͷ%) ͷͱ (Ͳʹ%) Ͱ.Ͱͷ Ͱ.ͲͲ 
KͲͱQ ͵ͱ (ͱͷ%) ʹͳ (ͱʹ%) ͱ͵ (Ͳ%) ͷ (ͲͶ%) Ͱ.Ͱͷ Ͱ.ͱ 
NNRTI Mutations     
LͱͰͰI Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
KͱͰͳN ͷ (Ͳ%) ͱ (Ͱ%) Ͱ (Ͱ%)  (ͳ%) Ͱ.ͰͰ Ͱ.Ͱͱ 
VͱͰͶA Ͱ (Ͱ%) ͱ (Ͱ%) Ͱ (Ͱ%) ͱ (Ͱ%) Ͱ.ͰͲ Ͱ.ͳͳ 
VͱͰͶM Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
VͱͰI ͳ (ͱ%) ͷ (Ͳ%) Ͳ (Ͷͷ%)  (ͳ%) Ͱ.ͰͲ Ͱ.ͱ 
YͱͱC ͱ (Ͱ%) ͱ (Ͱ%) ͱ (ͱͰͰ% ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͲ 
YͱC Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
GͱͰA ͳ (ͱ%) ͳ (ͱ%) Ͱ (Ͱ%) Ͷ (Ͳ%) Ͱ.ͰͰ Ͱ.Ͱʹ 
GͱͰS Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
PͲͲ͵H Ͱ (Ͱ%) ͱ (Ͱ%) Ͱ (Ͱ%) ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͲ 

 
  

                                            
6 Percentage is of those with a mutation at the first time point, other percentages are of total. 
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Table ʹͶ: Accumulation and persistence of 
mutations on NRTI-NNRTI regimens 

Mutation # at ͱst 
time 
point 

# who 
gained 
mutation 

# who 
lost 
mutation7 

# at Ͳnd 
time 
point 

Accumulation rate 
(new muts/year) 
Mean SD 

NRTI Mutations     
MʹͱL ͳͳ (Ͳ%) ͳͰ (ͲͶ%) ʹ (ͱͲ%) ͵ (͵ͱ%) Ͱ.ͱͲ Ͱ.Ͳʹ 
AͶͲV ʹ (ͳ%) ͳ (ͳ%) ͳ (ͷ͵%) ʹ (ͳ%) Ͱ.Ͱͱ Ͱ.ͱͰ 
KͶ͵R ͱ (ͱͶ%) ͳ (ͳ%) Ͷ (ͳͳ%) ͱ͵ (ͱͳ%) Ͱ.Ͱͱ Ͱ.Ͱ 
DͶͷN ͳͶ (ͳͱ%) ͲͶ (ͲͲ%) ʹ (ͱͱ%) ͵ (͵Ͱ%) Ͱ.ͱͰ Ͱ.Ͳʹ 
KͷͰE Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
KͷͰR Ͳ (Ͳ͵%) Ͳ (Ͳ͵%) Ͳ (ͷ%) ͵Ͷ (ʹ%) Ͱ.ͱͳ Ͱ.ͳͲ 
LͷʹV Ͱ (Ͱ%) Ͳ (Ͳ%) Ͱ (Ͱ%) Ͳ (Ͳ%) Ͱ.Ͱͱ Ͱ.Ͱ 
Vͷ͵I ͱ (ͱ%) ͳ (ͳ%) ͱ (ͱͰͰ%) ͳ (ͳ%) Ͱ.ͰͲ Ͱ.ͱͳ 
Yͱͱ͵F ͳ (ͳ%) Ͱ (Ͱ%) ͱ (ͳͳ%) Ͳ (Ͳ%) Ͱ.ͰͰ Ͱ.ͰͰ 
FͱͱͶY Ͱ (Ͱ%) ͱ (ͱ%) Ͱ (Ͱ%) ͱ (ͱ%) Ͱ.Ͱͱ Ͱ.Ͱ 
Qͱ͵ͱM ͱ (ͱ%) Ͱ (Ͱ%) Ͱ (Ͱ%) ͱ (ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
MͱʹI Ͱ (Ͱ%) ʹ (ͳ%) Ͱ (Ͱ%) ʹ (ͳ%) Ͱ.Ͱͱ Ͱ.Ͱͷ 
MͱʹV  (ʹ%) ͱͲ (ͱͰ%) ͳ (ͳ%) ͱͰͷ (Ͳ%) Ͱ.Ͱͷ Ͱ.Ͳʹ 
LͲͱͰW ͵ (ʹ%) ͲͰ (ͱͷ%) ͱ (ͲͰ%) Ͳʹ (Ͳͱ%) Ͱ.Ͱ Ͱ.Ͳͳ 
TͲͱ͵F  (%) Ͳʹ (Ͳͱ%) ͱ (ͱͱ%) ͳͲ (Ͳ%) Ͱ.Ͱ Ͱ.ͱ 
TͲͱ͵Y ͱ (ͱͶ%) Ͳͱ (ͱ%) Ͳ (ͱͱ%) ͳ (ͳͳ%) Ͱ.Ͱ Ͱ.ͲͰ 
KͲͱE  (ͷ%) Ͳͳ (ͲͰ%) ͳ (ͳ%) Ͳ (Ͳʹ%) Ͱ.ͱͰ Ͱ.ͲͶ 
KͲͱQ  (%) Ͳͳ (ͲͰ%) ʹ (ʹʹ%) Ͳ (Ͳʹ%) Ͱ.ͱͰ Ͱ.Ͳͷ 
NNRTI Mutations     
LͱͰͰI Ͱ (Ͱ%) ʹ (ͳ%) Ͱ (Ͱ%) ʹ (ͳ%) Ͱ.Ͱͱ Ͱ.Ͱͷ 
KͱͰͳN ͱͷ (ͱ͵%) ͱ (ͱͶ%) ʹ (Ͳʹ%) ͳͱ (Ͳͷ%) Ͱ.Ͱ Ͱ.Ͳʹ 
VͱͰͶA ʹ (ͳ%) Ͱ (Ͱ%) ͳ (ͷ͵%) ͱ (ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
VͱͰͶM ʹ (ͳ%) ͱ (ͱ%) Ͳ (͵Ͱ%) ͳ (ͳ%) Ͱ.ͰͰ Ͱ.ͰͲ 
VͱͰI ʹ (ͳ%) ͱͰ (%) Ͱ (Ͱ%) ͱʹ (ͱͲ%) Ͱ.Ͱʹ Ͱ.ͱ 
YͱͱC Ͳʹ (Ͳͱ%) ʹ (ͳ%) Ͳ (%) ͲͶ (ͲͲ%) Ͱ.Ͱͱ Ͱ.ͰͶ 
YͱC ͱ (ͱ%) Ͱ (Ͱ%) ͱ (ͱͰͰ%) Ͱ (Ͱ%) Ͱ.ͰͰ Ͱ.ͰͰ 
GͱͰA ͱͳ (ͱͱ%) ͷ (Ͷ%) ͵ (ͳ%) ͱ͵ (ͱͳ%) Ͱ.Ͱͳ Ͱ.ͱʹ 
GͱͰS Ͳ (Ͳ%) ʹ (ͳ%) Ͱ (Ͱ%) Ͷ (͵%) Ͱ.ͰͲ Ͱ.Ͱ 
PͲͲ͵H Ͱ (Ͱ%) ͳ (ͳ%) Ͱ (Ͱ%) ͳ (ͳ%) Ͱ.Ͱͱ Ͱ.Ͱ 

 

There was no increase in the proportion of patients with the KͶ͵R 

mutation among those on triple-NRTI regimens, with a similar number of 

patients gaining and losing this mutation. There were substantial increases 

in the proportion with MʹͱL (ͳ% of patients), LͲͱͰW (ͲͶ%), TͲͱ͵Y (ͲͲ%), 

TͲͱ͵F (ͱ%), DͶͷN (ͱͷ%), KͲͱE (ͱ͵%) and KͲͱQ (ͱʹ%). There were 

smaller increases in the proportion with KͷͰR (ͱͱ%) and MͱʹV (%), 

                                            
7 Percentage is of those with a mutation at the first time point, other percentages are of total. 
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although these mutations were the most prevalent at the time virological 

failure was first detected. 

Among patients who received NRTI-NNRTI regimens, there were small 

increases in the proportion with the major NNRTI mutations, KͱͰͳN (ͱͲ%) 

and VͱͰI (%). For other major NNRTI mutations, such as YͱͱC (ͱ%), 

there were smaller increases. There were comparable increases in the 

proportion of patients with DͶͷN (ͲͲ%), TͲͱ͵F (Ͳͱ%), KͲͱE (ͲͰ%), KͲͱQ 

(ͲͰ%), TͲͱ͵Y (ͱ%), LͲͱͰW (ͱͷ%) and MͱʹV (ͱͰ%) compared to patients 

who received triple-NRTI regimens. There were smaller increases in the 

proportion of patients with MʹͱL (ͲͶ%). 

5.3.4 Persistence of HIV-1 drug resistance mutations 

The failure to detect previously identified HIV-ͱ drug resistance mutations 

is often the result of either a patient changing their antiretroviral therapy 

regimen or a lack of adherence, which could lead to virus reverting and 

regaining replication fitness. Even if mutations are no longer detected, they 

continue to exist as either a low-level undetectable population or archived 

within a patient’s cells. Archived mutations could continue to affect 

response to subsequent antiretroviral therapy regimens. In this section, the 

reversion or loss of a mutation is defined as when a previously detected 

mutation is no longer detectable using population sequencing. 

The mutations with the highest rate of reversion (Table ʹʹ) were TͲͱ͵F 

(ͱ/͵Ͱ; ͳ%), KͲͱQ (ͱ/ͶͰ; ͳͲ%), KͶ͵R (Ͳ͵/Ͱ; ͳͱ%), KͷͰR (Ͳʹ/ͱͶͶ; ͱʹ%) 

and DͶͷN (ͱ/ͱͷͳ; ͱͰ%). These mutations reverted in ͷ patients (Ͷ͵ with 

one mutation,  with two mutations and ͵ with three mutations reverting). 

Patients in whom mutations reverted continued to have at least one HIV-ͱ 

drug resistance mutation (only ʹ/ͷ were wild-type; ͵%). Despite the 

reversion, patients had a similar or greater numbers of HIV-ͱ drug 

resistance mutations than patients who had individual mutations detected 

at both time points (Mean ʹ.͵͵ compared to ʹ.ͲͶ; p=Ͱ.ʹʹ). 
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Many of these mutational changes were due to the development of 

alternative mutations at the same codon. For example, ͱͱ of ͱ (͵%) 

patients in whom the KͲͱQ mutation was no longer detectable developed 

KͲͱE. In addition, ͱͷ of ͱ (%) patients in whom the TͲͱ͵F mutation 

was no longer detectable developed TͲͱ͵Y. There were a mean increase of 

Ͱ.ͷʹ NRTI and Ͱ.ʹͷ NRTI mutations respectively in patients where KͲͱQ 

and TͲͱ͵F were lost respectively. Other mutational changes often 

coincided with the development of additional mutations at different 

codons, which may be antagonistic with the mutation no longer detected. 

Patients in whom the KͶ͵R mutation was lost gained a mean of Ͳ.ͳ NRTI 

mutations (specifically TAMs) between tests and just ʹ of Ͳʹ (ͱͷ%) had 

fewer NRTI mutations. However, patients in whom either the KͷͰR or 

DͶͷN mutation was lost typically had a mean of ͱ.Ͱ and Ͱ.͵ fewer NRTI 

mutations. The impact of this upon the susceptibility of HIV-ͱ to 

antiretrovirals is examined in the next section. 

5.3.5 Changes in susceptibility 

The change in predicted susceptibility for individual antiretrovirals 

(according to the Stanford susceptibility algorithm) between the two time 

points is displayed in Figure ʹͳ. There was little change in the predicted 

susceptibility to either emtricitabine or lamivudine. since most patients 

had intermediate or high-level resistance at the time point where 

virological failure was first detected. A similar proportion of patients had 

high-level resistance to abacavir, zidovudine, stavudine and didanosine at 

the first time point. The period on a regimen with virological failure had a 

similar impact for these four drugs, although zidovudine retained the most 

susceptibility. There was a decrease in the proportion of patients with HIV 

which retained susceptibility to tenofovir but in comparison to other 

NRTIs this was marginal. NNRTI susceptibility did not substantially change 

due to the small increase in the number of NNRTI mutations among 

patients on an NRTI-NNRTI regimen. At the time virological failure was 



Chapter ͵: The development of HIV-ͱ drug resistance mutations 

ͱ 

first detected the mean GSS for NRTIs was Ͳ.Ͷ/ͷ.Ͱ and for NNRTIs was 

Ͳ.Ͷ/ͳ.Ͱ. At the last time point on first-line antiretroviral therapy the mean 

GSS for NRTIs was ͱ.ͳ and for NNRTIs was Ͳ.ͳ. 

Figure ʹʹ displays the change in predicted susceptibility for individual 

drugs by antiretroviral therapy regimen. HIV in patients on triple-NRTI 

regimens had a lower susceptibility to NRTIs at the time virological failure 

was first detected compared to NRTI-NNRTI regimens. The mean GSS for 

NRTIs at the time virological failure was first detected was Ͳ.ͳ and Ͳ. for 

triple-NRTI regimens containing tenofovir and abacavir respectively and 

ͳ.͵ for NRTI-NNRTI regimens. The mean GSS for NNRTIs at the time 

virological failure was first detected was Ͳ. and Ͳ. for triple-NRTI 

regimens and ͱ.ʹ for NRTI-NNRTI regimens. The susceptibility of NRTIs 

remained lower at the last timepoint on first-line antiretroviral therapy 

among patients on triple-NRTI regimens compared to NRTI-NNRTI 

regimens. The mean GSS for NRTIs at this point was ͱ.Ͳ (approximately 

͵Ͱ% decrease) and ͱ.͵ (approximately ʹ͵% decrease) for triple-NRTI 

regimens containing tenofovir and abacavir respectively and ͱ.Ͷ 

(approximately ͵͵% decrease) for NRTI-NNRTI regimens. The mean GSS 

for NNRTIs at the last time point was Ͳ.ͷ (ͷ% decrease) and Ͳ.ͷ (ʹ% 

decrease) for triple-NRTI regimens containing tenofovir and abacavir 

respectively and ͱ.ͱ (Ͳͱ% decrease) for NRTI-NNRTI regimens. 
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Figure ʹͳ: Change in predicted drug susceptibility 

 

Figure ʹʹ: Change in predicted susceptibility  
by antiretroviral regimen 
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Among virus where KͷͰR or DͶͷN mutation reverted there was an 

increase in viral susceptibility to antiretrovirals. Where KͷͰR reverted, 

there was a Ͳ% increase in the proportion of patients who had virus 

susceptible to zidovudine at the second time point and an increase of ͱͷ% 

among patients where DͶͷN reverted (Figure ʹ͵). Changes in susceptibility 

to tenofovir were conflicting (Figure ʹͶ), there was an increase in the 

proportion of patients with susceptible virus although there was also an 

increase in the proportion with high-level resistance. Patients in whom the 

KͶ͵R mutation reverted had a large increase in the proportion with virus 

resistant to thymidine analogues such as zidovudine, a result of gaining 

other mutations. As a direct consequence of KͶ͵R reverting, there was a 

decrease in the proportion resistant to tenofovir. Patients in whom either 

TͲͱ͵F or KͲͱQ reverted saw changes in susceptibility similar to the overall 

population since these were mostly other resistant mutations developing at 

this codon. 

Figure ʹ͵: Change in susceptibility to zidovudine  
among patients who lost mutations 
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Figure ʹͶ: Change in susceptibility to tenofovir 
among patients who lost mutations 

 

5.3.6 Compensatory mutations 

Compensatory mutations have been defined as mutations which restore 

the replication capacity of virus but which do not impact the function of 

antiretrovirals themselves. In the DART data, there was no evidence that 

SͱͶͲA was more likely to exist in patients with the MʹͱL mutation ( of 

ͲͶ͵; ͳ% compared to ͵ of ͱʹ; ʹ%; χͲ test p=Ͱ.). Jeeninga et al. [ͱ] 

found that the SͱͶͳN mutation restored viral replication capacity in 

patients with both the MʹͱL and KͷͰR mutations. In the DART data, the 

SͱͶͳN compensatory mutation was only observed to occur in one patient, 

despite MʹͱL and KͷͰR frequently co-occurring at the last observed time 

point (ͱʹͶ/ʹͱʹ). 

Svarovskaia et al. [ͱ͵] concluded that AͶͲV and SͶG restored some of 

the replication defects which resulted from the KͶ͵R mutation. There was 

strong evidence in the DART data that both were associated with KͶ͵R. 

The AͶͲV mutation occurred in ͱʹ of ͵ (Ͳʹ%) patients with KͶ͵R 
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compared to ͳ of ͳ͵Ͷ (ͱ%) in patients without (p<Ͱ.ͰͰͱ).The SͶG 

mutation was extremely common in patients with KͶ͵R (Ͳ/͵; ʹ% 

compared to ͱͱ/ͳ͵Ͷ; ͳ%; p<Ͱ.ͰͰͱ). 

The AͶͲV, Vͷ͵I, FͷͷL and FͱͱͶY mutations were initially suggested by 

Maeda et al. [ͱͶ] as compensatory mutations for the Qͱ͵ͱM mutation in 

the presence of zidovudine or didanosine. While the Qͱ͵ͱM mutation was 

rare, there was evidence that these mutations were all more likely to occur 

in DART patients with Qͱ͵ͱM. AͶͲV occurred in Ͷ of  (ͷ͵%) with the 

Qͱ͵ͱM mutation compared to ͱͱ of ʹͰͶ (ͳ%; p<Ͱ.ͰͰͱ). Vͷ͵I occurred in Ͷ 

of  (ͷ͵%) patients with Qͱ͵ͱM compared to  of ʹͰͶ (Ͳ%; p<Ͱ.ͰͰͱ). FͷͷL 

occurred in ʹ of  (͵Ͱ%) with Qͱ͵ͱM compared to Ͳ of ʹͰͶ (Ͱ%; p<Ͱ.ͰͰͱ) 

and FͱͱͶY occurred in ͷ of  (%) with the Qͱ͵ͱM mutation compared to 

Ͳ of ʹͰͶ (Ͱ%; p<Ͱ.ͰͰͱ). 

The QͲͰͷD mutation is thought to improve the fitness of zidovudine-

resistant HIV-ͱ in the presence of TAMs. In this data, there was evidence 

that the mutation was more common in patients with the MʹͱL mutation 

(ͳͰ/ͲͶ͵; ͱͱ% compared to Ͷ/ͱʹ without; ʹ%; p=Ͱ.Ͱͱͱ). Mutations were less 

common in patients with the KͷͰR mutation (ͱͲ/ͲͰʹ; Ͷ% compared to 

Ͳʹ/ͲͱͰ without; ͱͱ%; p=Ͱ.Ͱʹ͵). 
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5.3.7 Mutagenic trees 

5.3.7.1 NRTI mutagenic trees by ART regimen 

Figure ʹͷ: Mutagenic tree for patients receiving tenofovir 
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Figure ʹ: Mutagenic tree for patients receiving abacavir 
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Figure ʹ: NRTI mutagenic tree for 
patients on NRTI-NNRTI regimens 

 
Figure ʹͷ, Figure ʹ and Figure ʹ show the results from three mutagenic 

models restricted to patients receiving triple-NRTI regimens containing 

tenofovir and abacavir and patients on NRTI-NNRTI regimens respectively. 

The mutagenic tree hidden Markov models examined major IAS NRTI and 

compensatory mutations in the ͳͳʹ and ͵ patients who received triple-

NRTI therapy containing tenofovir and abacavir as well as the ͱʹͷ patients 

who received an NRTI-NNRTI regimen. The mutation rate and ͵% 

confidence intervals, based on ͱͰͰ bootstraps, are displayed for each edge. 
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The mutagenic tree for each antiretroviral regimen had a separate structure 

which suggests an alternate order in which mutations are acquired. The 

tree structure represents mutations which are needed for other mutations 

to occur but these are not mutually exclusive linear pathways. For instance, 

for the mutagenic tree for NRTI-NNRTI regimens, the development of 

MʹͱL does not exclude the development of KͷͰR, which could occur before 

or after MʹͱL. Similarly, a mutation at the bottom of the tree such as 

QͲͰͷD does not exclude the development of further mutations. 

In all models, MͱʹV occurs without any predecessor mutations. Other 

consistent aspects of the structure were TͲͱ͵Y occurring before LͲͱͰW in 

all three trees. Finally, both KͲͱE and KͲͱQ only occurred following the 

development of KͷͰR. This contradicts the findings of Cozzi-Lepri et al. 

[ͱͰ] and Lawyer et al. [ͱͳ], where mutations at codon Ͳͱ͵ preceded the 

MʹͱL mutation. Furthermore, Cozzi-Lepri et al. [ͱͰ] found that KͲͱE/Q 

occurred following KͷͰR and before DͶͷN. The QͲͰͷD compensatory 

mutation occurred similarly in all models following MʹͱL and TͲͱ͵Y (and 

the LͲͱͰW mutation for patients on tenofovir). 

There were substantial differences in the order of appearance of the MʹͱL, 

KͷͰR and DͶͷN mutations by antiretroviral therapy regimen. For patients 

who received tenofovir, MʹͱL and DͶͷN occurred following MͱʹV as non-

exclusive pathways and KͷͰR occurred following DͶͷN. For patients who 

received abacavir or were on NRTI-NNRTI regimens, MʹͱL and KͷͰR were 

also non-exclusive pathways but could only occur after the DͶͷN mutation 

had developed. For patients who received tenofovir, the KͶ͵R mutation 

could occur directly from wild-type virus. For patients who received NRTI-

NNRTI regimens, KͶ͵R was infrequent and not included in the model. 
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5.3.7.2 Tenofovir 

For patients who received tenofovir, there were three major branches in 

the mutagenic tree. While the structure of a mutagenic tree ensures that 

child mutations cannot occur without parent mutations (e.g. MʹͱL cannot 

occur without MͱʹV) they do not exclude mutations developing on 

multiple branches (e.g. KͶ͵R and MͱʹV can both occur). The first branch 

involved KͶ͵R-AͶͲV-SͶG and had the slowest rate of occurrence. After 

͵Ͳ weeks of antiretroviral therapy, the probability of KͶ͵R developing was 

%. The expected waiting time for KͶ͵R to occur is estimated to be ͵ 

weeks. After ͵Ͳ weeks with the KͶ͵R mutation, the probability of AͶͲV 

developing was ͵% and there was a ͳ% probability that SͶG developed. 

The expected waiting time after KͶ͵R developed was ͱ,ͰͰͰ and ͱ weeks 

respectively. 

The MͱʹV mutation developed rapidly, with an expected waiting time of 

ͱ weeks. The other two branches for patients on tenofovir, following the 

development of the MͱʹV mutation, support previous research suggesting 

the existence of two TAM pathways. MʹͱL, TͲͱ͵Y and LͲͱͰW formed a 

cluster of mutations which have previously been referred to as the TAM-ͱ 

pathway. The tree structure suggested that the MʹͱL mutation was the first 

to develop after the MͱʹV mutation, and had a ͳ͵% probability of doing 

so after ͵Ͳ weeks with the MͱʹV mutation. The expected waiting time was 

ͱͲͲ weeks. QͲͰͷD appeared as a final mutation in this cluster, suggesting 

it may have a compensatory role. QͲͰͷD developed slowly, with a ʹ% 

probability of occurring in the ͵Ͳ week period following the development 

of LͲͱͰW. 

The final major branch is broadly considered the TAM-Ͳ pathway. 

However, the TͲͱ͵F mutation appears towards the end of this branch and 

is typically considered a TAM-ͱ mutation. In this analysis, the KͷͰR 

mutation developed almost instantaneously after the DͶͷN mutation, 

although there was considerable uncertainty in this estimate. This may be 
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a result of uncertainty in the tree structure and additional research with 

mixture tree models found that KͷͰR could often precede DͶͷN. The 

current structure concurs with Lawyer et al. [ͱͳ] where mutations at 

codon Ͷͷ increased the incidence of mutations at codon ͷͰ and these, in 

turn, increased the incidence of mutations at codon Ͳͱ. The DͶͷN 

mutation occurred following MͱʹV with an expected waiting time of ͱʹ 

weeks. 

5.3.7.3 Abacavir 

The mutagenic tree suggested that the MͱʹV mutation and DͶͷN 

mutations were required before other TAMs developed. The DͶͷN 

mutation occurred with a probability of ʹ͵% in the ͵Ͳ weeks following the 

development of the MͱʹV mutation (expected waiting time of ͱ weeks). 

Unlike patients on NRTI-NNRTI regimens, KͷͰR and MʹͱL developed at a 

more comparable rate. After ͵Ͳ weeks with MͱʹV and DͶͷN, the 

probability of this occurring was Ͳ͵% and ͳͶ% respectively (waiting time of 

ͱͶʹ and ͱͰ weeks respectively). Unlike patients who received tenofovir, 

the KͲͱQ mutation required the TͲͱ͵F mutation before it developed. 

Compared to the models for tenofovir and NRTI-NNRTI regimens, there 

was a large uncertainty in the rate parameter for MͱʹV, LͲͱͰW and 

KͲͱQ and this may be a result of this model including the fewest patients. 

The QͲͰͷD mutation developed at a slower rate following TͲͱ͵Y compared 

to patients on NRTI-NNRTI regimens (λ=Ͱ.ͰͰͲͰ; ͵% CI: Ͱ.ͰͰͰ-Ͱ.ͰͲ͵ͱ 

compared to Ͱ.ͰͰͷ; ͵% CI: Ͱ.ͰͰ͵͵-Ͱ.Ͱͱͱͱ). There was evidence that the 

SͱͶͲA mutation occurred after QͲͰͷD and at the end of the MʹͱL branch, 

suggesting that this may also be a compensatory mutation for the TAM-ͱ 

pathway. Nonetheless, SͱͶͲA was a rare mutation for these mutations and 

occurred at a slow rate (λ=Ͱ.ͰͰͰͱ; ͵% CI: Ͱ.ͰͰͰͰ-Ͱ.Ͱʹͱͳ). 
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5.3.7.4 NRTI-NNRTI regimens 

The mutagenic tree structure for patients who received NRTI-NNRTI 

regimens demonstrated two major branches after the MͱʹV mutation and 

the DͶͷN mutation. There was evidence that the MͱʹV occurred more 

rapidly on NRTI-NNRTI regimens than on triple-NRTI regimens, although 

all models suggested that MͱʹV developed quickly. 

Both branches featured the DͶͷN mutation, which developed with a 

probability of Ͳʹ% in the ͵Ͳ weeks after the MͱʹV mutation occurred 

(expected waiting time of ͱͷͲ weeks). Following the development of DͶͷN, 

the KͷͰR developed more rapidly than MʹͱL. KͷͰR developed with a ͱͰͰ% 

probability in the ͵Ͳ weeks after DͶͷN occurred (expected waiting time of 

Ͳ weeks) compared to Ͷͷ% for MʹͱL (expected waiting time ʹʹ weeks). 

However, mutations which occurred after MʹͱL along the TAM-ͱ branch 

occurred more rapidly than further TAM-Ͳ branch mutations. For example, 

TͲͱ͵Y had a rate parameter of Ͱ.ͱͰͷͶ after MʹͱL, compared to a rate of 

Ͱ.Ͱͱͷ͵ for KͲͱE. 

SͶG and SͱͶͲA did not appear to act as compensatory mutations for the 

KͶ͵R or MʹͱL mutations, since neither directly followed these mutations. 

Both occurred at low rates (λ=Ͱ.ͰͰʹͰ and Ͱ.ͰͰʹͱ respectively, wait times 

Ͳ͵Ͱ and Ͳʹʹ weeks) and there was evidence that SͱͶͲA occurred before 

KͶ͵R. QͲͰͷD appeared to act as a compensatory mutation for mutations 

which occurred along the TAM-ͱ branch. Following the development of 

MʹͱL and TͲͱ͵Y, this mutation occurred with a rate parameter of Ͱ.ͰͰͷ 

(ͳͲ% probability of developing after ͵Ͳ weeks with parent mutations, ͱͲͷ 

weeks expected waiting time). 
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5.3.7.5 NNRTI mutagenic trees 

Figure ͵Ͱ: NNRTI mutagenic tree for 
patients on NRTI-NNRTI regimens 

 

Figure ͵Ͱ displays a mutagenic tree hidden Markov 

model examining major IAS NNRTI mutations in the ͱͲ patients who 

received NRTI-NNRTI regimens. ͵% confidence intervals were based 

on ͱͰͰ bootstraps. 

The mutagenic tree structure demonstrates that NNRTI mutations did not 

typically require predecessor mutations to occur. KͱͰͳN, YͱͱC, GͱͰA, 

and GͱͰS could all develop directly from wild-type. The rate at which 

NNRTI mutations develop was slow, typically ten-fold slower than the rate 

at which NRTI mutations developed on either triple-NRTI regimen. After 

ʹ weeks of therapy among patients with virological failure, the probability 

of KͱͰͳN was estimated to be ͵% and the most likely mutation was YͱͱC 

with a probability of ͲͲ%. LͱͰͰI, VͱͰͶA/M, and VͱͰI were shown to be 

child mutations which developed at a similar rate to their parent 

mutations. These mutations may act as secondary mutations which 

improve the replication fitness of the parent mutation. 
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5.4 Discussion 
In this chapter, the development of HIV-ͱ drug resistance mutations in 

patients with persistent virological failure without virological monitoring 

was analysed. Mutagenic trees demonstrated that NNRTI mutations 

accumulated at a slower rate than NRTI mutations in patients experiencing 

virological failure. The number of NRTI mutations which accumulated 

between paired tests was higher on NRTI-NNRTI regimens compared to 

triple-NRTI regimens; however patients on triple-NRTI regimens had a 

greater number of NRTI mutations at the time virological failure was first 

detected. The rate of development of individual mutations, calculated 

directly and using mutagenic tree models, helps quantify the expected loss 

in viral susceptibility to antiretrovirals among patients treated without 

routine laboratory monitoring. 

5.4.1 Accumulation rates of mutations 

Boender et al. [ͱʹ] calculated that overall a mean (SD) of ͱ.ʹ͵ (Ͳ.Ͱͷ) drug 

resistance mutations were accumulated per year with virological failure. 

This was comprised of Ͱ.ͶͲ (ͱ.ͱͱ) NNRTI and Ͱ.ʹ (ͱ.ͳ) NRTI mutations 

per year. The accumulation rate of NNRTI mutations was driven by KͱͰͳN 

(mean of Ͱ.ͱͱ per year), VͱͰI (Ͱ.ͱͱ per year) and PͲͲ͵H (Ͱ.Ͱ per year). 

NRTI mutations were mostly any TAM (Ͱ.ͲͶ per year), MͱʹV mutation 

(Ͱ.ͲͰ per year) and KͷͰR (Ͱ.ͱͳ per year). Cozzi-Lepri et al. [ͱͱ] calculated 

a similar rate for NNRTI mutations where Ͱ.Ͷͱ (͵% CI: Ͱ.͵͵-Ͱ.ͶͶ) NNRTI 

mutations developed per year.  The accumulation rate of TAMs in Cozzi-

Lepri et al. [ͱͰ] was Ͱ.Ͳͳ per year, matching Boender et al. [ͱʹ]. These 

were mainly TAM ͱ pathway mutations (Ͱ.ͱͶ per year) rather than TAM Ͳ 

pathway mutations (Ͱ.Ͱͷ per year). 

On NRTI-NNRTI regimens in this analysis, Ͱ.Ͷ NRTI, Ͱ.Ͳͱ NNRTI 

mutations and Ͱ.Ͳ TAMs developed per year. Despite the accumulation 

rate of NRTI mutations being only slightly higher than Boender et al. [ͱʹ], 

there was a large difference in the reported accumulation rate of TAMs. 
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The reason for this is unclear, since there is also a large difference between 

the accumulation rate of NRTI mutations and TAMs within Boender et al’s 

[ͱʹ] study, despite the accumulation rate of non-TAMs other than MͱʹV 

being low. It is likely that the accumulation rate of TAMs would be Ͱ.͵ 

per year if a similar method of analysis to this chapter were used. This 

would remain lower than our analysis and could be due to the shorter 

duration between tests or the greater proportion of patients who received 

an NRTI-NNRTI regimen containing efavirenz. 

The accumulation rate of NNRTI mutations is lower in DART than these 

studies. This could be a result of the NRTI backbone used in this study or it 

could reflect the shorter timescale. If few NNRTI mutations develop, but all 

do so during the first year with virological failure, then this could lead to 

apparent lower rates if the same resulting combinations of mutations are 

examined over a longer follow-up period. As a whole, the lower 

accumulation rate reflects fewer major NNRTI mutations being required to 

reduce antiretroviral drug susceptibility and that most of these mutations 

were detectable at the time of virological failure. 

5.4.2 Persistence of HIV-1 mutations 

Previous analyses examining the persistence of HIV-ͱ drug resistance 

mutations have been conducted in patients with transmitted HIV-ͱ drug 

resistance before initiating antiretroviral therapy [ͲͰͲ, ͲͰͳ]. 

Unlike these analyses, patients in this chapter were on antiretroviral 

therapy throughout and had developed mutations during therapy. NNRTI 

mutations were found to be persistent and were present at both time 

points. Individual NRTI mutations were frequently no longer detected at 

the last timepoint on first-line antiretroviral therapy, but for KͶ͵R, TͲͱ͵F 

and KͲͱQ these often facilitated the gain of additional mutations which 

lead to an increase in high-level HIV-ͱ drug resistance. Patients who lost 

DͶͷN or KͷͰR had an overall reduction in the number of NRTI mutations 

and there was an increase in viral susceptibility to thymidine analogues. 
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ͱͰ% of patients with DͶͷN and ͱʹ% with KͷͰR at the time virological 

failure was first detected did not have this mutation detectable at the end 

of the DART study. It is not apparent why these major NRTI mutations 

could no longer be detected despite patients remaining on the same 

antiretroviral regimen. 

5.4.3 Changes in predicted antiretroviral susceptibility 

Barth et al. [ͱͷ] used genotypic sensitivity scores to determine how the 

number of treatment options declined during a prolonged period with 

virological failure. At the first time point the mean GSS was ͵.ͱ/ͷ.Ͱ for 

NRTIs and ͱ.Ͱ/ʹ.Ͱ for NNRTIs, at the second time point (six to twelve 

months later), the mean GSS was ʹ.Ͱ for NRTIs and Ͱ.ͷ for NNRTIs. In this 

chapter, greater changes in susceptibility were observed to NRTIs across all 

treatment regimens than found by Barth et al. [ͱͷ]. This is likely to be a 

result of changes in susceptibility being observed over a longer period than 

Barth et al. Despite this, the GSS for NNRTIs was consistently lower in 

Barth et al. compared to this analysis, this may reflect differences in the 

populations examined or the NRTI backbones used.  

Boender et al. [ͱʹ] found that full susceptibility to nevirapine declined 

from ͱͶ% to Ͷ% between first and last time points with virological failure. 

Full susceptibility to tenofovir fell from % to ͷͰ%, zidovudine from Ͳ% 

to ͶͶ%, abacavir from Ͳͷ% to % and lamivudine/emtricitabine from Ͳͷ% 

to ͱͰ%. Patients on NRTI-NNRTI regimens in DART had full susceptibility 

change from ʹͰ% to ͱͱ% for nevirapine, ͵ͳ% to Ͳͳ% for tenofovir, ͵Ͷ% to 

Ͳʹ% on zidovudine, ͱͲ% to ͳ% for abacavir and ͱͳ% to Ͷ% for lamivudine 

and emtricitabine. In comparison, DART patients on NRTI-NNRTI 

regimens had greater susceptibility to NNRTIs at the time virological 

failure was first detected and lower susceptibility to NRTIs. A larger 

proportion of patients in Boender et al. [ͱʹ] retained full susceptibility to 

tenofovir and zidovudine. 
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These findings suggest that the loss of susceptibility was already 

substantial at the time virological failure was first detected. Nonetheless, 

increased virological monitoring could avoid additional loss in 

susceptibility in patients with persistent virological failure. 

5.4.4 Mutagenic pathways 

In Lawyer et al. [ͱͳ], no pathways between known NNRTI mutations were 

observed. This partially supports this chapter’s findings that most NNRTI 

mutations did not have a predecessor and could occur directly from wild-

type. However, it does contradict the possible accessory/compensatory 

mutations observed. Lawyer et al. [ͱͳ] analysed data from a limited 

number of patients (ʹ͵ͷ/ͱͱ; Ͳͳ%) who received a dual-class regimen 

containing an NNRTI and there was a large number of patients on single-

class regimens containing just one or two drugs. Analyses were not 

conducted within antiretroviral regimens, so this could explain why some 

pathways were not observed. 

Many of the pathways found by Deforche et al. [ͱ͵] are identical to those 

observed in this analysis. With a bootstrap support greater than Ͷ͵%, drug 

exposure to nevirapine was directly associated to mutations KͱͰͳN, GͱͰA, 

and YͱͱC. Like this analysis, these were not exclusive pathways so could 

occur together and lead to greater declines in the susceptibility of 

antiretrovirals. Also shown in this analysis were secondary mutations 

between YͱͱC and VͱͰI (bootstrap support>Ͷ͵%) and between GͱͰA 

and VͱͰͶM (bootstrap support>ͳ͵%). Unlike this analysis, Deforche et al. 

[ͱ͵] did not find a direct association between GͱͰS and exposure to 

nevirapine but did observe a direct association between nevirapine and 

VͱͰͶA. Similarly, they also found that mutation KͱͰͳN and VͱͰI were 

associated with bootstrap support greater than ͳ͵%. 

The results from this chapter reinforce the results of Deforche et al. [ͱ͵], 

showing the structure of the mutagenic tree for non-B HIV-ͱ subtypes. This 

chapter’s findings extend previous research by using the additional data 
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provided by longitudinal pairs of samples from the same patient, allowing 

the accumulation rate of each of these mutations to be determined. 

5.4.5 Compensatory mutations 

This study demonstrated that SͶG and QͲͰͷD acted as compensatory 

mutations. SͶG was observed among patients who received tenofovir and 

NRTI-NNRTI regimens. There was strong evidence that SͶG developed 

rapidly after the KͶ͵R mutation among patients on tenofovir and that the 

AͶͲV mutation could develop alongside these mutations. This supports the 

results of Svarovskaia et al. [ͱ͵] which showed, through phenotypic and 

viral growth competition analyses, that neither mutation influenced 

resistance but that both independently restored some replication deficit. 

For all treatment regimens, QͲͰͷD appeared as a final mutation along the 

common TAM-ͱ pathway. Lu et al. [ͱ] found through a site-directed 

mutagenesis study that the QͲͰͷD had no influence on zidovudine 

susceptibility in wild-type virus. However, the addition of QͲͰͷD into a 

viral strain with MʹͱL, DͶͷN, KͷͰR, TͲͱ͵Y and KͲͱQ increased 

zidovudine resistance Ͳ.ͷ fold. The analyses in this chapter agree with 

these findings and suggest that strains with MʹͱL, TͲͱ͵Y and LͲͱͰW 

mutation are particularly likely to develop this compensatory mutation. 

5.4.6 Methodological limitations 

Mutagenic tree models are a simplification of Bayesian network models so 

have several limitations. Firstly, mutagenic tree models are not able to 

show antagonistic relationships between mutations. In the model, the 

probability of developing the KͶ͵R mutation does not change if a patient 

has multiple TAMs. This is biologically implausible since an antagonistic 

relationship between these mutations and NRTI’s method of action has 

been previously demonstrated [ͱͶͰ, ͲͰʹ].  

Secondly, mutations at the same codon (e.g. TͲͱ͵Y and TͲͱ͵F) are 

modelled as independent events, whereas in reality developing one 
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mutation at this codon is likely to reduce the probability of the other. 

This limitation could have been overcome by modelling per codon 

mutations, but this would have been an oversimplification. 

Finally, mutagenic trees are not able to account for mutations reverting. 

Biologically, this could be due to either a lack of adherence or an  

alternate clonal strain developing with higher replication fitness. 

A Bayesian network model could have included mutation reversion but 

these are slower to converge, and methodological developments are 

required to use longitudinal samples within a patient. 

Mutational development rate was calculated using the observed data but 

ignored the interval censored observation points. This is likely to influence 

the rates calculated, particularly for mutations thought to develop quickly 

such as MͱʹV. More sophisticated approaches, such as the observed time 

conjunctive Bayesian network developed by Montazeri et al. [ͱͷʹ], account 

for the fact that a mutation could have developed at any point during this 

period. However, these approaches cannot yet account for multiple 

observations per patient so they were not applied to this analysis. 

Finally, the mutagenic tree model only includes patients who experience 

virological failure. In each tree, the probability of the first mutation 

developing is the rate among those who experience virological failure and 

not the rate among all patients who received treatment. Nevertheless, the 

rate of subsequent child mutations should be accurate since these are 

conditional on parent mutations developing, and it is unlikely that a 

patient with a major IAS mutation would not have experienced virological 

failure. 

5.4.7 Conclusions 

Longitudinal resistance data from within patients are rare, and existing 

data are from highly selective groups of patients. This dataset is not biased 

since patients were not known to be virologically failing antiretroviral 
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therapy. This analysis has described the order in which mutations develop 

and the rate at which mutations are acquired by antiretroviral regimen. 

Virological monitoring has the greatest potential to reduce the loss in viral 

susceptibility to NRTIs on NRTI-NNRTI regimens. 
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6 Summary 
This chapter describes the main conclusions from this thesis and the 

relationship with current HIV treatment guidelines. The general 

limitations of this thesis are outlined, and future research is described 

which could extend analyses of the DART data set. 

6.1 Laboratory monitoring guidelines 
Chapter Ͳ demonstrated that routine CDʹ cell count monitoring did not 

impact the rate of virological failure. Initiating antiretroviral therapy at 

higher CDʹ cell counts reduced the incidence of virological failure and 

could help to achieve UNAIDS Ͱ-Ͱ-Ͱ [Ͳ] long-term virological 

suppression targets. However, CDʹ cell count monitoring would not be 

required to achieve this if ART is initiated at any CDʹ cell count. CDʹ cell 

count monitoring reduced mortality with virological failure, although had 

no impact on mortality with virological suppression (Chapter ͳ). Despite 

leading to earlier treatment switches; this did not reduce the extent or the 

prevalence of HIV-ͱ drug resistance (Chapter ʹ). 

Ford et al. [ͱʹͱ] suggest that offering a single CDʹ cell count measurement 

after ʹ weeks of antiretroviral therapy, and switching treatment regimen 

if CDʹ cell count was below ͱͰͰ cells/mmͳ, would reduce mortality and 

achieve similar outcomes for patients as more frequent CDʹ cell count 

monitoring strategies. Phillips et al. [ͲͰ͵] created a simulated population 

for Zimbabwe and predicted that the WHO recommended CDʹ count 

monitoring strategy (six monthly test and treatment switched if CDʹ cell 

count less than ͱͰͰ cells/mmͳ or pre-ART baseline) averts ͵ʹͰ,ͰͰͰ 

disability-adjusted life years (DALY) over ͲͰ years, with a cost of $͵ͰͰ 

million. This is likely to be above the threshold for a cost-effective use of 

resources in this region, thought to be around $͵ͰͰ per DALY. This thesis 

supports the established limitations of CDʹ cell count monitoring for 

detecting virological failure and reducing HIV-ͱ drug resistance. 
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In this thesis, the strongest predictor for reducing the number of NRTI 

mutations was the time since virological failure; suggesting that more 

frequent viral load monitoring could reduce HIV-ͱ drug resistance and 

preserve second-line regimens. Cost-effectiveness studies [ʹͲ] have 

calculated that routine viral load monitoring provides notable benefits in 

reduced disability adjusted life years, but that routine viral load monitoring 

is expensive and should not limit the enormous benefits of access to 

antiretroviral therapy for all patients.  

Unlike CDʹ cell count and routine viral load monitoring, Phillips et al. 

[ͲͰ͵] found that a viral-load-informed differentiated care approach could 

be cost-effective in low-income settings delivering ͱ,ͲͰͰ,ͰͰͰ DALYs over 

ͲͰ years for $ͳͶͰ million. Viral-load-informed differentiated care was 

defined as viral load monitoring at six, twelve and then after every twelve 

months during therapy; if viral load is greater than ͱ,ͰͰͰ copies/mL then 

attempts to improve adherence are made and viral load is retested after 

three months. If viral-load-informed differentiated care reduced the time 

spent with virological failure, then the results of Chapter ʹ show that this 

could have a substantial impact on the prevalence of HIV-ͱ drug resistance. 

6.2 Limitations 
One of the major limitations when interpreting results from the DART trial 

is the predominant use of older and superseded regimens; triple-NRTI 

regimens are no longer used, even in resource-limited settings. However, 

the data observed in the ʹͰʹ patients who started an NRTI-NNRTI 

regimen represent a substantial contribution to the currently available 

literature. The systematic review by Boender et al. [ʹʹ] on virological 

failure found no intention to treat data for NNRTI-based regimens beyond 

ʹ months of antiretroviral therapy. Similarly, some of the best currently 

available data on the rate of mutation in patients without virological 

monitoring [ͱʹ] is generated by just Ͷͳ adult patients. Additional data 
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from ʹ patients on NRTI-NNRTI regimens is a major contribution to this 

research area. 

The DART trial’s inclusion criteria specified that patients had a CDʹ cell 

count less than ͲͰͰ cells/mmͳ; enrolled patients had a median CDʹ cell 

count of Ͷ cells/mmͳ. Following the results of the START study [ͲͰͶ], 

WHO guidelines [ͱʹͰ] now recommend that antiretroviral therapy should 

be started irrespective of CDʹ cell count. Findings from this thesis cannot 

necessarily be extended to patients who start ART with higher baseline 

CDʹ cell counts and it is implausible that the effect of baseline CDʹ cell 

count remains linear at cell counts greater than ͲͰͰ cells/mmͳ. 

The walkback approach to viral load sampling meant that intermittent or 

early virological failure in patients who subsequently re-suppressed is not 

detected. The clinical consequences of intermittent viremia in low-income 

countries are complex but, with limited availability of second-line regimens 

in low-income countries, the priority of this thesis has been to investigate 

the effect of persistent virological failure on first-line regimens. 

6.3 Future research 
There are several directions in which analyses in this thesis could be 

extended. The primary outcome measures of the DART trial were mortality 

and the occurrence of new or recurrent WHO stage ʹ events. In this thesis, 

mortality after virological failure was examined but other clinical events, 

such as the incidence of WHO stage ʹ events, were not explored by 

virological status. Further analyses could examine the time between 

virological failure and the occurrence of opportunistic infections to help 

determine the optimal frequency of laboratory monitoring. 

Secondly, this analysis did not investigate immunological changes around 

virological failure. Analyses of CDʹ cell count are complicated by multiple 

issues, such as the structured treatment interruption substudy’s CDʹ 

threshold inclusion criteria, and the fact that patients who received CDʹ 
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cell count monitoring switched to second-line antiretroviral therapy when 

CDʹ cell counts reached ͱͰͰ cells/mmͳ. Nonetheless, analyses could 

investigate the interaction between virological failure and immunological 

changes by determining the time between virological failure and 

immunological failure and whether the rate of immunological decline is 

influenced by the value of the viral load at virological failure. 

Thirdly, the use of mutagenic tree models in Chapter ͵ only began to 

explore the rate of individual drug resistance mutations. The mutagenic 

tree hidden Markov model generated interesting results but was restricted 

because only a single mutagenic tree can be fitted by current software. 

Mixture models of mutagenic trees with cross-sectional data provide better 

estimates of patterns of mutations and more plausible biological models 

for the occurrence of mutations. It is likely that expanding the statistical 

methodology and software implementations, to allow for mixture 

mutagenic tree hidden Markov models, could achieve a similar effect for 

longitudinal data. Additionally, it is unlikely that mutations develop at a 

linear rate over the  long duration between tests, and further analyses could 

use a non-linear model. 

This analysis could also be extended by developing a Bayesian network 

model parameterised to handle correlated observations. A Bayesian 

network model has the advantage that antagonistic relationships between 

mutations could be measured, and mutations could be linked to multiple 

predecessor mutations. Any future methodological development requires 

simple to use software implementations to allow their application by 

applied scientists. 
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Background 
Early mortality (<ʹ wks) after ART initiation in resource-limited settings 
is well recognised, but less well understood are the causes of later 
mortality, which are widely assumed to be due to virological failure (VF) or 
non-adherence. We investigated HIV viral load (VL) in patients who died 
after ʹ weeks of continuous first-line ART in the DART study. 
 
Methods 
The DART trial randomised ͳ,ͳͱͶ Ugandan and Zimbabwean patients to 
laboratory monitoring (LCM; CDʹ cell count every ͱͲ weeks) or clinically 
driven monitoring (CDM). Prospective VL testing was not undertaken. 
Previous analyses found that low pre-ART CDʹ cell count was strongly 
associated with higher mortality during the first year of ART, which was 
predominantly from infectious causes. All late mortalities had stored 
plasma samples from the closest visit to the date of death retrospectively 
tested for VL. Logistic regression models were used to determine 
predictors of mortality with virological suppression (VS) status (VL<ͲͰͰ 
copies/mL) in patients who died. Fractional polynomials were used for 
continuous variables, but non-linear risk was not found. 
 
Results 
ͲͱͰ/ͳͲ (͵͵%) deaths during the DART study occurred after week ʹ; ͱͱͲ 
were on continuous first-line and ͷ on second-line ART. The late 
mortality rate was low (ͱͰ.ͷ/ͱ,ͰͰͰ PY). VL data were available for ͱͰ͵/ͱͱͲ 
(ʹ%) mortalities at a median (IQR) of ͱͰ (Ͷ-ͱʹ) weeks before death. 
ʹͳ/ͱͰ͵ (ʹͱ%) patients were virologically suppressed (VS) at the time of 
death. VF deaths were more often due to opportunistic infections (ͲͶ% vs 
ͱͲ%;p=Ͱ.Ͱ). CDʹ cell count was significantly lower at the time of death in 
patients with VF than VS (Median: ͶͲ vs Ͳͳ cells/mmͳ; p<Ͱ.ͰͰͱ) and a 
greater proportion had CDʹ<ͱͰͰ cells/mmͳ (ͶͶ% vs ͱ%). In multivariate 
logistic regression analyses (Table), patients in the CDM arm had reduced  
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odds of Ͱ.Ͳ (͵% CI: Ͱ.ͱͱ – Ͱ.Ͷ) death with VS, with no evidence of a 
change over time. The odds of death with VS were almost ʹ times higher 
for each additional ͱͰͰ cells/mmͳ increase in baseline CDʹ count. Gender, 
age, initial ART regimen, CDʹ cell count at week ʹ, baseline VL and 
opportunistic infections were not associated with VS at death in 
multivariate analyses. 
 
Conclusions 
ʹͰ% of late deaths on ART occurred without VL criteria for treatment 
switch being fulfilled. There were significantly more deaths with VS among 
patients who received CDʹ cell count monitoring. Further research is 
required to elucidate the cause of deaths in those without VF. 



 

 

Ͳ͵ͳ 

 

Variable N (%) N (%) with virological 
suppression  

Uni  
OR (͵% CI) 

Multi 
OR (͵% CI) 

p-value 

Monitoring randomisation     
LCM ʹ͵ (ʹͳ%) ͲͶ (͵%) ͱ.ͰͰ ͱ.ͰͰ <Ͱ.Ͱͱ 
CDM ͶͰ (͵ͷ%) ͱͷ (Ͳ%) Ͱ.Ͳ (Ͱ.ͱͳ-Ͱ.Ͷ͵) Ͱ.Ͳ (Ͱ.ͱͱ-Ͱ.Ͷ) - 
Centre 
Entebbe, Uganda ͳͳ (ͳͱ%) ͱͷ (͵Ͳ%) ͱ.ͰͰ ͱ.ͰͰ Ͱ.ͰͶ 
Kampala, Uganda ʹͰ (ͳ%) ͱ (ʹ͵%) Ͱ.ͷͷ (Ͱ.ͳͱ-ͱ.ʹ) ͱ.Ͱͷ (Ͱ.ͳͷ-ͳ.Ͱʹ) - 
Harare, Zimbabwe ͳͲ (ͳͰ%)  (Ͳ͵%) Ͱ.ͳͱ (Ͱ.ͱͱ-Ͱ.Ͱ) Ͱ.ͳͰ (Ͱ.Ͱ-Ͱ.) - 
Death with  
opportunistic infection Ͳͱ (ͲͰ%) ͵ (Ͳʹ%) Ͱ.ͳ (Ͱ.ͱͳ-ͱ.ͱͳ) - - 

 Median (IQR) Median with VS (IQR)    
Baseline CDʹ Count  
(per ͱͰͰ Cells/mmͳ increase) 

0.72  
(Ͱ.Ͳ͵ – ͱ.ͲͲ) 

1.07  
(Ͱ.͵Ͷ – ͱ.ʹͲ) ͳ.ʹͲ (ͱ.Ͷ͵-ͷ.ͱͰ) ͳ.ͳ (ͱ.Ͷ-.Ͷ) <Ͱ.Ͱͱ 

Week ʹ CDʹ Count  
(per ͱͰͰ Cells/mmͳ increase) 

1.61  
(Ͱ. – Ͳ.ͱʹ) 

1.99 
(ͱ.Ͳͳ – Ͳ.Ͷͷ) ͱ.͵ͷ (ͱ.Ͱͷ-Ͳ.ͳͰ) - - 

Baseline Viral Load  
(per LogͱͰ copies/mL 
increase) 

5.44 
(͵.ͰͰ – ͵.ͷͷ) 

5.47  
(͵.Ͱͱ – ͵.ͶͶ) ͳ.ʹͲ (ͱ.Ͷ͵-ͷ.ͱͰ) - - 
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