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ABSTRACT 
A desirable characteristic for nonlinear vibration isolators is a high static stiffness and a low 
dynamic stiffness. A curved beam is a possible candidate for this role provided that the 
amplitude of vibration about the static equilibrium position is sufficiently small. However, for 
large amplitude oscillations, the nonlinear dynamics may have a detrimental effect. This paper 
considers the force transmissibility of a single degree-of-freedom system where the stiffness 
element is a curved, axially loaded beam.  The transmitted force is calculated by numerical 
time domain integration of the equations of motion.  The exact force-deflection relation for 
the beam is used for the spring.  By comparison, a frequency domain solution is sought using 
the Harmonic Balance (HB) method in which the system is modelled as a Duffing oscillator.  
It is shown that the HB and time domain solutions are in close agreement for small amplitudes 
of excitation and both predict advantageous performance of the nonlinear isolator compared 
with its equivalent linear counterpart.  However, significant discrepancies occur between the 
two solutions for large excitation since the beam can no longer be approximated by a linear 
and a cubic stiffness.  It is also strongly asymmetric – soft in compression but stiff in extreme 
extension– which gives rise to an impulse in the transmitted force in each fundamental period.  
This numerical problem is alleviated by inserting a linear spring in series with the beam 
isolator with a modest compromise in isolation performance at the excitation frequency. 

RASD 20
11  International Conference
1-3 July 2013
Pisa

th

3

 

mailto:ali.abolfathi@strath.ac.uk
mailto:tpw@isvr.soton.ac.uk
mailto:mjbrennan0@btinternet.com


 

1. INTRODUCTION 
The effective bandwidth of a vibration isolator is dependent upon the fundamental natural 
frequency of the isolated mass moving rigidly on the stiffness of the isolator [1]. Since it is 
not usually desirable to alter the supported mass, the remaining option to achieve a lower 
frequency of isolation is to reduce the stiffness.  However, reducing the stiffness of a linear 
spring causes a large static deflection which can be prohibitive. Nonlinear springs can 
overcome this problem by having a High Static but Low Dynamic Stiffness (HSLDS). 
A candidate component with HSLDS characteristics is a vertically orientated straight Euler 
buckled beam (column).  At the buckling point substantial bending of the beam and hence 
shortening of its span occurs when a small additional compressive load is applied.  The post-
buckled beam is stable but offers little resistance to additional deformation and so has low 
stiffness.  Prior to buckling the deflection is due to axial deformation which results in a high 
stiffness.  This ‘kink’ in the force-deflection curve gives rise to a high static load bearing 
capability in conjunction with a low ‘dynamic stiffness’ in the post-buckled region [2]. 

Winterflood et al. [3, 4] used a buckled beam in a vibration isolator to achieve low 
frequency isolation.  The buckled beam was connected to a lever mechanism, and a mass was 
suspended on the lever.  Mathematical analysis and experimental results of a constrained 
Euler spring in an isolator was presented in [5].  Virgin and Davis [2] studied a buckled beam 
used directly as a vibration isolator. They used an approximate second order solution to find 
the force-deflection characteristic and stiffness of a simply supported straight buckled beam.  
They modelled imperfection by an initial transverse deflection.  An experimental rig was used 
to validate their results.  The response in the time domain was considered and they measured 
the amplitude of vibration and plotted it as a transmissibility graph.  They showed that a lower 
level of transmissibility is achievable by implementing a buckled beam as a vibration isolator. 

Plaut et al. [6] considered a fixed-fixed buckled beam as a vibration isolator.  They 
obtained non-dimensional governing differential equations and considered harmonic based 
excitation.  They considered a solution comprised of a static equilibrium part and dynamic 
part, solving them numerically.  Single harmonic and two frequency excitations were applied 
and displacement transmissibility was obtained for different static loads and beam 
dimensions.  It was shown that a wide range of isolation is achievable by implementing 
buckled beams.  Plaut et al. [7] further developed their model to a two degree-of-freedom 
system.  They considered an asymmetric bar supported by two buckled columns or two pairs 
of pre-bent columns bonded by a viscoelastic filler.  Jeffers et al. [8] continued the previous 
work by Plaut et al. and considered a three-dimensional model.  They isolated a plate with 
four pairs of pre-bent columns bonded with viscoelastic material. El-Kafrawy et al. 
considered a two degree-of-freedom [9] and a three degree-of-freedom [10] isolator with only 
straight buckled columns. 

While low dynamic stiffness is beneficial in extending the bandwidth of isolation, the 
singularity in the force-deflection curve due to buckling is undesirable.  Other configurations, 
such as a curved beam, are suggested to achieve a smoother transition in stiffness.  It is shown 
in reference [11] that curved beams can maintain high static stiffness whilst providing low 
dynamic stiffness.  However, nonlinear dynamics of such isolators are not considered in the 
study. 

The purpose of this paper is to assess the performance of a nonlinear isolator comprised of 
a curved beam in isolating a harmonic force with due consideration of its nonlinear dynamics.  
This work is a continuation of previous work [11] which focussed mainly on the static 
behaviour of a curved beam isolator. The resulting force-deflection relations are now 
incorporated into a dynamic model for a rigid mass suspended by a curved beam.  Numerical 
solution of the equations of motion is straightforward but a cubic polynomial fit to the force-
deflection curve further enables the system to be modelled simply as a Duffing oscillator.  
The equations of motion and numerical and analytical methods of solution are outlined briefly 
in section 2.  The force transmissibility results for low and high levels of excitation are 

 



 

presented in section 3.  Section 4 considers the waveform of the steady state response and 
addresses an inherent limitation of the buckled beam isolator for large amplitude motion.  
Conclusions are drawn in section 5. 

 
2. DYNAMIC MODEL OF A CURVED BEAM ISOLATOR 
A schematic view of a curved beam isolator is shown in Figure 1(a) in which the weight of 
the isolated mass is acting in the x-direction.  The configuration shown is a parallel 
arrangement of two spring combinations, each combination comprising a curved beam in 
series with a comparatively stiff linear spring 𝑘𝑐. The latter is included initially to improve 
numerical convergence when solving the dynamic equations of motion, but subsequently to 
adjust the force-deflection relation, as discussed in section 4.  The fundamental mode of 
vibration of the system is assumed to be that of the rigid mass moving vertically on the axial 
stiffness of the isolator.  This mode is represented by the single degree-of-freedom system 
shown in Figure 1(b) which assumes that the beams are massless.  The stiffness of one beam 
can be computed from an analytical solution [11].  A dashpot is included to model damping. 

Figure 2 shows the force deflection curve for one axially loaded beam with small to 
modest initial curvature (2˚, 5˚, and 15˚).  The isolator is initially very stiff when loaded and 
softens considerably in the post-buckled region.  The position at which the dynamic stiffness 
is at a minimum is assumed to be the optimal static equilibrium position for the purpose of 
vibration isolation and the origin of the force deflection curves shown has been transformed to 
this point.  In these results, the linear spring in series with the beam is 100 times stiffer than 
the static stiffness of the beam at its equilibrium position, and this has the effect of slightly 
reducing the steepness of the curve in the pre-buckled region. 

 

  
Figure 1: Curved beam isolator.  a) Schematic view, b) Dynamic model with additional linear 

spring in series 
 

The equation of motion for the dynamic system subject to a time-harmonic force is, 
𝑚𝑥̈ + 𝑐𝑥̇ + 𝐹𝑘(𝑥) = 𝐹 cos(𝜔𝑡) (1) 

 



 

where 𝐹𝑘 is the restoring force due to the spring.  Equation (1) can be written in terms of non-
dimensional parameters and variables as, 
 

𝑦′′ + 2𝜁𝑦′ + 𝑓𝑘(𝑦) = 𝑓 cos(𝛺𝜏) (2) 
 

where (•)′ denotes differentiating with respect to non-dimensional time τ, 
 
     𝜏 = 𝜔𝑛𝑡, 𝛺 = 𝜔/𝜔𝑛, 𝑦 = 𝑥/𝑥𝑠, 𝑘𝑠 = 𝑚𝑔/𝑥𝑠,       𝜔𝑛 = �𝑘𝑠/𝑚, 
                             𝜁 = 𝑐/2𝑚𝜔𝑛 ,           𝑓 = 𝐹/𝑚𝑔,      𝑓𝑘 = 𝐹𝑘/𝑚𝑔 

 

 
and 𝑥𝑠 is the static displacement of the isolator due to the weight of the isolated mass. Note 
that 𝜔𝑛 is the natural frequency of a comparable linear isolator which has the same static 
displacement 𝑥𝑠.  The damping parameter 𝜁 = 𝑐/2𝑚𝜔𝑛 is therefore not the equivalent 
damping ratio of the system, which is dependent on the natural frequency of the nonlinear 
system when linearized about its equilibrium position.  At low levels of dynamic response, i.e. 
|𝑦| ≪ 1, the restoring force can be adequately represented by a linear stiffness given by the 
tangent to the force-deflection curve, 𝑘𝑑, referred to here as the dynamic stiffness.  The non-
dimensional natural frequency of the linearized system is then given by 𝛺𝑛 = �𝑘𝑑 𝑘𝑠⁄ .  A 
linear spring, by comparison, has a normalised natural frequency of unity and serves as a 
convenient benchmark for isolator performance.  If 𝑦 approaches -1 the curved beams move 
out of their preloaded state and become substantially more stiff, a problem which is 
encountered and discussed further in section 4.  At modest levels of response, however, the 
force-deflection curve can be represented by a polynomial featuring both odd and even terms 
owing to asymmetry.  A cubic polynomial is chosen here and equation (2) can be rewritten as, 

 
𝑦′′ + 2𝜁𝑦′ + 𝛽𝑦 + 𝜖𝑦2 + 𝛾𝑦3 = 𝑓 cos(𝛺𝜏) (3) 

 
where 𝛽, 𝜖 and 𝛾 are the fit coefficients. The quadratic term can be circumvented by 
appropriate transformation of the axis (𝑧 = 𝑦 − 𝛿 and 𝛿 = 𝜖/3𝛾) [12] to yield the classic 
Duffing oscillator with the addition of a static preload p, 

 

 
Figure 2: Non-dimensional force-deflection curve for a curved beam isolator for different 

initial angles of curvature.   

 



 

𝑧′′ + 2𝜁𝑧′ + 𝜅𝑧 + 𝛾𝑧3 = 𝑝 + 𝑓 cos(𝛺𝜏) (4) 
 

where 𝜅 = 𝛽 − 𝜖2/3𝛾, and 𝑝 = 𝛽𝜖/3𝛾 − 2𝜖3/27𝛾2. The polynomial coefficients for fits 
after transformation of axis are listed in Table 1.  The fits are shown in Figure 2 for three 
different initial curvature angles. For modest excursions from the equilibrium position the fits 
are reasonable approximations to the true characteristic in compression but become radically 
different in extension.  However, simplification of the system in this way is convenient for the 
purpose of obtaining an analytical solution for the dynamic response of the system using the 
Harmonic Balance method. 

 

Initial 
curvature 
angle (º) 

Polynomial coefficients of fit, 𝜅𝑧 + 𝛾𝑧3 = 𝑝 
Coordinate 

shift 

γ 𝜅 p 𝛿 = 𝑦 − 𝑧 

2 0.0121 0.0803 -0.0142 -0.176 

5 0.0178 0.1269 -0.0114 -0.089 

15 0.0380 0.2221 -0.0082 -0.037 

Table 1: coefficients of the fit to the force-deflection curve in the region of the minimum 
dynamic stiffness (static equilibrium) position 

 
3. FORCE TRANSMISSIBILITY OF A CURVED BEAM ISOLATOR 
The transmitted force to the base of the isolator modelled in Figure 1(b) is given by,  
 

𝑓𝑡 = 2𝜁𝑦′ + 𝑓𝑘(𝑦) (5) 
 
The forced response is obtained by two independent means (although these intermediate 
results are not presented here for brevity). 

(i) The Harmonic Balance method is applied to obtain the amplitude 𝐴1 and the phase 
of the assumed time-harmonic response due to a time harmonic input force.  A 
bias term 𝐴0 arises from the asymmetry in the force-deflection curve.  Higher 
order harmonics are not included.  The isolator is represented by a cubic 
polynomial fit to the force-deflection curve, as described in section 2.  The reader 
is referred to references [13, 14] for further details.  The transmissibility can then 
be determined from, 
 

𝑇 =  �1 + (𝐴12/𝑓2 )Ω2(6𝛾𝐴02 + (3/2) 𝐴12𝛾 − Ω2) (6) 

 
(ii) The equation of motion for forced response (equation (2)) is solved directly by 

numerical integration in the time domain using the ‘ode45’ function in Matlab. 
The isolator is represented by the exact force-deflection of the curved beam 
isolator, as given by Figure 2. Equation (5) is then used to determine the 
transmitted force. The amplitude of the transmitted force at the excitation 
frequency is obtained by applying the Fast Fourier Transform to the transmitted 
force once steady state is achieved. Whilst strictly defined only for linear systems, 

 



 

force transmissibility is taken here as the ratio of the transmitted force at the 
excitation frequency to the applied force. 

 
The force transmissibility obtained by both methods is shown in Figure 3 for three 

different initial curvature angles and a non-dimensional dynamic force amplitude of 0.01, i.e. 
1% of the weight of the isolated mass. There is very good agreement at all frequencies.  For 
such small oscillations about the equilibrium position the force deflection curve of the isolator 
is adequately modelled as a cubic relationship.  The curve resembles that of the system 
linearised about its equilibrium position with a natural frequency of 𝛺𝑛 = �𝑘𝑑 𝑘𝑠⁄ .  For all 
values of curvature presented the transmissibility is considerably reduced when compared to 
the curve one would expect for a comparable linear isolator for which 𝛺𝑛 = 1.  A small 
curvature is preferable in this instance due to its more dramatic stiffness reduction.  The 
height of the resonance peak also reduces with a smaller curvature which is a consequence of 
a reduced effective critical damping coefficient.  A more practical scenario might be to vary 
the damping coefficient so as to maintain a constant acceptable value for the peak 
transmissibility. This would have the advantage of preventing the curves in Figure 3 from 
converging to the performance of the comparable linear isolator far beyond the frequency 
range shown. 
 

 
Figure 3: Modulus of the force transmissibility as a function of non-dimensional frequency Ω 
for the curved beam isolator with three different initial angles of curvature α, for ζ=0.025 and 
𝑓 =0.01, 𝑘𝑐/𝑘𝑠  =100, lines: approximate solution (coefficients for Duffing oscillator model 

as listed in Table 1), Markers: results of exact numerical model, dotted line: comparable linear 
isolator 

 
Figure 4 shows the force transmissibility under the same conditions as Figure 3 except that 

the dynamic force is increased ten-fold to 10% of the weight of the isolated mass.  The HB 
and numerical time integration approaches give dissimilar results mainly around resonance 
where the response is the largest.  The discrepancies are due not to the method of solution but 
largely due to the inadequacy of the Duffing model to represent the force deflection curve 
over the operational range of dynamic displacements.  In particular, the ‘jump-down’ 
frequency, at which the response jumps from one stable branch to another with increasing 
frequency, is not well predicted by the HB method.  The isolation frequency, i.e. the 

 



 

frequency above which the force is attenuated, is underestimated.  The numerically obtained 
results illustrate that the isolation region can be severely curtailed by the jump-down 
phenomenon when large dynamic forces are applied to such a strongly nonlinear system with 
light damping.  However, once in the isolation region the benefits of the low dynamic 
stiffness are fully realised. 
 

 
Figure 4: Force transmissibility as a function of non-dimensional frequency Ω for the curved 

beam isolator with three different initial angles α, for ζ=0.025, 𝑓 = 0.1, and 𝑘𝑐/𝑘𝑠  =100, 
lines: approximate solution stable branch and unstable branch, Markers: results of numerical 

time integration using the exact force-deflection relation. 

4. TRANSMITTED FORCE - TIME DOMAIN 
The frequency domain representation of the transmitted force presented in the previous 
section considers only the component of the response at the excitation frequency. However, 
nonlinear systems will invoke response at other frequencies such as harmonics which cannot 
be ignored.  A dramatic example of a near-periodic but non-time-harmonic response is shown 
in Figure 5.  This is the time history of the transmitted force for the curved beam isolator with 
an initial curvature angle of 2˚ and an excitation non-dimensional frequency of 0.58, which is 
the jump-down frequency. There is a large impulsive force once per fundamental period 
which occurs when the isolator is at its maximum extent.  The isolator becomes orders of 
magnitude more stiff when it is further extended, i.e. 𝑦 < −1 and acts almost as a rigid end 
stop.  The component of the response at the excitation frequency is small by comparison and 
is not a true reflection of the performance of the isolator.  Higher order harmonic components 
should be quantified by, for example, evaluation of the total harmonic distortion. 

The dramatic increase in isolator stiffness as the curved beam moves into extension can be 
mitigated to some extent by reducing the stiffness of the linear spring inserted in series.  A 
value of 𝑘𝑐/𝑘𝑠 =2 is chosen for the following analysis in contrast to the value of 100 adopted 
previously.  The effect on the force-deflection curve of softening the linear spring can be seen 
clearly in Figure 6.  The isolator stiffness in extension is now governed by the linear spring 
which also has the adverse effect of increasing slightly the dynamic stiffness in the vicinity of 
the equilibrium position. 
 

 



 

 
Figure 5: Time history of transmitted force through the curved beam isolator for an excitation 

frequency of 0.58 for α=2˚, 𝑓 =0.1, ζ=0.025, and 𝑘𝑐/𝑘𝑠=100 
 
 

 
Figure 6: Non-dimensional force-deflection curve of the curved beam isolator for an initial 

curvature angle of α=2˚ 
 

Figure 7 shows the transmissibility curve for the curved beam isolator for each of the two 
linear spring stiffness ratios, 𝑘𝑐/𝑘𝑠=2 and 100.  The corresponding result is also shown for a 
linear isolator with the same static deflection due to the weight of the isolated mass.  The 
effect of reducing the linear spring stiffness is to increase the jump-down frequency, and 
hence the non-dimensional frequency above which isolation occurs, from about 0.58 to 0.68.  
A significant benefit is still apparent compared to the linear isolator for which isolation occurs 
for 𝛺 > √2. 
 

 



 

 
Figure 7:  Force transmissibility as a function of non-dimensional frequency Ω for the curved 

beam isolator with two different linear springs stiffness, ζ=0.025 and 𝑓 =0.1, solid line: 
approximate solution stable branch, dotted line: approximate solution unstable branch, 
markers: results of numerical time integration using the exact force-deflection relation, 

dotted-dashed line: linear isolator with the same static deflection due to the weight of the 
isolated mass 

 
The steady state time history for the isolator with 𝑘𝑐/𝑘𝑠=2 is shown in Figure 8.  The non-

dimensional excitation frequency is again chosen to be the jump down frequency, 𝛺 = 0.68 
in this case. There is still a ‘dip’ caused by the curved beams ‘locking up’ in extension but 
this behaviour is much less severe than seen previously in Figure 5 due to the compliance of 
the linear spring placed in series. 
 

 
Figure 8: Steady state time history of the transmitted force of the curved beam isolator at a 

non-dimensional frequency Ω = 0.68 for 𝑘𝑐/𝑘𝑠 = 2, ζ = 0.025 and 𝑓 = 0.1 

 



 

5.  CONCLUSIONS 
The force-deflection curve for an axially loaded curved beam has been presented which shows 
that in its post-buckled region a low dynamic stiffness can be achieved whilst maintaining a 
large static load bearing capability, especially for small angles of curvature.  This is a 
potentially desirable characteristic of a vibration isolator.  A position of minimum dynamic 
stiffness can be identified numerically and is chosen as a desirable equilibrium position about 
which to consider dynamic motion.  The force-deflection relation is fitted with a cubic 
function about this point so as to represent the beam with an attached rigid mass by a Duffing 
oscillator thus making solution by the Harmonic Balance method more convenient.  
Comparison with numerically obtained results using the exact force-deflection relation shows 
that the approximation is adequate except around resonance if the force excitation is large.  
The nonlinearity is of a hardening type in each direction from the equilibrium position which 
causes the resonance in the forced response curve to bend to the right.  A jump-down is 
observed for large amplitudes of motion which has the undesirable effect of shifting the 
isolation region higher in frequency.  However, the benefit for low levels of response is an 
order of magnitude reduction in dynamic stiffness and a corresponding three-fold reduction in 
the frequency above which isolation occurs. 

Initial analysis is conducted in the frequency domain and considers only the component of 
the response at the excitation frequency.  For large amplitudes of motion the response is 
significantly non-time-harmonic due to the beam acting almost rigidly in extension, the most 
striking manifestation of this being undesirable impulsive behaviour in the steady state time 
histories.  These can be almost eliminated by introducing significant compliance in series with 
the curved beam although some compromise to the benefits of the nonlinear isolator results. 
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