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ABSTRACT
BACKGROUND: Cognitive theories of attention-deficit/hyperactivity disorder (ADHD) propose that high within-
subject fluctuations of cognitive performance in ADHD, particularly reaction time (RT) variability (RTV), may reflect
arousal dysregulation. However, direct evidence of arousal dysregulation and how it may account for fluctuating RTs
in ADHD is limited. We used skin conductance (SC) as a measure of peripheral arousal and aimed to investigate its
phenotypic and familial association with RTV in a large sample of ADHD and control sibling pairs.
METHODS: Adolescents and young adults (N 5 292), consisting of 73 participants with ADHD and their 75 siblings,
and 72 controls and their 72 siblings, completed the baseline (slow, unrewarded) and fast-incentive conditions of a
RT task, while SC was simultaneously recorded.
RESULTS: A significant group-by-condition interaction emerged for SC level (SCL). Participants with ADHD had
decreased SCL, compared with controls, in the baseline condition but not the fast-incentive condition. Baseline SCL
was negatively associated with RTV, and multivariate model fitting demonstrated that the covariance of SCL with
RTV, and of SCL with ADHD, was mostly explained by shared familial effects.
CONCLUSIONS: ADHD is associated with decreased, but modifiable, tonic peripheral arousal. A shared familial
cause underlies the relationship between arousal and RTV and between arousal and ADHD. Given the malleability of
SCL, if our findings are replicated, it warrants further exploration as a potential treatment target for ADHD.
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Attention-deficit/hyperactivity disorder (ADHD) has long been
proposed to link to problems with the arousal system.
Cognitive theories of ADHD, such as the state regulation
model (1,2) or more recent dual-process models (3–5), pro-
pose that the high within-subject fluctuations of cognitive
performance in ADHD may reflect problems in regulating
arousal. Yet, direct objective evidence of arousal dysregulation
and how it may account for fluctuating cognitive performance
in ADHD is limited to date.

Measuring skin conductance (SC) provides an objective,
reliable measurement of arousal in the peripheral nervous
system (6). SC sensitively measures electrical changes in
electrodermal activity, which is stimulated by the autonomic
sympathetic nervous system, a key system in influencing
arousal and alertness (6–8). Two commonly used measure-
ments of SC are skin conductance level (SCL), which repre-
sents a tonic level of arousal (averaged over a given time
window), and skin conductance response (SCR) amplitude,
which represents a phasic (transient) event-related change in
SC (9). Increased SCL indexes an increase in peripheral
arousal, whereas increased SCR amplitude indicates a stron-
ger, higher intensity arousal response (6). Although early studies
& 2016 Society of Biological Psychiatry. Publi

N: 2451-9022 Biological Psychiatry: Cognitive Neuroscience an

SEE COMMENTA
of SC in ADHD yielded conflicting findings (10–13), a number of
more recent studies, benefiting from advancements in SC
technique, report attenuated SCL in children with ADHD at rest
and in task conditions, indicating hypoarousal (14–21). How-
ever, discrepancies still remain because some studies report no
differences in SCL between adults with and without ADHD
(22,23).

The aspect of cognitive performance that most strongly
fluctuates in people with ADHD is their speed of responding on
standard reaction time (RT) tasks, leading to high RT variability
(RTV) (24–26). Our previous analyses on a large sample of
ADHD and control sibling pairs showed how RTV captured a
large proportion of the familial influences underlying ADHD
and separated from a second familial cognitive impairment
factor that captured executive function impairments, such as
response inhibition (27). In twin analyses the genetic associ-
ation of RTV was observed particularly strongly with inatten-
tion symptoms (28). RTV can, however, improve in individuals
with ADHD under certain circumstances: a meta-analysis of
eight studies of varying designs suggested an overall signifi-
cant, although small, effect of incentives (24). While most of
these studies have rewarded successful inhibition, we have
shed by Elsevier Inc. This is an open access article under the
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examined the effects of rewarding specifically on a reduction
in RTV and have further combined the effects of rewards with
a faster event rate, to maximize potential RTV improvement.
Under such conditions, using the Fast task, we have consis-
tently observed ADHD-sensitive improvement in RTV from
baseline to a fast-incentive condition (25,29,30).

Applying SC measurement in a study on ADHD, O’Connell
et al. (31) investigated performance on a sustained attention to
response task. SC was measured before and after taking part
in either self-alert training, whereby participants learned to
modulate their own arousal levels, transiently increasing their
arousal at regular intervals with the aim of reducing momen-
tary lapses of attention, or a placebo training condition.
Compared with pretraining performance, ADHD and control
adult participants with the alertness training had increased
SCR, indicating increased transient arousal; had a more
consistent RTV over testing sessions; and made fewer com-
mission errors. Contrarily, ADHD participants and controls in
the placebo training condition, who were not taught to
modulate their arousal levels, had decreased SCR with time,
indicating a decrease in stimulus-related arousal, as well as
increased RTV, compared with their pretraining performance.
Although the investigators did not report correlations between
SC and the cognitive performance measures, they note that
SC and RTV followed a similar pattern: block-by-block increa-
ses in RTV were accompanied by gradual decreases in SCR,
indicating a drop in arousal response over time (31).

We aimed to perform a detailed investigation of SC as an
objective measure of peripheral arousal, and its potential
association with fluctuating RTs in a large sample of ADHD
and control sibling pairs. First, we aimed to investigate if
people with ADHD differ from controls in SCL and SCR
amplitude during baseline (slow, unrewarded) RT performance.
Second, we aimed to test if a fast-incentive condition
increases SC-indexed arousal, and if it does, whether it
increases more in the ADHD group than in the control group.
Third, for the SC variables that show group differences, we
aimed to investigate their familial association with RTV and
ADHD diagnosis, using sibling model fitting analyses, and to
consider specific causal models that may explain the relation-
ships that emerge.
METHODS AND MATERIALS

Sample

Participants are members of the Sibling EEG Follow-Up Study
(SEFOS) (32–34), which investigates neurophysiological and
cognitive measures in a follow-up sample of ADHD and
control sibling pairs. ADHD and control participants who had
taken part in our previous research (27,35) were invited to take
part in this study. ADHD participants were included if they had
ADHD in childhood and met DSM-IV criteria for any ADHD
subtype at follow-up. Exclusion criteria included IQ , 70,
autism, epilepsy, brain disorders, and any genetic or medical
disorder associated with externalizing behaviors that might
mimic ADHD. The investigation was performed in accordance
with the latest version of the Declaration of Helsinki.

From the original follow-up sample of 404 participants, 311
had SC measured (because SC data collection only started
540 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging N
after initial participants had already been assessed). We
excluded from the analyses 10 ADHD participants [SC equip-
ment failure (n = 9), extreme drowsiness (n = 1)] and 9 control
participants [SC equipment failure (n = 8) and met ADHD
criteria based on parent report (n = 1)]. The final sample
consisted of 73 ADHD probands [mean (SD) age, 18.3 (2.9)
years; 87% male], 75 siblings of ADHD probands [mean age,
18.3 (2.9) years; 48% male], 72 controls [mean age, 17.48 (1.8)
years; 94% male], and 72 control siblings [mean age, 17.11
(2.4) years; 68% male].

For the ADHD control group differences analyses (aims 1
and 2), both members of control sibling pairs formed the
control group (n = 144); siblings of ADHD probands were
excluded unless they had an ADHD diagnosis themselves. For
these analyses, the ADHD and control groups did not differ in
sex (χ2 = 1.64, p , .20) but did differ in age (t = 0.54, p = .04)
and IQ (t = 6.01, p , .001). In all these analyses we included
age as a covariate, and in additional analyses we added IQ as
a second covariate. For the model fitting analyses (aim 3),
all participants were included and differed in age (t = 1.97,
p = .05), sex (χ2 = 35.2, p , .01), and IQ (t = 22.46, p , .01). In
these analyses we therefore used age and sex as covariates,
with additional analyses also including IQ as a further cova-
riate. All participants were of European Caucasian descent.

Procedure

The Fast task was administered as part of a longer assess-
ment session at the research center. For participants pre-
scribed stimulants, a 48-hour ADHD medication-free period
was required. Participants abstained from caffeine, smoking,
and alcohol on the day of testing. Face-to-face or telephone
clinical interviews were administered to the parent of each
ADHD proband shortly before or after the participant’s
assessment.

Measures

IQ. The vocabulary and block design subtests of the Wechs-
ler Abbreviated Scale of Intelligence (36) were administered to
all participants to derive an estimate of IQ.

ADHD Diagnosis. The Diagnostic Interview for ADHD in
Adults (DIVA) (37), a semistructured interview based on the
DSM-IV criteria, was conducted with the parent for current
symptoms only, because in all cases a clinical and research
diagnosis of combined type ADHD had already been estab-
lished (35). The Barkley’s Functional Impairment Scale (38)
was used to assess functional impairments commonly asso-
ciated with ADHD in five areas of their everyday life. Each item
ranges from 0 (never or rarely) to 3 (very often). Participants
were classified as affected, if they scored a yes on six or more
items on the Diagnostic Interview for ADHD in Adults for either
inattention or hyperactivity-impulsivity based on parent report,
and scored $2 on two or more areas of impairments on the
Barkley’s Functional Impairment Scale, rated by their parent.

The Fast Task

The slow-unrewarded (baseline) condition consists of 72 trials,
which followed a standard warned four-choice RT task. Four
empty circles (warning signals, arranged horizontally) first
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appeared for 8 seconds, after which time one of them (the tar-
get) was colored in. Participants were asked to press the
response key that directly corresponded to the position of the
target stimulus. After a response, the stimuli disappeared from
the screen, and a fixed intertrial interval of 2.5 seconds
followed. Speed and accuracy were emphasized equally in
the task instructions. If the participant did not respond within
10 seconds, the trial terminated. A comparison condition of 80
trials with a fast event rate (fore-period of 1 second) and
incentives followed the baseline condition (29). The fast-
incentive condition is always administered after the baseline
condition. SC measures and cognitive performance measure
(RTV) from each condition was included in this analysis. Owing
to the longer fore-period in the slow condition, the two
conditions were not matched on task length, but they were
matched on the number of trials. We analyzed RTV and SC
performance both on the full slow condition and between three
4-minute length-matched segments (Supplemental Tables S1
and S2) (29).

Skin Conductance. SC data were measured by attaching a
pair of reusable 8-mm-diameter silver-silver chloride electro-
des on the palm of the hand (thenar eminence and hypothenar
eminence) of the participant’s nondominant hand at the start
of the testing session. A nonsaline gel was used to increase
impedance and to help establish an electrical signal. A con-
stant imperceptible voltage (0.5 V) was applied.

SC was recorded using PSYCHLAB SC5 24-bit equipment
system, which has an absolute accuracy of 60.1 microsiemen
(PSYCHLAB, London, UK). The SC5 was connected to a computer
to run the PSYCHLAB software, where were monitored, recorded
in real time, and automatically digitized. Stimulus onset and
participant response events were recorded on a common timeline,
which enabled SC activity to be stimulus locked.

SC data values were calculated using a SC system that is
based on a SC sigmoid-exponential model that allows the tonic
measure of SCL to be disentangled from phasic, stimulus-
associated SCRs and further allows the decomposition of
overlapping SCRs (6,9,39,40). This system, therefore, is
appropriate to use in conditions with long and short intersti-
mulus intervals (41). The statistical model was applied to each
condition, as a whole. SCR amplitude (change in SC from the
baseline to the highest point of the SCR) was derived from this
method and was calculated on a trial-by-trial basis. The
criteria for the smallest SCR were set at 0.02 microsiemen.
Means of SC variables (SCL and SCR amplitude) were
calculated per participant, across each condition.

Analyses

Covariates. Age was used as a covariate in all analyses.
Analyses were initially performed without controlling for IQ, but
we subsequently reran all analyses with IQ as a covariate to
examine IQ effects. Sex was not included as a covariate in the
group analyses to avoid controlling for ADHD status (32).
Instead, we explored the effect of sex by rerunning all analyses
with the female participants (n 5 15) removed; the pattern of
results remained the same (results are available on request).
Analyses were rerun using anxiety and depression scores from
the Clinical Interview Schedule-Revised (42) as additional
Biological Psychiatry: Cognitive Neuroscience and Neuro
covariates to investigate their confounding effects, but the sig-
nificance of the results did not change (Supplemental Table S6).
All variables were skewed and transformed using the optimized
minimal skew (lnskew0) command in Stata version 11.1 (Stata
Corp., College Station, TX). Tests assessing sphericity and equality
of variances were performed to ensure that assumptions
were met.

ADHD-Control Group Comparisons. To test for main
effects of group (ADHD vs. controls), condition (baseline vs.
fast-incentive), and interactions for SC variables and RTV, the
data were analyzed using random intercept models and
logistic regression in Stata. The random intercept model is a
multilevel regression model that can be used as an alternative
to analysis of covariance to control for genetic relatedness
(where both siblings from a pair are included in analyses) in a
repeated-measures design, using a robust cluster command
to estimate standard errors (32,43,44).

Structural Equation Modeling on Sibling Data. Struc-
tural equation modeling in OpenMx (45) was used on sibling-pair
data to decompose the variance of traits into etiological factors.
Whereas in twin studies comparison between monozygotic and
dizygotic twin pairs enables estimation of additive genetic, shared
environmental, and nonshared environmental influences, sibling
pairs (all sharing 50% of their alleles and 100% of the environment
they grow up in) only enable estimation of the combined effects of
additive genetic and shared environmental influences (familial [F]
effects). In addition to F effects, nonshared effects (NE) are
estimated, representing effects due to nonshared environment/
genes as well as possible measurement error.

Multivariate modeling on sibling data uses the additional
cross-sib cross-trait information to decompose the observed
phenotypic correlation (Rph) between traits into etiological
factors. Similar sibling design analyses have been previously
performed by our group [see (46) for a more detailed description
and rationale of the analysis]. In addition, by using the
correlations between the F and NE factors, and the stand-
ardized estimates, we calculated the extent to which the Rph
between any two variables is due to F (Rph-F) and NE (Rph-NE).

Phenotypic Correlations. Before FNE modeling (described
in the section above), sibling correlations were estimated from a
constrained correlation model to give maximum likelihood
estimates of correlations between the traits within and across
pairs while applying some constraints. Applied constraints
reflect the assumptions of the familial model, that is, that
phenotypic correlations across traits within individuals are the
same across siblings and that cross-trait cross-sibling correla-
tions are independent of sibling order. Variables used in the
sibling model fitting were selected by running phenotypic
correlations on variables that showed group differences, and
only variables that had a significant relationship with RTV were
further analyzed.

Phenotypic Mediation Model. To further investigate a
more etiological model that may account for the relationship
between SC variables that are associated with both RTV and
ADHD, and given the theoretical scope that RTV (an observed
imaging November 2016; 1:539–547 www.sobp.org/BPCNNI 541
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behavioral response) may reflect hypoarousal (an internal physio-
logical process), we hypothesized that RTV may mediate the
relationship between SC-indexed arousal and ADHD. A phenotypic
mediation model was fitted with SC variables that may be causally
associated with both RTV and ADHD. Significant (partial) mediation
occurs when a third variable explains some of the association
between two other variables (47). The phenotypic mediation
model was specified to account for the sibling-structure and
selected nature of the data using similar constraints as the
correlation model described above. The phenotypic relation-
ship across traits within individuals is specified by means of
causal paths, which were constrained to be equal across
siblings. The sibling-structure was accounted for by specifying
correlational paths across sibling variables.

Ascertainment Correction. To account for the selected
nature of the sample (selection on ADHD probands), the selection
variable (ADHD status) was included in all models with its variables
fixed to population-known values. In the correlation and mediation
model this involves fixing the sibling correlation for ADHD status to
0.40 and in the FNE models fixing F to 0.40, representing 80%
genetic variance (in case shared environment5 0). In addition, the
threshold on ADHD liability was fixed to a z value of 1.64 to
correspond to a population prevalence of 5% [see Rijsdijk et al.
(48) for further explanation and validation of this approach].

RESULTS

ADHD-Control Group Comparisons

For SCL data, a random intercept model indicated a significant
main effect of condition (z 5 8.95, p 5 .01) and group-by-
condition interaction (z 5 1.89, p 5 .04), but no main effect of
group (z 5 .19, p 5 .85) (Figure 1A). Post hoc regression
analyses revealed that compared with controls, individuals
with ADHD showed significantly lower SCL in in the baseline
condition (t 5 25.64, p , .001), but not in the fast-incentive
condition (t 5 1.10, p 5 .27) (Table 1). Both ADHD and control
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groups had a significant within-group increase from the
baseline to fast-incentive condition (t = 7.52, p , .01; t =
6.44, p , .01, respectively), but the ADHD group had a greater
increase than controls (t = 1.94, p , .05).

For SCR amplitude data, a random intercept model showed
no significant main effects of group (z 5 .46, p 5 .61),
condition (z 5 .42, p 5 .28) or group-by-condition interaction
(z 5 .69, p 5 .51) (Figure 1B).

All group analyses were rerun with IQ as a covariate, but the
significance of results remained unchanged. Analyses were
rerun using three length-matched segments from the baseline
condition and testing them separately against the fast-incentive
condition, but the significance of results did not change
(Supplemental Tables S1 and S2). Although our sample had a
48-hour medication-free period, to explore the longer-term use
of medication, we ran the following additional analyses: 1) SC
comparison tests between unmedicated and medicated partic-
ipants with ADHD, 2) using current stimulant medication as an
additional covariate, and 3) analyses in unmedicated partic-
ipants only. The significance of results did not change in any
additional analyses (Supplemental Tables S3, S4, and S5).

We ran additional phenotypic correlations to examine the SCL-
RTV and SCR-RTV relationship in ADHD and control groups
separately (Supplemental Table S7). In the baseline condition,
lower SCL significantly predicted higher RTV in the ADHD group
(r 5 2.31, p , .01), but this correlation did not reach significance
in the control group (r 5 2.12, p 5 .15), and Fisher’s z test
indicated that the correlations between the groups differed from
one another at a trend level (z 5 21.37, p 5 .08). In the fast-
incentive condition, the RTV-SCL correlations were not signifi-
cantly different between the groups (z 5 2.97, p 5 .16; r 5 2.29,
p , .01 in the ADHD group; r 5 2.16, p 5 .06 in the control
group). There were no significant SCR-RTV correlations.

Familial Association Between SCL, RTV, and ADHD

Given that SCL showed a significant group-by-condition
interaction, a significant correlation with RTV with large effect
Figure 1. Skin conductance vari-
ables [(A) skin conductance level
(SCL) and (B) skin conductance
response (SCR) amplitude] measured
in control (black) and attention-deficit/
hyperactivity disorder (ADHD; gray)
groups during performance on the
baseline and fast-incentive conditions
of the Fast task. *p , .05 significance.

aseline Fast-incen�ve
Condi�on

SCR amplitude
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Table 1. Descriptive Statistics of Sex, IQ, Age, RTV, and SC Measures and Group Comparisons Between the Control and
ADHD Group

Control ADHD Probands

Group Comparisons Effect Size of Group Comparison

t/F p Cohen’s d Cohen’s d: IQ Controlled

Demographic Characteristics

Male sex, % 81 87 1.64 .20

IQ, Mean (SD) 109.60 (12.52) 98.60 (14.50) 601.00 ,.01

Age, Years, Mean (SD) 17.30 (2.15) 18.30 (2.90) 0.54 .60

RTV, Mean (SD)

Baseline 3.80 (0.40) 4.70 (0.80) 6.59 .001 21.20 20.95

Fast-Incentive 3.33 (0.60) 3.70 (0.70) 1.49 .14 20.90 20.90

SCL, Mean (SD)

Baseline 1.84 (0.30) 1.56 (0.30) 25.64 .001 0.72 0.67

Fast-Incentive 3.20 (2.00) 3.70 (2.10) 1.10 .27 20.17 20.15

SCR Amplitude, Mean (SD)

Baseline 0.41 (0.30) 0.45 (0.60) 1.32 .20 20.06 20.06

Fast-Incentive 0.34 (0.20) 0.32 (0.23) 0.07 .91 0.05 0.03

Age has been controlled for in the analyses on SC and RT variables. Cohen’s effect sizes (d) are presented without and with IQ as a covariate.
Group means of transformed data and subsequent group comparison tests are listed.

ADHD, attention-deficit/hyperactivity disorder; RT, reaction time; RTV, reaction time variability; SC, skin conductance; SCL, skin conductance
level; SCR, skin conductance response.
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sizes and the biggest significant group difference in the
baseline condition, we next investigated the phenotypic and
etiological overlap between SCL, RTV, and ADHD in the
baseline condition. The maximum likelihood phenotypic,
cross-sibling, and cross-sibling-cross-trait correlations across
SCL, RTV, and ADHD are presented in Table 2.

Sibling-pair multivariate model fitting was performed to decom-
pose variance/covariance of traits into etiological factors F and NE
(Figure 2). We calculated the extent to which the phenotypic
correlation between any two variables is due to F (Rph-F) and NE
(Rph-NE) and express these contributions as a percentage
(Table 3). Shared familial influences accounted for 55% of the
total phenotypic correlation between SCL and ADHD, 94% of
the phenotypic correlation between SCL and RTV, and 59% of the
phenotypic correlation between ADHD and RTV.
Table 2. Maximum-Likelihood Phenotypic, Cross-Sibling
and Cross-Sibling Cross-Trait Correlations Across Baseline
SCL, RTV, and ADHD

Correlations R 95% CI

Phenotypic Correlations Within Individual

SCL-RTV 2.15a (20.23, 20.01)

SCL-ADHD 2.31a (20.42, 20.19)

RTV-ADHD .35a (0.23, 0.46)

Cross-Sibling Correlations

SCL .26a (0.07, 0.40)

RTV .26a (0.10, 0.40)

ADHD Fixed .40

Cross-Sibling-Cross-Trait Correlations

SCL-RTV 2.15a (20.24, 20.01)

SCL-ADHD 2.14a (20.27, 20.02)

RTV-ADHD .20a (0.07, 0.30)

ADHD, attention-deficit/hyperactivity disorder; CI, confidence inter-
val; RTV, reaction time variability; SCL, skin conductance level.

ap , .05.

Biological Psychiatry: Cognitive Neuroscience and Neuro
Phenotypic Mediation Model

Given the significant phenotypic and familial relationship of
baseline SCL with RTV and with ADHD, we tested whether
baseline RTV mediated the relationship between baseline SCL
and ADHD status. In the mediation model, the causal paths
specified were all significant, and partial mediation by RTV was
indicated (Figure 3). However, model fit statistics demonstrate
that the causal mediation model was not a good fit (Bayesian
information criterion 5 2511, root mean square error of
approximation 5 0), which is demonstrated by a significant
χ2 statistic (2Δχ2 5 270.09, Δdf 5 1, p , .01).

DISCUSSION

In a large sibling study of 292 participants, we show that tonic
peripheral arousal, indexed with SCL, is decreased in young
people with ADHD during performance on a baseline RT task
but normalizes in a faster condition with incentives, indicating
modifiable arousal dysregulation in ADHD. We further show
that a substantial degree of familial sharing accounts for the
significant phenotypic associations between SCL and RTV
and between SCL and ADHD.

The SC measure associated with ADHD was SCL. Lower
SCL during baseline RT performance indicated a lower tonic
level of peripheral arousal in individuals with ADHD, consistent
with accounts of hypoarousal (14–16,21,49). No group differ-
ences emerged for SCR amplitude. Although SCL and SCR
are commonly used measurements of SC, they are thought to
index different processes (50). For example, neuroimaging
studies show that the activity of the ventromedial prefrontal
cortex and orbitofrontal cortex is associated with SCL (51),
whereas anterior prefrontal cortex and limbic regions are
associated with SCR (50,51). Our results, therefore, suggest
that although the processes involved in tonic level of periph-
eral arousal (SCL) are impaired in individuals with ADHD during
baseline performance, the processes involved in the phasic,
imaging November 2016; 1:539–547 www.sobp.org/BPCNNI 543
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Figure 2. Standardized solution of the full correlated factor model across
skin conductance level (SCL), reaction time variability (RTV), and attention-
deficit/hyperactivity disorder (ADHD) in the baseline condition. Solid lines
and asterisks depict significant paths (p # .05) and dotted lines depict
nonsignificant paths (p . .05). Confidence intervals are indicated in
parentheses. F, familial effects; NE, nonshared effects.
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Figure 3. Reaction time variability (RTV) as a mediator of skin conduc-
tance level (SCL) and attention-deficit/hyperactivity disorder (ADHD) in
the baseline condition. Solid lines and asterisks depict significant paths
(p # .05), and dotted lines depict nonsignificant paths (p . .05). Confidence
intervals are indicated in parentheses.
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discrete, arousal response elicited by stimulus onset (SCR
amplitude) are not affected. The separation that we observed
between SCL and SCR amplitude in their association with
ADHD is also supported by studies suggesting that treatment
with methylphenidate, an effective medication used to reduce
ADHD symptoms, is associated more directly with increased
SCL arousal (12,21,52).

Tonic peripheral arousal (SCL) normalized in the ADHD
group in the fast-incentive condition, as indicated by a
significant group-by-condition interaction and lack of a group
difference in the fast-incentive condition. The malleability of
SCL is in line with results of modifiable SC-indexed arousal
(16,21,31) and resembles the pattern observed for RTV (30).
The overall pattern of findings is therefore suggestive of an
arousal dysregulation rather than stable hypoarousal, in indi-
viduals with ADHD.

To investigate the familial association between SCL and
RTV directly, we focused on the baseline condition that is
Table 3. Phenotypic Correlations (Rph) and the Phenotypic C
Effects (Rph-NE) Across SCL, RTV, and ADHD

Rph
(95% CI)

SCL-RTV 20.15a (20.25, 20.02)

SCL-ADHD 20.31a (20.39, 20.16)

RTV-ADHD 0.35a (0.23, 0.45)

ADHD, attention-deficit/hyperactivity disorder; CI, confidence interval; R
ap , .05.
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most sensitive to ADHD. The SCL-RTV correlation was largely
(94%) accounted for by shared familial influences, demon-
strating that the association of underarousal with attentional
fluctuations is mostly due to overlapping familial effects. Of the
familial influences on RTV, half were correlated with those on
SCL, indicating that peripheral arousal captures half of the
familial influences that contribute to the attentional fluctua-
tions. These findings are in line with theories linking RTV to
arousal dysregulation (4,29,53–56). However, because half of
the familial influences on RTV were not correlated with those
on SCL, this implies there are also nonoverlapping, distinct,
familial influences that contribute to RTV, in line with a
multifactorial etiology of increased RTV (53).

We further investigated the familial association between
SCL and ADHD and found that shared familial effects accoun-
ted for 59% of the phenotypic correlation between them,
providing further support for an etiological link between under-
arousal and ADHD. Of the familial influences on ADHD, a third
correlated with those on SCL, demonstrating that peripheral
arousal captures a third of the familial influence contributing to
ADHD. However, two thirds of the familial influences on ADHD
did not correlate with those on SCL, implying that there are
also nonoverlapping familial influences that contribute sepa-
rately to ADHD. These findings are in agreement with the view
that arousal dysregulation is not the only contributing factor to
ADHD, in line with the multifactorial nature of ADHD (3–5,
55–57).

In a novel attempt to investigate the causal pathways that
underlie the phenotypic relationship between SCL-indexed
arousal, RTV, and ADHD, we fitted a model that tests whether
orrelations due to Familial Effects (Rph-F) and Nonshared

Rph-F
(% Contribution)

Rph-NE
(% Contribution)

20.14 (94) 20.01 (6)

20.17 (59) 20.14 (41)

0.20 (57) 0.15 (43)

TV, reaction time variability; SCL, skin conductance level.
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there are causal pathways from 1) SCL to RTV and 2) RTV to
ADHD and 3) whether RTV mediates the association between
SCL-indexed arousal and ADHD, or whether there is a direct
causal pathway from SCL to ADHD. The mediation and causal
paths between all variables were significant, suggesting that
there are two pathways from SCL-indexed arousal to ADHD:
an indirect causal pathway from arousal to RT fluctuations to
ADHD and a direct casual pathway from arousal to ADHD.
Overall, our statistical model is consistent with ADHD theories
that suggest a role for arousal dysregulation in the etiology of
ADHD and the observed lapses of attention (3–5). It is further
suggestive of complex relationships between the variables;
although the association between underarousal and ADHD
was partially mediated by attentional fluctuations (RTV), under-
arousal had additional direct influences on ADHD. However, the
causal mediation model did not fit the data well; therefore, these
causal pathway results should be interpreted with caution and
further explored in future research.

Because this is the first family study on skin conductance
and ADHD to our knowledge, our findings await replication.
SC should also be studied in relation to other cognitive tasks,
to investigate the generalizability of the findings. In addition,
twin studies are required to establish whether the familial
influences we identified reflect largely shared genetic rather
than shared environmental influences; because previous research
suggests a limited role for shared environmental effects for ADHD
(58), SC (59,60), and RTV (61), a strong genetic component
seems likely.

In conclusion, we identify SCL as an informative index of
underlying, malleable hypoarousal in ADHD. The demonstra-
tion of a link between SCL, RTV, and ADHD provides
physiological support for the arousal dysregulation accounts
(1–5). If our findings are replicated in future research, SCL
warrants further exploration as a potential treatment target.
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