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ABSTRACT 

Precisely identifying the shifting urban spatial structures produced by urban forms and 

functions contributes to an advanced understanding of urban morphological dynamics 

and related planning practices. Although evolutionary city structures have been widely 

discussed, comprehensive research focusing on the dynamic interactions between spatial 

and functional sub-systems is still lacking. This article investigates the transformation of 

urban centrality structures as captured by the shifting interdependence between centrality 

indices (angular integration and choice) and delivered urban function connectivity 

metrics (accessible function density, diversity and cognitive distance), generated in 

tandem by spatial network and land-use patterns. By reconceptualising urban evolution 

as a centrality process in which spatial and functional centrality processes co-exist and 

co-evolve, this study constructs a systematic connection between these two types of 

centrality structures during identical transition periods in Shanghai’s history of 

modernisation. Four critical snapshots of street networks and Points-of-Interest (POIs) in 

history are selected as a spatiotemporal description of the urban transformation of Central 

Shanghai. The results demonstrate that the centrality structures hidden behind the spatial 

network and land-use distributions have historically affected each other dynamically. 

Certain degrees of inconsistency are observed between these two systems, and the 

characteristics of urban developments at various stages can be distinguished according to 
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modes of spatio-functional interaction at multi-scales. The findings of the canonical 

discriminant analysis indicate that shifting complex interrelationships between the spatial 

network and land-use patterns are the major determinants of the formation of the urban 

function regions. The proposed framework offers valuable insights into the 

morphological evolution process of cities as indicated by the configurational interplay 

between form and function, and it represents a novel way to explicitly identify urban 

change. 

Keyword: urban evolution, spatio-functional interaction, land-use distribution, centrality, 

space syntax,   

 

01 INTRODUCTION 

Depicting urban spatial structures is one vital prerequisite to uncovering the process by 

which urban morphologies evolve. An urban spatial structure is a sum of the various ways 

in which people interact through perceivable urban forms (Anas et al. 1998). A centrality 

structure reflecting the sense of ‘a centre’ usually refers to the concentration of urban 

activities in a prominent location (Horton and Reynolds 1971; Hillier 1999). In this sense, 

an urban structure generally contains the functional elements representing the interactions 

between form and function that, in turn, illustrate the spatial conditions facilitating the 

morphological agglomeration of land uses. Revealing the links between the spatial and 

functional elements of the urbanisation process is vital for any urban revitalisation 

programme, as it contributes to sustaining the long-term prosperity of city centres (Burger 

and Meijers 2012; Tallon 2013). 

In traditional typo-morphological research, the built environment is analogised to 

an architectural biosphere, and urban spatial elements – buildings, blocks, streets, etc. – 

are considered ‘species’ with distinguishable characteristics. Thus, tracing the 

transformation of the spatial typologies of urban form has historically been the main 

approach to understanding hidden spatio-social transformations (e.g., Moudon 1997; 

Pinchemel and Pinchemel 1983; Darin 1998; Cataldi et al. 2002; Pinho and Oliveira 

2009). With their emphasis on the structural properties of spatial configurations, 

configurational studies focus on the formulation and reproduction of hierarchical urban 
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centres as driven by the spatial interactions of spatial elements at various scales (e.g., 

Hillier 1999). Numerous studies have demonstrated that changes in spatial centrality 

generated by the urban grid dramatically influence the distributed commercial amenities 

(e.g., Hillier 1999; Porta et al., 2009; Porta et al., 2012; Scoppa & Peponis, 2015) The 

land-use patterns identified in configurational studies and space syntax studies, in 

particular, are considered to be the products of spatial centrality, which drives the 

economic process (Hillier 1996). This argument reclaims the theoretical and practical 

positions of urban design in the land-use allocation process. However, the inherent 

structures of the land-use patterns are over-simplified, thereby constraining the further 

exploration of how land-use locations react to the spatial advantages provided by the 

spatial network.  

A land-use system is not simply a layer that corresponds to the spatial network. 

Rather, it has its own logic by which it formulates observable patterns. It can be impacted 

by the bid price from the central area to the periphery (Alonso 1960), competition or 

market sharing (Hotelling 1990; Christaller 1996), complementary interaction (e.g., Eppli 

and Shilling 1996), gravity interaction (e.g., Wilson 1998), investment in the transport 

system (Wegener 2004; Waddell 2002), and the geometrical accessibility to other land-

uses (Stahle et al. 2005; Sevtsuk 2010; Agryzkov et al. 2016).  Conventional methods of 

identifying the shapes of urban centres are based on the analysis of land-use 

agglomeration with reviews of informed opinion (e.g., Batty et al., 1997; Wheaton 1974). 

In contrast to how space syntax theory explains the process of urban evolution, 

geographical studies generally consider urban evolution to be a process of accessibility 

change at larger scales, driven by a series of land-use changes resulting from underlying 

socioeconomic transformation; however, these studies neglect the role of urban 

geometrical structure (Geurs and Wee 2004; Batty 2009). Recent efforts have aimed to 

describe land-use interaction through high-resolution morphological analyses of the built 

environment. For example, using spatially lagged logistic regression methods, Sevtsuk 

(2014) has found that the locational decisions of particular types of retailers in buildings 

along street networks are related to the accessibility of other types of commercial 

amenities. On the basis of the social media data gathered from Foursquare and Twitter, 

Agryzkov et al. (2016) visualised city as a complex network, and adopted the PageRank 

algorithm to measure its node centrality with the aim of assessing the successfulness of 

public space. 
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To summarize, spatial and functional centrality structures are both vital 

dimensions of the definition of an urban centre and its hierarchical nature. Nevertheless, 

existing studies have failed to apply a novel, systematic approach to measuring and 

comparing them from a syntactic/structural perspective on the urban evolutionary 

process. To address this gap, this article applies a spatio-functional model to investigate 

the extent to which the structure of urban centrality is explained by the distribution of 

land-use through the spatial network and the process by which the spatial network 

interacts with urban functions over the stages of urbanisation. There are three aims of this 

research. The first is to examine the extent to which the functional centrality structures 

indexed by urban function connectivity metrics differ from the spatial centrality structures 

as defined by space syntax centrality measures in the history of urbanisation. The second 

is to explore the extent to which these two types of centrality structures correlate with 

each other over time. The final aim is to investigate the extent to which this spatio-

functional relationship performs differently from one location to another. 

 

02 METHOD AND DATA 

02.01 Research design  

The research framework used in this article is illustrated in Figure 1. Four main modules 

are used to conduct this investigation. The first module is data processing (a) to convert 

all the obtained historical information into geocoded datasets. The street networks shown 

on historical maps are digitised as the spatial layers of segmental maps, and locational 

information on land-uses and their place significance in local atlases, local planning 

chronicles, and other data resources are gathered and geocoded along the street segments 

where they are located. In the following two steps (b and c), which compute both spatial 

and functional centrality measures during different periods, urban evolution is 

conceptually defined as both a spatial centrality process and a functional centrality 

process, respectively. The last module (d: spatio-functional centrality process) explores 

the descriptive statistics, inter-scale/inter-centrality correlations and raster-based 

centrality change with the aim of capturing the differentiated performance of these two 

types of urban centrality processes quantitatively and qualitatively. Finally, a canonical 

discriminant analysis is conducted to quantitatively identify the predictive accuracy of 
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the space syntax centrality and the urban function connectivity variables in various 

scenarios to delineate the detected urban function regions.  

 

 

Figure 1. The proposed framework for analysing urban transformation. 

 

02.02 The method 

02.02.01 Centrality computation  

Street centrality measures based on a graph representation of the built environment can 

provide finely-scaled maps of urban spatial structures with non-Euclidean settings. Two 

groups of network centrality measures are used in this study: the spatial accessibility 

measures that serve as the space syntax centrality indices, including integration and 

choice, and the urban function connectivity indices, including density, diversity and 

cognitive distance. These three key aspects of urban function layouts originate from the 

processes of densification, diversification (Cervero and Kockelman 1997), and cost-
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saving (or efficiency maximisation (Penn and Turner 2004)), driven by the location 

decisions of economic agglomeration (Fujita et al. 1999), which would shift the centrality 

structures of urban activities in the city. The functional densification and diversification 

represent the size and variety of attraction concentration based on metric distance metrics, 

whilst the cognitive distance describes the overall geometrical cost for the land-use 

concentration. A successful combination of these three elements captures the geometrical 

concentration of active land-uses comprehensively.  

Typical radii, including 500 m, 1,000 m, 2,500 m, 5,000 m, and 10,000 m, are 

used to represent spatial and functional accessibilities across scales. In our experiments, 

these radii can successfully summarise urban structural centrality at various scales by 

controlling both information redundancy and boundary effects. 

1) Street-based spatial centrality – space syntax centrality indices 

The so-called street-based spatial centrality indices are computed according to space 

syntax theory and include both segmental angular integration and choice (Turner 2001; 

Hillier and Iida, 2005; Hillier et al., 2012). Angular integration can be understood as an 

adjusted closeness in graph analysis and represents the angular shallowness between 

segments, which can be formally defined as follows: 

ܰܫ ሺܶ௜,௥ሻ ൌ
ሺே೔ିଵሻ

∑ ஽௘௣ሺ೔,ೕሻ
಻
ೕసభ

, ሼ݀݅ݏሺ௜,௝ሻ ൑  ሽ ……………………………………………...….. (1)ݎ

In this equation, the angular integration (ܰܫ ሺܶ௜,௥ሻሻ at the radius r is represented as 

the mean angular depth (݌݁ܦሺ௜,௝ሻ) from segment i to all the reachable segments j within a 

buffer zone defined by the pre-identified radius r.  

The so-called angular choice index (CHO) in the space syntax model is very 

similar to the concept of betweenness in the graph analysis but uses the angular change 

at each road intersection as the expenditure to find the shortest path (Turner 2001). It can 

be defined as the number of times ( ௝݊௞) that the focused segment i has been passed 

through in the angular shortest paths from segment j to segment k within a reachable area 

defined by a fixed radius r. From a mathematical perspective, this definition can be 

represented as follows: 

（ሺ௜,௥ܱܪܥ ൌ	∑ ௝݊௞
௄
௞ୀଵ , ሼ݀݅ݏሺ௜,௝ሻ 	൑ ሺ௜,௞ሻݏ݅݀	;ݎ ൑  ……………….………………... (2)	ሽݎ	
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2) Street-based functional centrality – urban function connectivity metrics 

The accessible function density index (DEN) measures the accumulation of scored urban 

activities from each street within a defined radius through the shortest reachable paths. 

Assuming there are K types of active land-uses, the accessible function density for the 

segment node i at radius r would be aggregated as ܧܦ ሺܰ௜,௥ሻ: 

ܧܦ ሺܰ௜,௥ሻ ൌ 	∑ ∑ ܱሺ௝,௞ሻ ൈ ሺܹ௝,௞ሻ
௃
௝ୀଵ

௄
௞ୀଵ ,			൛݀݅ݏሺ௜,௝ሻ ൑  …………….……………….. (3)	ൟݎ

This summation takes into account the function nodes assigned to street segment 

edges and weighted based on social media check-in scores. In the equation above, r is the 

defined radius, ܱሺ௝,௞ሻ  refers to the potential opportunities that can be supplied, and 

ሺܹ௝,௞ሻ	is the specified weight of the function node j in type k, used to reflect its popularity. 

In this study, we use the normalised number of social media check-ins assigned to each 

POI as its weight on the demand side, which can be presented as ሺܹ௝,௞ሻ ൌ 	
୪୭୥஼ሺೕ,ೖሻ
୪୭୥஼ೖ

೘ೌೣ ,, 

where log  ሺ௝,௞ሻ represents the log-normalised check-ins for the specific function node jܥ

in type k, and log ௞ܥ
௠௔௫ denotes the log-normalised value of the maximum check-ins for 

all the function nodes. Because we lack, for the purpose of calibration, reliable 

corresponding information about land-use from the supply perspective, it is assumed that 

the supply of the function is even across locations.  

It has been argued that social media check-in data only capture the subsets of 

urban population, thereby causing potential bias of samples and producing misleading 

conclusions (e.g., Duggan and Brenner 2013). A consensus has been established is that 

the applicability of social media dataset should be carefully verified (Ruths and Pfeffer 

2014). In this article, we propose to use normalised social media check-in scores to 

present the popularity of an urban amenity. This idea has been validated through the 

hedonic modelling of house price variation with the weights of social media check-ins in 

favourable functions in people’s daily life (Shen and Karimi 2016). These findings inform 

that in contemporary society, the amenities with small service areas may be very popular 

on the social media landscape, and vice versa. In this sense, social media check-in scores 

are a type of unique data indicating the more ‘real’ sense of function in human’s mind 

rather than conventionally used weighting parameters, such as floor area. 

The accessible function diversity index (DIV) measures the balance degree of all 

weighted urban activities reachable from the original street within a given radius. 

Information entropy is applied to measure the diversity of urban function nodes from 
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segment node i at radius r and is represented as ܫܦ ௜ܸ,௥. A normalisation transformation is 

applied to make the different types of activities comparable by converting the absolute 

density to a relative density; this is accomplished by dividing the accessible weighted 

density in type k for each segment node by the maximum value of the accessible density 

of land-use of the same type at the same radius for all the segment nodes within the study 

area (ܰܽܧܦ ሺܰ௜,௞,௥ሻ ൌ 	
஽ாேሺ೔,ೖ,ೝሻ
஽ாேሺೖ,ೝሻ

೘ೌೣ ). The presence probability ( ሺܲ௜,௞,௥ሻ) of the function nodes 

in type k at radius r for segment node i is measured by its empirically observed frequency 

of normalised density (ܰܽܧܦ ሺܰ௜,௞,௥ሻ) among all K types of land-uses.  

The computation of accessible diversity can be formally represented as follows. 

ܫܦ ሺܸ௜,௥ሻ ൌ 	
ି	∑ ௉ሺ೔,ೖ,ೝሻൈ୪୬൫௉ሺ೔,ೖ,ೝሻ൯

಼
ೖసభ

୪୬ሺ௄ሻ
,				൛݀݅ݏሺ௜,௝ሻ ൑  …………………………..……… (4)		ൟݎ

௝ܲ௞,௥ ൌ 	
ே௔஽ாேሺ೔,ೖ,ೝሻ

∑ ே௔஽ாேሺ೔,ೖ,ೝሻ
಼
ೖసభ

 ……………………………………………………..……...… (5) 

The cognitive distance index (DIS) measures the mean angular step depth to all 

the reachable urban activities from the original street within a given radius through the 

shortest paths. It reveals the cognitive efforts required to reach all accessible functions 

from the original street segments beyond the same energy expenditure that is measured 

in light of the metric length of the streets. This index can be formally expressed in the 

following equation in which,	݌݁ܦሺ௜,௝,௞ሻ shows the angular step depth from segment node 

i to function node j in type k within the buffer area defined by radius r, and ሺܰ௜,௥ሻ is the 

summation of the accessible functions at the same radius. 

ሺ௜,௥ሻܵܫܦ ൌ 		
∑ ∑ ஽௘௣ሺ೔,ೕ,ೖሻ

಻
ೕసభ

಼
ೖసభ

ேሺ೔,ೝሻ
, ൛݀݅ݏሺ௜,௝ሻ ൏  ……..…………………………………… (6)	ൟݎ

The integrated urban function connectivity index (UFC) is an integrated 

measurement that measures the degree to which the dense and diverse urban activities are 

accessible with less angular step depth within a given radius. Here, three principal 

dimensions reflecting the impacts of opportunity accumulations, function composition 

and cognitive distance, are incorporated into the final UFC index (ܷܥܨሺ௜,௥ሻ), which can 

be calculated formally as follows: 

ሺ௜,௥ሻܥܨܷ ൌ 			
஽ாேሺ೔,ೝሻ

ವ಺ೇሺ೔,ೝሻ

஽ூௌሺ೔,ೝሻ
, ሼ݀݅ݐݏሺ݅. ݆ሻ ൑  …………….………………..………….... (7)	ሽݎ
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3) Street-based urban functional region structure  

Urban streets are connected to different types of functions, in which the UFRs are 

characterised by the function connectivity of different land-use types. In this sense, we 

apply the statistical data mining approach to quantitatively measure the similarity of the 

composition of function connectivity. Specifically, we use a k-means clustering analysis 

to partition the urban street segments and then annotate each cluster according to the 

unique composition of function connectivity. 

The function angular closeness index (FAC) is a particular form of function 

connectivity that focuses on the specified type of land-use, and it measures the angular 

agglomeration of an urban function of a certain type through the shortest reachable urban 

paths within a given radius. The computational logic of this index is based on the idea of 

establishing so-called angular closeness, which is computed as the quotient in which node 

counts are divided by the mean angular step depth in the space syntax model. 

Mathematically, this metric can be identified in a straightforward way as follows.  

ሺ௜,௞,௥ሻܥܣܨ ൌ
஽ாேሺ೔,ೖ,ೝሻ
஽ூௌሺ೔,ೖ,ೝሻ

, ሼ݀݅ݐݏሺ݅, ݆ሻ ൑  ሽ …………………………………..…………… (8)ݎ

In the equation above, ܧܦ ሺܰ௜,௞,௥ሻ refers to the accessible density of function nodes 

in type k from segment node i at the radius r, and ܨܧܦሺ௜,௞,௥ሻ captures the angular delivery 

efficiency of these functions.  

In this study, k-means clustering for several states is employed by using the FACs 

of each street as the vectors’ dimensions due to its efficiency in handling large-sized 

numerical datasets (Bishop 2006). As its name implies, k-means clustering intends to 

group objects into predefined k clusters where every object in the same cluster will have 

the nearest mean. Consequently, the objective of k-means clustering in this study is to 

minimise the total intra-cluster variance, which is measured by the squared errors. As a 

type of iterative descent clustering algorithm, k-means clustering can be summarised as 

follows: 

ሺ௖,௥ሻܬ ൌ 	min஼
∑ ∑ ሺݐݏ݅݀ ௜ܸ, തܸ௟ሻ஼ሺ௜ሻୀ௟
௅
௟ୀଵ , ሼ݀݅ݐݏሺ݅, ݆ሻ ൑  …..……...………………….. (9)	ሽݎ

where ܬሺ௖,௥ሻ is an objective function for a given cluster assignment ܥ at a radius r, 

 ሺ݅ሻ refers to the label of the observations, തܸ௟ is the mean vector for the l th cluster, andܥ

௜ܸ is a multi-dimensional vector illustrating the co-presence of function accessibility of 
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various land-uses  ( ௜ܸ ∈ ሺܥܣܨሺ௜,ଵ,௥ሻ, ,ሺ௜,ଶ,௥ሻܥܣܨ …… ,  ሺ௜,௄,௥ሻሻ). This process will beܥܣܨ

repeated iteratively until the grouping results are stable with a minimised sum of squares. 

In the current study, Dunn’s Index and the Silhouette Index are applied as validation 

measurements to evaluate the most appropriate number of clusters. The radius for 

identifying the functional region is the walking distance of 1,000 m. 

4) Classification of land-use patterns 

Active land-uses in this study are defined as the complementary land-uses that are more 

likely to be linked by urban travels and thereby contribute to emergent movement 

patterns. Unlike mixed-use developments, which seek a balance of all land-uses, the 

active uses in this study are based on function complementarity between non-residential 

land-uses (Hess et al. 2001). Complementary land-uses (active land-uses in this article) 

include retail, catering, hotels, offices, schools, social services, hospitals, recreation, 

culture, parks and transport, according to the main activity types that are distinguished in 

social media. 

0.2.02.02 other analyses 

Because of some offset and deflection between the historical street network datasets, the 

most effective way to calculate the change in one fixed type of centrality at the same scale 

is to use the raster calculation with a spatial tolerance. A 150 m buffer zone is generated 

for each street segment, and then the centrality values assigned to streets are used as the 

sample points to interpolate the centrality surface. The change rate of the centrality 

surface is calculated as the discrepancy between the normalised centrality surfaces at 

different time nodes. 

To validate the influence of the spatio-functional centrality measures on 

predicting the membership of the detected functional regions, a canonical discriminant 

analysis (CDA) is employed. It first reduces the dimensions of the input variables by 

packaging them in N-1 functions, and N here denotes the total number of memberships 

in the sample. CDA evaluates the predictive accuracy based on these discriminating 

functions by comparing the predicted results and the sample. As a method of supervised 

learning, CDA provides opportunities to assess the explanatory power of a set of factors 

with respect to the grouping phenomenon. 
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02.03 Data 

02.03.01 Study area 

This analysis focuses on Central Shanghai in the Shanghai Metropolitan Area (SMA) as 

the setting for our empirical study. Shanghai has been China’s economic centre since 

1949 and is currently one of the country’s largest municipalities, along with Beijing, 

Tianjin, and Chongqing. Because of its geographical location, Shanghai was the first city 

in China to undergo modernisation after the Second Opium War when Shanghai was a 

semi-colonial city. Since the Open Door Policy was implemented in 1979, Shanghai has 

been significantly growing and has been transformed into a mega-city. The central area 

in SMA serves as an important case study for this article because of the complexity of its 

built environment and because it represents other Chinese cities undergoing rapid urban 

growth.  

 

Figure 2. Study areas in the Shanghai Metropolitan Area (SMA): (a) the location of 
Shanghai City in the Chinese city system; (b) the location of the study area in the SMA 
 

02.03.02 Street network – spatial network  

The street network datasets applied in this article are redrawn according to the historical 

maps. To produce accurate segmental maps, the street network data are generated by 

converting the axial maps to the segmental maps. Unlike those produced directly by the 

central road lines, the segmental maps in this study are produced by controlling the 

axiality of segments, which reflects the minimal cognitive cost to people travelling from 

one segment to another. The final datasets are shown in Figure 3. 
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Figure 3. Geocoded historical POIs and associated street networks during the 1880s (a), 
1940s (b), 1980s (c), and 2010s (d). 

02.03.03 Historical POIs – land-use patterns 

Land-use data can be represented and summarised in many ways with various settings, 

which can lead to different observations. POI datasets are the fine-grained land-use 

patterns with identical relations to the spatial network. In this study, the land-use locations 

on the historical maps, and in local atlases and local planning chronicles (Sun et al. 1999; 

Cheng and Wu 2004; Shanghai Institute of Surveying and Mapping 1989), have been 

digitised, labelled, geocoded, and assigned to the street segments where they were 

historically located.  

 Although the significance of various types of land-uses might vary historically, a 

generalised but rigorous classification of urban functions is a prerequisite for conducting 

an objective comparison of different snapshots of historical urbanisation. In this article, 

check-in behaviours (including check-in rate – the proportion of checked in POIs in all 

POIs, the number of check-ins per POI and the amount of checked-in social media users 

per POI) happened in various types of land-uses were analysed to produce a volunteered 

classification of urban amenities. Thus, 256 sub-types of land-uses have been categorised 

into 11 main complementary types by reducing information redundancy. This definition 

has been tested in other Chinese cities and its applicability was verified via statistical 

models on urban performance (Shen and Karimi 2016). To maintain a consistent 

classification of land-use distributions during different periods, all historical POIs have 

been classified into these 11 types of active land-use that are complementary to each other 

(Table 1). 
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The sizes of the POI datasets have become increasingly larger with urban 

development. However, the POI dataset from the 1940s is larger than the dataset of POIs 

in the 1980s due to the map resolution used by its cartographers. There are also some data 

missing from the current POI datasets proposed for use in this study. The detailed data on 

retail and catering activities in Central Shanghai in the 1880s are not available in this 

dataset. Therefore, they have been merged into a new category of land-use named 

commercial establishment (COM). Their densities are estimated using the lengths of the 

frontages of the high streets reported in the local planning chronicles. Social media check-

in features in the POI data are used as the weights for each amenity in the 2010s, whereas 

the variation in the locational popularity of individual land-use locations is assumed to be 

equal during other periods because of the absence of relevant data in the historic land-use 

maps; the agglomeration of land-uses around a certain location is used to estimate that 

location’s significance. 

 

Table 1: Historical POI classification and numbers in Central Shanghai  

Type Abbreviation POIs count Check-in 
Rate 

Check-ins 
per POI 

Check-in 
users per 

POI 
  1880s 1940s 1980s 2010s

Retail RET 841¶ 38,002 12,180 81,312 18.355% 16.936 11.531
Catering CAT  1,284 1,276 72,351 48.407% 43.632 36.593

Hotel HOT 4 333 1,302 27,313 16.918% 24.473 17.297
Office OFF 61 4,621 6,096 54,388 31.447% 22.917 11.361

Education EDU 8 489 2,777 9,139 67.261% 112.755 44.654
Public 
service 

PUB 43 1,855 1,949 10,762 80.002% 16.239 10.237

Hospital HOS 12 748 438 3,518 90.421% 149.723 82.204
Recreation REC 5 147 220 35,080 37.434% 36.751 26.288

Culture CUL 123 236 94 20,068 4.739% 24.695 17.671
Park PAR 7 75 77 4,250 68.894% 83.691 57.549

Transport TRA 63 989 153 6,611 82.665% 190.469 127.654
   1,167 48,779 27,562 324,792
 Weighted by 

check-ins 
N N N Y

¶: Due to the absence of detailed information regarding retail and catering amenities, both types 
of amenities are merged into one group called commercial establishments (COM) and estimated 
according to the length of the high streets reported in the historical literature. 

 

02.04 Identification of urban transformation in Central Shanghai 

Shanghai City is used for the empirical studies in this article not only because it is typical 

of Chinese cities but also because it was one of the first modern cities in China to undergo 
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significant spatial transformation. To clearly define the meanings of the selected 

snapshots of Shanghai’s history of urbanisation, spatial features are used to objectively 

identify the critical steps in the city’s urbanisation. Four metrics of urban form – average 

block size, road network density, total length, and total urban area – are used to capture 

various aspects of urban growth in relation to population growth. It is clear that, in parallel 

with rapid urban growth, Shanghai’s urban form became less pedestrian-friendly, with 

larger blocks and lower road network density (Table 2). This trend, however, is not as 

consistent as expected. Between the 1940s and the 1980s, the speed of population growth 

in Shanghai slowed, as did the growth of the city’s urban area, total street length, and 

block sizes (Figure 4). Its street network density, however, grew slightly during the same 

time interval, which suggests that the densification process of the road network was 

highly significant. This challenges the traditional definition of the stages of urbanisation, 

according to which the modern history of Chinese cities is divided into the early 

modernisation and modernisation periods using the birth of the People’s Republic of 

China in 1949 as the turning point. Based on Shanghai’s historical spatial configuration, 

this study redefines the key stages of the city’s urbanisation process as follows: ‘early 

rapid urban growth’ is the period from the 1880s to the 1940s when the city grew rapidly 

due to the connection of the colonial areas to the historic centres; ‘steady urban growth’ 

is the period from the 1940s to the 1980s when the urban economy was in a recovery 

phase; ‘modern rapid urban growth’ occurred after the implementation of the opening 

policy in 1978. This definition provides a morphological perspective on Shanghai’s urban 

evolution and provides the basis of the following analysis. 

 

Table 2. Descriptive statistics of stages in Central Shanghai’s urbanisation process  

 1880s 1940s 1980s 2010s 

Average block size (km2) 0.007 0.036 0.053 0.078 
Network density (km/km2) 17.003 8.064 8.521 6.736 
Total street length (km) 135.208 648.515 1,713.767 11,591.011 
Total urban area (km2) 7.952 80.425 201.113 1720.759 
Population (thousand people) 302.767 6,204.400 9,487.763¶ 21,415.329¶ 

¶: The population of the study areas during these periods are estimated according to the reported 
population densities and the total population. The total population in the 1980s and the 2010s are 
11,859,700 (1982) and 23,019,148 (2010), respectively. 
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Figure 4. Identification of the critical stages in Shanghai’s urbanisation process in terms 
of the observed spatial and social features (PRC: People Republic of China). 
 
 
 
 
03 EMPIRICAL RESULTS  

03.01 Descriptive statistics of the spatio-functional interaction process 

0.3.01.01 The overall trend of spatial transformation 

The descriptive statistics of the normalised space syntax centrality measures are shown 

in Table 3. The method used to generalise these indices is the approach proposed by 

Hillier and Yang (2012), in which the size effect in the space syntax model is removed at 

the global scale by taking into account the scaling of the city’s size. Average road network 

connectivity increased over the past 130 years, as did the mean and maximised global 

integration values, suggesting that the spatial network of Central Shanghai has become 

more interconnected. In contrast, the changing directions of the average and the maximum 

choice values are opposite. Along with the increase in the extreme value comes the 
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reduction of the average level. This reveals another trend in the urbanisation process: the 

spatial network turned out to be more hierarchical, and, accordingly, the differentiation 

among various levels was more significant than before. It is also noteworthy that the 

growth in average connectivity, the overall integration level and the maximum choice 

value were interrupted during the period of steady urban growth from the 1940s to the 

1980s. The reason for this might be that the self-organisation process dominated temporal 

urban evolution, which led to the internal growth of the spatial network and a decrease in 

its hierarchical heterogeneity with the decelerated spatial expansion. The preliminary 

results indicate that shifts in the spatial centrality structures of cities can provide 

additional information regarding the stages of urbanisation. 

 

Table 3. Shifting statistical performance of spatial centralities across periods 

 1880s 1940s 1980s 2010s 
Mean connectivity 4.077 4.441 3.831 4.752 
Mean normalised Integration (R10000) 0.839 1.213 0.943 1.305 
Maximum normalised Integration (R10000) 1.165 1.786 1.392 1.994 
Mean normalised Choice (R10000) 0.965 0.994 0.892 0.501 
Maximum normalised Choice (R10000) 1.505 1.555 1.497 1.635 

 

0.3.01.02 The overall functional transforming trend 

During the process of rapid urban growth, the gap between urbanised areas and less-

urbanised areas widened; this is supported by evidence of the decline in the mean 

accessible function density and diversity at all scales, as shown in Table 4. The overall 

trend of shrinking diversity at the smaller scales (at 1,000 m) was reversed during the 

process of steady urban growth, when a land-use diversification process occurred. The 

cognitive effort required by the reachable land-uses at the micro and the mesoscales has 

become less since the 1940s. This tendency suggests that, since the 1940s, urban function 

patterns have been more configurationally accessible at scales that are relatively local due 

to the dominance of the superimposed modern grid-like road system. In contrast, the 

global mean angular distance to land-use increased. Unlike the interpretation of the spatial 

centrality process, the performance of land-use systems provides more information 

regarding the processes of densification, diversification and efficiency optimisation, and 
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distinguishes the predefined urbanisation periods in the modernisation of Central 

Shanghai. 

 

Table 4. Shifting statistical performance of urban function connectivity measures across 
periods 
 

 1880s 1940s 1980s 2010s 
Mean normalised DEN (R1000) 3.917¶ 2.351 2.155 0.691 
Maximum normalised DEN (R1000) 8.181¶ 7.407 8.152 9.324 
Mean normalised DIV (R1000) 0.856 0.781 0.799 0.747 
Mean DIS (R1000) 
Max DIS (R1000) 

8.209 
15.602 

5.651 
14.576 

5.739 
20.504 

5.985 
20.797 

     
Mean normalised DEN (R5000) 9.868¶ 7.838 5.641 2.307 
Maximum normalised DEN (R5000) 9.999¶ 10.856 10.513 10.774 
Mean normalised DIV (R5000) 0.999 0.964 0.971 0.937 
Mean DIS (R5000) 
Max DIS (R5000) 

18.289 
38.458 

15.814 
32.355 

14.895 
42.721 

14.471 
42.034 

     
Mean normalised DEN (R10000) 9.990¶ 10.766 8.506 4.027 
Maximum normalised DEN (R10000) 9.999¶ 10.999 10.962 10.948 
Mean normalised DIV (R10000) 0.999 0.997 0.995 0.976 
Mean DIS (R10000) 
Max DIS (R10000) 

18.413 
38.724 

18.671 
36.311 

23.312 
48.694 

21.474 
52.615 

¶: The maximum value, in theory, for urban function connectivity in the 1880s is 10, whereas the 
limit for other periods is 11, as a within-group normalised method is applied and the ceiling of 
the accessible function density is equal to the number of types of active land-uses.  
 

03.02 Urban centrality maps 

03.02.01 Space syntax centrality maps 

The space syntax centrality maps present the detailed distributions of street network 

centralities across scales. The integration distribution at the local scale in the 1880s shows 

a separation between the Chinese inner city and the colonial area (Figure 5-a), which 

reflects the political distance between these two areas. The local centre, which was f-

ormed later, combined these two areas and further shaped the current urban centre at the 

pedestrian level (Figure 5a-d). In regard to the global integration centrality distribution 

(Figure 5e-h), the streets along the river, which formed the central business area in 

Shanghai, are highlighted. This area was well known for its national dominance in the 

import and export trading economy. With the urban spatial expansion, the spatial centre 

at the global scale shifted to the colonial area, which, until the 1980s, was further 

enhanced and expanded towards the west along the main road passing through the east 
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and the west. During the 2010s, the global centrality structure indicated by the integration 

shows growth in the west bank towards the south-west and extends across the river to the 

newly built developing area on the east bank. The choice maps at the local scales 

represent, over time, the correlation between integration and choice in general (Figure 5a-

d), which is due to the significant variation in road network density that is the basic source 

of urban movements. The choice distributions at larger radii, however, extract the main 

road system from the less-central context (Figure 6e-h). The highlighted street systems 

during different periods are highly overlapped, suggesting the dominance of these 

strongly active routes in directing the urban transformation process. These core streets 

that are emphasised by the pass-by flows were relatively organically organised before the 

1980s but have tended to be more artificial since the modern planned road systems were 

emphasized. Therefore, the global choice structures in Central Shanghai capture the 

shifting skeletons of the urbanisation process; while the integration structures illustrate 

the dynamic potential locations and shapes of the centres along those skeletons, as well 

as their related scale-dependency.  

 

 

Figure 5. Angular integration maps at 1,000 m and 10,000 m across periods ((a, c) 1880s; 
(b, f) 1940s; (c, g) 1980s; (d, h) 2010s).  
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Figure 6. Angular choice maps at 1,000 m and 10,000 m across periods ((a, c) 1880s; (b, 
f) 1940s; (c, g) 1980s; (d, h) 2010s).  
 
 

03.02.02 Urban function connectivity and urban function region maps 

Figure 7 maps the integrated urban function connectivity measures at various levels. In 

the 1880s, the local function centre structures were relatively isolated from each other 

along the sides of the river; they were located in the Chinese old town and the colonial 

area, respectively. This local centre, as indicated by local function connectivity, was 

moved to the north-west of the inner city in the 1940s, and the newly emergent local 

functional core has been further consolidated and expanded towards the north and the 

west since the 1980s. In the 2010s, the core of the city’s functional centrality structure 

was anchored in its historical location; simultaneously, the sub-centre structure started to 

emerge. Some sub-centres have attracted the clustering of various land-uses, thereby 

forming a polycentric land-use structure at the pedestrian scale. Compared with the spatial 

centrality structures at the 1,000 m radius during the same period, the functional centrality 

structures are visually different in terms of their position, shape, and inherent 
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polycentricity. At the global scale, the transformation of the functional structures follows 

a similar trend that is observed in the shift of spatial centrality through visual judgement. 

The global functional centre was determined to have been located on the riverside in the 

1880s; it was shifted to the concession areas in the 1940s; it grew towards the west in the 

1980s; and it became a convex functional core in the geometric centre of the central urban 

landscape of today’s Shanghai.  

 

 

Figure 7. Urban function connectivity maps at 1,000 m and 10,000 m across periods ((a, 
c) 1880s; (b, f) 1940s; (c, g) 1980s; (d, h) 2010s).  
 
 

As a useful complement to the urban functional centrality structure, the detected urban 

function regions – based on the statistical performance of the multidimensional function 

connectivity vectors for different types of land-uses – are mapped in Figure 8.  These 

emergent land-use communities differ from others according to their composition of 

access to different land-uses. The increase in the number of function regions from the 

1880s to the 2010s suggests that the land-use structures have become more and more 

complex as urban development has progressed. This complexity is also reflected by the 
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presence of some specific land-use communities that are led by some specific type(s) of 

land-uses. In the 1880s, the daily active streets (C2), including most of the areas in the 

Chinese old town and the small area connecting it with the colonial district, were places 

with better connectivity to cultural amenities, hotels, parks and recreation establishments. 

This makes sense because during that period the Chinese inner city maintained many 

temples and destinations for daily entertainment purposes. The colonial area at this time 

contained the developed business areas (C1), led by modern schools, healthcare and other 

public services. These two land-use communities were in close proximity to the central 

business area (C4) on the riverside. The differentiation between the colonial area and the 

Chinese old inner city provides evidence of the political variation between these two 

places, illustrating that land-use patterns are also products of the political landscape and 

confirming that the statistical characteristics of the structure of these urban functional 

regions have spatial meanings. During the 1940s, the urban functional region structures 

shifted; two developing areas (C4 and C5) emerged and were led by the newly planned 

educational facilities but distinguished by being mixed with other land-uses. Urban 

functional expansion during this period was education-oriented. The central business area 

(C3) in the 1980s was larger than that in the 1940s because the developed business area 

of the 1940s was upgraded and merged with it. Other functional regions at this time were 

distinguished based on the overall degrees of spatial co-presence among the active land-

uses, with the exception of two types of developing areas (C2 and C4) with lower overall 

levels of land-use mixtures, as highlighted by the dominance of their connectivity to 

transport facilities and community parks. Therefore, after the opening policy was 

implemented, growth in urban functions was led by transport services and parks in 

residential communities. In regard to the 2010s, there were seven function regions 

detected in the clustering analysis. Moreover, the discrimination among them was 

fundamentally influenced by the presence of ensemble connectivity to various land-uses. 

However, some patches (C6) emerged in a fragmented manner with the dominance of 

educational services, i.e., the vast campuses of the universities. The location of the central 

business district (C2) was anchored in the same place as 30 years ago. The less urbanised 

areas (C1, C5 and C7) were highlighted by their connectivity to the public urban facilities, 

such as transport, hospitals and educational institutions, which implies that essential 

urban services, as vital public goods, were more important than other urban functions in 

the developing areas. This suggests that requirements for health care and travel 
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convenience have become additional demands of modern society, much like educational 

functions in the pre-modern society of Central Shanghai. These shifting patterns in the 

urban function regions create a detailed picture of the dynamic changes in the boundaries 

and structures of land-use communities; but more importantly, they capture changes in 

the determination of urban function connectivity.  

 

 

Figure 8. Urban function region maps across periods ((a) 1880s; (b) 1940s; (c) 1980s; (d) 
2010s) and the average function angular closeness index for each active land-use in urban 
function regions across periods ((e) 1880s; (f) 1940s; (g) 1980s; (h) 2010s).  
 

03.02.02 Centrality change detection 

The urban growth patterns reflected by changes in global integration structures are shown 

in Figure 9a-c. The street-based results are rasterised because of the existence of the 

spatial bias within historical street network data. During the early rapid urban growth 

process, the spatial advantage of the colonial area increased, whereas that of Shanghai’s 

old town decreased. During the steady urban growth stage in the 1940s, global integration 

centrality moved to the outskirts, where some centres were emerging, including the area 
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around the railway station and the Xujiahui business areas. The cost of the spillover of 

this integration centrality was the decrease of centrality in the colonial area. This 

observation reveals that the gravity core of the newly emerging city centre moved to the 

area where the road network densification process occurred. During the modern rapid 

urban growth process, the city’s central area – indicated by higher integration values – 

became stable, with very few changes in global integration centrality. Nevertheless, this 

urban expansion resulted in the dramatic growth of spatial advantages on the city’s 

periphery in the 1980s. The new Pudong district, for instance, maintained the grouped 

enhancement of the network shallowness, which suggests that it could easily facilitate 

further growth. Another two centres that were planned in the 1980s – the Wujiaochang 

and Tianlin areas – are also captured. In this case, the steady urban growth process 

contributed to the expansion of the city’s central area and the shift of its gravity core and 

consolidated the city centre, which maintained its centrality during the process of modern 

rapid urban growth. These results imply that rapid urban growth might not naturally lead 

to an immediate shift in the centrality structure, but the steady urban growth and spatial 

densification that follow it will lead to such a shift and thus strengthen the city centre’s 

position in the future.  

Normalising global urban function connectivity enables comparisons across cities 

with different sizes of land-uses to represent the shifting flows of land-use centrality 

structures (Figure 9d-f). During early rapid urban growth, urban functional centrality 

moved to the colonial area and the south-west from the Chinese old town. When steady 

urban growth began, the functional centrality in the north (around the railway station and 

the Changshu Road) significantly increased, and the areas around Xujiahui were also 

expanded. Most of the hinterland and the Chinese old town were also functionally 

strengthened. These findings confirm the occurrence of internal growth during this 

period, as indicated in the discussion above. After the opening policy was allocated 

nationally, the Pudong district started to obtain political and planning support, and, 

therefore, it experienced a significant improvement in its global function connectivity. 

The Tianlin districts also demonstrated an agglomeration of new land-uses. The earliest 

colonial area, however, lost its accumulated functional centrality due to the shift of the 

gravity core.  
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Figure 9. Global centrality change. (Global integration change and global urban function 
connectivity change during the early rapid urban growth stage between the 1880s and the 
1940s ((a) and (d)), during the steady urban growth stage between the 1940s and the 1980s 
((b) and (e)), and during the modern rapid urban growth stage between the 1980s and the 
2010s ((c) and (f)). (Red denotes an increase in centrality whereas blue denotes a 
decrease). 
 

03.03 Inter-scale and inter-centrality correlation  

The interplay between the integration and the choice centrality measures at various scales 

across time is further quantitatively scrutinised based on comparing the correlation 

matrices between them, and the related results are illustrated in Figure 10. The most 

obvious trend that appears in all the historic snapshots is the inter-scale correlation for a 

certain type of spatial syntax centrality. The angular integration values at various radii 

are highly correlated; the choice metrics at different levels are also strongly interrelated, 

with the exception that the interdependence between local choice and global choice is 

significantly weaker. The correlation between different centrality measures, however, 

varies according to the different development stages of Shanghai’s urbanisation. The 

synergy between the spatial centrality indices of the spatial network system, indicated by 

the inter-centrality correlation, became significantly weaker from the 1980s onward, 

particularly at the higher spatial levels. This is the consequence of the modern road 
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system’s invasion of the historical spatial grids, which further intensified the division 

between the integration and choice structures. 

 

 

Figure 10. Correlation matrices between any two pairs of urban centralities (integration 
(INT), choice (CHO), density (DEN), diversity (DIV), cognitive distance (DIS) and the 
integrated urban function connectivity (UFC)) across various radii during different 
periods ((a) 1880s; (b) 1940s; (c) 1980s; (d) 2010s). Note: the standard deviation of 
accessible function density and diversity is 0 for Central Shanghai in the 1880s. 
 
 

The results of the correlation matrices among the functional centrality measures 

for the land-use system are reported. A general trend here is that the accessible function 

density and the integrated urban function connectivity were strongly correlated with a 

positive sign at all scales, which illustrates the importance of the basic scale effects in 

measuring the land-use interaction. Furthermore, the function density and diversity 

exhibit a positive relationship across scales. Historically, the significance of this density-
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diversity synergy became more and more significant at different scales, and specifically, 

the local diversity structures have been recognised by the land-use density distributions 

at the larger scales more successfully since the 1940s (compared to earlier) thereby 

generating local-global synergy between density and diversity. The mean angular step 

depth to the nearby functions is positively related to the land-use clustering and mixture 

degrees at the local levels, but this relationship is reversed when a critical radius is 

reached. This implies that the urban activities are clustered locally in the urbanised area, 

requiring more cognitive efforts to interact at the lower scales but less angular step depth 

to interact at the city-wide scales. The critical scale for the conversion of the relationship 

between the average angular cost and the reachable land-use density was different across 

cases during the different historical periods. The critical scale was the radius of 2500 m 

in the 1880s, 5,000 m in the 1940s, 10,000 m in the 1980s and 150,000 m in the 2010s 

(not shown in the figure), respectively. The increase in the critical radius across time is 

the consequence of the increasingly rapid urban expansion that has caused Central 

Shanghai to continuously grow larger and larger.  

03.04 Discriminant analysis: delineating urban function regions 

The first two canonical discriminating functions in all the samples can be classified into 

two types: the optimum and the sub-optimum spatio-functional synergy, represented by 

the different degrees of co-presence between spatial and functional centralities across 

scales. The meanings of each predictor function are explained by recording the significant 

loadings of the centrality measures (Table 5). Function 1 is the optimum spatio-functional 

centrality, mostly defined by the most significant co-presence between centralities across 

scales, which is visually close to the global centrality structure; while function 2 is the 

sub-optimum spatio-functional interaction with a lower degree of centrality co-presence. 

Figure 11 plots the detected urban function regions against the two core functions. 

Notably, the urban regions can be successfully discriminated by the two principal 

functions. With urban development, the range of the two functions becomes wider, which 

indicates that the urban centrality structures have been historically polarised. Although 

the picture clearly shows shifts in the urban function regions’ centroids over time, some 

similarities can be easily identified. The central business streets and the developed 

business streets score high on optimum spatio-functional centrality but low on sub-

optimum spatio-functional interaction. The non-central streets, as expected, are scored 
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negatively in both cases. The streets dominated by a specific type(s) of land-use(s) are 

highlighted with positive scores on function 2 but negative or minuscule positive values 

for function 1. The developing business streets, or the daily active streets, are placed in 

the second quadrant, where both functions are scored positively. The consistency of the 

relative positions of different function regions in the scatter diagrams reveals that the 

complex spatio-functional interaction is the main factor impacting the streets’ typology 

in terms of the land-use patterns. 

 

Table 5. Structure matrix table in Central Shanghai during various periods ((a) 1880s; (b) 
1940s; (c) 1980s; (d) 2010s).  
 

 1880s 1940s 1980s 2010s 

 CF1 CF2 CF1 CF2 CF1 CF2 CF1 CF2 

Space syntax variables         

INT_R500   0.429  0.418 0.232 0.352  

INT_R1000 0.221 0.262 0.606  0.576 0.291 0.483 0.116 

INT_R2500 0.448 0.144 0.763  0.708 0.313 0.541 0.261 

INT_R5000 0.466  0.639 0.302 0.677 0.391 0.516 0.426 

INT_R10000 0.453  0.511 0.390   0.449 0.578 

CHO_R500  0.229  0.173 0.220 0.143  

CHO_R1000 0.184 0.357 0.241  0.236 0.154 0.203  

CHO_R2500 0.272 0.151 0.255  0.275  0.209  

CHO_R5000 0.412 -0.177 0.203  0.246  0.188  

CHO_R10000 0.417 -0.199   0.188  0.150 0.115 

Urban function connectivity variables        

DEN_R500  0.708  0.775  0.685 -0.341 

DEN_R1000  0.788  0.847  0.873 -0.320 

DEN_R2500 0.466 0.463 0.703 0.106 0.757 0.230 0.771  

DEN_R5000  0.377 0.270 0.611 0.517 0.677 0.360 

DEN_R10000  0.087 0.152 0.359 0.526 0.494 0.563 

DIV_R500 0.424 0.265 0.273 0.445 0.377 0.525 0.323 0.560 

DIV_R1000 0.324 0.343 0.200 0.298 0.305 0.395 0.240 0.443 

DIV_R2500 0.110  0.151 0.233 0.268 0.364 0.254 0.407 

DIV_R5000 0.034  0.118 0.213 0.186 0.292 0.280 0.432 

DIV_R10000   0.145   0.184 0.375 

DIS_R500         

DIS_R1000 0.484  -0.193     

DIS_R2500 -0.107 0.591  -0.287  0.133   

DIS_R5000 -0.609 0.387  -0.208  0.214   

DIS_R10000 -0.634 0.365 -0.442 -0.320 -0.104 0.134  0.067 
Note: INT – Integration; CHO – Choice; DEN: – Accessible function density; DIV: Accessible 
function diversity; DIS: Mean angular distance to functions; CF1: The optimum spatio-functional 
centrality; CF2: The sub-optimum spatio-functional centrality. 
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Figure 11. Canonical discriminant functions at urban function region centroids ((a) 
1880s; (b) 1940s; (c) 1980s; (d) 2010s). 

 

To further evaluate the performance of these two detected functions in predicting 

the memberships of the urban function regions, the second step of the discriminant 

analysis is to assess the predictability of the projected variables in terms of segmenting 

the known region structures. The relevant results are reported in Table 6. There are three 

specifications of models utilised for comparison: the first model is organised with only 

the spatial centrality variables, the second one only contains the functional centrality 

factors, and the last one is a mixed model with both families of the structural centralities 

proposed in this article. The accuracy of the models with only the space syntax variables 

during different periods is more than half (except for the model of the 1980s) with an 

overall accuracy of 47.1%. The highest predictability of the spatial centrality variables 

appeared in the 1940s, when early rapid urban growth occurred. Compared with the 

performance of the spatial centrality variables, the urban function connectivity variables 

maintain higher accuracy in all samples. This is consistent with our expectations, as the 
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land-use regions are inevitably impacted by the land-use system in some sense. The 

detected urban function regions here, however, are treated as the independent 

classification of the streets because they are defined based on the combined statistical 

significance of the connectivity for diverse land-uses rather than the urban function 

connectivity indices for all the land-uses that are used to predict the affiliation of function 

regions. More importantly, the extent to which the spatial centrality measure will improve 

the predictive model with only the functional centrality measures is the primary concern 

of the designed discriminant analysis. The irreplaceable role that urban form plays in 

discriminating among urban function regions is verified by the observation of the 

improved model’s predictive accuracy when the spatial centrality measures are taken into 

account in the benchmark models. This also provides evidence that the spatial and 

functional centrality structures not only preserve their similarities but also sustain a 

complementary interrelationship, delineating the urban function communities within the 

urban context. Moreover, it is arguable that other factors might also be strongly 

influential, particularly during the periods after the implementation of the open policy 

when the predictability of the spatio-functional interaction is smaller than that during the 

previous period.  

 

Table 6. Prediction accuracy of urban function regions using space syntax centrality and 
urban function connectivity measures across scales 
 

 Prediction accuracy for regions  Overall 
accuracy 

1880s         
Membership 1 2 3 4     
SSX variables   57.6% 63.1% 56.3% 39.9%    57.4% 
UFC variables  71.8% 86.4% 76.1% 84.5%    79.4% 
SSX and UFC variables 78.2% 90.6% 81.9% 89.1%    86.7% 
1940s         
Membership 1 2 3 4 5    
SSX variables   50.6% 75.0% 64.4% 76.2% 67.6%   69.3% 
UFC variables  68.3% 83.2% 84.4% 83.9% 63.6%   75.7% 
SSX and UFC variables 74.4% 85.2% 86.1% 80.7% 71.7%   80.6% 
1980s         
Membership 1 2 3 4 5 6   
SSX variables   54.3% 33.0% 76.9% 38.3% 27.1% 56.0%  47.1% 
UFC variables  62.6% 61.3% 74.6% 61.1% 53.1% 51.5%  55.9% 
SSX and UFC variables 70.0% 58.5% 74.7% 65.7% 55.5% 55.9%  61.1% 
2010s         
Membership 1 2 3 4 5 6 7  
SSX variables   40.9% 80.1% 38.3% 75.4% 28.2% 80.1% 37.6% 59.6% 
UFC variables  50.1% 74.3% 62.4% 78.6% 55.3% 74.3% 59.2% 67.5% 
SSX and UFC variables 51.6% 74.3% 63.9% 79.5% 56.5% 74.3% 58.2% 72.9% 
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05 SUMMARY AND DISCUSSION 

This study sheds light on the evolutionary nature of the interaction between urban forms 

and functions from a syntactic perspective using a series of quantitative measurements of 

urban centrality structures with historical street network and POIs datasets. By 

introducing centrality indices for spatial and functional morphologies, namely the space 

syntax centrality indices and the urban function connectivity metrics, generated by the 

spatial network and land-use patterns in tandem, this article detects and compares the 

spatial and functional centrality processes and their interactions at different stages of the 

urbanisation process. This is one approach to integrating historical spatio-functional 

information and extracting comprehensive knowledge regarding the urban evolution 

process. Based on a case study of Central Shanghai, this article summarises a general 

picture of spatio-functional interaction in the urbanisation process, confirms the novelty 

of taking into account the function centrality structures in configurational studies and 

verifies the effectiveness of the detailed measurements. The quantitative framework and 

associated findings presented here can be used as references to more comprehensively 

and explicitly describe the dynamics of changing urban centre systems, thus enriching 

our understanding of urban morphological evolution and supporting appropriate planning 

and design applications. Supported by the centrality structures produced by the methods 

introduced, urban designers and planners can access the cooperation between the 

proposed spatial layouts and the land-use allocation within the spatial and functional 

contexts. Moreover, unfolding the effects of the land-use change on the shift of 

configurational centrality structure without the change of built form may be particularly 

helpful for the preservation of the historic districts where the built environment is strictly 

managed. It yields that this ‘soft’ intervention can be adopted to sustain the functionality 

of historic areas through empowering the connectivity of local land-use patterns with 

sufficient respect to the historic built forms. 

This empirical study of Central Shanghai’s urbanisation history implies that the 

urban evolution process can be jointly characterised by the spatial and functional 

centralities of the urban context. There are several aspects of its potential contribution. 

First, it suggests that urban form interacts with urban function by shaping the interrelated 

spatial and function centralities. They are not static but rather dynamic, as parts of a 

complex process. The defined urbanised stages in history can be successfully 

characterised by the ways in which the spatial and function elements are interrelated. 
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Furthermore, the proposed functional centrality structures capture various principal 

aspects of the configurational agglomeration of active land-uses through the street 

network, such as the densification, diversification and distanciation processes, which are 

different from those informed by the spatial centre's patterns captured by the space syntax 

centrality, particularly at the local scales. The current study provides theoretical 

propositions and methods for modelling the syntactic properties of a land-use system and 

spatial network in a morphological analysis, and in space syntax studies in particular. 

Moreover, this research demonstrates that urban spatial centralities influence functional 

centralities in a complex and comprehensive fashion, which has been captured by the 

integrated urban function connectivity measure that summarises the interplay among 

individual functional centrality measures. Additionally, it reveals that rapid spatial 

expansion does not naturally lead to a change in the structure of urban centres, but 

functional expansions with spatial consolidation result in the reorganisation of the 

hierarchy of centres. The results of the discriminant analysis (of predicting the 

membership of the detected urban function regions) quantitatively verified the 

complementarity between urban form and functions.  

 

 

Figure 12. A generalised model for the distinction of the street-based land-use 
community structures based on the integration between the optimum and the sub-
optimum spatio-functional synergy functions. 
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This research also illustrates a general rule that governs how urban streets can be 

classified by the synergy effects simultaneously exerted by the spatial network and land-

use patterns (Figure 12). In such a model, the co-presence of spatial and functional 

centralities across scales is first packaged as two types of spatio-functional synergies: the 

optimum and the sub-optimum spatio-functional synergies. The four quadrants in the 

rectangular coordinate plane defined by these two categories of spatio-functional synergy 

indicate four classes of urban function regions in streets: the non-central urban streets are 

located in the third quadrant; the specific urban streets, highlighted by the dominance of 

connectivity to certain type(s) of land-use(s), are defined in the second quadrant; the 

developing urban streets, including the daily active streets and the developing business 

streets, are captured in quadrant I; and the developed urban centres are in quadrant IV. 

Notably, the locations of function regions in this plane are not only divided by the 

quadrants in general but also controlled by a curve from quadrant III to quadrant IV, 

crossing quadrants II and I in a sequence. This curve also represents a process by which 

urban function regions transform from one type into another due to shifts in the 

performance of the spatio-functional synergy functions. At different urbanisation stages, 

the subdivision of these quadrants can vary. During the steady urban growth process, the 

four quadrants of the plane are relatively balanced, as the deviations arising in both are 

relatively small. During the rapid urban growth process, however, the polarisation of the 

spatio-functional synergies will be intensified, which will lead to the compression of the 

quadrants – an indicator of the gap between the urbanised and non-urbanised areas. The 

robustness of the emergence of relevant phenomena in the empirical study of Central 

Shanghai is evidence of the representativeness of the proposed ideal model for 

segmenting streets based on the complex spatio-functional interaction.  

This study provides important insights into the syntactic analysis of the dynamic 

interaction between urban form and land-use patterns using the historical street network 

and POIs. The proposed approaches and their results provide references for future studies 

analysing the urban evolution process. Several areas of this research could be further 

developed in subsequent efforts. First, the proper weights for the historical POIs could be 

added into a current framework to infer the popularity of individual function locations for 

function connectivity computation. In this study, only the POIs in the 2010s are weighted 

by the assigned social media check-in data; other historical POIs are weighted equally 

due to the absence of data on their significance. Backed by multiple data sources, the 
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explicitness of the delivered functional centrality measures could be enhanced. Second, 

more empirical experiments could be conducted in the future to validate the generality of 

our findings and the applicability of our methods across cases. Third, the analysis of the 

urban evolution process in this work is spatiotemporal with a long time interval. 

Identifying the evolution of urban functional centrality structures along a fine-grained 

temporal dimension with emerging geographical location information will be valuable in 

advancing current knowledge of urban spatial and functional evolution.  
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