Analysis of first order systems on

manifolds without boundary:
A spectral theoretic approach

Yan-Long Fang

Supervisor: Prof Dmitri Vassiliev

Department of Mathematics

University College London

This dissertation is submitted for the degree of
Doctor of Philosophy

June 2017



To my family — my Mom and Dad, my sisters, my wife Wen, and my son An. Without

you I would go insane. This is for you...



Declaration

I, Yan-Long Fang, hereby declare that except where specific reference is made to the
work of others, the contents presented in this dissertation are original.

I also claim that my dissertation is not the same as any that I have submitted for a
degree or diploma or other qualification at any other University. I further claim that
no part of my dissertation has been submitted for any such degree, diploma or other
qualification.

Yan-Long Fang
June 2017



Acknowledgements

I would like to express my sincere gratitude to my advisor, Dmitri Vassiliev, for his
help and advice throughout my doctoral research. He introduced me to a wide range
of mathematical research areas and had many stimulating conversations with me.

I would also like to thank Zhirayr Avetisyan, Michael Levitin and Nikolai Saveliev
for the many discussions on subjects related to my research.

I have to mention another wonderful mathematician, Yuri Safarov, who has sadly
passed away. He taught me the basic ideas of microlocal analysis, and I have benefited
from this ever since.

Throughout my doctoral studies, I have been generously funded by UCL and the
Department of Mathematics. Without their support, my work would be impossible.

Finally, I would like to thank my family for their constant encouragement and

understanding of my true love — mathematics.



Abstract

In this thesis we study first order systems of partial differential equations on manifolds
without boundary. The thesis is, in part, based upon my publications [22, 23, 5, 21].

The importance of analysing first order systems can be seen directly from the
special case, namely, the study of Dirac-type operators.

In the first part, I assume my manifolds to be 4-dimensional and consider the
simplest non-trivial first order linear differential operators on such manifolds. I give a
systematic way of extracting the geometric content encoded within these operators.
More importantly, a new concept called covariant subprincipal symbol is defined and
further employed in the spectral analysis developed in the next chapter.

In the second part, by applying the hyperbolic equation method and using Fourier
Tauberian theorems, I establish the relationship between the Weyl coefficients of an
elliptic self-adjoint first order differential operator and the residues of the corresponding
eta function, which can be easily generalised to the pseudo-differential case. The special
case of this relationship is examined explicitly and it is combined with the analysis of
the first part.

The third part of the thesis involves a detailed analysis of the massless Dirac
operator, whereas the massive case is also investigated with the help of the abstract
adjugation operation on operators.

In contrast to the asymptotics of large eigenvalues, there has not been a systematic
and robust way of analysing the asymptotics of small eigenvalues. The last part
of the thesis gives a rigorous perturbation analysis of the massless Dirac operator
on a topological 3-sphere, which complements the results obtained in the second
part. In particular, explicit asymptotic formulae for small eigenvalues are derived for
general perturbations of the standard metric. These asymptotic formulae are tested on

generalised Berger spheres for which we have explicit expressions for eigenvalues.
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Chapter 1
Introduction

In this chapter I will introduce some basic definitions and basic notation that will be

used throughout this thesis.

First order linear systems

Let the dimension of the manifold is n and we will only deal with the case n > 2.
In this section we consider a first order self-adjoint m x m linear pseudo-differential
operator L which acts on a column of m (complex valued) half-densities on a closed

connected manifold.

Definition 1.0.1. Let (®,U, z) and (¥, V,y) be two coordinate charts on M, then on
the overlapping set U NV C M, the two representations of a half-density v are related
by the following formula:

va(z) = |det gi %(y@)). (1.1)

There are many advantages in working with half-densities, one is that we can define
an inner product on half-densities without any additional geometric assumptions. This
will allow us to introduce the notion of formal self-adjointness without the need for
a prescribed density. Furthermore, one can always transform a problem on columns
of scalar functions to an equivalent spectral problem on columns of half-densities. So
we will now focus on operators on half-densities and denote the inner product on
half-densities by

(v, w) = /M w*vdx, (1.2)



where v and w are m-columns of half-densities on M and the superscript * denotes
Hermitian conjugation in C™. For a given linear pseudodifferential operator L on

half-densities with C'* coefficients, its full symbol can be easily adapted from [29]

9~ Lilf.). (13)

where f € C°(M), g € C*(M), supp(f) C supp(dg) and the L;(f, g) are given by

o0

e L (f ei’\g> Z (f,g)\¥ as A — 400, (1.4)

where {s;} is a strictly decreasing sequence tending to minus infinity. The formal sum
on the LHS of asymptotic expansion (1.3) is known as the full symbol of L and Ly is
called the principal symbol. Note that the expression (1.4) is coordinate independent
and f plays the role of a coordinate cut-off function when we introduce a partition of
unity on M. Once a partition is chosen, we can think of L as acting on a bounded open
subset of R™ and assume that f =1 in a small neighbourhood of a given point of our
manifold. Furthermore, we can choose g(z) = z - p = 2°p,, (note that this definition is
coordinate dependent), where the Einstein summation convention is used and will be
used throughout this thesis unless there is an ambiguity about the summation. Thus,

expressions (1.3) and (1.4) become

z,p) ~ Y Lj(z,p), (1.5)
=0
and -
e TP, (eiAI'p) > Li(x,p)A% as A — +00. (1.6)
7=0
Here we used (z,p) := (x',...,2" p1,...,p,) to emphasize the dependence of the

symbol on T*M\{0} rather than f and ¢ as in expressions (1.3) and (1.4). Note
that when the sequence {s;} is integer-valued, the operator is said to be a classical
pseudo-differential operator. For the case of a first order differential operator acting on

a column of m half-densities, we can write it in local coordinates as

L = L§(2)0pe + Ly (), (1.7)
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L,. Now, its symbol is given by

where 0,o := and a =1,...,n. Bach L§ is a m x m matrix function and so is the

L(z,p) = iLg(x)pa + La(z), (1.8)
with the principal and subprincipal symbols given by

Lpvin(z,p) :=iLg(2)pa (1.9)

and .
Lous(2) = Li(2) + 5 (Lprin) oy, (1), (1.10)

Here the subscripts ;o and ,« denote the partial derivatives with respect to ® and
p*. Let us explain why the formula for the subprincipal symbol has the particular

structure (1.10). Firstly, using formulae (1.8) and (1.9) we rewrite (1.10) as

Lus() = La(x) — 5 (E§)en(x). (1.11)

Secondly, given a differential operator L, we define its formal adjoint L* by means of
the formal identity
(Lv,w) = (v, L*w). (1.12)

Working with the full symbol is inconvenient because the full symbol of a formally
self-adjoint operator is not necessarily Hermitian and because it is not invariant under
changes of local coordinates. The standard way of addressing these issues is by dealing
with Lpin and Lg,, which are invariantly defined matrix-functions on 7*M and M
respectively, see subsection 2.1.3 in [45] for details.

Here and further on in this paragraph we drop, for the sake of brevity, the dependence
on z. The advantage of representing the subprincipal symbol in the form (1.11) is that
the RHS is written explicitly in terms of the matrix-valued coefficients L§ and L, of
the differential operator (1.7). Let us now substitute (1.7) into the LHS of (1.12), use
the formula for our inner product (1.2) and perform integration by parts. We arrive at

the expression for the adjoint operator in local coordinates

~, 0
L*:La

L 1.13
Oaxa + L, ( )

where
Ly =—(Lg)",  Li=Li—[(L§) ]ae . (1.14)



We then calculate the subprincipal symbol of L* using formula (1.11) and replacing

matrix-valued coefficients accordingly, compare formulae (1.7) and (1.13). We get

~ 1 ~
(L*)sup = L1 — §(L3)xa . (1.15)
Substitution of (1.14) into (1.15) gives us
* * 1 ) *
(LYo = L = (55 e (1.16)

Comparing formulae (1.11) and (1.16) we conclude that
(L*)sub - (Lsub)*- (117)

Thus, the whole point of introducing the correction term in (1.10) (last term in the
RHS) is to ensure that we get the identity (1.17). It is also easy to see that our
subprincipal symbol is invariant under changes of local coordinates. Had we defined
the subprincipal symbol as Lg,, := L1 we would not have the identity (1.17) and we
would not have invariance under changes of local coordinates.

The definition of the subprincipal symbol (1.10) originates from the classical paper
[20] of J.J. Duistermaat and L. Hérmander: see formula (5.2.8) in this paper. Unlike
[20], we work with matrix-valued symbols, but this does not affect the formal definition
of the subprincipal symbol. In the above text we explained in great detail the concept
of subprincipal symbol because it is not widely known outside the analysis community.

For the principal symbol things are much easier and, obviously, we have an analogue
of formula (1.17):

(L*)prin - (Lprin)*- (118)

Also, it is easy to see that the principal symbol is invariant under changes of local
coordinates. Examination of formulae (1.7)—(1.10) shows that Ly, and Lg,, uniquely
determine the first order differential operator L. Thus, the notions of principal symbol
and subprincipal symbol provide an invariant way of describing a first order differential
operator.

For the sake of clarity, we write down the differential operator L explicitly, in local

coordinates, in terms of its principal and subprincipal symbols:

L= (i ] + oy (O] + Lana): (119



Remark 1.0.1. In writing formula (1.19) we used the convention that both operators
of partial differentiation a% act on all terms which come (as a product) to the right,
including the m-column of complex-valued half-densities v which is present in (1.19)
implicitly. Thus, a more explicit way of writing formula (1.19) is

i(Lprin)p. OV i O((Lprin)pav)

Lv=———""">" L L.
v 2 ore 2 oz + Lsub ¥

Formulae (1.17) and (1.18) tell us that a first order differential operator is formally
self-adjoint if and only if its principal and subprincipal symbols are Hermitian matrix-
functions.

Now, we would like to define two classes of operators via their principal symbols.

Definition 1.0.2. We say that a formally self-adjoint first order differential operator L
is elliptic if
det Lyin(x,p) # 0, Y(xz,p) € T*M \ {0}, (1.20)

and non-degenerate if
Lprin(l’,p) 7& 07 v(xap) S M \ {0} (121)

The ellipticity condition (1.20) is a standard condition in the spectral theory of
differential operators, see, for example, [14]. Our non-degeneracy condition (1.21) is
less restrictive: the class of linear differential operators satisfying this condition includes

hyperbolic operators.

Remark 1.0.2. Ellipticity and the fact that dimension n is greater than or equal to
two imply that m is even. Indeed, let us fix an arbitrary point x € M and consider
Lyin(, p) as a function of momentum p € T M. Since L is formally self-adjoint, the
matrix-function Ly, (2, p) is Hermitian, and, hence, det Ly, (x, p) is real. For n > 2
the set TM \ {0} is connected, so the ellipticity condition (1.20) implies that the
polynomial det Ly, (x, p) preserves sign on 7 M \ {0}. But our m x m matrix-function
Lyin(, p) is linear in p, so det Lyin(z, —p) = (—1)™ det Lyyin (2, p), therefore the sign
of det Lyyin(z, p) can only be preserved if m is even. Of course, the case n = 1 is special
as in this case m, the number of half-densities in our system, can be odd. For instance,

a one dimensional Dirac operator on S' is well defined.

In order to highlight the difference between the ellipticity condition (1.20) and the

non-degeneracy condition (1.21) we consider two special cases.



Special case 1: n =3, m = 2 and tr Ly, (2, p) = 0. In this case conditions (1.20)

and (1.21) are equivalent.

Special case 2: n = 4 and m = 2. In the proof of Lemma 2.2.1 we will show
that for each x € M there exists a p € TM \ {0} such that det Lyin(x,p) = 0, so
it is impossible to satisfy the ellipticity condition (1.20). However, it is possible to
satisfy the non-degeneracy condition (1.21). In fact, we will derive in Lemma 2.1.1
the necessary and sufficient conditions for a manifold M to admit a non-degenerate
operator L.

There is a crucial mathematical operation on scalar matrix-functions on 7% M, which
can be generalized further, namely, the Poisson bracket. We will use curly brackets
to denote the Poisson bracket on scalar matrix-functions, { P, R} := Py R, — P, Ryo.

Then it can be further generalised to the following:
{F.G,H} = F,.GH,, K — F, GH,a, (1.22)

where the subscripts 2 and p,, indicate partial derivatives and the repeated index «

indicates summation over a = 1,...,n.



Chapter 2

Analysis as a source of geometry

2.1 Introduction

In this chapter we will work on a manifold of dimension four. In the next chapter we
will examine what happens when the dimension is reduced to three. Recall also that
throughout the thesis we assume that our manifold does not have a boundary.

We start with the analysis of simplest non-trivial systems, namely, systems in which
the number of components of half-densities, m, is equal to two. In other words, in this
chapter we will be looking at 2 x 2 formally self-adjoint first order linear differential
operators.

We will see that our analytic conditions, the non-degeneracy condition (1.21) and
the standard ellipticity condition (1.20), have far reaching geometric consequences.
Furthermore, we will give a definition of metrics associated with a PDE. More impor-
tantly, the new concept of covariant subprincipal symbol will be introduced, which
extends the usual concept of subprincipal symbol by making it covariant under a wider
group of transformations.

The motivation for analysing such a class of PDEs is twofold. The first motivating
factor is that this is an attempt at developing a relativistic field theory based on the
concepts from the analysis of partial differential equations as opposed to geometric
concepts. The long-term goal of the work presenting in this chapter is to recast quantum
electrodynamics in curved spacetime in such “non-geometric” terms. The potential
advantage of formulating a field theory in “analytic” terms is that there might be a
chance of describing the interaction of different physical fields in a more consistent,
and, hopefully, non-perturbative manner. The second motivating factor comes from

spectral analysis: this issue will be explored in the next chapter.
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Now, let M be a 4-manifold without boundary. It can be shown that not every
4-manifold admits a non-degenerate operator. Indeed, the following lemma establishes

the appropriate criterion.

Lemma 2.1.1. The manifold M admits a non-degenerate self-adjoint operator L if

and only if it is parallelizable.

Proof. Decomposing Lyin(x, p) with respect to the standard basis

) D) b)) e
10 1 0 0 —1 01

in the real vector space of 2 x 2 Hermitian matrices, we get

Lprin(xup) = Sjeja(x) Pa (22)

where the e;, j = 1,2, 3,4, are some real-valued vector fields. Here each vector e;(x)
has coordinate components e;*(x), a = 1,2, 3,4. Now, let 7 be the standard Minkowski
metric with signature (+, +, 4+, —), then we can define another basis for the real vector

space of 2 x 2 Hermitian matrices by
Sj = njksk . (23)

Hence, one can define the following:

1 (04
E; = itr(stprin(x,p)) = €,;%(7) pa - (2.4)

In such a way we obtain a linear map, with matrix coefficients e;*(x), from the vector
space {p = (p1, D2, P3,P4) : pj € R} to the vector space {E = (Ey, Es, E5, Ey) : E; € R}.
Of course, the real vector space FE is isomorphic to the real vector space of 2 x 2
Hermitian matrices, with the latter being expressed through the basis from formula
(2.1). Therefore (1.21) implies that the linear map e;* has only trivial kernel and,
hence, is bijective. In other words, formulae (2.2) and (2.4) allow us to rewrite the

non-degeneracy condition (1.21) as
dete;*(z) #0, Va € M. (2.5)

But condition (2.5) is the condition of linear independence of the vector fields e;. [
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Let L be a first order linear differential operator acting on 2-columns of complex-
valued half-densities over M. The standard invariant analytic way of describing this
operator is by means of its principal symbol L, (2, p) and subprincipal symbol Lg,, (),
see previous chapter.

Further on we assume that our differential operator L is formally self-adjoint and
satisfies the non-degeneracy condition (1.21).

We now take an arbitrary smooth matrix-function
Q: M — GL(2,C) (2.6)
and consider the transformation of our differential operator
L— Q"LQ. (2.7)

The motivation for looking at such transformations is as follows. Let us write down
the action (variational functional) associated with our operator, [, v*(Lv)dz, and let

us perform an invertible linear transformation
v Qu

in the vector space V := {v: M — C?} of 2-columns of complex-valued half-densities.

Then the action transforms as
/ v (Lv)dz — / v (QFLQu) dz .
M M

We see that the transformation (2.7) of our differential operator describes the transfor-
mation of the integrand in the formula for the action. We choose to interpret (2.7) as
a gauge transformation.

The transformation (2.7) of the differential operator L induces the following trans-

formations of its principal and subprincipal symbols:
Lprin = Q*LprinQ7 (28)

Lsub — Q*LsubQ + ; (Q;D‘ (Lprin)paQ - Q* (Lprin)pano‘) ) (29)

where the subscripts indicate partial derivatives. Here we made use of formula (9.3)
from [14].
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Comparing formulae (2.8) and (2.9) we see that, unlike the principal symbol, the
subprincipal symbol does not transform in a covariant fashion due to the appearance of
terms with the gradient of the matrix-function Q(z). In order to identify the sources
of this non-covariance we observe that any matrix-function (2.6) can be written as
a product of three terms: a complex matrix-function of determinant one, a positive
scalar function and a complex scalar function of modulus one. Hence, we examine the
three gauge-theoretic actions separately.

Take an arbitrary scalar function
v:M—R (2.10)
and consider the transformation of our differential operator
L+ e¥Le’. (2.11)

The transformation (2.11) is a special case of the transformation (2.7) with Q = e¥I,

where [ is the 2 x 2 identity matrix. Substituting this @ into formula (2.9), we get
Lsub — €% Lyup, (2.12)

so the subprincipal symbol transforms in a covariant fashion.

Now take an arbitrary scalar function
o: M —R (2.13)
and consider the transformation of our differential operator
L e L. (2.14)

The transformation (2.14) is a special case of the transformation (2.7) with Q = 1.
Substituting this @) into formula (2.9), we get

L () = L () + Lprin (2, (grad ¢)(z)), (2.15)

so the subprincipal symbol does not transform in a covariant fashion. We do not take

any action with regards to the non-covariance of (2.15).
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Finally, take an arbitrary matrix-function
R: M — SL(2,C) (2.16)
and consider the transformation of our differential operator
L— R'LR. (2.17)

Of course, the transformation (2.17) is a special case of the transformation (2.7): we
are looking at the case when det Q(x) = 1. It turns out that it is possible to overcome
the resulting non-covariance in (2.9) by introducing the covariant subprincipal symbol

Lesun () in accordance with formula

Lcsub = Lsub - f(Lprin>> (218)

where f is a function (more precisely, a nonlinear differential operator) mapping a
2 x 2 non-degenerate Hermitian principal symbol Ly, (z,p) to a 2 x 2 Hermitian
matrix-function (f(Lprin))(z). The function f is chosen from the condition so that the

transformation (2.17) of the differential operator induces the transformation
Lesub — R Legun R (2.19)

of its covariant subprincipal symbol and the condition

F(€*Y Linin) = €** f (Lprin), (2.20)

where 1 is an arbitrary scalar function (2.10).

The existence of a function f satisfying conditions (2.19) and (2.20) is a nontrivial
fact, a feature specific to a system of two equations in dimension four. The explicit
formula for the function f is formula (2.47).

Let us summarise the results of our gauge-theoretic analysis.

o Our first order differential operator L is completely determined by its principal

symbol L (2, p) and covariant subprincipal symbol Legyp, ().

o The transformation (2.7) of the differential operator induces the transformation

2.8 of its principal symbol.
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 Transformations (2.11), (2.14) and (2.17) of the differential operator induce
transformations
Lcsub — 62¢Lcsub7 (221)

Lesun () = Lesub(2) + Liin(z, (grad ¢)(x)) (2.22)

and (2.19) of its covariant subprincipal symbol.

We use the notation
L= Op(Lprina Lcsub) (223)

to express the fact that our operator is completely determined by its principal symbol
and covariant subprincipal symbol. The differential operator L can be written down
explicitly, in local coordinates, via the principal symbol Ly, and covariant subprincipal

symbol L¢g,p in accordance with the following formula

L= =4 ([ 0 + B 0]

2

- T6 (gab’{Lprina adJ Lprim Lprin}pap,g) (-,B) + Lcsub(x)'

See the paragraph above formula (2.64) for details. Indeed, formula (2.23) is shorthand
the above expression. We call (2.23) the covariant representation of the differential
operator L.

Recall now a definition from elementary linear algebra. The adjugate of a 2 x 2

p= (a 2) - (_d _b> —: adj P. (2.24)

Using the covariant representation (2.23) and matrix adjugation (2.24) we can

matrix is defined as

define the adjugate of the differential operator L as
Adj L := Op(adj Lpyin, adj Lesup) - (2.25)

Remark 2.1.1. Note that in the case when the principal symbol does not depend on the
position variable x (this corresponds to Minkowski spacetime, which is the case most
important for applications) the definition of the adjugate differential operator simplifies.
In this case the subprincipal symbol coincides with the covariant subprincipal symbol

and one can treat the differential operator L as if it were a matrix: formula (2.25)
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becomes

L L Ly —L
L=|"" "2l ™ ) = Adj L. (2.26)
L21 L22 _L21 Lll

Observe now that out of the 2 x 2 operator L we can further construct a 4 x 4
operator, denoted by D. In fact, we shall call the operator D the massive Dirac
operator as this is the usual massive Dirac operator defined in an analytic (as opposed
to the geometric) way. A detailed exposition will be provided in Chapter 4. To be

more precise, we can define the operator D as the following differential operator

p— |t m! (2.27)
mel AdjL

acting on 4-columns v of complex-valued half-densities. Here [ is the 2 x 2 identity
matrix and the constant m, is the electron mass. We claim that the system of four
scalar equations

Dv=20 (2.28)

is equivalent to the massive Dirac equation in its traditional geometric formulation.
Before proving the above claim in Chapter 4, let us first see that what kind of
geometric information we can extract from formula (2.27). Indeed, one can easily see

that the examination of formula (2.27) raises the following questions.
o Where is the Lorentzian metric?
« Why do not we encounter topological obstructions?
o Where are the Pauli matrices?
o Where are the spinors?
e Where are the connection coefficients for spinor fields?
o Where is the electromagnetic covector potential?
e Where is Lorentz invariance?

These questions will be answered in Sections 2.2-2.8. In Section 4.6 we will collect
together all the formulae from Sections 2.2-2.8 and show, by direct substitution, that
our equation (2.28) is indeed the massive Dirac equation (4.39). This fact will be

presented in the form of Theorem 4.6.1, one of the main results in Chapter 4.
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2.2 Lorentzian metric

Observe that the determinant of the principal symbol is a quadratic form in the dual

variable (momentum) p:

det Lpin(2,p) = —g*°(x) paps - (2.29)

We interpret the real coefficients g/ (x) = ¢°*(x), a, B = 1,2, 3, 4, appearing in formula

(2.29) as components of a (contravariant) metric tensor.

Lemma 2.2.1. Our metric is Lorentzian, i.e. it has three positive eigenvalues and one

negative eigenvalue.

Proof. Decomposing Lyin(x, p) with respect to the standard basis (2.1) as in equation
(2.2):

The quartet of real-valued vector fields e;, j = 1,2, 3,4, is called the frame. Note that
Lemma 2.1.1 ensures that the vector fields e; are linearly independent at every point
of our manifold M.

Substituting (2.1) into (2.2), we get

€4apa + e3apa elapa - ieZOlpa) (2 30)

Lpsin(2,p) = 87¢;%(%) pa = ( o - a a o
€1 Pa +262 Pa €4 Pa — €3 Pa

Calculating the determinant of (2.30) and substituting the result into the LHS of

(229)7 we get gaﬁ papﬁ = <€1apa)2 + <€2apa)2 + <€3apa)2 - (€4apa)2
]

The proof of Lemma 2.2.1 warrants the following remark. We will not encounter
topological obstructions when we construct the Dirac operator via our analytic approach
(see Chapter 4), as condition (1.21) implies that our manifold is parallelizable.

It is also easy to see that our frame defined in accordance with formula (2.30) is

orthonormal with respect to the metric (2.29):

0 if j#k,
Jaseier’ =1 if j=k#4, (2.31)
—1 if j=k=4



2.3 Geometric meaning of our transformations | 15

2.3 Geometric meaning of our transformations

In Section 2.1 we defined four transformations of a formally self-adjoint 2 x 2 first

order linear differential operator:

conjugation (2.11) by a positive scalar function,

conjugation (2.14) by a complex scalar function of modulus one,

conjugation (2.17) by an SL(2, C)-valued matrix-function and
« adjugation (2.25).

In this section we establish the geometric meaning of the transformations (2.11), (2.17)
and (2.25). We do this by looking at the resulting transformations of the principal
symbol.

We choose to examine the three transformations listed above in reverse order: first
(2.25), then (2.17) and, finally, (2.11).

We know that Ly, can be written in terms of the standard basis (2.1) and frame
e; as (2.30)). Similarly, adj Lpin can be written as

é4apa + é3apa élapa - iéQOépa (2 32)
élapa + Z.éQ()‘pa é4apa - é?)apa 7

adj Lyin(z, p) = sjéja(x)pa = (

where é; is another frame. Examination of formulae (2.24), (2.30) and (2.32) shows

that the two frames, e; and ¢é;, differ by spatial inversion:
ej — —ej, j=12.3, €4 > ey. (2.33)

The transformation (2.17) of the differential operator induces the following trans-

formation of its principal symbol:
Lprin = R*LprinR- (234)

If we recast the transformation (2.34) in terms of the frame e; (see formula (2.30)), we

will see that we are looking at a linear transformation of the frame,

€; Ajkek, (235)
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with some real-valued coefficients A;*(z). The transformation of the principal symbol
(2.34) preserves the Lorentzian metric (2.29), so the linear transformation of the frame
(2.35) is a Lorentz transformation.

Of course, the transformation (2.33) is also a Lorentz transformation and it can
be written in the form (2.35) with (A;*) = Diagonal(—1,—1,—1,+1). The difference
between the two Lorentz transformations is that in the case of adjugation (2.25) we
get det A;¥ = —1, whereas in the case of conjugation (2.17) by an SL(2, C)-valued
matrix-function we get det A;F = +1.

Finally, let us establish the geometric meaning of conjugation (2.11) by a positive
scalar function. The transformation (2.11) of the differential operator induces the

following transformation of its principal symbol:
Lprin — ezwLprin- (236)

Comparing formulae (2.29) and (2.36) we see that we are looking at a conformal scaling
of the metric,
g°? s Mgl (2.37)

Remark 2.3.1. We did not examine in this section the geometric meaning of the
transformation (2.14). We did not do it because this transformation does not affect
the principal symbol: one has to look at the subprincipal symbol to understand the
geometric meaning of the transformation (2.14). We will do this later, in Section 2.6:
see formula (2.82).

2.4 Pauli matrices

Definition 2.4.1. We say that the 2 x 2 Hermitian matrix-functions ¢®(z) are Pauli

matrices if these matrix-functions satisfy the identity
05" 4 0P5* = —21¢°F, (2.38)

where [ is the 2 x 2 identity matrix and the tilde indicates matrix adjugation.

Remark 2.4.1. The identity (2.38) is, of course, equivalent to

50" + 5’0" = —2I¢g*°. (2.39)
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The principal symbol Ly (z, p) of our operator L is linear in the dual variable p,

so it can be written as
Lprin<x>p) = Ua (.’ﬂ) Pa - (240)

The four matrix-functions o®(x), a = 1,2, 3,4, appearing in (2.40) are, by definition,
our Pauli matrices associated with the operator L.

The adjugate of the principal symbol can be written as
adj Lpyin(z,p) = 6%(x) po - (2.41)

The matrices 6%(x), a = 1,2, 3,4, appearing in formula (2.41) are the adjugates of
those from (2.40)
We have

[Lprin (%, p)] [adj Lisin (2, )] =[] Lowin(, P)] [Lpwin(2, )] =19 paps,  (242)

where [ is the 2 x 2 identity matrix and g®? is the metric from formula (2.29). Formula
(2.42) implies

[Lpvin(, p)][2d] Lirin (2, )] + [Lprin (2, @)][ad] Lprin (2, p)] = —219*"pags

(2] Losin (2, P)][Lprin (2, )] + [ad] Lowin(2, )] [Lprin (2, p)] = —219°"pags -

Substituting (2.40) and (2.41) into the above formulae we arrive at (2.38) and (2.39).
This means that our matrices 0®(x) defined in accordance with formula (2.40) satisfy

the abstract definition of Pauli matrices, Definition 2.4.1.
2.4.1 Additional properties of Pauli matrices
Lemma 2.4.1. If P is a 2 X 2 matriz then
0, P% = =2(tr P)I, (2.43)

0o Po® =2adj P. (2.44)

Proof. Formulae (2.30), (2.32), (2.40) and (2.41) imply

« e ~x j ~ @
0% = s'e;?, 7% = s'¢;?, (2.45)
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where the matrices s/ are defined in accordance with (2.1). Substituting (2.45) into
(2.43) and (2.44) and using the identities (2.31) and (2.33), we get

0, P5% = —s'Ps! — §?Ps? — $3Ps3 — s*Ps?,

0, Po® = s'Pst + §?Ps® + s3Ps® — s*Pst.

The rest is a straightforward calculation. O]

Note that an alternative way of proving formula (2.43) is by means of formula
(1.2.27) from [11].

2.5 Covariant subprincipal symbol

Recall that we defined the covariant subprincipal symbol Lg,(2) in accordance with

formula (2.18). We need now to determine the function f appearing in this formula.
Let R(z) be as in (2.16). Formulae (2.9) and (2.18) imply that the transformation

(2.17) of the differential operator induces the following transformation of the matrix-

function Legu(x):

Lcsub — R*(Lcsub + f(Lprin))R - f(R*LprinR>

¢ * *
+ 5 (Ria(Lprin)p R = B (Lprin)p R )

Comparing with (2.19) we see that our function f has to satisfy the condition

* * ? * *
f(R LprinR) =R f(Lprin)R + 2 (R (Lprin)paR - R (Lprin)paRﬂc‘*) (2.46)

for any non-degenerate 2 x 2 Hermitian principal symbol Ly, (2, p) and any matrix-

function (2.16). Thus, we are looking for a function f satisfying conditions (2.20) and
(2.46).

Put )

1

L rin) ‘&— T T4

F(Lpen) =~

where subscripts p,, ps indicate partial derivatives and {F, G, H} is the generalised

gaﬁ{Lprina a'dJ Lprim Lprin}pap/;y (247)

Poisson bracket on matrix-functions defined in (1.22). Note that the matrix-function
in the RHS of formula (2.47) is Hermitian.

Lemma 2.5.1. The function (2.47) satisfies conditions (2.20) and (2.46).



2.5 Covariant subprincipal symbol | 19

Proof. Substituting (2.36) into (2.47) we see that the terms with the gradient of the
function ¢ (x) cancel out, which gives us (2.20).

To show that the function (2.47) satisfies the condition (2.46), we first note that
formulae (1.22), (2.40) and (2.41) give us

1 . o ~ ~ (6}
5 gaﬁ{Lpriny adJ Lprina Lprin}papg = (O' )z"/gaoﬁ — O"YO'OC(O' )xw. (248)

Note also that if we transform Pauli matrices 0 as
o — R'0“R, (2.49)
where R(z) is as in (2.16), then the adjugate Pauli matrices 6% transform as
5 R'G*(RY, (2.50)

see formula (2.83).
Substituting formulae (2.47), (2.40) and (2.48)—(2.50) into (2.46) we rewrite the
latter as ) + @Q* = 0, where

Q = —; [R*UO‘waRA&aavR — R*076a0°‘sz] + ;R*UaRxa. (2.51)
Hence, in order to prove (2.46) it is sufficient to prove
Q=0. (2.52)
Formula (2.39) implies that 6,0% = —41, so formula (2.51) becomes
Q= —;R*aa}zﬂ}z—la&am. (2.53)
The matrix-functions R, R™! are trace-free, so, by formula (2.43),
0 Ry R, = 0. (2.54)

Formulae (2.53) and (2.54) imply (2.52).
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It is interesting that the generalised Poisson bracket on matrix-functions (1.22) was
initially introduced for the purpose of abstract spectral analysis, see formula (1.17)
in [14]. It has now come handy in formula (2.47).

We will see later, in Section 4.6, that the RHS of (2.47) is just a way of writing the
usual, Levi-Civita, connection coefficients for spinor fields. More precisely, the RHS of
(2.47) does not give each spinor connection coefficient separately, it rather gives their

sum, the way they appear in the Dirac operator.

Remark 2.5.1. The function f is not a function in the usual sense, it is actually a
nonlinear differential operator mapping a 2 x 2 non-degenerate Hermitian principal
symbol Lpyin(x,p) to a 2 x 2 Hermitian matrix-function (f(Lpmn))(z). Moreover, the
function (2.47) is not a unique solution of the system of equations (2.20) and (2.46):
one can always add Ly, (2, B(z)), where B is an arbitrary prescribed real-valued
covector field with components B, (z), o = 1,2,3,4. Thus we arrive at the following
proposition.

Proposition 2.5.1. The function defined in (2.47) satisfying conditions (2.20) and (2.46)

is unique up to the transformation f(Lpin) — f(Lprin) + Lprin(z, B(z)), for some
covector field B on M.

Proof. Let f; and fy both satisfy conditions (2.20) and (2.46) . Then their difference,
denoted by f = fi — fa, satisfies the following identity:

f(R*LiyinR) = R* f(Lyin) R . (2.55)

Therefore, we only need to prove that the only solution to equations (2.20) and (2.55)
is of the type f(Lprin) = Lpwin(2, B(z)), for some covector B on T*M.
Now, note that if we choose a frame, say é;*(x), then we can define the following
objects:
Lpwin(2,p) := 578;%(z) pa (2.56)

and

F (Lorin(w,p)) := 57¢;(x) . (2.57)

In particular, there exists a covector, B on T*M, such that

¢;"(x)Ba(x) = ¢;(B)(x) = &(x) . (2.58)
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Now, in view of equation (2.2), for every 2 x 2 non-degenerate Hermitian principal
symbol L (2, p), there exists a unique section A € C*°(M, SO(3,1)) such that

Lprin(xap) - S]Ajk(x)éka(l‘) Pa - (259)

Using Robert P. Geroch’s work on the existence of spin structures on a 4-dimensional
space-time [25] and Lemma 2.1.1, we conclude that for every continuous section
A € C>®(M,S0(3,1)), there exists a continuous section Ry € C*(M,SL(2;C)) such
that

Lywin(2,p) = R (2) Lywin (2, p) Ra () . (2.60)
Using equations (2.59) and (2.60), we have

f(Lprin) - f~ (SjAjk(x>éka($) pa) - f (Rj\f/prinRA) . (261)
On the other hand, applying equation (2.55), we also have
f (RiLpsinRa) = B3 f(Lprin) R (2.62)

Moreover, contracting (2.59) and (2.60) with the covector B found in (2.58), we thereby
arrive at

R f(Lprin) Ry = 87 Aj(2)e, = Loin(z, B(2)) . (2.63)

Therefore, equations (2.61)—(2.63) yield the desired result. O

Remark 2.5.2. Proposition 2.5.1 implies that the function (2.47) is singled out amongst
all solutions of the system of equations (2.20) and (2.46) by the property that it does

not depend on any prescribed external fields.

For the sake of clarity, we write down the differential operator L explicitly, in local
coordinates, it terms of its principal symbol Ly, and covariant subprincipal symbol
Lsup. Combining formulae (1.19), (2.18) and (2.47), we get

L= = (Il 0 + B0

= 16 (90{Lorin: adj Lpsin, Lpvin}pops ) () + Lesun (). (2.64)

Here the covariant symmetric tensor g,s(x) is the inverse of the contravariant symmetric

tensor g*?(x) defined by formula (2.29), {-, -, - } is the generalised Poisson bracket on
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matrix-functions defined by formula (1.22) and adj is the operator of matrix adjugation

(2.24). See also Remark 1.0.1 which explains how to read formula (2.64) correctly.

2.5.1 The correction function f and axial torsion

We would like to examine the quantity f(Lpin) in this subsection. Before doing this,
let us first introduce a geometric object that can be constructed out from the quartet
of real-valued vector fields e;, j = 1,2,3, 4 (presented in equation (2.2)). We will follow
the conventions used in the paper [15], adapting them to the 4-dimensional Lorentzian
setting.

Definition 2.5.1 (The teleparallel connection). For a given frame e; on a parallelizable
manifold M there exists a metric compatible affine connection induced by the frame,
which is called the teleparallel connection associated with the frame e;. Its connection
coefficients are given by

« « a j
T By = ej @6@, (265)
in local coordinates. By VT we denote the corresponding covariant derivative on 7M.
Remark 2.5.3. o The teleparallel connection is defined via satisfying the conditions
VTGj =0.

o Although the teleparallel connection has zero curvature, it has, in general, non-

trivial torsion. Its torsion is given in local coordinates by the formula
T, =1%, —T%;3. (2.66)

Definition 2.5.2 (Axial torsion). The axial torsion of {e;}]_, is the totally antisymmetric
part of T,,3,.

Definition 2.5.3 (Hodge dual). For a Lorentzian 4-manifold M with a metric g, there is
a standard (differential) volume form on M, namely w = /| det g,, |dz' Adz? Ada® Ada?
in local coordinates. The Hodge dual of a degree r differential form, R, is defined as

1
(*WR)#r+1-~~N4 = 1V | det guV‘Rmmurgmmm ) (2.67)

where €, ., is the totally antisymmetric quantity with 1934 = 1.
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Remark 2.5.4. The subscript w in the star symbol, *,, is to indicate the dependence of
the Hodge dual on the volume form w. When the volume form is the standard volume

form as shown in Definition 2.5.3, we will omit the subscript w.

Proposition 2.5.2. The correction function f(Lyi,) and axial torsion are related as
follows:

f(Lpﬁn)_.i(c*:rmwaaa, (2.68)

where * is the Hodge dual associated with the metric g, defined in formula (2.29) and

c := sgn(det(e;*)), with the frame e; given by formula (2.2).

Proof. Let the indices {m,n,p, ¢} run through {1,2,3,4} and the indices {7, j, k, [}
run through {1,2,3}. Define s and s,, as in formulae (2.1) and (2.3). Then we have

4
— Z [(5m477np + nmp6n4 . 5m46n477p4>
p=1

(1= 6™y = 0"+ 6740 (i(1 = 674)e™™ + 6"t | s, (2.69)

where (6™,,) = (0™") = (mn) = Diagonal(1,1,1,1) is the 4 x 4 identity matrix and
(™) = (Nmn) = Diagonal(1, 1,1, —1). Note that the transformation (2.33) gives the

relation between e; and é;. Therefore, together with equation (2.69), we obtain
707 = sMs" e e, = (es%€¢” — e%,%)s' + e, ey’ st — (ig ks, + 5ijs4)eiaej6 .

After some calculations (see Appendix A.1), we arrive at

o5l = (e4ae4ﬁem78 — e %, sMes — de,, e e ;7
+ (5’]eiaemﬁsmeﬂ — (Weiaejﬁem“’sm + €2 s™Mes e 7)
+ etk (el 56;{*54 —e,%le i TsE e efeﬂsk — ¢ eﬁeﬂsk) (2.70)

which further implies (see Appendix A.1)

(0)70007 — 07G,(0%)

= 24"* ((eio‘)xwejaek734 — (e4%) v €ine;7 Sk + (%) €10 Sk — (eia)zwemeﬂsk) .

(2.71)
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In order to write equation (2.71) in an elegant way, we introduce the exterior algebra
associated with the vector space of Hermitian matrices V = Span{s!, s?, s% s} =
Span{sy, S, $3,54}. Also, we equip our vector space with an inner product (-,-)y
defined as

Now, we have the algebraic volume form wy on the vector space V' defined as
Wy =81 ASgAsS3Asy=—s ANSPPASNAs (2.72)

Observe that for a given frame e,,“(z) on M we also have another basis for V| namely
{o%(z) = en“(z)s™;a = 1,2,3,4} = {o'(z),0%(x),0%(x),c*(x)}. Moreover, the

algebraic volume form (2.72) and the new algebraic form are related by
P NP AP Aot = et Ae,?s Ae s A e, s = — det(e) wy (2.73)

where we omit the dependence on . Now, let ¢ = sgn(det(e;*)) and g, as given in

formula (2.31). Then we define a differential volume form on M as

1
W_e = —Wal ANa* ANo® Aot = —cy/|det(gm)|ot Ao? Ao Aot (2.74)
In fact, the differential volume form (2.74) is the same as viewing the quantity (2.72)

as a differential volume form on M. Furthermore, if we identify the exterior algebra

4

o_1, then we have

generated by {o®}4_, with the one generated by {dz®
Woe=—Cw. (2.75)

Hence, equation (2.71) becomes

(0%)7Ga0" — 0760 (0%) 0y = 2@'( ko o [(€m™)ar 8™ A enas”™ A ey sP], a,\> o
v

= 22'( o [(em”)are€ a0 gop 0 A o A o], J,\) o, (2.76)
v

Now, observe that

o 0, O 0
g(veTpem’ €n) = g([ep’y(em )aﬂ + ep)\emp )\p] %, enﬁw)

= (em")sr€naty’ + empenﬂep’\gaﬂFf\“p. (2.77)
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Multiplying both sides of above equation (2.77) by s™ A s™ A s and sum over all
repeated indices, one obtains (see Appendix A.1)

1
g(VeTpem, en)S" AS"ASP = (en”)r €™ Gps 0 NP NG +3 X 3 22700‘/\05/\07 . (2.78)

Since V e, = 0, we have, from equations (2.75)-(2.78),
Gi(c* T™) 0o = (0Y)17 000" — 0750 (0Y) 4 . (2.79)

Formulae (2.47), (2.48) and (2.79) yield the required result. O

2.6 Electromagnetic covector potential

The non-degeneracy condition (1.21) implies that for each z € M the matrices
(Lprin)p, (z), o = 1,2,3,4, form a basis in the real vector space of 2 x 2 Hermi-
tian matrices. Here and throughout this section the subscript p, indicates partial
differentiation.

Decomposing the covariant subprincipal symbol Leg,(2) with respect to this basis,
we get

Lesun(z) = (Lprin)pa (z) Aa(r) (2.80)

with some real coefficients A, (z), a« = 1,2, 3, 4.

Formula (2.80) can be rewritten in more compact form as
Lcsub(l') = Lprin(xa A(ZE)), (281)

where A is a covector field with components A, (z), o = 1,2,3,4. Formula (2.81) tells
us that the covariant subprincipal symbol L., is equivalent to a real-valued covector
field A, the electromagnetic covector potential.

It is easy to see that our electromagnetic covector potential A is invariant under
Lorentz transformations (2.17) and conformal scalings of the metric (2.11), whereas
formulae (2.22) and (2.81) imply that the transformation (2.14) of the differential

operator induces the transformation

A A+ grad ¢. (2.82)
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2.7 Properties of the adjugate operator

In this section we list gauge-theoretic properties of operator adjugation (2.25).

Matrix adjugation (2.24) has the property
adj(R*PR) = R™'(adj P)(R™')* (2.83)

for any matrix R € SL(2,C). It is easy to see that operator adjugation (2.25) has a
property similar to (2.83):

Adj(R*LR) = R"Y(Adj L)(R™Y)* (2.84)

for any matrix-function (2.16).
It is also easy to see that operator adjugation (2.25) commutes with the transfor-
mations (2.11) and (2.14):

Adj(e?Le?) = e¥(Adj L)e?, Adj(e ™ Le™) = e *(Adj L)e™.

Finally, let us observe that the map (2.47) anticommutes with matrix adjugation
(2.24),

adj f(Lprin) = — f(adj Lprin)-

This implies that the full symbol of the operator Adj L is not necessarily the matrix
adjugate of the full symbol of the operator L.

In the special case when the principal symbol does not depend on the position
variable  we get f(Lpwin) = f(adj Lprin) = 0, so in this case the full symbol of the
operator Adj L is the matrix adjugate of the full symbol of the operator L. The
definition of the adjugate operator then simplifies and becomes (2.26).

2.8 Lorentz invariance of the operator (2.27)

In this section we show that our Dirac operator (2.27) is Lorentz invariant. Recall that
this operator acts on 4-columns of complex-valued half-densities.
Let R(x) be as in (2.16). Define the 4 x 4 matrix-function
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Then

(2.85)

S*DS:(RLR me I )

m.I R™Y(AdjL)(R™)*

The operator identity (2.84) tells us that the diagonal terms in (2.85) are adjugates of

each other, so formula (2.85) can be rewritten as

R*LR el
S*DS = m . (2.86)
mel Adj(R*LR)
We see that the operator (2.86) has the same structure as (2.27), which proves Lorentz

invariance.



Chapter 3

Spectral asymptotics for first order

systems

The work of this chapter is inspired by the famous Weyl type asymptotic formulae. The
first one of this type was given by Hermann Weyl in 1911 for the counting function of
the Laplace operator with Dirichlet boundary condition on a bounded domain 2 C R".
This formula reads
Vol(B,) n n

N(\) = o X Vol(2)| A2 +0(A2), as A — +oo. (3.1)
Here B,, is the unit ball in R™. Later on, Weyl conjectured that the remainder
estimate can be improved. Since the conjecture was made, a number of distinguished
mathematicians had and have been working on it, including Richard Courant, Lars
Garding, T. Carleman, V. G. Avakumovi¢, Boris Levitan, Lars Hormander, Robert
T. Seeley, Hans Duistermaat, Victor Guillemin, Richard B. Melrose and Victor Ivrii.
In particular, Lars Garding generalized Weyl’s law for elliptic systems with constant
coefficients. Later on, Avakumovi¢ and Levitan independently proved a sharp remainder
term estimate, O()\HT_l), for the counting function of the Laplace-Beltrami operator
on a closed Riemannian manifold. In the same period, inspired by Levitan’s and
Seeley’s works, Hormander obtained a sharp remainder term estimate for a general
scalar elliptic pseudo-differential operator on a closed manifold.

Weyl also conjectured that the basic asymptotic formula for N(\) can be improved
by singling out a second asymptotic term. Namely, for the Laplacian in a domain in
) C R™ he conjectured that this second asymptotic term should be proportional to
A"z and the (n — 1)-dimensional measure of the smooth boundary 02. This became

known as Weyl’s conjecture. In 1980 Victor Ivrii proved [31] Weyl’s conjecture for the
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Laplace—Beltrami operator acting on a Riemannian manifold with smooth boundary,
under the assumption that the starting points of periodic geodesic billiard trajectories
have measure zero on 7™ M. Ivrii also conjectured that the above geometric assumption
is always fulfilled for the Laplace operator in a domain 2 C R™, but this has not been
proven to date.

In 1983-1984 D. Vassiliev established [49, 50] a two-term asymptotic formula for
the counting function of a general even order self-adjoint scalar elliptic differential
operator acting on a compact manifold with smooth boundary. A detailed exposition
of this result was later provided in [45].

In 1989, Yu. Safarov performed a comprehensive analysis [44] of “non-classical”
two-term asymptotic formulae for the counting function, i.e. asymptotic formulae
which are not purely polynomial. Such situations occur when there are many periodic
trajectories (measure of their starting points is nonzero),

In 2013 [14], O. Chervova, R. J. Downes and D. Vassiliev derived a two-term
asymptotic formula for first order elliptic systems on closed manifolds, with the second
asymptotic coefficient written out explicitly. Note that the formula for the second Weyl
coefficient of a system is fundamentally different from the well-known scalar formula of
Duistermaat and Guillemin [19].

In this chapter we will give a brief review of a typical methodology used in some
proofs of Weyl-type asymptotic formulae, which is known as the hyperbolic equation

method and was first introduced by Boris Levitan.

3.1 The hyperbolic equation method for the local

counting function

In this section we give an overview of the hyperbolic equation method, which is
also known as the wave equation method. Following Levitan [39], Seeley [46] and
Hormander [30],we start our analysis with the local counting function. We will be
using Levitan’s hyperbolic equation method which is the only physically meaningful
way of introducing a time coordinate when dealing with an operator which is not
semi-bounded.

Let L be an m x m matrix first order self-adjoint elliptic pseudo-differential operator
acting on half-densities over a closed manifold. It is known that L has a discrete
spectrum but this spectrum is not necessarily semi-bounded. Let Ay and vg(z) =
(vp1 () -+ vgm(2))T be the eigenvalues and orthonormal (in the sense of the inner

product (1.1)) eigenfunctions of the operator. The particular choice of enumeration of
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these eigenvalues (with account of multiplicities) is irrelevant. Consider the expression
||lvg(z)]|, the Euclidean norm of the m-column vy evaluated at the point z € M. Of
I

course, ||lvg(x)||* is a real-valued density. Hence, we can define the positive local

counting function (which is sometimes called the positive spectral function) as

Ny(Liz, A) = 3 |lue(@)|PH(A = (L)), (3.2)

Ak (L)>0

where H()) is the Heaviside step function with H(0) = 0. Integration of formula (3.2)

yields the usual (global) positive counting function:

Ny (L;)) = /MN+(L;:E,)\)dx: > 1. (3.3)

0<AE<A

Let us now define the local negative counting function N_(L;x, \) and the global

negative counting function N_(L; \). Following [33, 5], we define them as

N_(Lyz, A) = Y (@) PH(X + M(L)) (3.4)
Ak (L)<0
and
N_(L:\) = /M N_(L;z,\)dz. (3.5)

In fact, it is enough to derive an asymptotic formula for the positive counting function

(3.3), as we can describe the negative one by the following relationship.
N_(L:A\) = Ny (—L; \) . (3.6)

Therefore, from now on, we will drop the dependence on L, since we are only focusing

on calculations associated with L rather than with —L. Thus
Ni(xz,A\) = Ny(L;x, N) and Ni(N) = Nyi(L;N). (3.7)

It is known that the positive local counting function can be recovered from a more
general mathematical object known as the (wave) propagator associated with operator
L. The propagator (see Subsection 3.1.1 for details) is the one-parameter family of

unitary operators

Ule) = e =3 ula) [ )l (), (3.5)
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where ¢t € R is the time variable. Its integral kernel is
u(z,t,y) Z et ve(x) [ok(y)]* - (3.9)

By taking the (matrix) trace of the integral kernel, evaluating it at y = = and then

applying the inverse Fourier transform® from ¢ to A, we get

Fih[tr (u(z,t, @) Z”"Uk WP = ), (3.10)

where tr stands for the matrix trace. Combing the above formula with the definitions

of local counting functions, one can easily obtain

Fooltr (u(z,t,2)] = Ni(z, A) + N(z,=2) + D Jloe(@)]]26(N) (3.11)

Ap=0
where the N/ (z, \) are the (distributional) derivatives of the functions Ni(x, \) with
respect to A. Now, let € to be a positive number which is strictly less than the first

positive eigenvalue. Then integrating from e to some positive A, we get, from equations
(3.2), (3.4), (3.7) and (3.10), the following:

[ F o ot 0))] e = N, ). (3.12)

Equations (3.2) and (3.12) suggest that the asymptotic behaviour of N, (\) as A
going to positive infinity boils down to understanding the behaviour of singularities of
tr (u (z,t,x)). A rigorous exposition involving Fourier Tauberian theorems is presented
in [45].

Thus, we only need to reconstruct the singularities of tr (u (x,t, x)) and the smooth
contributions are irrelevant. Since oscillatory integrals (also known as Fourier integral
operators, which are abbreviated as F10s) are used to study singularities of distributions,
we only need to find a FIO approximating to tr (u (z,t, z)) modulo a C*° function. In
fact, we can do even better by constructing a FIO approximating u (z,t,y), which will

be explained further in this chapter.
il f ] = f(8) = [e " f () and  F L [f(0] = (V) = 5 [ f()dt
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3.1.1 The propagator

From now on we assume that our first order m x m matrix operator L is differential
(as opposed to pseudo-differential). This implies, in particular, that m is even: see
Remark 1.0.2.

Let h\9)(z,p) be the eigenvalues of the matrix-function Ly, (2, p). Throughout this
subsection we assume that these are simple for all (z,p) € T*M \ {0}. We enumerate
the h¥)(x, p) in increasing order, using a negative index j = —m/2, ..., —1 for negative
RU)(z,p) and a positive index j = 1,...,m/2 for positive hV)(z, p). By v (z,p) we
denote the corresponding normalised eigenvectors. Note that as our operator L is
first order and differential (as opposed to pseudo-differential) we have the following

symmetry:

Now, let "1 € R be the additional ‘time’ coordinate. Consider the Cauchy

problem
W ni1g =V (3.14)
for the hyperbolic system
(=i0pm+1 + L)w =0 (3.15)
on M x R. The m-column of half-densities v = v(z?,...,2") is given and the m-column
of half-densities w = w(z?!,..., 2" ") is to be found. The solution of the Cauchy

problem (3.14), (3.15) can be written as w = U(z"™) v, where

U(xn+1) = e_iq;"+1L - Z e_ianrl)\k Uk(xlv s 795n) /M[Uk’(yla s ’yn)]*< ) ) dyl ce dyn
k

(3.16)
is the propagator associated with operator L defined in formula (3.8) with ¢ replaced

by ‘,L,nJrl‘

Remark 3.1.1. We chose to denote the ‘time’ coordinate by x"! rather than by ¢
because some constructions presented in the current chapter work in the relativistic
setting, i.e. when there is no distinguished time direction and the coordinates x!, ..., 2"
and x"*! are ‘mixed up’. Such an approach was pursued in [22] and, to a certain extent,

in [23].
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It was shown by Safarov [44] that the propagator can be constructed explicitly,

modulo C'°; as a sum of m oscillatory integrals (Fourier integral operators)

U(a™*) ™ ST U (g, (3.17)

J

where the phase function of each oscillatory integral U) (2" 1) is associated with the
corresponding Hamiltonian hY) (2!, ..., 2™ py,...,p,) and summation is carried out
over all nonzero integers j from —m/2 to +m/2. The notion of a phase function
associated with a Hamiltonian is defined in Section 2 of [14] and Section 2.4 of [45].
Safarov’s initial exposition [44] of the construction leading up to (3.17) was quite
concise. A more detailed exposition was later given in [14].

We will now state the two main results regarding the properties of the oscillatory
integrals UV (z"*!) appearing in the RHS of formula (3.17). From this point till the
end of the subsection we assume the index j to be fixed.

The first result concerns the principal symbol of the oscillatory integral U) (™).
The notion of the principal symbol of an oscillatory integral is defined in accordance with
Definition 2.7.12 from [45]. The principal symbol of the oscillatory integral U (z"+1)
is a complex-valued m x m matrix-function on M x R x (T*M \ {0}). We denote the

arguments of this principal symbol by !, ..., 2" (local coordinates on M), z™*! (‘time’

coordinate on R), y', ..., y" (local coordinates on M) and qi, ..., q, (variable dual to
1 n

y VAR y )

Further on in this subsection and the next subsection we use x, y, p and ¢ as short-
hand for z', ..., 2" y',...,y", pi,...,pn and qi,...,q, respectively. The additional

"1 will always be written separately.

‘time’ coordinate x
In order to write down the principal symbol of the oscillatory integral UV (z"+1)
we need to introduce some notation.

We define the scalar function fU) : 7*M \ {0} — R in accordance with the formula
fO) = [U(J)] Lo — 5{[7)0)] , Lpgin — h(])7v(1)} — Z[U(y)] {U(J)7 h(])}'
By (zU) (2" 9, q), pW) (2", v, q)) we denote the Hamiltonian trajectory originating

from the point (y, q), i.e. solution of the system of ordinary differential equations (the

dot denotes differentiation in z"!)
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subject to the initial condition (), pt?)) o = W),

Theorem 3.1.2. The formula for the principal symbol of the oscillatory integral

U9 (2" reads as follows:

[ (@D (@, q), 0V (2" 5y, )] [0 (y, 9)]"

xn+1
X exp —z/
0

This principal symbol is positively homogeneous in momentum q of degree zero.

f(”(:v(”(T;y,Q)m(”(T;y,q))d7> :

Theorem 3.1.2 is due to Safarov [44]. It was later confirmed by the more detailed
analysis carried out in [14].

Theorem 3.1.2 is insufficient for the determination of the second term in spectral
asymptotics because one needs information about the lower order terms of the symbol

nt1) Namely, one needs information about terms

of the oscillatory integral UY)(z
positively homogeneous in momentum ¢ of degree —1. The algorithm described in
Section 2 of [14] provides a recursive procedure for the calculation of all lower order
terms, of any degree of homogeneity in momentum ¢g. However, there are two issues
here. Firstly, calculations become very complicated. Secondly, describing these lower
order terms in an invariant way is problematic. It was pointed out by Safarov, a few
months before his untimely death, the concept of subprincipal symbol has never been
defined for time-dependent oscillatory integrals (Fourier integral operators).

We overcome the problem of invariant description of lower order terms of the symbol
of the oscillatory integral U (") by restricting our analysis to U()(0). It turns
out that knowing the properties of the lower order terms of the symbol of U (0)
is sufficient for the derivation of two-term spectral asymptotics. And U (0) is a
pseudo-differential operator, so one can use here the standard notion of subprincipal
symbol of a pseudo-differential operator.

The following result was recently established in [14].
Theorem 3.1.3. We have
tr[U9(0))sup = —i{[0P]*, 0}, (3.18)

where tr stands for the matriz trace.

It is interesting that the RHS of formula (3.18) admits a geometric interpretation:

it can be interpreted as the scalar curvature of a U(1) connection on T*M \ {0}, see
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Section 5 of [14] for details. This connection is to do with gauge transformations of
the normalised eigenvector v\/)(x, p) of the principal symbol L, (7, p) corresponding
to the eigenvalue h)(z,p). Namely, observe that if v")(z,p) is an eigenvector and
¢\ (z, p) is an arbitrary smooth real-valued function, then ¢ @P)y()(z, p) is also an

eigenvector. Careful analysis of the gauge transformation
0@ s €07y (3.19)

leads to the appearance of a curvature term.

3.1.2 Mollified spectral asymptotics

In this subsection we will study the integral kernel of the propagator, which is defined
by formula (3.9). Denote by

ul,a™y) = 3 @) () (3.20)

the integral kernel of the propagator (3.16). The quantity (3.20) can be understood as
a matrix-valued distribution in the variable 2"*! € R depending on the parameters

x,y € M. Further on in this subsection we will be studying the quantity

Fla,a™) = tru(, = 3 e e (3.21)

In order to understand the reason for our interest in (3.21), put
Z ok ()25 (A = M), (3.22)

which is essentially the object presented in equation (3.10). Then (3.21) and (3.22)
are related as f = Fy_gni1[f] and f = ol f], where the one-dimensional Fourier
transform F and its inverse F ! are the same as the previous definitions. The quantity
(3.22) contains all the information on the spectrum of our operator L and it also
contains some information on the eigenfunctions.

Let p: R — C be a smooth function such that p(0) =1, 5(0) = 0 and the support
of p is sufficiently small. Here ‘sufficiently small’ means that supp p C (=T, T), where
T is the infimum of the lengths of all possible loops. See Section 6 in [14] for details.
Denote also p(A) = F_.i ,,[p(z" )]

x
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We mollify the distributions (3.21) and (3.22) by switching to p(z"t1) f(x, 2"1)
and (p* f)(x,\), where the star indicates convolution in the variable A. It was shown

in [14] that Theorems 3.1.2 and 3.1.3 imply the following result.

Theorem 3.1.4. We have, uniformly over x € M,
(o £)(.X) = na(@) X'+ (n = D) X' + O'™) as A +oo.

Here the densities a(x) and b(x) are given by formulae

m/2
a(z) = 2m) ™" S / dp, (3.23)

= o) (@ )<t

b(z) = —n(2m) " / ( Lo

— LT Ly~ KO, 09} + O (O]9 ) (2 ) ap, (324

where dp = dp; ... dp,.

Theorem 3.1.4 warrants the following remarks.

Remark 3.1.5. Tt is easy to see that the RHS of formula (3.24) is invariant under gauge

transformations (3.19) of the eigenvectors of the principal symbol.

Remark 3.1.6. Let R : M — U(m) be an arbitrary smooth unitary matrix-function. As
one would expect, the RHS of formula (3.24) is invariant under gauge transformations
L — R*LR of our operator, but establishing this is not that easy. The corresponding

calculations are presented in Section 9 of [14].

Let us now leave in (3.22) only terms with positive \; and define the quantity

= > llwe(@) P56 = Ae), (3.25)

A >0

Note that formula (3.25) is the same as the (distributional) derivative with respect
to A of local positive counting function described in (3.2). Theorem 3.1.4 implies the

following Corollary.

Corollary 3.1.1. We have, uniformly over x € M, the following two results:

(p* fo) (@A) =na(@) "+ (n—1)bx) \" 2 +O0\"?) as \— +oo
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and (p * fi)(xz, X) vanishes faster than any negative power of |A| as A — —oc.

Recall the definitions of local counting functions in (3.2) and (3.4), which can also

be written as

0 if A<Z0,

Ny(z, A) = - , (3.26)

Yo<an [ou(@)[|* i A > 0.
The function N, (z,\) counts the eigenvalues A\, between zero and A, whereas the
function N_(z,\) counts the eigenvalues Ay between —\ and zero. In both cases
counting eigenvalues involves assigning them weights ||vg(x)]|?.
We have (p* N.)(z,\) = J* (p* f)(z, 1) d, so Corollary 3.1.1 implies

. O(\"2) if n >3,
*x Z, = al\x T as — Q.
(px Ny)(2,A) = a(z) A" + b(z) A" + A=+
O(ln)) if n=2

(3.27)

The asymptotics for (p * N_)(z, A) is obtained by applying the above result to the
operator —L and using the symmetries (3.13). This gives

O\"2) if n>3,
(p* N_)(z,\) = a(z) A" — blx) \" ' + ( ) it n2 as A — +oo.
O(nA) if n=2,

(3.28)

Note that the second terms in the asymptotic formulae (3.27) and (3.28) have
opposite signs and that the remainders are uniform in x € M.

Finally, recall the two global counting functions

0 if A<O,
Ne() =4 0= (3.29)

Zo<i)\k<)\1 lf )\ > 0

We have Ni()\) = [3; Ni(z, ) dz, where dz = dz! ... dz". Therefore, formulae (3.27)
and (3.28) imply

O™ 2) if n>3
(p* Ny)(A) = a X" £ b\ + ( ) it nz as A — +o0, (3.30)
O(ln)\) if n=2
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where

a= /Ma(x) dz, b= /M b(z)dx. (3.31)

3.1.3 Unmollified spectral asymptotics

In this subsection we write down asymptotic formulae for the local and global counting
functions without mollification. These can be obtained from the mollified asymptotic
formulae (3.27), (3.28) and (3.30) by applying appropriate Fourier Tauberian theorems,
see Section 8 of [14].

Theorem 3.1.7. We have, uniformly over x € M,
Ni(x,A) =a(x) A" + O\ as A — +oo. (3.32)
Corollary 3.1.2. We have
Ni(A)=a\"+ O\ as A\ — +oo. (3.33)

In particular, applying Corollary 3.1.2 and formula (3.23) to the square root of the
Laplace-Beltrami operator v/—A, we have

Corollary 3.1.3.

Vol(B,,)

2n)" x Vol(Q)| A2 +O0(A 2 ) as A — +oo. (3.34)

Ni(=A5A) =

This is the sharp remainder term estimate of Weyl’s conjecture as stated in formula
(3.1).

Theorem 3.1.8. If the point x € M is nonfocal then
Ni(z,A) = a(x) \" £b(x) A" 1+ oA\ as X — +oc. (3.35)

Here we call a point x nonfocal if the measure of momenta which serve as starting
directions for loops originating from x and generated by each Hamiltonian A9 is zero
on TM \ {0}. See [14, Section 8.2] for precise definition.

Theorem 3.1.9. If the nonperiodicity condition is fulfilled then

Ni(A) = a\" £ A"+ oA"Y as A — +oo. (3.36)
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Here we say that the nonperiodicity condition is fulfilled if the measure of starting
points of periodic trajectories generated by each Hamiltonian kW) is zero on 7% M \ {0}.
See [14, Subsection 8.2] for details.

The results presented in this subsection were first obtained by Victor Ivrii [33, 34]
but without an explicit formula for the second asymptotic coefficient.

Asymptotic formulae of the type (3.32)—(3.36) are called Weyl-type formulae and

the coefficients in such formulae are often referred to as Weyl coefficients.

3.2 The eta function

Let L be an elliptic self-adjoint first order differential operator (as opposed to pseudo-
differential defined in Chapter 1). In this section, we will give a picture of the
relationship between the Weyl coefficients of the counting functions and the residues of
the eta function associated with operator L.

As shown in Section 3.1, we have both positive and negative counting functions
associated with operator L. Therefore, we should also have positive and negative
Weyl coefficients correspondingly. To define the Weyl coefficients without imposing
geometric condition on the Hamiltonian flows we take a convolution of our counting
functions with a ‘nice’ function p(\). Namely, let p : R — C be a smooth function
with support in a sufficiently small neighbourhood, Oy, of the point ¢ = 0. Moreover,
suppose that we have p(t) = 1 in a smaller neighbourhood, Oy C Oy, including the
point t = 0. Note that we can choose O; so small that the only singularity of the
propagator contained in Oy is at the point t = 0. Let the functions N.(\) be as defined
in the previous section and let p(A) denote, as usual, the inverse Fourier transform
of p(t). In line with Subsection 3.1.2 and Theorem 4.1.2 of [45], we define the Weyl

coefficients of the positive and negative counting function as follows.

Definition 3.2.1 (Weyl coefficients). Let p be as described above. Then

(0 NN = nax)o "+ (n = D(ax)i A" 4+ 4 (ax)n1 + (ax)n A7
+ot (n—k)(aL) g A" 0 as A — +oo. (3.37)

We call the coefficients (a, ) and (a_ )y the k-th positive and negative Weyl coefficients

respectively.

The validity of formula (3.37) is guaranteed by Theorem 4.1.2 from [45]. For k # n,
the reason for putting factors in front of (a4 )y is to have agreement with coefficients

(a+)r appearing in actual (unmollified positive and negative respectively) counting
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functions, see Section 3.1.3 for more details. For & = n, this corresponds to the
logarithmic contribution to the unmollified counting functions. To simplify further
mathematical expressions in this section, we introduce the rescaled Weyl coefficients

as follows:

{(bgk:(n—k:)(ai)k for k#n, (3.38)

(b+)n = (ax)n -

The second main object examined in this section is the (global) eta function of our

operator L, which is defined as follows.

Definition 3.2.2 (Eta function).

sgn A\p
| Akl®

ns):= >

/ TN (VL) = N ), (3.39)
AR£0 0

where summation is carried out over all nonzero eigenvalues A\, of L and s € C is the

independent variable.

According to formula (3.1.2), the series (3.39) converges absolutely for Res > n
and defines a holomorphic function in this half-plane. Moreover, it is known [4] that
it extends meromorphically to the whole s-plane with simple poles which can only
occur at real integer values of s. The eta function is the accepted way of describing
the asymmetry of the spectrum. Before proving the main theorem in this section, we

first prove the following lemma.

Lemma 3.2.1. Let r be a natural number, s and c be real positive numbers, and

suppose that s > —r — 1. Let p be a smooth compactly supported cut-off function

satisfying
5(0) =1,
p(0) (3.40)
PP (0) =0 for 1<k<r.
Then
+o0
/ AN =v) = pA=)]dA =0 "N as v— +oo. (3.41)

Proof. We have

“+oo

[T 0= ) = =) dh = [ ) 600) — o))

+o0o
=V = /C_V (v + )7 p(p) dpe.
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But Taylor’s formula gives us

(_1)T —s—r, T

(V) = = e s (s 4 — D

(-1

+ (r+1)!

s (s 47+

for some ¢ strictly between 0 and p. Thus, in order to prove (3.41) it is sufficient to

prove )
[ el du = 0, (3.42)
/j_y pFp(p)dp =0w™°) for 1<k<r, (3.43)
[0 7 ol ap = 0, (3.44)

Formulae (3.42) and (3.43) follow immediately from the fact that our function p is from

Schwartz space and formula (3.40). In order to prove formula (3.44), it is sufficient to

prove )
—v/2
| T pln) dp = 0(), (3.45)
+oo
/_ A T p(p) du = O(v™" ), (3.46)

Now, in order to prove (3.45) and (3.46) it is sufficient to prove

—v/2
L el el dpe = 0) (3.47)
ooy —s—r—l r+1 —s—r—1
L G ) du = 0, (3.48)

Again, formula (3.47) follows immediately from the fact that our p is from Schwartz

space. For formula (3.48), we see that it follows from the inequality

+00 +0o0
/ B |u|7"“|p(u)ldué/_oo " | p()] dpe.

]

Remark 3.2.1. It is easy to see that the remainder term in formula (3.41) is uniform in

s when s takes values from a bounded interval.

We are now ready to prove the following theorem.
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Theorem 3.2.2 (Weyl coefficients and residues of the eta function). Let the Weyl
coefficients (a+) be as defined in Definition 3.2.1. Then the residues of the eta function

associated with operator L are related to the Weyl coefficients as follows:
Res(n,s=n—k) = (by)r — (b_)k . (3.49)

Proof. First of all, we will find a meromorphic function, denoted by 7. (s), in C that
differs from the positive part of the eta function by a function, denoted by F',(s) with
the following property: we want F (s) to be bounded by a holomorphic function on
the real line. Then finding the poles and corresponding residues on the real line of
the positive eta function reduces to finding those of the meromorphic function 7, (s).
Thereafter, we will apply the same method to the negative eta function.

Let (A4 )x be the positive eigenvalues enumerated in increasing order with account
of multiplicity. Choose a number ¢ > 0 such that all these eigenvalues are greater
than c¢. Then, we define the following two objects. The first one is the positive part of
the eta function, which is defined as

o0
ne(s) =Y _(A4)i" (3.50)

k=1

The second one is the (positive) meromorphic function as given below:

B =3 [T 00 ax (351)

where p()\) is the same as defined at the beginning of this section.

Now, we consider the difference of the two quantities defined above, namely

Fi(s) == n4(s) = 714 (s) - (3.52)

Further on we fix a positive number r as in Lemma 3.2.1 and assume that s €
n—r—1+dn+r+1] C (—r—1,4+00) for some small positive number J. In view of
Lemma 3.2.1, we have
+o0o
[Ee(s) < et ()
k=1

for some constant ¢; . From Corollary 3.1.2, we know that

Ny(A)=a\"+ 0\ as X — +oo,
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which implies
k

1/n
M)k = (a) +0(1) as k— +o0.

Thus, we have (Ay)r > k™™, so

|Fy(s)] < cieo io = (strb/n, (3.53)
k=1
The series (3.53) converges if **+1 > 1, that is, if s > n —r — 1. In other words, F(s)
is holomorphic in s for R(s) >n —r — 1.
Therefore, we have established the fact that the positive eta function 7, (s) and the
function 7, (s) have the same real poles and residues on the half-line s > n —r — 1.

Moreover, note that

+o0
[ A at s N

- /;OO AT (px N)(A) d = +ZOO /:OO AT (A= (A)k) dA =11i(s) . (3.54)

Examining formulae (3.50), (3.51) and (3.54) we see that if we are looking at the
function (3.50) and are interested in finding its real poles and residues on the interval

s € (n—r—1,+00), then we can instead work with the function
“+o0o
/ A7 (px NO)(A) dA. (3.55)

Similarly, we can define the negative part of the eta function

—+00

n-(s) =2 (A", (3.56)

k=1

where (A_)y is the absolute value of the negative eigenvalues enumerated in increasing
order with account of multiplicity.

Also, we have the negative meromorphic function as given below:

7_(s) i= f / A0 = (A)) dA. (3.57)



3.2 The eta function | 44

According to formula (3.4) and the way we define the quantities (A_);, we have an

analogue of formula (3.54), which is given as follows:

/ A (o N dA = 71 (s). (3.58)

Moreover, we also have
F_(s) :==n-(s) = 7-(s) (3.59)

which can be bounded analogously as in equation (3.53).

Finally, the total eta function, as defined in formula (3.39), is given by

n(s) =n.(s) —n-(s). (3.60)

Combining equations (3.52), (3.54), (3.58), (3.59) and (3.60), we have

)= [ TN (o (N, = N)) (V) dA+ F(s), (3.61)

where c is less than the absolute values of all non-zero eigenvalues and the correction
term F'(s) = F(s) — F_(s) is holomorphic for £(s) > n —r — 1 (see equation (3.53)
for details). Now, formulae (3.37) and (3.38) yield

(P NL)A) = () X" 4o 4 (b)), A" (V) s A = 400,

where r(\) = O(\""""2). Using equation (3.61), we derive that, for R(s) > n,

ns) - Fis) = | A (o (VL = ND)) () A

= X_: / ” (b )k — (b)) A" LA + R(s)

= lg) s—(n—h) ((b4 )k — (b)) + R(s), (3.62)

where R(s) = [ A7*r()\)d\ can be extended to a holomorphic function in s for
R(s) > n—r —1. In fact, from equations (3.62) we obtain a meromorphic extension of
the eta function n(s) to the half-plane R(s) > n —r — 1. More importantly, its residues
are given by

Res(n,s =n—k) = (by)r — (b_ )k for k<r.
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Finally, with the help of the uniqueness of analytic extensions, we see that the extension

is independent of constants ¢ and r, which ends the proof. O

Theorem 3.2.2 warrants the following remarks.

Remark 3.2.3.

o Theorem 3.2.2 can be easily extended to the case of pseudo-differential operator
L.

o Let u(z,t,y) be the integral kernel of the propagator defined in accordance
with formula (3.20). It is easy to see that the residues of the eta function are
determined by the singularities of tru(x,t,z) at ¢t = 0. The singularities of
tru(x,t,z) at t # 0 do not contribute to the residues of the eta function. This
fact follows from the analysis performed in Subsection 3.1.2 and the definition of

our cut-off function p(t).

e A full understanding of the mollified positive counting function (consequently
the negative one) gives a complete picture of the residues of the eta function.
Moreover, formula (3.49) explains how the residues of the eta function reflect the

spectral asymmetry of the operator L.

Now, by setting k£ = 0, 1 and following equations (3.27), (3.28) and Theorem 3.2.2,

we immediately arrive at the following corollary.

Corollary 3.2.1. The first (from the right) non-trivial residue of the eta function is
given by
Res(n,s=n—1)=2(n—1)b, (3.63)

where b is the coefficient from (3.30).

Thus, for a generic differential operator L the first pole of the eta function is at
s =n — 1 and formulae (3.24) (3.31) and (3.63) give us an explicit expression for the
residue. It is known [4, 26] that the eta function does not have a pole at s = 0. The
real number 7(0) is called the eta invariant. It can be interpreted as the number of
positive eigenvalues minus the number of negative eigenvalues. This interpretation is
based on the observation that if we were dealing with an Hermitian matrix L, then
n(0) would indeed be the number of positive eigenvalues minus the number of negative
eigenvalues. Our differential operator L has infinitely many positive eigenvalues and

infinitely many negative eigenvalues, and the concept of the eta function allows us to
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regularise the expression ‘number of positive eigenvalues minus the number of negative
eigenvalues’.

The eta function may have poles at
s=n—1,...,1,—1,-2,.... (3.64)

However, a more careful analysis [10, 40] shows that poles may occur only at values of
s of the form
s=n—1-2l, [1=0,1,.... (3.65)

The authors of [40] call values of s from the intersection of the sets (3.64) and (3.65)
admissible. It was shown in [40] that residues of the eta function at positive admissible
integers are generically nonzero. This agrees with our explicit calculation of the residue

at s=n—1.

3.3 Systems of two equations

From now on we assume that
m=2 (3.66)

and that
tr Lpin (2, p) = 0. (3.67)

In other words, we now restrict our analysis to 2 x 2 operators with trace-free principal
symbols. The logic behind the assumptions (3.66) and (3.67) is that they single out
the simplest class of first order systems and we expect to extract more geometry out of
our asymptotic analysis and simplify the results.

It is easy to see that formulae (1.20), (3.66) and (3.67) imply that the dimension n

of our manifold M is less than or equal to three. Further on we assume that
n=3. (3.68)

Remark 3.3.1. It was shown in [15] that a 3-manifold is parallelizable if and only if
there exists a self-adjoint elliptic first order linear differential operator with trace-free
principal symbol acting on 2-columns of complex-valued half-densities over this manifold.
This means that once we restricted our analysis to the special case (3.66)—(3.68) we

are working on a parallelizable manifold.
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Remark 3.3.2. It is well known that a 3-manifold is orientable if and only if it is
parallelizable, see Theorem 1 in Chapter VII of [36].

Use the same observation as in equation (2.29), we see that under the assumption
(3.66) the determinant of the principal symbol is a quadratic form in the dual variable

(momentum) p:
det Lpin(z,p) = —g*° () paps - (3.69)

Furthermore, the ellipticity condition (1.20) and (3.67) imply that the quadratic form
9P (x) papp is positive definite. We interpret the real coefficients g**(z) = ¢g°*(x),
a,f =1,2,3, as components of a (contravariant) metric tensor. Thus, 2 x 2 operators
with trace-free principal symbols are special in that the concept of a Riemannian metric
is encoded within such operators. This opens the way to the geometric interpretation
of our analytic results.

Note also that under the assumptions (3.66) and (3.67) the principal symbol of the

operator L? is automatically proportional to the 2 x 2 identity matrix I:

(L?)pein (. 9) = (Lywin)* (2, p) = (9™ (%) paps) T (3.70)

Operators possessing the property (3.70) are called Dirac-type operators.

Now take an arbitrary smooth matrix-function
R: M — SU(2) (3.71)
and consider the transformation of our 2 x 2 differential operator
L— R'LR. (3.72)

We interpret (3.72) as a gauge transformation because it does not affect our counting
functions (3.26), (3.29) and the eta function (3.39). Note also that the transformation
(3.72) preserves the condition (3.67).

The transformation (3.72) of the differential operator L induces the following

transformations of its principal and subprincipal symbols:

Lprin — R*LprinRa (373)

?

Loy = R Loy R+ 5 (R (Lyrin)p R = B (Lprin)p, Rae) (3.74)
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Comparing formulae (3.73) and (3.74) we see that, unlike the principal symbol, the
subprincipal symbol does not transform in a covariant fashion due to the appearance
of terms with the gradient of the matrix-function R(z).

Following the gauge theoretical analysis of Chapter 2 and using the concept of the
covariant subprincipal symbol introduced in Section 2.5, we see that we can overcome
the non-covariance in (3.74) by introducing the covariant subprincipal symbol in the

3-dimensional setting, which we shall also denote by Legup(x) . That is,

1
Lcsub = Lsub - T6 gocﬂ{Lprina LpriIU Lprin}papﬁa (375)

where subscripts p, and ps indicate partial derivatives and curly brackets denote the

generalised Poisson bracket on matrix-functions (1.22).

Lemma 3.3.1. The transformation (3.72) of the differential operator induces the

transformation Legy, — R*Lesay R of its covariant subprincipal symbol.

Proof. Consider M = M x R and a non-degenerate operator L := L — id, acting on a
column of m = 2 half-densities over M. In this case, equations (2.48) and (3.67) yield
the desired formula (3.75). O

In our 3-dimensional Riemannian setting the correction term in the RHS of (3.75)

turns out to be proportional to the 2 x 2 identity matrix I:

v 3 ax
E ga,@{Lprina Lprin7 Lprin}papﬂ = Z(C * T )]7 (376)

where ¢ and T are the 3-dimensional analogues of those from equation (2.79) and
Definition 2.5.2 respectively. In fact, c is the same as the quantity that will be defined
in formula (3.81).

Theorem 3.3.3. In the special case (3.66)—(3.68) formulae (3.23) and (3.24) read

o(z) = 6; Jdet gug () | (3.77)
b(x) = —417T2 ((tr Lesup) 4/ det ga3>(x) . (3.78)

Theorem (3.3.3) was established in [15], though the density b(x) was written in [15]
in a slightly different way. The use of the concept of covariant subprincipal symbol
introduced in [22] allows us to replace formula (1.19) from [15] by the more compact

expression (3.78).
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Formula (3.77) tells us that the first local Weyl coefficient is proportional to the
standard Riemannian density. The first global Weyl coefficient is obtained from the
local one by integration, see formula (3.31), and is proportional to the Riemannian
LV,

In order to understand the geometric meaning of formula (3.78) we observe that

volume V of our manifold M: a =

the covariant subprincipal symbol can be uniquely represented in the form
Lesun(7) = Lppin(z, A(z)) + TA4(2), (3.79)

where A = (A;, Ay, A3) is some real-valued covector field, A, is some real-valued scalar
field, z = (z!, 2%, ) are local coordinates on M (we are working in the nonrelativistic
setting) and [ is the 2 x 2 identity matrix. Applying the results of [22] to the relativistic
operator appearing in the LHS of (3.15) we conclude that A = (A;, As, A3) is the
magnetic covector potential and Ay is the electric potential. Note that Lemma 3.3.1
and formulae (3.73) and (3.79) tell us that the magnetic covector potential and electric
potential are invariant under gauge transformations (3.72).
Substituting (3.79) into (3.78) and making use of (3.67) we get

b(x) = —2; <A4 \/det gag)(x) . (3.80)

Thus, the second Weyl coefficient is proportional to the electric potential and does not
depend on the magnetic covector potential.

A number of researchers have studied the effect of the electromagnetic field on the
spectrum of the first order differential operator L under the assumptions (3.66)—(3.68)
and our formula (3.80) is a further contribution to this line of research. However, we
believe that such results do not have a physical meaning because our 2 x 2 first order
differential operator L describes a massless particle and no known massless particle
has an electric charge. In the absence of an electric charge the particle cannot interact
with the electromagnetic field.

The electron is an example of a charged massive particle but it is described by a
4 x 4 first order differential operator. Also, in the case of the electron it is more natural
to do asymptotic analysis in a different setting, with Planck’s constant tending to zero.
Spectral problems for the electron in 3-dimensional Euclidean space in the presence of
magnetic and electric potentials were extensively studied by Ivrii [33, 34]. An analytic
(i.e. based on the concepts of principal symbol and covariant subprincipal symbol)
representation of the massive Dirac equation in curved 4-dimensional Lorentzian

spacetime was given in [22].
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3.4 Spin structure from the operator theoretic per-
spective

Let M be a connected closed oriented Riemannian 3-manifold. Let us consider all
possible self-adjoint elliptic first order 2 x 2 linear differential operators L with trace-
free principal symbols corresponding, in the sense of formula (3.69), to the prescribed
metric. See also Remarks 3.3.1 and 3.3.2. In this section our aim is to classify all such
operators L.

We define the topological charge as

7
C:= 5V det gagp tr((Lprin)m(Lprin)pz (Lprin)m)v (3.81)

with the subscripts pi, po, p3 indicating partial derivatives with respect to the compo-
nents of momentum p = (py, p2, p3). It was shown in Section 3 of [15] that the number
c defined by formula (3.81) is equivalent to the sign of the determinant of e;*. That is

c = sgndete;*, (3.82)

which can take only two values, +1 or —1, and describes the orientation of the principal
symbol relative to the chosen orientation of local coordinates x = (z', 22 2%). Of
course, the transformation L — —L inverts the topological charge.

Further on we work with operators whose topological charge is +1.

We say that the operators L and L are equivalent if there exists a smooth matrix-
function (3.71) such that f/prin = R*L,inR. The equivalence classes of operators
obtained in this way are called spin structures.

An example of non-equivalent operators L and L on the 3-torus was given in
Appendix A of [15]. Furthermore, using the above definition of spin structure one
can show that there are eight distinct spin structures on the 3-torus whereas the spin
structure on the 3-sphere is unique.

We see that an operator L is uniquely determined, modulo a gauge transformation
(3.72), by the metric, topological charge, spin structure, magnetic covector potential
and electric potential.

We claim that in dimension three our analytic definition of spin structure is
equivalent to the traditional topological definition. We will provide a rigorous proof of

this claim in a separate paper.
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3.5 The massless Dirac operator

In this section we continue dealing with the special case (3.66)—(3.68) but make the
additional assumption that the magnetic covector potential and electric potential vanish.
The resulting operator L is called the massless Dirac operator on half-densities. 1t is
uniquely determined, modulo a gauge transformation (3.72), by the metric, topological
charge and spin structure.

In practice most researchers work with the massless Dirac operator which acts
on 2-columns of complex-valued scalar fields (components of a Weyl spinor) rather
than on 2-columns of complex-valued half-densities. As we have a Riemannian metric
encoded in the principal symbol of our operator, scalar fields can be identified with
half-densities: it is just a matter of multiplying or dividing by (det gaﬁ)l/ 4. Hence, the
‘traditional’ massless Dirac operator and the massless Dirac operator on half-densities
are related by a simple formula, see formula (A.19) in [15], and their spectra are the
same. For spectral theoretic purposes it is more convenient to work with half-densities
because in this case the inner product does not depend on the metric.

The massless Dirac operator describes the massless neutrino. We are looking at a
single neutrino living in a closed 3-dimensional Riemannian universe. The eigenvalues
are the energy levels of the particle. The tradition is to associate positive eigenvalues
with the energy levels of the neutrino and negative eigenvalues with the energy levels
of the antineutrino.

Formula (3.80) tells us that the second Weyl coefficient for the massless Dirac
operator is zero, both locally and globally. Formula (3.63), in turn, tells us that the
eta function of the massless Dirac operator does not have a pole at s = 2.

The natural question is where is the first pole of the eta function? It was shown in
[9] that the eta function of the massless Dirac operator is holomorphic in the half-plane
Re s > —2. This agrees with formulae (3.64) and (3.65).

Furthermore, Branson and Gilkey [10] have shown that generically the eta function
of the massless Dirac operator has a pole at s = —2 and calculated the residue. Consider
the covariant rank three tensor (V,Ricg,)Ric,”, where V stands for the covariant
derivative and Ric for Ricci curvature (both are understood in terms of the Levi-Civita
connection), and antisymmetrize it. This gives a totally antisymmetric covariant rank
three tensor which is equivalent to a 3-form. According to [10], the integral of this
3-form over the 3-manifold M gives, up to a particular nonzero constant factor, the
residue of the eta function of the massless Dirac operator at s = —2.

The fact that the first pole of the eta function of the massless Dirac operator is

at s = —2 indicates that with a very high accuracy the large (in terms of modulus)
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positive and negative eigenvalues are distributed in the same way. This, in turn, means
that the massless Dirac operator is special and has hidden symmetries encoded in it.
We end this section by highlighting one particular symmetry of the massless Dirac

operator. Consider the following antilinear operator acting on 2-columns of complex-

v = (zl> — (_UUQ) =: C(v). (3.83)

The operator C defined by formula (3.83) is called the charge conjugation operator. 1t is

valued half-densities:

known, see Appendix A in [15], that the linear massless Dirac operator on half-densities

L and the antilinear charge conjugation operator C commute:
C(Lv) = LC(v). (3.84)

Formula (3.84) implies, in particular, that all eigenvalues of the massless Dirac operator
have even multiplicity.

The addition of an electric potential preserves the symmetry (3.84), but the addition
of a magnetic covector potential destroys it. This follows easily from formulae (3.79)
and (3.83).

3.6 Small eigenvalues

Up till now we dealt with large, in terms of modulus, eigenvalues. In this section we
will deal with small eigenvalues of the massless Dirac operator.

Suppose that we are working on a connected closed oriented Riemannian 3-manifold
and let A(¥) be a double eigenvalue of the massless Dirac operator. As explained
in the end of the previous section, multiplicity two is the lowest possible. We now
perturb the metric, i.e. consider an arbitrary metric g,g(x; €) the components of which
are smooth functions of local coordinates z%, o = 1,2,3, and small real parameter
¢; here we assume that for ¢ = 0 we get the original metric. In this case one can
expand the eigenvalue into an asymptotic series in powers of the small parameter e:
Ae) = A0 1 AWe 4 AP 1 with some constants A1V, A ... This asymptotic
construction was described in Sections 3-5 of [17]. The construction is somewhat
nontrivial because we are dealing with a double eigenvalue that cannot split.

We now consider two special cases. In both cases the unperturbed spectrum is

symmetric but symmetry is broken under generic perturbations of the metric.



3.6 Small eigenvalues | 53

3.6.1 The 3-torus with standard spin structure

Here the unperturbed metric is assumed to be Euclidean and standard spin structure
means that our unperturbed massless Dirac operator can be written as an operator
with constant coefficients in the natural 2m-periodic cyclic coordinates parameterizing
the 3-torus, see formula (1.1) in [17].

The spectrum of the unperturbed operator is known, see, for example, Appendix B
in [15] or Section 1 in [17]. The smallest eigenvalue is the double eigenvalue A\ = 0.
It was shown in [17] that

Me) = AP +O() as €= 0 (3.85)

with an explicit expression for the constant A?). Examination of this explicit expression
shows that under a generic perturbation of the metric we get A?) # 0 which is an
indication of spectral asymmetry.

Furthermore, two special families of metrics were identified in [17] for which the
eigenvalue closest to zero, A(€), can be evaluated explicitly. Formula (3.85) was tested

against explicit results for these two families of metrics.

3.6.2 The 3-sphere

Here the unperturbed metric is obtained by restricting the Euclidean metric from R*
to S?. There is no issue with spin structure because for the 3-sphere the spin structure
is unique.

The spectrum of the unperturbed operator is known, see, for example, Appendix
B in [15]. The smallest, in terms of modulus, eigenvalues are the double eigenvalues
/\59) = +3 and A9 = —3 . We get

3
At (€) = j:§ + A Ve AP 1 0() as e—0. (3.86)

In order to write down the coefficients )\(il) we consider the Riemannian volume

V (€) of our manifold M and expand it in powers of €:
Vi )=VO +vWet O as e—0, (3.87)
where V(© = 272 is the volume of the unperturbed 3-sphere. It turns out that

1
AP = ¢ﬁv<1>. (3.88)
T
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Formulae (3.86)—(3.88) tell us that in the first approximation in e spectral symmetry is
preserved and the increments of the two eigenvalues closest to zero are determined by
the increment of volume. If the volume increases then the moduli of the two eigenvalues
closest to zero decrease and in the first approximation in € they decrease in the same
way.

Arguing along the lines of [17] one can write down explicit expressions for the
constants )\(f ). Examination of these explicit expressions shows that under a generic
perturbation of the metric we get spectral asymmetry in the €2 terms: )\f )4 A #0.
A detailed exposition will be provided in Chapter 5. Note that there is a family of
metrics for which the two eigenvalues closest to zero, A, (¢) and A\_(€), can be evaluated
explicitly. These are the so-called generalized Berger metrics: see Proposition 3.1 in
[28] or Definition 4 in [27].

3.7 Issue with eigenvalues of the principal symbol

Throughout this chapter we assumed that the eigenvalues of the matrix-function
Lyyin(, p), the principal symbol of our operator L, are simple for all (z,p) € T*M \ {0}.
In this section we briefly examine the issues that arise if one drops this assumption.
Ivrii showed that Theorem 3.1.7 holds without any assumptions on the eigenvalues
of the principal symbol, see Theorem 0.1 in [32] or Theorem 0.1 in [33]. However,
establishing analogues of Theorems 3.1.8 and 3.1.9 without the assumption that the
eigenvalues of the principal symbol are simple is not, by any means, straightforward
and there are two issues that have to be addressed. These are highlighted in the

following two subsections.

3.7.1 Geometric conditions for the existence of two-term spec-

tral asymptotics

If the multiplicity of eigenvalues of the principal symbol varies as a function of
(x,p) € T*M \ {0} then the expectation is that one needs to consider ‘generalised’
Hamiltonian trajectories, with branching occurring at points in the cotangent bundle
where multiplicities of eigenvalues of the principal symbol change.

Ivrii [32, 33] dealt with the issue of variable multiplicities of eigenvalues of the
principal symbol by assuming that the set of Hamiltonian trajectories encountering
points where multiplicities of eigenvalues of the principal symbol change is, in some

sense, small.
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G.V. Rozenblyum [43] and later I. Kamotski and M. Ruzhansky [35] considered
‘generalised’” Hamiltonian trajectories with branching assuming that the principal
symbol of the operator is well behaved at points where multiplicities of eigenvalues of
the principal symbol change. Here good behaviour is understood as smooth microlocal
diagonalisability of the principal symbol plus some conditions on the Poisson brackets

of eigenvalues.

3.7.2 Explicit formulae for the second Weyl coefficient

In the case when the eigenvalues of the principal symbol are not simple explicit formulae
for the second Weyl coefficient are not known.

A good starting point for the derivation of such formulae would be the analysis
of the case when eigenvalues of the principal symbol have constant multiplicities for
all (z,p) € T*M \ {0}. Let Lyn(z,p), be our m x m principal symbol and let I,
j=1,...,k, be the multiplicities of its positive eigenvalues, so that l; + ...+, = m/2.
Then one can, by analogy with Section 5 of [14], introduce a U(l;) connection associated
with the jth positive eigenspace of the principal symbol. It is natural to conjecture
that the curvature of this U(l;) connection will appear in the explicit formula for the

second Weyl coefficient.



Chapter 4

The massless and massive Dirac

operators

In this chapter we will study both the massless Dirac operator and the corresponding
massive one. In the first half of the chapter we will give two ways of defining the
massless Dirac operator, or abbreviated as the Dirac operator. One approach is widely
known within the geometry community [24, 38] and the other one has been introduced
and promoted by Vassiliev [41, 51, 12, 16]. Both have their own advantages and the
main difference between the two constructions reduces to the definition of connections
(covariant derivatives) on the spin bundle. The geometric approach requires more
abstract tools such as connections on a principal bundle of manifolds and its lifting
to a double covering principal bundle, but this works without any requirement on
the representations of the Clifford algebra and it works for all dimensions and any
Clifford module bundle on a manifold. Although the geometric approach is relatively
abstract, it gives an insight into the subsequent definition of the spin connections by
Vassiliev. Despite the fact that the latter approach only works for a parallelizable
3- or 4-dimensional manifold, it gives an explicit local expression for the covariant
derivatives on spinor fields. This gives substantial advantages when we study the
spectral problem for the Dirac operator, which includes calculating spectra and the
corresponding perturbation theory. More importantly, the latter approach consequently
leads to a new definition of spin structure on the tangent bundle of the manifold. The
new definition of spin structures is a joint work with Zhirayr Avetisyan, Nikolai Saveliev

and Dmitri Vassiliev, and detailed proofs will be published in a separate paper.
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4.1 Motivation and introduction

The first study of the massless Dirac operators dates back to the study of square roots
of the Laplace operator by P. A. M. Dirac. Although the manifold considered by
Dirac was the Minkowski spacetime (the most well-known 4-dimensional Lorentzian
manifold), we will instead focus on the Riemannian setting. As a toy model, let us
first work on R™ (Euclidean space). Now, our Laplacian becomes a vector Laplacian

and it has the following form in local coordinates {z*},

n 62 5 82
A=D1 =0, ——r:.
; " (Ox)2 " 0x*dxP

The simplest form of a square root of the Laplace operator is a constant first order

linear differential operator, which can be written locally as

0
W:’Ya%, (4.].)

where {y*}"_, are matrices. If W? = A, we would have
7Y+ 9% = 26°L,, (4.2)
which implies

() = I, (4.3)

Equations (4.2) and (4.3) indicate that the v*’s satisfy the Clifford algebra conditions
in R™, which brings us to a more abstract setting of the Clifford algebra bundle on

manifolds.

4.1.1 Clifford algebras

Let Q be a quadratic form on vector space V' over the field K.
Definition 4.1.1. A pair (CZ(V, Q), C’) is called a Clifford algebra for (V, Q) if
L. Cl(V,Q) := T(V)/1(Q) is an associative K-algebra with unity 1cyv,q), where

T(V)=Ka Ve (VeV)d- - is the tensor algebra of V and I(Q) is the
two-sided ideal generated by {v®@ v — Q(v) - 1y : v € V}.
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2. C:V = CIl(V,Q) is a linear map, called Clifford map satisfying

C(v)> = =Q(v) - Ly,

for allv e V.

3. if A is another K-algebra with unity 14 and u : V' — A is a linear map satisfying
u(v)? = —Q(v) - 14, then there exists a unique algebra homomorphism @ :
Cl(V,Q) — A such that u=1u0 C.

The three properties can be described by the following commuting diagram.

—T(V)

I\ I

~— Cl(V,Q)

where 7 is the quotient projection of CI(V, Q) from T'(V).

Example 4.1.1. Let us work in R? with standard basis {e1,es} and quadratic form
given by

Q(a'e; + a’ey) = —(a')* — (a®)%
Then CI1(R? Q) is the algebra of two by two real matrices, i.e. R**? =: R(2).

Proof. Cl(R?,Q) is generated by {1oyrz,q), C(e1),C(e2), C(e1) - C(e2)} such that

Cler)? = Clea)? = —(Cler) - Clea)” = Loy

Let
1 0 01
1 — , C — ,
CIR2,Q) (0 1) (e1) (1 0)
1 0 0 -1
C — , C -C — :
(€2) (O _1) (e1) - C(ez) (1 0 )
It is clear that the above matrices form a basis for R?*2. O

Example 4.1.2. Let us work in R? with standard basis as above but now the quadratic
form is given by
Q’(alel + CL2€2) _ (CLl)2 + (&2)2'

Then CU(R?,Q") is the algebra of quaternions, denoted by H.
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Let Cl,s :== CI(R""* g, ) be the Clifford algebras associated with the quadratic

forms
Grs(v) = (Ul)2 +-+ (Ur)2 - (UH-l)Q - (UH-S)g . (4.4)

It is easy to see that

Cll,o == (C Cl(),l == R @ R

(4.5)
Cl270 =H Clo’g = Cll’l = ]R<2)

where the isomorphisms of Clyo and Cly are given in the Example 4.1.1 and Exam-

ple 4.1.2 respectively. The following theorem is given in [38].

Theorem 4.1.1. For all n,r,s > 0, we have isomorphisms

Clyo®Clys = Cly o,
Clyy ® Clag = Clytayp, (4.6)
Cls @Cligp = Clyyy 11 -

Formula (4.5) and Theorem 4.1.1 immediately imply that the Clifford algebras
Cl, s have either simple or semi-simple algebraic structures. Or, more precisely, the
algebras Cl, ; have the forms of either K(p) or K(q) @ K(g), where K € {R, C,H} and
the numbers p and ¢ depend on r and s only.

In fact, it is more convenient to work with complex Clifford algebras, which are
given by

Cl, :=CI(R"® C, ¢, 0 ®C) = Cl,,, ® C, (4.7)

where the quadratic form g, is given by formula (4.4). Moreover, Theorem 4.1.1 and

formulae (4.5) and (4.7) give us
Cln ~ (Cln,Q Rc (Clg =~ Cln,Q Re C(Q) R (48)

which can be further simplified as

®c)*C(2 C(2" for  n=2k
Cl, ~ (®c)"C(2) L] E@) (4.9)
(®c)*C(2) ® (®¢)*C(2) C2" @ C@2*) for n=2k+1
where k£ € N. Now, let {6%1, e %} be local coordinates for the tangent space of R™,
which is denoted by TR™. Moreover, we choose an orthonormal basis {ey,--- ,e,} for

TR". Let us then equip TR"™ with the standard quadratic form d,g, i.e. the Euclidean
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metric. One thereby has a dual basis {e!, - ,e"} of T*R" with respect to the basis
{e1,- - ,en}. For the standard Euclidean metric one also has the Levi-Civita connection
on TR™ and T*R". In this case it is trivial since taking covariant derivatives is the
same as taking partial derivatives. Furthermore, we assume the ‘induced’ connection on
CU(T*R",6) to be also trivial; we will discuss later how to construct such an ‘induced’

connection. Hence, by choosing a representation, equation (4.1) can be rewritten as
W =p[C(e)] V., (4.10)

where p is a C™\R"™-representation of CI(T*R",J) and maps C(dz®) into matrices
{y*}2_,, satistying formulae (4.2) and (4.3). In fact, there is a fundamental represen-

tation for Clifford algebras, which is known as the spin representation.

Definition 4.1.2 (Spin representations). Let p be a complex irreducible representation:

Cl,, — Homg¢ (S, S). Then the corresponding complex spin representation of Spin(n)

is given by A, := p|spin(n), Wwhere we have Spin(n) C Cl,, C Cl,.

Remark 4.1.2.  « From the isomorphisms (4.9), we know that the complex irre-
ducible module of the Clifford algebra Cl,, is isomorphic to the vector space (CZk,
and it is called the vector space of complex n-spinors. The elements of C2" are

called complex spinors.

o Here and in what follows we will mainly focus on the complex representation of
spin groups, whereas the treatments for the real spin representation can be found
in [38].

4.2 Geometric construction of massless Dirac oper-

ators

Let M be a n-dimensional Riemann manifold with metric g. We can construct a
Clifford algebra bundle associated with T'M as follows.

» For a given point = on the manifold, we have the corresponding tangent bundle

T,M and quadratic form g,.

« Construct the Clifford algebra associated with the vector space (T, M, g,) and
denote this Clifford algebra by CI(T,.M, g.).

« For each point x € M we have a fibre of the algebra C1(T,M) on top of it. Glue
all the algebras together over the manifold to get the Clifford algebra bundle
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associated with (T'M, g) and denote the algebra bundle by CI(T'M, g). Thus,
Cl(TM7 g) = uxGMCl(TJ:Ma ga:)

Note that the map CI(T,M, g,) preserves the linear structure of T, M. For simplicity
we denote CI(TM,g) by CI(T'M) if the metric is given. Once a C™\R"-representation
of a Clifford algebra is given, we can work with the C™\R"-vector bundle induced by
the representation. Say, the representation from Example 4.1.1 gives a 2-dimensional
vector bundle structure on a 2-dimensional manifold. Or, in modern terminology, we
shall call this a bundle of (left) Clifford modules.

Let us denote by S a bundle of Clifford modules, which means that at every point
x € M the fibre S, is a left module over CI(T, M) ® C =: CI(T,M). In order to take
derivatives on S, we need a connection. Here are some compatibility assumptions
defined in [42].

Definition 4.2.1 (Clifford bundle). A bundle of Clifford modules, S, is called a Clifford
bundle if it is equipped with a Hermitian inner product (-, -) and compatible connection
such that

o The Clifford action of each vector v € T, M on S, is skew-adjoint:

(C(v)s1,s2) = —(s1,C(v)s2) for Vs1,82 € Sy .

e The connection on S is compatible with the Levi-Civita connection on M:
Vx(C(Y)s)=(VxC(Y))s+C(Y)Vxs,

for all X,Y € C*(TM) and all s € C>(5S).

In what follows, we will produce a natural Clifford bundle constructed via the

language of the principal G bundle.

4.2.1 Connection on the Clifford algebra bundle

Let M be orientable. Since we have the Levi-Civita connection on the tangent bundle,
we also have an induced connection on the associated frame bundle, which is a principal
SO(n) bundle and is given (locally) by the following formula
S 1 =
Z° = 5 Z g(Vsi,sj)Eij . (411)

3,j=1
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Here s = (s1,...,s,) is a local section of the SO(n) bundle and E;; is the standard
basis for the Lie algebra of SO(n), denoted by so(n). From now on, the summation
symbol will be dropped and the Einstein summation convention will apply. Recall that
the standard two-fold group homomorphism A : Spin(n) — SO(n) is induced by the
map A(z) : R" — R"

Ax)

) =7 (2C0)w).

where x € Spin(n), v € R™ and + is the anti-involution of the Clifford algebra. Hence
one has A, : spin(n) — so(n) with the following property, see [24],

Thus, we also have an induced connection on the Spin(n) bundle given by
= 1
2° = 79(Vsi,55)C(5:)C(s5) -

Furthermore, if the principal SO(n) bundle admits a global section, say, e, then the
connection on the SO(n) bundle and the Spin(n) bundle can be written respectively,

without indicating e, as

1
Z = *g(VQ, ej)EZ-j,
o (4.12)
/=

19(Vei, e;)C(ei)C ey ) -

Once a connection on a principal G bundle and a representation are given, a con-
nection on the associated vector bundle is also given. If we choose the fundamental
representation for SO(n) and the spin representation for Spin(n), we can easily derive
connections on the corresponding vector bundles. Let V' be a section on the vector
bundle associated with the fundamental SO(n) representation and £ be a section on
the vector (spin) bundle associated with spin representation for Spin(n). One can

compute their covariant derivatives (both denoted by V') induced by (4.12) as follows:

1
VV =d4dV + fg(ei, V@j)EZ'jV s
- (4.13)
VE=dE+ Zg(ei, Ve;)C(e;)Clej)E .

Remark 4.2.1.
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o The {E;; }1<icj<n in the first equation is the standard basis for the Lie algebra

s0(n) and it reads as

(Ei')kl = ikéjl - 5i15jk-

e The first covariant derivatives for vector fields should be understood in the

anholonomic sense, which means that F;; acts on the projection of V' onto the

n

frame {e;}7_;.

o The C(e;) in equation (4.12) is in the abstract Clifford algebra and the C(e;)
in equation (4.13) should be understood as pspin[C'(€;)], where pgpin is the spin
representation. We will continue using C'(e;) for pepin[C(e;)] when considering

the Dirac operator on spin bundles.

The geometric way of defining the Dirac operator, denoted by W, is as follows. It

acts on the spin bundle according to the formula
W= C(e;)V,,, (4.14)

which is different from equation (4.10) as now we are working on a closed 3-manifold
and the bundle W acts on is not any Clifford module bundle but the irreducible one

corresponding to the spin representation.

4.3 The frame construction

Now suppose we are working on a 3-dimensional Riemannian manifold equipped with
metric g. We also assume that the manifold is orientable, which implies that it is
parallelizable (special feature of 3-manifolds). Then CI(T, M, g,) is isomorphic to H@H
and the corresponding spin group is Spin(3). Hence, by previous analysis, the spin
representations of Cl(T,M,g,) and Spin(3) are the isomorphism representations of
C?*2 and SU(2) respectively. Let {e1, es, €3} be an orthonormal frame for the tangent
bundle of the manifold.

Definition 4.3.1. The Clifford map for the orthonormal frame {e;, e, €3} is given by

Clej) = —i(Sj)ab (4.15)
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where the S;’s are the standard constant Pauli matrices defined as
0 1 0 —i 1 0
S, = 7 S, = , Sy = ) 4.16

« The minus sign in equation (4.15) is a convention to match the geometric approach

Remark 4.3.1.

with Vassiliev’s approach.

e The reason for the imaginary number ¢ in the equation is to make the Clifford

action of a tangent vector on M to be skew-adjoint, see [42] for details.

« Choosing different constant Pauli matrices or, equivalently, {—i5; }?:1 will only
result in a rigid rotation of the original frames. This is because that by requiring
the skew-adjoint Clifford action and orthonormal conditions, {—4.S5;}5_; can only
be a base for the Lie algebra su(2). In fact, we should view definition (4.15) as a
map from a set of orthonormal bases in T'M to a set of orthonormal bases in the

Lie algebra su(2).

The induced connection on spinors

Now we want to show that the second equation of (4.13) in this representation reduces
to the covariant derivatives introduced by Vassiliev. Let {x!, 2% 23} be local coordinates
on our 3-manifold. Then e; = e;%0,. Since the Clifford map is linear on the tangent

space at x, one has
Clej) = C(e;%0a) = €;°C(0a) ,

which implies

oy : = 1C(0,) = i€ Cle;) = €:q S;

( ) J ( ]) J J (417)

o= go‘ﬂag =e;"95;.
Note that the o’s appearing in equations (4.17) are the (generalised) Pauli matrices
defined by Vassiliev. Plugging (4.17) into the second equation (4.13) and contracting
with respect to the vector field that generates x*, we get

1
V. §=0.,8+ Zeiavuejac@i)c(ej)f

= 04+ 10ulOues” + {31 )Cle)E (1.15)

1
= ué + Zaa(aﬂaa + {uoll/}o-y)fa
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where the {7} are the Christoffel symbols, and this coincides with the covariant
derivative of a spinor field defined by Vassiliev. Thereby, according to equations (4.14)

and (4.17), we have a more explicit definition of the Dirac operator.

Definition 4.3.2 (A frame construction for the Dirac operator).
) 1 «a ay v
W¢ = —io* |0, + Eaa((‘?ﬂa + {010 €, (4.19)

where the matrix-functions o# are given by formula (4.17). The operator W is called

the Dirac operator via frames in Vassiliev’s work.

Now, a natural question to ask is that what will happen if we choose a different
frame, say €;, for the Dirac operator defined above starting from formula (4.15). Let
us denote by W the Dirac operator associated with the frame ¢;. Firstly, note that for
every two frames on 7'M, for instance, {e;} and {€;}, we have a section of the SO(3)
bundle on M such that

It was shown in [15] that the two Dirac operators W and W are related by
W =RW R*, (4.21)

where the matrix-function (not necessary a global section of the SU(2) bundle) R :
M — SU(2) is the lift of the section O.

Remark 4.3.2. 1f we are working in local coordinates, the matrix-function R will be a
local section of the SU(2) bundle. This explains why it does not matter which frame is
chosen locally for the Dirac operator, as they are all locally unitary equivalent. What

prevents R being global is exactly the spin structure.

Note that the fundamental group of SO(3), denoted by m (SO(3)), is isomorphic
to Zs, which classifies two classes of loops in SO(3). It is not hard to see from formula
(4.20) that this is equivalent to classifying frames in R? into two classes. We will see in

the next section how this leads to a new definition of spin structures.

4.3.1 The massless Dirac operator on half-densities

Before discussing spin structures, we will introduce the massless Dirac operator on
half-densities corresponding to the given metric g and denote it by W/, . The massless

Dirac operator on half-densities is a particular 2 x 2 matrix first order linear differential
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operator acting on 2-columns of complex-valued half-densities. It is defined by the

following four conditions:

tr(Wi/2)prin = 0, (4.22)

det(Wiy2)prin(y, p) = =9 () Paps , (4.23)

Wij2)a = o gl W Wi Wil (420
— i tr[((Wl/Q)Prin)pl((Wl/Z)Prin)PQ<<W1/2)prin)p3} > 0. (4.25)

Here y = (y', y?, 3®) denotes local coordinates, p = (p1, p2, p3) denotes the dual variable
(momentum), (Wi /2)prin(y, p) is the principal symbol, (Wi /2)sun(y) is the subprincipal
symbol, curly brackets denote the generalized Poisson bracket on matrix-functions, see
formula (1.22) for details.

The massless Dirac operator, W, is defined as
W := (det gm)_l/4 W12 (det gW)l/‘l. (4.26)

It acts on 2-columns of complex-valued scalar fields.
The analytic definition of the massless Dirac operator given in this subsection

originates from [5, Section 8§|.

4.4 Spin structures via classifications of frames

The constructions of the massless Dirac operator from Section 4.3 work for any
connected oriented Riemannian 3-manifold. Note, however, that they do not define
the massless Dirac operator uniquely. Namely, let W be a massless Dirac operator and
let R(y) be an arbitrary smooth 2 x 2 special unitary matrix-function (3.71). One can
check that then R*W R is also a massless Dirac operator.

Let us now look at the issue of non-uniqueness of the massless Dirac operator the
other way round. Suppose that W and W are two massless Dirac operators. Does
there exist a smooth matrix-function (5.3) such that W = R*W R? If the operators
W and W are in a certain sense ‘close’ then the answer is yes, but in general there are
topological obstructions and the answer is no. This motivates the introduction of the
concept of spin structure, see [5, Section 7] for details.

Now, we assume that we are working on an n-dimensional parallelizable manifold.
From Definition 4.1.1 of the Clifford algebra associated with a given quadratic form,

one can derive the following property, see [24] for the proof.
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Proposition 4.4.1. Let (A,C4) and (B, Cg) be two Clifford algebras associated with
(V,Q). Then there exists a unique algebra isomorphism f: A — B

o/ e

A~ f B

where A and B are both isomorphic to Cl(V, Q).

The uniqueness of f comes from property (3) in Definition 4.1.1. Now let V =T, M
and @ = g,. According to Definition 4.3.1 we have a pointwise Clifford map C,|, which
is obtained by restricting the Clifford map, C' in formula (4.15), to x. Here we use
the subscript . to emphasise the dependence on the chosen frame e. Therefore, for a
different frame, say, €, we also have another Clifford map at z, Cs|,. In fact, they are
related for all z via a special orthogonal matrix-function O;;(x) and the relationship is
given by

Ce(ej) = 04 C:(ex,) - (4.27)

Now let C4 and Cp in (4.4.1) be C|, and C%|, respectively. Then, according to
Proposition 4.4.1, we have a unique algebra isomorphism f|, := Adp(x) between C.|,
and Oé|1~ s

Ado(@) [Cela(e;)] = Ao(2) [Cels(e;)] [Mol(@)] 7, (4.28)
where A\o(z) is the lift of O;;(z) to its double cover Spin(n) and Adp(x) is independent
of the lift.

Remark 4.4.1.
+ Equation (4.28) is also know as the adjoint representation of O;;(x).

» The spin group Spin(n) can be viewed as a subgroup of SU (m (n)), where the
number m(n) is the dimension of spinors in the spin representation of the Clifford

algebra and the value of m(n) is given by

m(n) =2~ n=2k+1,
2

, n==Fk.

Therefore, Hermitian conjugation can be used to replace the inverse in equation
(4.28). This will be useful when we work in low dimensions. In particular, we
know that Spin(3) ~ SU(2).
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o Initially one has two choices when lifting the value of O;; at the point z( to
Spin(n). Once an initial value is chosen, say, po, Ao(-) becomes a unique
continuous path on the Spin(n) bundle over M. Note that every closed loop at
xo on M induces a path on the Spin(n) bundle starting from py and ending at
p1. More importantly, both py and p; are in the fibre on top of x3. Due to the
double covering property of Spin(n) over SO(n), py = £po. Thus, in this way,
we construct a map from 71 (M) to Zs depending on the sign of p; with respect
to pg.

Let f.z denote that map from M to SO(n) relating e and é. Then the map
constructed above is nothing but (fe_z).« : m (M) — m(SO(n)), as m (SO (n)) = Zs .
Since m(Spin(n)) is trivial, A[m(Spin(n))] is trivial as well. Therefore, by the
homotopy lifting criterion, f. ,s can be lifted to a continuous function on Spin(n) if

and only if (fe_z)«[m(M)] is trivial. Thus the following diagram commutes if and only

if (fosse)e|m (M)] =~ 1:

Spin(n)
ge—n/?,’/ A
M ’ feaé SO(H)

Here g._.s is a continuous map from M to Spin(n). Now we are ready to give a new

definition of spin structure on a parallelizable manifold.

Definition 4.4.1 (Equivalent frames). Two frames e and € on M are called equivalent if
(feﬁé)*h-l(M)] ~1.

This leads us to a new definition of spin structures on parallelizable manifolds.

Theorem 4.4.2. For a parallelizable manifold equivalence classes of frames are in

one-to-one correspondence with traditional spin structures.

Remark 4.4.3. An immediate consequence of this theorem is that if M is also simply
connected, i.e. if m(M) & 1, then all frames are equivalent. Hence, for a simply

connected parallelizable manifold the spin structure is unique.
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4.5 The massive Dirac equation in its traditional

form

The traditional way of writing the massive Dirac equation is as follows. We equip
our manifold M with a prescribed Lorentzian metric and a prescribed electromagnetic
covector potential, and write the Dirac equation using the rules of spinor calculus, see
the text later in this section. In the process of doing this one may encounter topological
obstructions: not every 4-manifold admits a Lorentzian metric and, even if it admits
one, it may still not admit a spin structure.

We give now an analytic representation of the massive Dirac equation which,
for parallelizable manifolds, turns out to be equivalent to the traditional geometric
representation.

For the sake of clarity, prior to describing our analytic construction let us explain
why we will not encounter topological obstructions related to the second Stiefel-Whitney
class. We will work with operators satisfying the non-degeneracy condition (1.21) which
is very natural from the analytic point of view as it is a generalisation (weaker version)
of the standard ellipticity condition (1.20). It turns out that the imposition of the
non-degeneracy condition (1.21) has far reaching geometric consequences: it implies
that our manifold M is parallelizable. Thus, in our construction we deal only with
parallelizable manifolds, but we do not state the parallelizability condition explicitly
because it is automatically encoded in the analytic non-degeneracy condition (1.21).

Before writing down the massive Dirac equation in its traditional form, let us make

several general remarks on the notation that we will be using.

« The notation in this section originates from [8, 11]. Covariant derivatives of
spinor fields are defined in accordance with formulae (24) and (25) from [12],
which is re-established in formulae (4.18). The difference with [8, 11, 12] is that
in the current section we enumerate local coordinates with indices 1, 2, 3,4 rather
than 0,1,2,3. Also, the difference with [8, 12] is that in the current section we

use opposite Lorentzian signature.

o The construction in this section is a generalisation of that from Appendix A of

[15]: in [15] authors dealt with the massless Dirac operator in dimension three.

o We will write the massive Dirac equation in its spinor representation as opposed
to its standard representation, see Appendix B in [13] for details. The spinors £*
and 7);, that we will be using will be Weyl spinors, i.e. left-handed and right-handed

spinors. Let us note straight away that the 4 x 4 matrix differential operator in
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the LHS of formula (B6) from [13] appears to have a structure different from
(2.27). However, it is easy to see that the representation (B6) from [13] reduces

0 1
to (2.27) if one multiplies by the constant 4 x 4 matrix I o from the left.

The construction presented below is local, i.e. we work in a neighbourhood of a
given point of a 4-manifold M without boundary. We have a prescribed Lorentzian
metric ga.s(x), o, B = 1,2,3,4, and a prescribed electromagnetic covector potential
A,(z), o« =1,2,3,4. The metric tensor is assumed to have three positive eigenvalues
and one negative eigenvalue.

Consider a quartet of 2 x 2 Hermitian matrix-functions 0, (z). Here the Greek
index o = 1,2, 3,4 enumerates the matrices, whereas the Latin indices ¢ = 1,2 and
b = 1,2 enumerate elements of a matrix. Here and throughout the section the first
spinor index always enumerates rows and the second columns. We assume that under
changes of local coordinates our quartet of matrix-functions transforms as the four
components of a vector. Throughout this section we use Greek letters for tensor indices
and we raise and lower tensor indices by means of the metric.

Define the “metric spinor”

i 0 —1
Cap = €4 = €0 = €10 = (1 0 ) : (4.29)

We will use the rank two spinor (4.29) for raising and lowering spinor indices. Namely,
given a quartet of 2 x 2 Hermitian matrix-functions o4, (z) we define the quartet of

2 x 2 Hermitian matrix-functions 6%%°(x) as

Gob = b b o (4.30)
Note the order of spinor indices in the matrix-functions 60‘“5(30): we choose it to be
opposite to that in [12] but in agreement with that in [11].

Examination of formulae (4.29) and (4.30) shows that the 2 x 2 matrices 0% and

529 are adjugates of one another, see formula (2.24) for definition of matrix adjugation.

Hence, we could have avoided the use of the “metric spinor” in our construction of the
Dirac equation, using the mathematically more sensible concept of matrix adjugation
instead. The only reason we introduced the “metric spinor” is to relate the notation of
the current section to that of [8, 11, 12].
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Further on in this section we use matrix notation. This means that we hide
spinor indices and write the matrix-functions o ,(z) and 7°(z) as o®(z) and 5*(z)
respectively.

Further on we assume that our o®(x) are Pauli matrices.

Consider a pair of spinor fields which we shall write as 2-columns,

= (g;), 0= (Z;). (4.31)

Using matrix notation, we define the covariant derivatives of these spinor fields as
(see formula (4.18) for details)

NS P B
Vati= g = o (D +{ ]} e (132
N = ﬁ 1 55 i
Vani= T2, ((a oo {m} ) (4.3
respectively, where
5 L } 36 ag’y(s agaé . aga'y
{Oﬁ} =27 ox® + ox” Ox?® (4.34)

are the Christoffel symbols.
Formulae (4.32) and (4.33) warrant the following remarks.

« The sign in front of the § in formula (4.32) is the opposite of that in formula
(24) of [12]. This is because in the current section we use opposite Lorentzian

signature.

o The RHS of formula (4.32) is a generalization of the expression appearing in
the RHS of formula (A.3) from [15]. This follows from the observation that the

adjugate of a trace-free 2 x 2 matrix oz is —o3.

o If we multiply formula (4.32) from the left by the “metric spinor” (4.29), apply
complex conjugation and denote e£ by 7, this gives us (4.33).

The massive Dirac equation reads

o (=iV+ A)u&+mn =0, (4.35)
% (=iV + A)gn+mé =0, (4.36)
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see formulae (B1) and (B2) from [13] or formulae (20.2) and (20.5) from [§].

We define the Dirac operator written in traditional geometric form as

Doy = 0% (—iV 4+ A)a ) 7.n~el (4.37)
mel 7 (—=iV + A),

and the bispinor field as the 4-column

W= (5) . (4.38)
U

Formulae (4.35) and (4.36) can then be rewritten as

Dtrad 2/} =0. (439)

4.6 The massive Dirac equation in its analytic form

Formulae (2.64), (2.40), (2.29), (1.22) (2.81), (2.24) and (2.25) allow us to rewrite our
Dirac operator (2.27) in geometric notation — in terms of Lorentzian metric, Pauli
matrices and electromagnetic covector potential. This raises the obvious question: what
is the relation between our Dirac operator (2.27) and the traditional Dirac operator

(4.37)? The answer is given by the following theorem.

Theorem 4.6.1. Our Dirac operator (2.27) and the traditional Dirac operator (4.57)

are related by the formula
D = | det gux|"* Diraa | det g | 7/* (4.40)

where the electromagnetic covector field A in the traditional Dirac operator is given by
formula (2.80).

Here, of course, det g..» = det g,,. We used different subscripts to avoid confusion
because tensor notation involves summation over repeated indices.

Before proving this theorem let us point out that the operators D and Dy..q appear
to be very different. In particular, formula (2.27) does not contain any Pauli matrices,

covariant derivatives or electromagnetic covector portential (at least in explicit form).
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Proof of Theorem 4.6.1 Proving the 4 x 4 operator identity (4.40) reduces to

proving the following two separate 2 x 2 operator identities:

L = |det gux |4 0 (—iV + A), | det g0, |74, (4.41)
(Adj L) = | det goer|Y* 5% (—iV + A)o | det g, | 4. (4.42)

Here o are Pauli matrices (2.40), 5 are their adjugates, and V,, and V,, are covariant
derivatives defined in accordance with formulae (4.32) and (4.33).

We shall prove the operator identity (4.41). The operator identity (4.42) is proved
in a similar fashion.

In the remainder of the proof we work in some local coordinate system. The full
symbols of the left- and right-hand sides of (4.41) read
1 1

*<Lprin)r°‘pa ~ 16

2 gaﬁ{Lprina ad.] Lprina Lprin}pap@ + (Lprin)pa Aa

(Lprin)papa -
and

0%Pa + %aa(ln | det g |) e + %Ua(}fg ((O’ﬁ)za + {aﬂv} a”) +0%A,
respectively, where { aﬁv} denotes Christoffel symbols (4.34); see also formulae (1.7)
and (1.8) for the definition of the full symbol of a differential operator. Comparing
these with account of the fact that (Lpyn)p, = 0®, we see that the proof of the identity
(4.41) reduces to the proof of the identity
/l: (0%
— 5(0%)ze

7/ .
2 gaﬁ{Lprina ad] Lprin; Lprin}papﬁ

16
= ! o“(In | det gu|)ze + ! 0“0 (0 ga + o’ |. (4.43)
] 122 avEs ] T

Using the formula (4.34), we have

B
2 {aﬁ = 97101 gpy = Oge tr(In |gu| ) = Do (In| det g |),

which means (In | det g, |)ze = 2 {fﬁ}. Then we rewrite (4.43) as

1 . « o~ 5
5 800 o1 Ly Ly, = =2 205% + 0% () +{ [ o) (.00
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Finally, using formula (2.48) we rewrite (4.44) as

(0Y)7000" — 07G,(0%) v = —2(21 9% + 0%5p) ((Oﬁ)xa + {045’7} 0'7> ) (4.45)

Thus, we have reduced the proof of the operator identity (4.41) to the proof of
the identity (4.45) for Pauli matrices. Calculations proving (4.45) are performed in
Subsection 4.6.1. [J

It remains only to note that formula (4.40) implies
D = | det gua|""* Dyraq | det g | ~/*. (4.46)

We identify a 4-column of complex-valued half-densities v with a bispinor field ¢ by
means of the formula
v = |det gog|'/* . (4.47)

Substituting (4.46) and (4.47) into (2.28) we get
| det gn)\|1/4 Dtrad ¢ =0. (448)

Clearly, equation (4.48) is equivalent to equation (4.39).

4.6.1 Technical calculations

In this subsection we prove the identity (4.45).

Let us fix an arbitrary point P € M and prove the identity (4.45) at this point. As
the left- and right-hand sides of (4.45) are invariant under changes of local coordinates z,
it is sufficient to prove the identity (4.45) in Riemann normal coordinates, i.e. local

coordinates such that = 0 corresponds to the point P, the metric at z = 0 is

Minkowski and %g;; (0) = 0. Moreover, as the identity we are proving involves only
first partial derivatives, we may assume, without loss of generality, that the metric is
Minkowski for all # in some neighbourhood of the origin.

Further on we assume that the metric is Minkowski. We need to prove
QR=0, (4.49)

where
Q = (0%)76007 — 0750(0%) s + 2 (21g%5 + 0%55) (07) e (4.50)
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Formula (4.50) can be rewritten in more compact symmetric form
Q = (0%)p70,07 + 075,(0%)r + 4(0%) za. (4.51)

Using formulae (2.38), (2.39) and the fact that the metric is Minkowski we can now
rewrite (4.51) as

Q= (0)1(—29a" — 6704) + (—29"q — 0067)(0%) v + 4(0%) 3a
= —(0Y)0704 — 0,07 (0%) sy = —(0%)1n07 04 — 067 (00) 1

=0%67)p100 — (096704) 2. (4.52)
Formula (2.44) allows us to rewrite formula (4.52) in the form
Q =2 [adj ((5’7);57) - (adj 5"Y)x'y] .

As the operations of matrix adjugation (2.24) and partial differentiation commute, we
arrive at (4.49).



Chapter 5

Spectral analysis of the Dirac

operator on a 3-sphere

5.1 Introduction

In this chapter we study the spectrum of the (massless) Dirac operator on a 3-sphere,
S?, equipped with Riemannian metric.

By vy, a = 1,2,3, we denote local coordinates. We specify an orientation, see
Appendix B.1, and use only local coordinates with positive orientation.

We will use the following conventions. Sometimes it will be convenient for us to view
the 3-sphere as the hypersurface (B.1) in Euclidean space R, in which case Cartesian
coordinates in R* will be denoted by x%, a = 1,2, 3,4. Hereinafter we will use bold
script for 4-dimensional objects and normal script for 3-dimensional objects. We will
use Latin letters for anholonomic (frame) indices and Greek letters for holonomic
(tensor) indices. We will use the convention of summation over repeated indices; this
will apply both to Greek and to Latin indices. Also, we will heavily use the analytic
concepts of principal and subprincipal symbol of a differential operator; see definitions
in [45, subsection 2.1.3] for the case of a scalar operator acting on a single half-density
and, more relevantly, [23, Section 1] and [18, Appendix A] for the case of a matrix
operator acting on a column of half-densities.

We equip S? with a Riemannian metric tensor g.5(y), a, 8 = 1,2,3, and study the
corresponding (massless) Dirac operator W. The Dirac operator is a particular first
order elliptic linear differential operator acting on 2-columns of complex-valued scalar
fields (components of a Weyl spinor). It is written down explicitly in Chapter 4; note
that the definition depends on the choice of orientation, see formula (4.25) or formula
(B.3). It is known that the Dirac operator W is a self-adjoint operator in L?(S?; C?)
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whose domain is the Sobolev space H'(S?; C?), and that the spectrum of W is discrete,

accumulating to +o00 and to —oo. Here the inner product in L*(S*; C?) is defined as

(v,w) = /S3 (w*v \/det gag) dy, (5.1)

where the star stands for Hermitian conjugation and dy = dy'dy?dy3. Furthermore, it
is known that all eigenvalues have even multiplicity because the linear Dirac operator

commutes with the antilinear operator of charge conjugation

v = (Zl> — (_UUQ) =: C(v),

see [15, Appendix A] for details.

The Dirac operator W describes the massless neutrino. We are looking at a single
neutrino living in a closed 3-dimensional Riemannian universe. The eigenvalues are
the energy levels of the particle. The tradition is to associate positive eigenvalues with
the energy levels of the neutrino and negative eigenvalues with the energy levels of the
antineutrino. In theoretical physics literature the (massless) Dirac operator is often
referred to as the Weyl operator which explains our notation.

The Dirac operator is uniquely defined by the metric modulo the gauge transforma-
tion

W — R*WR, (5.2)

where

R:S* — SU(2) (5.3)

is an arbitrary smooth special unitary matrix-function. Obviously, the transformation
(5.2), (5.3) does not affect the spectrum.

Fortunately, for the purposes of this chapter the issue of spin structure is irrelevant
because it is known [7, Section 5], that the 3-sphere admits a unique spin structure.
In other words, when we work on S? equipped with a Riemannian metric ¢ the
constructions from Section 4.3 define the massless Dirac operator uniquely modulo
the gauge transformation (5.2), (5.3). See also Section 4.4 for a discussion of spin

structure.
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5.2 Two-term perturbation formulae for small eigen-

values

The standard metric (go)ag(y) on S? is obtained by restricting the Euclidean metric
from R* to S®. For the standard metric the spectrum of the (massless) Dirac operator
on S* has been computed by different authors using different methods [47, 48, 6, 7]

and reads as follows: the eigenvalues are

1
i(k+>, E=12...,
2
with multiplicity k(k + 1).
We now perturb the metric, i.e. consider a metric gos = gas(y; €) whose components
are smooth functions of local coordinates y*, a = 1, 2, 3, and small real parameter €

and which turns into the standard metric for € = 0:

9ap(¥;0) = (90)as(y)-

Let A, (€) and A_(e€) be the lowest, in terms of absolute value, positive and negative

eigenvalues of the Dirac operator W (e). Our aim is to derive the asymptotic expansions
3
As(e) = j:§+)\$)e+)\(f)e2—|—0(63) as e — 0. (5.4)

Note that AL(€) are double eigenvalues which cannot split because eigenvalues of the

Dirac operator have even multiplicity. Note also that the arguments presented in

[17] apply to any double eigenvalue of the Dirac operator on any closed orientable

Riemannian 3-manifold, so we know a priori that A+ (€) admit the asymptotic expansions

(5.4). The issue at hand is the evaluation of the asymptotic coefficients )\(il ) and )\f ).
Let

Ve = [ pedy. (55)

dy = dy'dy?dy?, be the Riemannian volume of our manifold. Here

p(e) = p(y;€) == \/det g (y; €)

is the Riemannian density for the perturbed metric.
Then
Vie)=VO vle 4 O(2) as e —0, (5.6)
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where
VO = /S3 pody = 27 (5.7)

is the volume of the unperturbed 3-sphere,

Po = Po(y) = det(g(]);w(y>

is the standard Riemannian density on the 3-sphere,

1
V(l):f/ has (90)°% po d 5.8
5 ) fres (90)* po dy (5.8)
and 5
Jap
oy = 9B 5.9
p Oe 0 (5.9)
Theorem 5.2.1. We have
A — Ly, (5.10)
472

We see that the dependence of the two lowest eigenvalues, Ay (e), on the small
parameter € is, in the first approximation, very simple: it is determined by the change
of volume only. As expected, an increase of the volume of the resonator (volume of
our Riemannian manifold) leads to a decrease of the two lowest natural frequencies
(absolute values of the two lowest eigenvalues). Furthermore, formulae (5.6), (5.7) and
(5.10) imply

AW 1V

IV (5.11)

where by 2D = i% we denoted the unperturbed values of the two lowest eigenvalues.

Now put £(¢) := (V(e))/? = ¢© (1 + %%6—}- 0(62)), where (0 = £(0) = (27%)1/3.
The quantity ¢(e¢) can be interpreted as the characteristic length of our Riemannian

manifold. It is easy to see that formula (5.11) is equivalent to the statement

e
/\i(e):m—kO(e ) as e—0,
which shows that in the first approximation the two lowest eigenvalues are inversely
proportional to the characteristic length of our Riemannian manifold.
An important topic in the spectral theory of first order elliptic systems is the issue
of spectral asymmetry [1-4, 17|, i.e. asymmetry of the spectrum about zero. From a
physics perspective spectral asymmetry describes the difference between a particle (in

our case massless neutrino) and an antiparticle (in our case massless antineutrino).
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Formulae (5.4) and (5.10) imply
Ar(e) +A_(e) = (/\f) + )\(_2)>62 + O(e) as € — 0,

which means that there is no spectral asymmetry in the first approximation in € but
there may be spectral asymmetry in terms quadratic in e.
We will now evaluate the asymptotic coefficients )\f ). We will do this under the

simplifying assumption that the Riemannian density does not depend on e:

Vdet g (y: €) = \/det(g0) (4) (5.12)

so that V) = 0. In mechanics such a deformation is called shear. Then Theorem 5.2.1

implies A = 0, so formula (5.4) now reads
At (€) = j:g + 2P 1+ 0 as € —0. (5.13)

In order to evaluate the asymptotic coefficients )\(f) we need to introduce triples
of special vector fields (K4);, j = 1,2,3. For their definitions and properties see
Appendix B.2. Here we mention only that these are triples of orthonormal Killing
fields with respect to the standard (unperturbed) metric.

Put

(ha)jk = hap (K+);" (K2)”, (5.14)

where h,g is the real symmetric tensor from (5.9). Note that the elements of the 3 x 3
real symmetric matrix-function (hy);i(y) are scalars, i.e. they do not change under
changes of local coordinates y. Further on we sometimes raise and lower frame indices
(see Section 4.3) and we do this using the Euclidean metric. This means, in particular,
that raising a frame index in (hy);; does not change anything.

Put also

9
oy’

The operators (5.15) are first order linear differential operators acting on scalar fields

(Ly); = (K1), j=1,2,3. (5.15)

over S®. The fact that our (K4); are Killing vector fields implies that the operators
(5.15) are formally anti-self-adjoint with respect to the standard inner product on
scalar fields over S®. Tt is also easy to see that our operators (L.);, j = 1,2, 3, satisfy

the commutator identities

[(L+)j, (La)k] = F2e5m(La )i, (5.16)
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where €y, is the totally antisymmetric quantity, 123 1= +1.

Let A be the Laplacian on scalar fields over S* with standard (unperturbed) metric.
Our A is a nonpositive operator, so our definition agrees with the one from basic
calculus. By (—A)~! we shall denote the pseudoinverse of the non-negative differential
operator —A, see Appendix B.3 for explicit definition. Obviously, (—A)~! is a classical
pseudodifferential operator of order minus two. This follows from the facts that the
parametrix of A is a classical pseudodifferential operator of order minus two and the
projection onto the kernel of the Laplacian is a smoothing operator, which follows from

the elliptic regularity theorem.

Theorem 5.2.2. Under the assumption (5.12) we have

@_ 1
A= 53 /s3 Py pody, (5.17)
where
1
P, = iz(hi)jk(hi)jk
1
- quks(hi)jq [(L+)s(hx) ]

(5.18)

1 —1
£ 5 (s [(—8) 7 (L)L) () ]

1 -1
— ey [(~) (L) (L) (L) ()]

Theorem 5.2.2 warrants the following remarks.

Remark 5.2.3.

(a) We chose the factor 5= in the RHS of (5.17) based on the observation that the
volume of the unperturbed 3-sphere is 272, see formula (5.7). This will simplify
the comparison with the appropriate formulae previously derived for the 3-torus,

see item (f) below, and it will also simply calculations that will be carried out in
Subsection 5.6.3.

(b) The terms in the RHS of (5.18) are written in such an order that each subsequent

term has an extra appearance of a first order differential operator L .

(c) The operators (—A)™*(Ly)s(L+); and (—A) ' (Ly).(L+)s(L+); appearing in the
last two terms in the RHS of (5.18) are pseudodifferential operators of order 0

and 1 respectively.
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(d)

The fact that the operators (Ly);, 7 = 1,2,3, are formally anti-self-adjoint with
respect to the standard inner product on S® implies that for any scalar field
f:S* — C we have

L) flpmdy =0, (5.19)

Formula (5.19) implies that in the last two terms in the RHS of (5.18) the

operator (—A)~! acts on functions from (Ker A)=.

The operators (L4 ); commute with the scalar Laplacian, hence, they also commute
with (—A)~!. Therefore, the last two terms in the RHS of (5.18) can be written

in a number of equivalent ways.

The second and fourth terms in the RHS of (5.18) have a structure similar to
that of formula (2.5) from [17]. In fact, if one adjusts notation to agree with
that of [17], then it turns out that the second and fourth terms in the RHS of
(5.18) are, in effect, an equivalent way of writing formula (2.5) from [17]. See

Subsection 5.2.1 for more details.

The first and third terms in the RHS of (5.18) do not have an analogue for the

case of the 3-torus [17]. Their appearance is due to the curvature of the 3-sphere.
The first term in the RHS of (5.18) can be rewritten as

1 o vT
+ Zh,uzz ha‘r (QO)M (90) ) (520)

which means that this term does not feel the Killing vector fields (K1);, j = 1,2, 3,

and, hence, does not contribute to spectral asymmetry. Put

1

?L/u/ = hw/ - g 5/U/ h‘O’T (QO)UT )

which is the part of the deformation tensor h,, describing shear (deformation
preserving Riemannian density). Formula (5.12) implies hy- (g0)’” = 0, so in

our case hy, = h,, and the expression (5.20) takes the form

+ 1 h;w hor (90)”0 (go)w .

Such an expression describes the elastic potential energy generated by shear, see
formula (4.3) in [37].
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(i) For a generic perturbation of the metric we expect
AP 4 A® £, (5.21)

which means that we expect spectral asymmetry in terms quadratic in €. An
example illustrating the inequality (5.21) will be provided in Subsection 5.6.3:
see formulae (5.88) and (5.89).

(j) Let us expand the metric tensor in powers of the small parameter € up to quadratic

terms:

9as(Y: €) = (90)ap () + hap(y) € + kap(y) € + O(€?) as e — 0.

Here the tensor hag is defined by (5.9) whereas kog := ; 828%55

o One would
expect the coefficients /\g) in the asymptotic expansions (5.13) of the lowest
eigenvalues to depend on the tensor k,z, but Theorem 5.2.2 tells us that it is
not the case. Here a rough explanation is that the only way the tensor ks can
appear in the formulae for )\(f ) is linearly, however, condition (5.12) ensures that

the linear terms in the map
perturbation of metric —  perturbation of lowest eigenvalues

vanish.

5.2.1 Comparison with the 3-torus

If we leave only the second and fourth terms in the RHS of (5.18), substitute this
expression into (5.17), drop the subscripts 4+ and use (5.7), we get

1

@ _ __ -
AT = o

€ ghs /S (g [Lshie] + hrg [(=8) 7 Lo Lo Lihy ) po dy (5.22)
Formula (5.22) coincides with the result from [17, Theorem 2.1] if we put V© = (27)3
(volume of the unperturbed torus), po = 1 and L; = §;%0,, with 0, denoting partial

differentiation in the ath cyclic coordinate on the 3-torus.
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5.3 Preparatory material

In this section we present auxiliary results which will be used later in the proofs of
Theorems 5.2.1 and 5.2.2. Both theorems offer a choice of signs, so for the sake of
brevity we present all our preparatory material in a form adapted to the case of upper

signs.

5.3.1 The unperturbed Dirac operator

Suppose that € = 0, i.e. suppose that we are working with the standard (unperturbed)
metric. It is convenient to write the (massless) Dirac operator using the triple of vector
fields (K4 );, j = 1,2,3, defined in Appendix B.2 as our frame, see Section 4.3 for the
definition of a frame. Straightforward calculations show that in this case the Dirac

operator reads
, 3
WO = —isd(Ly); + 51 (5.23)

where s/ are the standard Pauli matrices (4.16), (L), are the scalar first order linear
differential operators (5.15) and I is the 2 x 2 identity matrix. The superscript in W)
indicates that the metric is unperturbed.

Let v(9 be a normalised eigenfunction corresponding to the eigenvalue +% of the

unperturbed Dirac operator (5.23). For example, one can take

0@ = \/%W ((1)) : (5.24)

1
Here one can replace 0 by any other constant complex 2-column of unit norm. The

freedom in the choice of v(¥ is due to the fact that +% is a double eigenvalue of the
unperturbed Dirac operator. The choice of a particular v(9) does not affect subsequent
calculations, what matters is that v(©) is a constant spinor.

Choosing the optimal frame (gauge) is crucial for our subsequent arguments because
we will heavily use the fact that the eigenspinor v(® of the unperturbed Dirac operator
is a constant spinor. See also Remark B.2.1(c).

Observe that the triple of vector fields (£} ),;* uniquely defines a triple of covector
fields (K, )’,: the relation between the two is specified by the condition

(K+)ja(K+>ka = 5jk7 j> k= 17 27 3. (525)
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Of course, the covector (K, )7, is obtained by lowering the tensor index in the vector
(K4);* by means of the standard metric on S®. Here the position of the frame index 7,
as a subscript or superscript, is irrelevant.

In the next subsection we will make use of both the vector fields (K );* and the
covector fields (K )7,.

5.3.2 The perturbed Dirac operator

Let e;%(y; €) be a frame corresponding to the perturbed metric gog(y;€), see Section 4.3

for the definition of a frame. This frame can be written as

e;"(y;€) = (c);"(y; €) (K )k (y) (5.26)

where (c,);* are some real scalar fields. Without loss of generality we choose to work

with frames satisfying the symmetry condition

k

(c4);" = (e )i, (5.27)

which can always be achieved by an application of a gauge transformation — multipli-
cation by a 3 x 3 orthogonal matrix-function. Then formulae (5.9), (5.14), (5.26) and
(5.27) imply
€
(c)i"(y;e) = 6,7 — §(h+)jk(y) +O(€). (5.28)
The frame (5.26) uniquely defines the corresponding coframe e/, analogously to

(5.25):
;%" = 6 j ok =1,2,3. (5.29)

J

Of course, the covector €/, is obtained by lowering the tensor index in the vector e;*
by means of the perturbed metric g,5(y; €) on S. Formulae (5.26), (5.25) and (5.29)

imply |
lalyie) = (de)i(ys ) (K kaly) (5.30)

where
(ep)*(d)v =0 4,1=1,2,3. (5.31)

By (5.31) and (5.27), the matrix of scalar coefficients (d )’y is also symmetric,

(ds)h = (de); . (5.32)
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Formulae (5.28), (5.31), (5.27) and (5.32) give
(d:) (i) = & + 5 (i )jnly) + O(). (5.33)

Let W (e) be the perturbed Dirac operator and let W 5(€) be the corresponding

perturbed Dirac operator on half-densities. According to (4.26), the two are related as

W(e) = (p(e) /2 Waya(e) (ple)) >, (5.34)

Lemma 5.3.1. The perturbed Dirac operator on half-densities Wy2(€) acts on 2-

columns of complez-valued half-densities vy/2 as

o = 87 ()2 [(e )ALk + (L elen )] (o) 2 on

+ (W1y2(€))sub v1/2 5

(5.35)

where (W1 /2(€))sup 5 its subprincipal symbol.

Let us emphasise that the Riemannian density appearing in (5.35) is the unperturbed
density py and not the perturbed density p(e) as in (5.34).

Proof of Lemma 5.3.1. Formulae (4.19) and (5.34) tell us that the principal symbol of
the operator Wy/s(€) is 0%(y; €)pa . Using formulae (2.45), (5.26) and (5.15) we can

rewrite this principal symbol as

—is? (c4);* [(L+ )il prin - (5.36)

But (5.36) is also the principal symbol of the operator (5.35), so the proof reduces to
proving that the operator

o =27 (p0) 7 [(e ) (L + (L slen )] (o0) ™ wnyo

has a zero subprincipal symbol. By [45, Proposition 2.1.13] it is sufficient to prove that
the operators (po)"/2(L.)r(po) "%, k = 1,2,3, have zero subprincipal symbols. But
the latter is a consequence of (5.15) and the fact that our (K );®, being Killing vector
fields with respect to the unperturbed metric, are divergence-free.

An alternative approach is as follows. We want to show that

NI

(Ly )k = (p0)* (L )i(po) ™
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has zero subprincipal symbol. We first write down its full symbol:

1

(L 1 )elysm) = i(B3 )k 0 + 95 (K4 )" Oy (po *) -

Then the subprincipal symbol is

1 _1 1 )
(L )rlsup = p6 (B4 )10y (po *) — 5:0y0n, (i(K4)k"np)
1 _1 1
=P (K+>kaaya (Po 2) - §ay6(K+)k:B
1 _1 1
= (K )e( P30y (po ®) — 5 (K3 ) a0ys (K1)” ) . (5.37)
2

Now, let K, denote the matrix with entries (K );®. Note that

1

POy (0 *) = 0y n ") = S0y [Indet(K )] = S0y [ irIn(ic, )]
= St [ae ()] = 2t (K70, (K] = (K50, (K,),” . (539)

Hence, equation (5.37) becomes

(L il = (K (SO 00 (K = () a0 ()
= (08 (G0 (Yo = 5K ), 00 ()

= S, (O (o = 0 (K3 ) = Sd P (K (KL ) - (539
Now, we view (K ); as vector fields and observe that we have the following identity
dw(X,Y) = X(w(Y)) = Y (w(X)) - w([X,Y]),

for any vector fields X, Y and any 1-form w. Therefore, equation (5.39) becomes

(L il = Al (K (561,
(K07 (0, ) = 003 (0P ((08) ) = (07 (10, (), )

= S (K (1)) (5.40)

1
2
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Since [(K4)k, (K4);] = —2¢e4;: (K4 )i, expression (5.40) reduces to
[(L—&-,%)k]sub = 5ka‘<K+)j<<K+)Z-> — 5ka'5ij -0,

which ends the proof. O

According to [15, formulae (6.1) and (8.1)] the explicit formula for the subprincipal

symbol of the Dirac operator on half-densities reads

(WI/Q(G))sub = If<€>7 (541)
where [ is the 2 x 2 identity matrix and f(e) = f(y;¢€) is the scalar function

l l l

=509 o

(5.42)

with e, = e*;(y; €).
Combining formulae (5.34), (5.35), (5.41) and (5.42) we conclude that the perturbed

Dirac operator W (e) acts on 2-columns of complex-valued scalar fields v as
Ll [P kor L k @ 4
v =gl R e MLt Landen ]y 200 + fOv. Gy
Of course, when € = 0 formulae (5.43) and (5.42) turn into formula (5.23) with
WO = w(0).
5.3.3 Half-densities versus scalar fields

Given a pair of 2-columns of complex-valued half-densities, v,/ and w2, we define

their inner product as

(Vij2,wyy2) = /Sg(wl/Q)*Ul/Z dy . (5.44)

The advantage of (5.44) over (5.1) is that the inner product (5.44) does not depend
on the metric. Consequently, if we work with half-densities, perturbations of the
metric will not change our Hilbert space. And, unsurprisingly, the perturbation process

described in [17, Section 4] was written in terms of half-densities.
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The explicit formula for the action of the operator W 5(€) reads

s = = 550 (o) 2 [(e) (Lo (L] (o) P o

+ f(e)viy2,

(5.45)

where f(e) is the scalar function (5.42).
Formulae (5.45) and (5.42) give us a convenient explicit representation of the
perturbed Dirac operator on half-densities 17 5(e). We will use this representation in

the next two sections when proving Theorems 5.2.1 and 5.2.2.
When e = 0 formulae (5.45) and (5.42) turn into

L _ 3
vz = —is? (o) /2 (L )i(po) ™ P10 + S0/2;

which is the action of the unperturbed Dirac operator on half-densities I/V1 /o= = W1,2(0).
The normalised eigenfunction of the operator Wl(% corresponding to the eigenvalue —l—%
reads

vl = p v, (5.46)

where v is given by formula (5.24).

5.3.4 Asymptotic process
Let us expand our Dirac operator on half-densities in powers of ¢,
W1/2(€) - W1/2 + €W1/2 + EQW]_/Q + (547)

Then, according to [17, formulae (4.12) and (4.13)], formula (5.4) holds with

1 _ (1,0 (0

A= < Wia 012,01/ > (5.48)
(2 _ (2,0 (0 1) (1) (1) ) (0

AL = <W1/201/27U1/2> < (Wl/Q )Ql 2( 1/2 — Ay I) v1/2,v1/2> (5.49)

where ()12 is the pseudoinverse of the operator Wl(% — %I . See [17, Section 3| for

definition of pseudoinverse.

Lemma 5.3.2. We have

(Was o o) = (SO o) = 55 [ F@mdy.  (5.50)
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Proof. Substituting (5.45), (5.46) and (5.24) into the LHS of (5.50) and using Remark
5.2.3(d), we see that the terms with (L) integrate to zero, which leaves us with the

RHS of (5.50).
Let us now expand the scalar function f(e) in powers of our e,
flO)=fO4ef® 4@

Here, of course, f(© = f(0) =2

5-

Formulae (5.50), (5.47) and (5.51) imply

]

(5.51)

) (0 O\ _ / sm).© (©\_ 1 n _
<W1/2U1/27711/2>—<f()01/2,1)1/2> —/ng()pody, n=0,1,....

- 2m?
Then formulae (5.48) and (5.49) become
AL 1/ O pody
* 212 Js3 PoCY

@ _ 1 NG O O @ O
AV = ﬁ/ss f(2) pody — < (W1/2 — Ay I>Q1/2<W1/2 — Ay I) Y12 ,v1/2>

1 1 1 0 1 1 0
- /S O pody —{ Qua(Wi = AP o0 (W) = AV,

5.4 Proof of Theorem 5.2.1

We prove Theorem 5.2.1 for the case of upper signs.
We have

€
p(€) = po (1+ Shas (90)° +0()).
Using formulae (5.30), (5.32) and (5.33), we get

1 ==

. R T R ] Dy
S <1 + %(m)jj 4 0(62>) = 6pp <1 4 %haﬁ (g0)" + O(E2>) .

+

Substitution of (5.54) and (5.55) into (5.42) gives us

1
f(l) = _ihaﬁ (90)a5~

Finally, substituting (5.56) into (5.52) and using (5.8), we arrive at (5.10).

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

O
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5.5 Proof of Theorem 5.2.2

We prove Theorem 5.2.2 for the case of upper signs.
Recall also that we are proving this theorem under the assumption (5.12). This
implies, in particular, that
A =o. (5.57)

With account of (5.57), in order to use formula (5.53) we require the expressions for
the scalar function £ and for Wl(/l% U§(;)2
Substituting (5.30) and (5.33) into (5.42) and using (5.12) and (5.32), we get

fO =0, (5.58)

o= (h+)gk(h+) 1165qks(h+)jq (L1 )s(hs)u] - (5.59)

Examination of formulae (5.45), (5.28) and (5.58) gives us the explicit formula for
the action of the operator Wl(/l% :

s = 150 (00 2 (B e+ (B el (o) Pongee (560

Acting with the operator (5.60) on the eigenfunction (5.46) of the unperturbed massless

Dirac operator on half-densities, we obtain

Wil = ()25 o (Ll )] (5.61)
Using formula (5.61), we get

— (@2 Wi Wil )
S @0 e ([[0] 57 (00) ™7 Qg (p0) > 87 0] [(Li)uh )] ) oy

16
(5.62)

But (po) /2 Q1/2 (po)"/* = @, the pseudoinverse of the operator W — 2. Hence,

formula (5.62) simplifies and reads now

(1), (0)
< Q1/2 W1/2 1/2 g W1/2 V12 >

1

. . (5.63)
= 16 S [ L (e ([1O] 57 Q" 0] [(L)sh)] ) pody.

16
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Observe now that we have the identity

(W<°> - ;1)2 — (~A+ 1), (5.64)

where [ is the 2 x 2 identity matrix and A is the Laplacian on scalar fields over S? with
standard metric. Formula (5.64) can be established by direct substitution of (5.23)
and the use of the commutator formula (5.16). Formula (5.64) appears also as Lemma
2 in [6].

Formula (5.64) implies

Q

I
—~
>
N~—
L
/g
<
_l’_
\
~
N———
I

(=A) 7 (=is' (Ly) +20) (5.65)

Formula (5.65), in turn, gives us the following representation for the scalar pseudodif-
ferential operator [v(o)} "51Q 57 0O
{Um)}*sq Qs p©
. « , (5.66)
=2 ({U(O)} sts’ v(0)> (—A) ™t —i ({U(O)} 575! g7 U(O)) (=A)"HLy),.

Substituting (5.66) into (5.63), we get

—(Qua Wijs vy Wijs vl )
= 5 ([¢O) 057 0®) [0y [(-8)7 (E e oy
b2 (1[00] 550 [ 0] [(-8) (Ll )] ooy
o Re (i) 57 50O [ (i [(-A) LD L (Ll )] oy
(5.67)

But

Re ([U((J)}*Sq 510(0)) — ([U(O)}*(quj + SJSQ)U<°>)
.qj ([0©] 10©) = 2;5@,
Re (z [U(O)rsq stsl U(O)) = % ([U(O)r(sqslsj — sjslsq)v(o))

— —eti ([o®]" 16) _212€qu,
m

N | —

>
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where we made use of (5.24). Hence, formula (5.67) simplifies and reads now

1 _
~(Qua Wil Wil ) = 75 [ (i [(=2) 7 (L) (Lol )i oo dy
1

+ 3972 Eqlj /S3<h+>qr [(_A)fl(L+)T<L+)Z(L+)k<h+)jk} pody .
(5.68)

Substituting (5.59) and (5.68) into (5.53) we arrive at (5.17), (5.18) with upper
signs. O

5.6 Generalized Berger spheres

A left-handed generalized Berger sphere is a 3-sphere equipped with metric
gos = Con( K Va5 (5.69)

where C' = (Cj)?,-, is a constant 3 x 3 positive real symmetric matrix and (K )7,
7 =1,2,3, are our special covector fields defined in accordance with Section 5.2 and
formula (5.25). One can, of course, define in a similar fashion right-handed generalized
Berger spheres: these involve the covector fields (K_)?,, 7 = 1,2,3. However, in this
section, as in [28], we restrict our analysis to left-handed ones.

One can always perform a rotation in R?* so that (5.69) turns to

9as = D aj (K Y o(KL) s, (5.70)

j=1

where a;, j = 1,2,3, are some positive constants. In formula (5.70) the (K} )7,,
7 =1,2,3, are new covector fields defined in the new Cartesian coordinate system in
accordance with formulae (B.4) and (5.25). Of course, a7 are the eigenvalues of the
matrix C'. Further on we assume that our generalized Berger metric has the form
(5.70).

To the authors’ knowledge, metrics of the type (5.70) were first considered in
Section 3 of [28]. The expression “generalized Berger sphere” first appears in [27].
The standard (as opposed to the generalized) Berger sphere corresponds to the case

as = a3 = 1, and the standard sphere corresponds to the case a; = ay = a3z = 1.
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For future reference, let us give the formula for the Riemannian volume (5.5) of the

generalized Berger sphere:
V = 27%ayaq0; . (5.71)

5.6.1 Dirac operator on generalized Berger spheres

The remarkable feature of generalized Berger spheres is that for these metrics the
calculation of eigenvalues of the (massless) Dirac operator reduces to finding roots of
polynomials.

The Dirac operator (5.43) corresponding to the generalized Berger metric reads

3
1 .

j=1 4

where ) ) )
y— G teta (5.73)
2a1a9a3

In writing (5.72) we followed the convention of choosing the symmetric gauge, see
formulae (5.27) and (5.32). The constant (5.73) was written down by means of a careful
application of formula (5.42).

Note that formula (5.72) appears also in Proposition 3.1 of [28].

Examination of formula (5.72) shows that A = v is an eigenvalue of the Dirac
operator, with the corresponding eigenspinors being constant spinors.

In order to calculate other eigenvalues of the Dirac operator it is convenient to
extend our spinor field from S? to a neighbourhood of S in R* and rewrite the operator

in Cartesian coordinates. Substituting (B.4) into (5.72), we get

3
1 .

j=1%j
where
(Ly), = —x10) — x30, + x205 + x10,,
(L) = x°01 — x*0y — x'05 + X704, (5.75)
(L+)3 = —X281 + x182 - X483 + X3a4 .
Here the way to work with the Cartesian representation of the Dirac operator is to act

with (5.74), (5.75) on a spinor field defined in a neighbourhood of S* and then restrict
the result to (B.1). It is easy to see that under this procedure the resulting spinor field
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on S? does not depend on the way we extended our original spinor field from S? to a
neighbourhood of S? in R*.

The operators (5.75) commute with the scalar Laplacian in R*. This implies that
these operators map homogeneous harmonic polynomials of degree k£ to homogeneous
harmonic polynomials of degree less than or equal to k. Hence, the eigenspinors of the
Dirac operator can be written in terms of homogeneous harmonic polynomials. Of
course, the restriction of homogeneous harmonic polynomials to the 3-sphere (B.1) gives
spherical functions, but we find working with polynomials in Cartesian coordinates
more convenient than working with spherical functions in spherical coordinates (B.2).

Let us seek an eigenspinor which is linear in Cartesian coordinates x%, a =
1,2,3,4. Such an eigenspinor is determined by eight complex constants and finding
the corresponding eigenvalues reduces to finding the eigenvalues of a particular 8 x 8
Hermitian matrix. Explicit calculations (which we omit for the sake of brevity) show
that the characteristic polynomial of this 8 x 8 Hermitian matrix is the square of a

polynomial of degree four whose roots are

1 1 1

y—— — — — —, (5.76)
aq a9 as
1 1 1

v —+ —+—, (5.77)
ai az  as
1 1 1

vt —— — 4 —, (5.78)
aj 45) as
1 1 1

v+ —+— - —. (5.79)

One can repeat the above procedure for homogeneous harmonic polynomials of
degree n = 2,3,..., thus reducing the problem of finding eigenvalues of the Dirac
operator on a generalized Berger sphere to finding roots of polynomials. See Appendix
B.4 for further details.

5.6.2 Testing Theorem 5.2.1 on generalized Berger spheres

From now on we will assume that the positive constants a; are close to 1. This
assumption will allow us to identify the lowest, in terms of modulus, positive and
negative eigenvalues of the Dirac operator.
When a; = ay = a3z = 1 the expression (5.73) takes the value —i—% and the expression
(5.76) takes the value —2 . Hence,
AL =v (5.80)
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is the lowest positive eigenvalue of the Dirac operator and

A =v————— — (5.81)
a;  ay as

is the lowest, in terms of modulus, negative eigenvalue of the Dirac operator. Recall
that v is given by formula (5.73). As to the expressions (5.77)—(5.79), their values are
close to —i—% .

In this subsection and the next one we assume that the constants a; appearing in
formula (5.70) are smooth functions of the small parameter € and that a;(0) = 1.

Expanding (5.71), (5.80) and (5.81) in powers of €, we get

V(e) = 2m* (14 (aj + dy + ab)e + O(e)), (5.82)
3 1 ! / ! 2
At (€) = i§ F §(a1 + ah, + as)e+ O(€7) , (5.83)
where p
)
a; = — B

Formulae (5.4), (5.6), (5.7), (5.82) and (5.83) imply (5.10). Thus, we are in agreement
with Theorem 5.2.1.

5.6.3 Testing Theorem 5.2.2 on generalized Berger spheres

In this subsection we make the additional assumption
ai(€) az(e) az(e) =1, (5.84)

which ensures the preservation of Riemannian volume (5.71) under perturbations. But
generalized Berger spheres are homogeneous Riemannian spaces, so preservation of
Riemannian volume is equivalent to preservation of Riemannian density. Hence, (5.84)
implies (5.12), which is required for testing Theorem 5.2.2.

For future reference note that formula (5.84) implies
ay+ay +ay =0, (5.85)

Al 40+ a + 2ahay + abay + ) = 0, (586)
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where )
a = d a;
JjoT de?

Expanding (5.80) and (5.81) in powers of € and using formulae (5.85) and (5.86),
we get

(5.87)

e=0

A0 = 2+ (@) + (@) + (@))€ + 0, (5.88)
A () =5+ 5 (@) + (@) + (@)?) @ + 0. (5.59)

Note that the second derivatives (5.87) do not appear in formulae (5.88) and (5.89),
which is in agreement with Remark 5.2.3(j).

We first test whether formula (5.88) agrees with Theorem 5.2.2. Calculating the
scalars (5.14) with upper sign, we get

3
(h+)jk =2 Z CLE 5lj (slk . (590)
=1
Formulae (5.18) and (5.90) imply
P, = (a})* + (a3)" + (a3)”. (5.91)

Substituting (5.91) into (5.17) and using (5.7), we get A? = (a))? + (a})? + (a})?,
which is in agreement with (5.88).

In the remainder of this subsection we test whether formula (5.89) agrees with
Theorem 5.2.2. This is trickier because the scalar fields (h_); are not constant.

Consider the matrix-function

(x1)2 = (x2)2 — (x3)2 + (x*)2 2(x1x2 — x3xt) 2(x %3 + x2xt)
O, = 2(x'x? 4 x3x*) (<12 4 (57)2 = (x%)2 4 (xh)? 2(x2x3 — x'x%) (5.92)
2(x x3 — x2xt) 2(xx* + x2x3) “(x1? = (x2)2 4 (x3)? 4 (xH)?

whose elements are homogeneous harmonic quadratic polynomials. Let O be the
restriction of the above matrix-function to the 3-sphere (B.1). Note that the matrix-
function O is orthogonal. Let us denote the elements the matrix-function O by O,
with the first subscript enumerating rows and the second enumerating columns. The

two sets of scalar fields, (h4);x and (h-);x, are related as
(h=)a = Oij(hs ) 1O (5.93)

Substitution of (5.90) into (5.93) gives us explicit formulae for the scalar fields (h_); .
We now need to substitute (5.93) into the formula for P_, see (5.18).
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Observe that the (spherical) functions Oy, satisfy the identity
(L-)i O, = 2645, Oy . (5.94)
Justification. Recall that in the 4-dimensional setting we have
(K);* = O, (K4),®, (5.95)

where the (K. );* are defined by formula (B.4). Let Oj; and (K1); be the restrictions
of O, and (K. ), to the 3-sphere and gy = ¢g(0) be the unperturbed metric on the

3-sphere. Now, we have

g0 (K2 (K ) = oo ()5, (K ) = b

and
0} = O = go ((K-)j: (K )i (5.96)

Here we view the (K4 ); as vector fields on the 3-sphere, which is the same as working

with the operators (L4 ); on the 3-sphere. To simplify notation, we now use g for go

and V for V°. Thus,

(L)p{Oun) = (K )y g(( ) (1))
= 9V, (s (K ) + (K)o Ve (Ba) . (597

Then we use the formula

VxY — VyX = [X,Y], (5.98)

for our torsion-free Levi-Civita connection and the formula
(K_)j, (Ky)k] =0 for j,k=1,23.
Thus, equation (5.97) becomes

(LOmn) = 9(V e, B (K)a) = (K Vi (K )  (5:99)

Recall also that
[(K-)j, (K )k] = 2eu(K ).
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Combining the above formula with equation (5.98), we get

V. (K)n=V

(K_)p

(K )p+ 26pmq(K ), - (5.100)

(K_)m

Substitution of (5.100) into equation (5.99) gives

(L Omn) = 9( Vi )y + 25ma(K)s (B)a ) = 9 (K Ve, (K0, )

= 22O+ |9( Vo s (K)a) = (KD Ve, () )|
(5.101)

Now, let T = g(V(K)m (K_),, (K+)n) - g((K)m, Vee, (K)p). Then we have

= (Vo K0 = Ve, () (K
= 91000 (K2, (52,
=0, (5.102)
which implies T},,,, = 0. Thus,
(L)p(Omn) = 2€pmgOqn - (5.103)
O

Formulae (5.93) and (5.94) and the fact that the matrix of constants (hy);x is
symmetric imply (L_)s(L_);(h-);x = 0, so the last two terms in the RHS of (5.18)

vanish, giving us

P = =7 (h-)je(h-)je = ggCans(h=)jq [(L-)s(h-)]. (5.104)



5.6 Generalized Berger spheres | 100

We examine the two terms in the RHS of (5.104) separately. As the matrix O is

orthogonal, we have, with account of (5.90),

- fl<h>jk<h>jk ~ —i<h+>jk<h+>jk = —[(a))” + (@})” + (a5)?]. (5.105)

The other term is evaluated by substituting (5.93), using the identity (5.94) and the
fact that our perturbation of the metric is pointwise trace-free (hy);; = 0, which gives

us

— caralh ) (B ()] = 2 ()l )y = S[(@)2 + (ah)? + (a)7]. (5.106)

Substituting (5.105) and (5.106) into the RHS of (5.104), we arrive at
P_ = [(a))? + (ah)? + (a})?]. (5.107)

Substituting (5.107) into (5.17) and using (5.7), we get 2@ = [(a))? + (abh)? + (a})?],
which is in agreement with (5.89).



Appendix A

Correction function f

In this appendix we present some technical calculations needed for the proof of
Proposition 2.5.2.

A.1 Calculations involving the correction function

f and axial torsion
Let us start with formula (2.69):
4
Mg — Z [(5m477np + nmp6n4 . 5m45n4np4>
p=1

(1= 6"y = 6"+ 6™40") (i1 = P0)e™™ + 6™ ) | sy
Then we have
090" = sMs" e e, = (e’ +e%es”)s' +eses’ st (ie R sy + 61 sh) e e (A1)
Using the transformation (2.33) and equation (2.69), we get

507 = 5™ e e, = (e’ —e;%sP)s' ey el st — (icF sy + §ijs4)eiaejﬂ . (A.2)
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Now, we have
06%" = e, sm5% " = e, 6%" + e,7s'5%"
—e4” {(eﬁelﬂ —e;%s?)s" + es%eylst — (i sy + (5ijs4)ei°‘ej6]
+e,7s" [(640‘6/3 — eﬁef)sj + e % st — (icTkls; + 5jk34)ejaekﬁ}
=, {(646“61-'8 —e;%4P)s" + ey%esP st — (ieFsy + 5ij34)eiae]~6]
+ eﬂ{(eﬁejﬂ — e;%4")(ie sy, + 07 s) + e4%e4” s’
— |igm™ (™ 5 + 6Tsh) + (53']“31} ej“ekﬁ} (A.3)
= (eﬂef‘emﬁsm —eele,, 2™ — 5ijei°‘ej56m75m
+ 5ijeﬂejﬂemasm — 6ijeﬂejaem58m +e,%y e%sm>
+ z'sijk< — eﬂeiaejﬁsk + eﬂeﬁejﬂsk — eﬂejaefsk + eﬂejo‘ekﬂszl) , (A.4)

where we used the following identities in transitioning from (A.3) to (A.4):

sist = je sy 4 595t
{ Eijkgi’j’k: _ 5ii’5jj’ _ 5ij’5ji’ . (A'5)
Now, we define a new inner product in dimension four as follows:
< e el > = emo‘enﬁnm” = e, %™ =< &P e >,
Also, let us denote the part without % in the expression (A.4) by A7*?. Then
AP =< 7 P >, entsT— < e el >, em’ s — < e, ef >, en 8™ (A.6)

Observing that the quantity A7*? is symmetric in v and 3, we arrive at formula (2.71).

A.2 Examining equation (2.78)

In this section we shall prove the identity (2.78). For the benefit of the reader we
repeat this identity below:

1
g(VeTpem, en)s"NS" NS = (en" )€™ 0 Gps o NP N +3x 3 2270“/\06/\07 . (A7)
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Let us start with

a aq O 0
g(v€pem’€n) = g([epv(em ) + ep)‘emp Ap]axa&nﬁaxﬁ)

= (em)renaty’ + empenﬁep)‘gagl“ip. (A.8)

Multiplying both sides of (A.8) by s™ A s™ A s? and summing over repeated indices, we
get

9(Ve,em,en)s™ N s" N sP — (em™)srenaty’s™ A 8™ A sP
:empenﬁep)‘gagfi‘psm A s N sP

1 p, B, A o a \.m n P
=gem’en’¢p Gap(T'S, = Tha)s™ A s™ As

1
:§empenﬂep’\T5,\psm A s N sP

1 1
=— x 3! x X 50N P Ao

2 3170
1
=3 X 3 o Mo o? Ao (A.9)



Appendix B

The 3-sphere

In this appendix we list some auxiliary facts related to the 3-sphere.

B.1 Orientation

The unit 3-sphere, S?, is the hypersurface in R* defined by the equation

1]l = 1, (B.1)
where || - || is the standard Euclidean norm. Spherical coordinates
x! cosy*
x? sin y' cos y? 1 9 3
=1 . 5 7 s v,y e(0,m), vy el0,2m), (B.2)
X siny' sin y® cosy
x* sin y* sin /% sin 32

are an example of local coordinates on S3. We define the orientation of spherical
coordinates (B.2) to be positive.

Consider a triple of orthonormal (with respect to the given metric g) smooth
real vector fields e;, j = 1,2,3. Each vector e;(y) has coordinate components e;*(y),
a = 1,2,3. The triple of vector fields e;, j = 1,2, 3, is called an orthonormal frame.
We assume that

dete;* >0, (B.3)

which means that the orientation of our frame agrees with the orientation of our local
coordinates.
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B.2 Special vector fields on the 3-sphere

Working in R* and using Cartesian coordinates, consider the triple of vector fields
(Ki);*, 7 =1,2,3, a=1,2,3,4, defined as

(Ki)1 = (—X4 X +x? Xl) :
(Ki)o = (:i:x3 —x* Fx! x2) , (B.4)

(Ky)s = (IFX2 +x! —x* x3) :
Observe that the vector fields (B.4) are tangent to the 3-sphere (B.1), so let us
denote by (K4);* the restrictions of the vector fields (B.4) to the 3-sphere. Here the

tensor index o = 1,2, 3 corresponds to local coordinates y* on S?. Note that we have
det{(K1);*} > 0, which is in agreement with (B.3).

Remark B.2.1. The vector fields (K1);, 7 = 1,2, 3, constructed above are special

because with the standard metric on S* they possess the following properties.
(a) The vector fields (K); are orthonormal,

(b) The vector fields (K ); are Killing vector fields.

(c) If we write down the Dirac operator W, using (K1); as a frame, then the
eigenspinors corresponding to the eigenvalue :i:% are constant spinors. Of course,
for a given operator W, or W_ one cannot have constant eigenspinors for
eigenvalues —1—3 and —% because this would contradict the fact that eigenspinors

corresponding to different eigenvalues are orthogonal.

Note that the operators W, and W_ defined in Remark B.2.1(c) are related as
W_ = R*W, R, where R : S* — SU(2) is the restriction of the matrix-function

x* +ix3 x2 4 ix!
+ 2 1 4 - 3
—X“ 4+ 1x° XT—1X

to the 3-sphere (B.1).

B.3 The scalar Laplacian and its pseudoinverse

In this appendix we work on the 3-sphere equipped with standard metric (go)as(y)-
Let f be a smooth scalar function on S?. Then there exists a unique sequence of

homogeneous harmonic polynomials p, (x) of degree n =0, 1,2, ... such that the series



B.4 Eigenvalues for generalized Berger spheres | 106

+oo
> pn(x) converges uniformly, together with all its partial derivatives, on the closed
n=0

unit ball in R%, and coincides with f on S°.

It is known that the eigenvalues of the operator —A acting on S* are n(n + 2),
n=0,1,2,..., and their multiplicity is (n + 1)?, which is the dimension of the vector
space of homogeneous harmonic polynomials of degree n. The explicit formula for the

action of the operator (—A)™!, the pseudoinverse of —A, on our function f is

1y = pn<x)
A L) =1

B.4 Eigenvalues for generalized Berger spheres

Here we give further explicit expressions for the eigenvalues using the procedure from
Section 5.6.1 where we apply the operator to harmonic polynomials of degree n. For
convenience we seek eigenvalues p of the operator W = W — v] obtained by dropping
the constant term from (5.74).

Let k = (K1, ko, k3) € {£1}3, and let

N, = {k € {£1¥ : kykoks = +1} = {(1,1,1), (1, =1, —1),(=1,1,=1), (=1, —1,1)}.

For each n < 4 we give below an explicit formula for the characteristic polynomial
Xn(1t) whose roots give the eigenvalues of W. For n > 5 formulae become too

cumbersome to list, and we do not have a general formula yet.

Degree n = 0.

Degree n = 1.

xi(p) = H

:“iEN+

See also formulae (5.76)— (5.79).

Degree n = 2.

Xa(p) = [/f’ - (423:%‘2) p+ 316 ]

j=14;
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Degree n = 3.

3 3 3 -2
+64 | > a; +2 > a;%a;? | p— 768 S -
=1 Gk=1 j=1%
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