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Abstract 

We have previously shown that distal anterior wall ischemia/reperfusion (I/R) induces gene 

expression changes in the proximal anterior myocardial area, involving genes responsible for cardiac 

remodeling. Here we investigated the molecular signals of the ischemia non-affected remote lateral 

and posterior regions and present gene expression profiles of the entire left ventricle (LV) by using our 

novel and straightforward method of 2D and 3D image reconstruction.. Five or 24h after repetitive 

10min I/R without subsequent infarction, pig hearts were explanted and myocardial samples from 52 

equally distributed locations of the LV were taken. Expressional changes of seven genes of interest 

(HIF-1α; caspase-3, transcription factor GATA4; myocyte enhancer factor 2C /MEF2c/; hexokinase 2 

/HK2/; clusterin /CLU/ and excision repair cross-complementation group 4 /ERCC4/) were measured 

by qPCR. 2D and 3D gene expression maps were constructed by projecting the fold changes on the 

NOGA anatomical mapping coordinates. Caspase-3, GATA4, HK2, CLU, and ERCC4 were up-

regulated region-specifically in the ischemic zone at 5 h post I/R injury. Overexpression of GATA, 

CLU and ERCC4 persisted after 24 h. HK2 showed strong up-regulation in the ischemic zone and 

down-regulation in remote areas at 5 h, and was severely reduced in all heart regions at 24 h. These 

results indicate a quick onset of regulation of apoptosis-related genes, which is partially reversed in 

the late phase of I/R cardioprotection, and highlight variations between ischemic and unaffected 

myocardium over time. The NOGA 2D and 3D construction system is an attractive method to 

visualize expressional variations in the myocardium. 
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Introduction 

Metabolism and gene expression patterns are changing intensively in the ischemic regions of an 

infarcted heart, but also remote heart regions respond to the injury quickly after the onset of infarction. 

We have recently shown that both acute and chronic ischemia alters the molecular signals of the 

ischemia non-affected, but adjacent regions, termed as intrinsic remote conditioning against adverse 

left ventricular (LV) remodeling [1, 2].  

Conditioning of the heart against ischemic injury is one of the most potent mechanisms to prevent the 

heart from ischemic damage [3-7] . Single or repetitive brief intervals of ischemia and reperfusion 

induce cardioprotective effects against a subsequent ischemic insult. The protective effect is 

characterized by two time windows: Early effects last a few hours, and are conferred by the rapid 

release of transmitter molecules such as bradykinin and prostaglandins. The second window of 

protection is mainly relying on transcriptional regulation, mediated by activation of kinases and 

transcription factors, and subsequent effects of proteins generated de novo. The transcriptional changes 

are initiated quickly after r-I/R, and are fully effective about one to three days later. Although clinical 

translation of ischemic preconditioning is difficult to achieve for practical reasons, elucidation of the 

underlying mechanisms might lead to identification of potential modulating agents and molecular 

targets for the development of novel therapeutic strategies [7]. 

For the investigation of molecular changes in the myocardium in heart diseases, precise sampling of 

tissue sections, including documentation, is necessary for facilitating understanding of regional 

variations between directly affected and remote tissue [8, 9]. In many rodent models and experiments, 

the entire heart is often analyzed as a whole due to its small size. In large animals, the affected heart 

tissue, and usually a randomly selected sample of remote heart tissue (often used for “normal” control 

sample) is used for analyses by histology, or for gene expression or protein abundance. Exact locations 

of sampling are usually not reported, and the potential impact of the sampling locations on the analysis 

outcome is often neglected. 

The three-dimensional NOGA® (Biologics Delivery Systems, a Johnson & Johnson company, 

Irwindale, CA, USA) mapping system is equipped for simultaneous measurement of electrical and 

mechanical activities of the myocardium and distinguishes between viable and non-viable 
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myocardium [10]. The NOGA and the CARTO systems have the same principles to construct 2D and 

3D real-time display of the myocardial viability, wall motion and electrical activity, and are currently 

the only imaging technologies available for the clinics. In addition the NOGA system can be used for 

guided intramyocardial injections of biologicals.  

Here, we show the use of the NOGA system, employed as a transcardial mapping in vitro, for precise 

documentation of locations of tissue samples, and for creating a map of gene expression levels. By 

replacing the voltage values by the respective fold changes of qPCR quantification, it is possible to 

build color-coded two- or three-dimensional images, which aptly visualize spatial gene expression. In 

order to demonstrate the utility of this approach, we determined and compared gene expression values 

in pig hearts with and without repetitive ischemia and reperfusion (r-I/R).  

 

Results and Discussion 

Data visualization using the NOGA system is straightforward: analytical data gathered by qPCR-based 

quantification of expression can be entered at the locations which correspond to the samples, 

overriding the original voltage or local activation values. The intrinsic color coding and 2D and 3D 

capabilities allow for simple and attractive data visualization and thus identification of regions with 

high or low expression levels. In particular, the sampling location of the remote myocardium is 

important for the gathered molecular data, as for some of the examined genes their expression differs 

significantly within unaffected myocardial tissue sections. However, it must be noted that expression 

in basal tissue segments needs to be interpreted with some caution, since the tissue composition differs 

(mixture of fibrotic and muscular tissue).  

We collected a total of 52 tissue samples for each pig hearts and compared the individual expression 

levels of seven genes of interest – HIF-1α, caspase-3, transcription factor GATA4, myocyte enhancer 

factor 2C (MEF2c), hexokinase 2 (HK2), clusterin (CLU) and excision repair cross-complementation 

group 4 (ERCC4) between control animals and pigs that underwent r-I/R (Figure 1). The gene 

selection was based on earlier NGS analyses of ischemic and remote tissue areas, and we primarily 

selected genes with currently incompletely elucidated functions in ischemic injury [2]. Two distinct 

time points were investigated; five hours after r-I/R, to examine quick transcriptional regulation, and 
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24 h after r-I/R, to gain information on transcriptional changes relevant for later, sustained 

cardioprotection, called second window of protection (SWOP). After filling the values obtained by 

qPCR to the NOGA software, two- and three-dimensional visualizations were readily obtained (Figure 

1). 

The function of HIF-1α for cardioprotection is well characterized [11, 12]. In ischemic 

preconditioning, it is essential for protection from consequent ischemia in both the acute and delayed 

(SWOP) phases of protection. HIF-1α is a powerful transcriptional regulator and among its target 

genes are VEGF, EPO, inducible nitric oxide synthase (iNOS), and angiopoetin 1 and 2. The regulated 

genes and the functional consequences are to a certain degree cell-type dependent [13] and include 

increase of angiogenesis, vascular remodeling, and glucose metabolism [12]. In pig hearts, HIF-1α 

was upregulated in ischemic and most of the remote myocardium after 5h (Figure 2). At 24h, we 

observed unchanged HIF-1α expression compared to controls in those heart region, but upregulation in 

the remote zone that had shown unchanged expression levels at the earlier time point. This 

expressional pattern indicates a short term strong activation of HIF-1α in the entire myocardium after 

r-I/R likely starting at the directly affected region with a slightly delayed reaction of remote areas. 

Interestingly, transcriptional upregulation of HIF-1α seems to be restricted to the early phase, but it is 

documented that HIF-1α protein is additionally stabilized after preconditioning [14], and thus the 

downstream targets of HIF-1α are active also in the late phase of cardioprotection. 

The effector caspase-3 is involved in both the intrinsic and extrinsic apoptosis pathways. It is an 

important apoptosis mediator in myocardial infarction, and is detected in human serum after an infarct, 

after escaping into the bloodstream following myocardial cell death [15]. Caspase-3 mRNA levels 

were substantially elevated in ischemia-affected myocardium (Figure 2) 5h after I/R, but were reduced 

back to baseline levels at the later time point. In remote areas, caspase transcription was largely 

unchanged, with only marginal down regulation after 24 h. These data indicate that a certain degree of 

apoptosis occurs shortly and temporarily after ischemia only in directly ischemic-injury affected 

tissue. 

The stress-associated transcription factor GATA4 is an essential regulator of cardiac gene expression 

in general and modulates adaptive responses after injury [16]. It confers regenerative effects and is 
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critical for the regenerative capability of neonatal mice hearts [17]. Together with transcription factors 

Mef2c and Tbx5 (the combination of the three factors is termed GMT), it was reported to play a role in  

cardiac reprogramming [18, 19]. In injured heart tissue, GATA4 was increasingly upregulated over 

24h after r-I/R. Similarly to Caspase-3, its upregulation was limited to the infarcted area (Figure 2). 

The time-sequence of up regulation suggests that expression of pro-survival genes such as GATA4 

follow an initial activation of pro-apoptotic genes such as caspase-3. In contrast, the expression level 

of the cardiac transcription factor Mef2c was found to be largely unchanged (Figure 2). This indicates 

that transcriptional activation of Mef2c is not playing a major role in SWOP induced by r-I/R. 

Hexokinase-2 is an important enzyme in the glucose metabolism, namely the phosphorylation of 

glucose as one of the initiating steps of glycolysis. In addition, HK-2 has been shown to be implicated 

in oxidative stress and the production of ROS, and mitochondrial binding of HK-2 promotes cell 

survival. Decreased levels of HK-2 after r-I/R resulted in altered remodeling with higher rates of cell 

death and fibrosis and lower angiogenesis [20]. In mice, HK-2 knockdown exaggerated cardiac 

hypertrophy after induction of pressure overload [21]. In r-I/R pig hearts, spatial analyses of 

expression showed short-term up-regulation of HK-2 in the ischemic area, with a pronounced down 

regulation in some remote areas 5h after r-I/R and in all heart areas 24 h after r-I/R (Figure 3 and 

Supplementary Animations). The quick up regulation after ischemic injury may be indicative of an 

activation of pro-survival signaling, and the reduction in all heart areas after 24 h is likely to have an 

important impact of cell energy metabolism, but also ROS production, and cardiomyocyte survival, 

and indicates an onset of the molecular processes leading to cardiac remodeling. 

The cytoprotective chaperone clusterin/apolipoprotein J (CLU) is produced and secreted in response to 

stress signals, and its plasma levels are increased in several disorders, including neurodegenerative 

diseases and neoplasms, but also atherosclerosis and myocardial infarction [22]. Interestingly, CLU 

was recently reported to be associated with survival in patients with heart failure [23]. In the 

myocardium, CLU protects against apoptosis, modulates matrix metalloproteinase expression and 

stimulates angiogenesis. In a complex with the proteohormon leptin, it binds to the leptin receptor, 

which results in transcriptional activation of intracellular pathways including the JAK/STAT pathway 

[24]. We encountered a marked increase in CLU expression already 5h after ischemic injury in the 
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affected tissue, and a less pronounced, but considerable elevation of expression in the remote zone 24h 

after r-I/R (Figure 4). These data are an indication that CLU plays a role in restoring cell function, 

cardioprotection and might be an important mediator of intrinsic remote conditioning. 

The excision repair cross-complementation group 4 (ERCC4/XPF) gene is a subunit of the 

ERCC1/XPF endonuclease which has a function in repair of DNA damage [25]. It cleaves nucleic 

acids specifically at junctions between double- and single stranded DNA and is a component of the 

machinery for nucleotide excision repair, and others. It is taking part in stress response. We identified 

ERCC4 to be upregulated after r-I/R in an NGS dataset and our spatiotemporal analysis shows that the 

up regulation is focused on the tissue directly affected by ischemia (Figure 5). While a deficiency of 

ERCC1/ERCC4 has been linked to carcinogenesis and cancer progression, its role in the myocardium 

is currently unknown. The upregulation of ERCC4 might be a consequence of cell and nucleic acid 

damage. 

Exploiting the 3D reconstruction technology of the NOGA endocardial (here epicardial) 

electroanatomical mapping system, we demonstrate a new and straightforward methodology with 

which to display gene expression patterns in 2D and 3D, without the need for an extensive 

bioinformatics background or training. The image-omics that we present of the ischemic 

preconditioned heart integrates genomic data with biomedical imaging, to facilitate exploration and 

visualization of relevant gene expression patterns that underlie the SWOP. These data provide 

biological insight into cardioprotective mechanisms, that are essential for better understanding of the 

complexity of I/R injury.  

As reported earlier, the NGS-based analysis of global gene expression patterns in ischemic, border, 

and remote zones [2]  showed distinct changes of several pathways and a number of genes that were 

previously not linked to ischemic preconditioning. The gene expression patterns show that a quick 

onset of regulatory response after r-I/R in the directly affected tissue with up regulation of genes 

involved with stress response and apoptosis. The more detailed spatial expression patterns reported 

here corroborate the NGS results and also highlight the role of intrinsic remote conditioning: that 

remote heart areas (unaffected by ischemia) can have varying expression levels of genes playing 

important roles in cardioprotection and prevention of adverse left ventricular remodeling. For 
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investigating mechanisms such as cardiac remodeling on the molecular level, it may thus be advisable 

to harvest tissue sections from a few spots of the remote zone. More importantly, we show that the 

NOGA system is particularly useful, yet very facile to use for constructing 2D and 3D representations 

of expression patterns. Since externally gathered values of biopsies that were taken with the system 

can be simply entered into the software, this approach can likewise be employed for any other readout, 

for example from histological analysis or from proteomics data. 

 

Conclusion 

Using 2D and 3D visualization (3D image-omics) of temporal and spatial gene expression maps of the 

heart, we demonstrate that r-I/R stimuli provoke distinct alterations in gene expression profiles in 

different regions of the myocardium. We employed a clinically relevant closed-chest pig model to 

highlight transcriptional regulations induced by r-I/R. The analysis of multiple tissue samples at 

several time points with the novel methodology described herein increases our understanding of r-I/R 

mechanisms. The reported data indicate a short term stress response, which is followed by prolonged 

expressional alterations, including transcriptional regulators and survival signals, which are essential 

for the second window of cardioprotection after ischemic preconditioning in the ischemia affected but 

also in the non-affected myocardial areas.  

 

Material and Methods 

Ethical Statement 

Animal investigations were carried out in accordance with the “Position of the American Heart 

Association on Research Animal Use,” as adopted by the AHA on November 11, 1984. The study was 

approved by the Ethics Committee on Animal Experimentation at the University of Kaposvar, 

Hungary. The study design is displayed in Figure 1A. The study corresponds to the ARRIVE 

guidelines [26]. 

Porcine Model of Ischemic Preconditioning 

Domestic pigs (male, 15 kg, n=20, randomized into r-I/R[5h], n=6, r-I/R[24h], n=6, and sham 

operated controls, n=8) underwent cardiac catheterization under general anaesthesia. The r-I/R 
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protocol consisted of three repetitive cycles of 10 min I/R via percutaneous balloon occlusion and 

deflation in the mid left anterior descending coronary artery (LAD) as described previously [2].  

Briefly, the pigs received an intramuscular injection of 12 mg/kg ketamine hydrochloride, 1 mg/kg 

xylazine and 0.04 mg/kg atropine, with inhalation anesthesia with isoflurane and O2. After reaching 

deep anesthesia, pigs were intubated and the anaesthesia was continued with an anesthetic gas mixture 

of 1.5-2.5 vol% isoflurane, 1.6-1.8 vol% O2 and 0.5 vol% N2O. A 6F introduction sheath (Medtronic 

Inc, Minneapolis, MN) was placed into the right femoral artery followed by intra-arterial 

administration of unfractionated heparin (200 IU/kg). A 6F coronary catheter (Medtronic Inc, 

Minneapolis, MN) was placed into the abdominal aorta and selective angiography of the left coronary 

arteries was performed. A guidewire (Medtronic Inc, Minneapolis, MN) and then a coronary balloon 

dilation catheter (2.75 mm diameter, 12 mm length; Medtronic Inc, Minneapolis, MN), were placed 

into the left anterior descending coronary artery below the origin of the second diagonal branch. In the 

r-I/R groups (n=12), coronary occlusion was performed with 6 atm inflation pressure. Coronary 

angiography was done by injecting non-ionic contrast media (Takeda, Zürich, Switzerland) to monitor 

occlusion and reperfusion of the coronary artery.  

At either 5 h or 24 h after the procedure (Figure 1), the animals were sacrificed and hearts were 

explanted. Myocardial tissue samples distributed equally throughout the entire left ventricle (LV) 

according to anatomical landmarks (52 samples of each heart) were obtained using a biopsy kit (Acu-

Punch, Acuderm, Fort Lauderdale, FL).  

In Vitro NOGA-mapping for image-omics. 

To enable 2D and 3D displays of the changes in gene expression in the LV, the sampling locations 

were determined by in vitro surface NOGA mapping. The NOGA mapping principles and technique 

have been described previously [10]. Briefly, using an ultralow magnetic field and a NogaStar® 

catheter with a magnetic tip (Johnson & Johnson, Diamond Bar, California), the NOGA system 

displays the heart showing the location of the catheter tip in 3D, and measures the actual electrical 

signals. In contrast with the real-time use of this system to illustrate location of the catheter tip in 

relation with viability of that area, for in vitro mapping we used only the sampling locations (Figure 
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1B). Quantitative viability values of the recorded locations were manually replaced with values of fold 

changes in gene expressions.  

Tissue sections were directly inferred to RNAlater and stored at -80°C until RNA isolation. RNA was 

isolated from the samples using column based extraction (RNeasy, Qiagen, Germany). RNA 

concentrations were determined using a Nanodrop spectrophotometer (Thermo Fisher) and 500 ng of 

each sample were reverse transcribed with random hexamer primers to cDNA (Qiagen). Gene 

expressions were quantified on an Applied Biosystems 7500 Real-Time PCR System( Life 

Technologies, USA) using Sybr Green (Qiagen) with primers listed in Table 1. 

 

Abbreviations 

AMI  acute myocardial infarction 

CLU  clusterin 

DPP4  dipeptidyl peptidase 4 

EPO  erythropoetin 

ERCC4  excision repair cross-complementation group 4 

GATA4 transcription factor binding to nucleotide sequence GATA 

GMT  GATA4, MEF2c and Tbx5 

HIF-1α  hypoxia-inducible factor 1α 

HK-2  hexokinase-2 

JAK  Janus kinase 

MEF2c  myocyte-specific enhancer factor 2C 

r-I/R  repeated ischemia and reperfusion 

RISC  reperfusion injury salvage kinase 

ROS  reactive oxygen species 

SAFE  survivor activating factor enhancement 

STAT  signal transducer of activation and activator of transcription 

VEGF  vascular endothelial growth factor 
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Gene Forward primer Reverse primer Amplicon 
length (bp) 

Caspase-3 GGGATTGAGACGGACAGTGG TGAACCAGGATCCGTCCTTTG 136 

clusterin CATGAAGTTCTACGCGCGTG AGTAGAAGGGGGAGCTCTGG 92 

ERCC4 ATGGGAAGCACTGACCGAAG GAACACGTCCTGTCGTCACT 114 

GATA4 AGAAAACGGAAGCCCAAGAAC CCACACTGCTGGAGTTGCTG 109 

HK-2 CAGCAGAACAGCCTGGATGA GGATGGCTTCCTTCAGCAGT 106 

MEF2c TAACATGCCGCCATCCGCCC ATCCTCTCGGTCGCTGCCGT 151 

 

Table 1. Primer sequences and amplicon lengths for qPCR. 
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Figure Legends 

Figure 1. Principle of NOGA-guided imageomics  

A. Timeline of the protocol and the three groups. Gene expression profiles of the whole LV was 

determined either without intervention (Group Control), or 5h (Group I/R-5h) or 24h (Group 

I/R-24h) after 3x10 min I/R by repetitive inflation/deflation of an intracoronary balloon placed 

in the mid part of the porcine left anterior descending coronary artery. 

B. Schematic illustration of the image-omics of the gene expression maps. Using the in vivo 

mapping principles of the myocardial viability map, sampling locations (n=52) were detected 

in in vitro epicardial NOGA-mapping. The voltage values recorded by NOGA in the distinct 

locations were replaced by the respective values of fold changes in gene expressions gathered 

from the excised tissue samples. 

 

Figure 2. Spatiotemporal 2D bulls-eye display of HIF-1α, caspase-3, GATA4 and myocyte 

enhancer factor 2C (MEF2c) gene expression of the entire left ventricle after repetitive 

ischemia/reperfusion (r-I/R). 

Time-dependent presentation of the different gene expression patterns of HIF-1α, caspase-3, 

GATA4 and MEF2c of the LV of animals in groups control, I/R-5h and I/R-24h after 

repetitive (3 times) 10 min I/R without consecutive myocardial infarction. Temporary 

overexpression of HIF-1α and caspase-3 at 5h (red arrow), and mildly increasing upregulation 

of GATA-4 in the ischemic area at 5 and 24h (red arrows) were detected. Expression levels of 

HIF-1α and caspase-3 were reduced to baseline levels after 24h, except for part of the remote 

area with HIF-1α upregulation. No changes in MEFC2 in either the ischemic or the unaffected 

areas were encountered. Pink and blue colors represent up-regulation of genes; green 

represents baseline values, while yellow and red areas show down-regulation of the respective 

genes.  
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Figure 3. Image-omics (2D and 3D modeling) of the repetitive ischemia/reperfusion (I/R) 

induced gene expression pattern of hexokinase 2 (HK2). 

Representative 3D (top row) and 2D bulls-eye maps (bottom row) of the left ventricle (LV) 

showing the expression patterns of HK-2. Marked upregulation of HK2 was found in the 

ischemia-affected apical myocardial region and the border zone with concomitant 

downregulation in the remote myocardial area (yellow arrow) at 5h. At 24h, HK2 expression 

was severely downregulated in all myocardial regions.  

 

Figure 4. Image-omics (2D and 3D modeling) of the repetitive ischemia/reperfusion (I/R) 

induced gene expression pattern of clusterin (CLU). 

Representative 3D (top row) and 2D bulls-eye maps (bottom row) of the left ventricle (LV) 

showing the expression pattern of CLU. Moderate up-regulation was detected at 5h (red 

arrow), with a higher degree of up-regulation in the ischemia-affected region at 24h (red 

arrow).  

 

Figure 5. Image-omics (2D and 3D modeling) of the repetitive ischemia/reperfusion (I/R) 

induced gene expression pattern of excision repair cross-complementation group 4 (ERCC4). 

Representative 3D (top row) and 2D bulls-eye maps (bottom row) of the left ventricle (LV) 

showing the expression pattern of ERCC4. Moderate up-regulation is shown at both 5h and 

24h (red arrows), with little changes between the two time points.  

 

Online Animations. Timely 3D display of the hexokinase 2 (HK2) gene expression profile of the 

whole heart - 3D image-omics model. 

Timely 3D display of the hexokinase 2 (HK2), which is responsible for coupling 

extramitochondrial glycolysis to intramitochondrial oxidative phosphorylation and plays a key 

role in cellular energy metabolism, expression profile, of the whole heart before repetitive 

ischemia/reperfusion (r-I/R) (Group Control), at 5h (Group r-I/R[5h]) and at 24h follow-up 

(Group r-I/R[24h]) using the NOGA principles for 3D construction. Three dimensional 
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models were constructed by projecting gene expression fold changes of HK2 on NOGA 

anatomical mapping coordinates. A. Gene expression pattern of HK2 in Group Control. B. 

Gene expression pattern of HK2 5h after the r-I/R-stimulus. C. Gene expression pattern of 

HK2 24h after the r-I/R-stimulus. According to the color coding scheme, pink and blue color 

represent upregulation of the HK2 gene. Green color represents a baseline value, while yellow 

and red myocardial areas downregulate the HK2 gene.  

 

 


