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Gluon distributions and fits using dipole cross sections
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I investigate the relationship between the gluon distribution obtained using a dipole model fit to low-x
data on F2�x;Q

2� and standard gluons obtained from global fits with the collinear factorization theorem at
fixed order. I stress the necessity to do fits of this type carefully, and, in particular, to include the
contribution from heavy flavors to the inclusive structure function. I find that the dipole cross section must
be rather steeper than the gluon distribution, which at least partially explains why dipole model fits
produce dipole cross sections growing quite strongly at small x, while DGLAP (Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi) based fits have valencelike, or even negative, small-x gluons as inputs. However,
I also find that the gluon distributions obtained from the dipole fits are much too small to match onto the
conventional DGLAP gluons at highQ2 � 50 GeV2, where the two approaches should coincide. The main
reason for this discrepancy is found to be the large approximations made in converting the dipole cross
sections into structure functions using formulas which are designed only for asymptotically small x. The
shortcomings in this step affect the accuracy of the extracted dipole cross sections in terms of size and
shape, and hence also in terms of interpretation, at all scales.
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I. INTRODUCTION

In the description of structure function data the most
conventional approach used is the collinear factorization
theorem, where total cross sections are determined in terms
of parton distributions and hard parton cross sections up to
corrections of O��2

QCD=Q
2�, i.e., higher-twist corrections.

The most complete method is to perform a so-called global
fit [1,2] to all data sensitive to parton distributions, so that
the consistency of the fit to a variety of different data sets is
guaranteed. This is currently done at either NLO (next-to-
leading order) or NNLO (next-to-next-to-leading order) in
the strong coupling �S and appears to work very well.
However, there are some indications [3] that the procedure
is a little unreliable at small values of x where a resumma-
tion of large ln�1=x� terms may be important [4], and by
definition this whole approach fails at low values of Q2

(where low appears to be somewhere from 0:5 to 4 GeV2).
An alternative approach which circumvents the problem

of low Q2 and is particularly applicable to small x is the
color dipole approach [5–8]. Recently there have been a
variety of fits, or at least comparisons, to small-x structure
function data using the dipole picture [9–16]. In this the
free parameters of the fit are all mainly associated with the
dipole cross section, which it is very difficult to calculate
from first principles but which may be modeled, with
varying degrees, and different types of theoretical justifi-
cation. If one also wants a finite photoproduction cross
section, a nonzero value must be chosen for the light-quark
masses, appearing as a parameter in the dipole wave func-
tion which is calculated at LO, i.e., zeroth order in �S. It
must be noted that in order to apply the approach to very
low Q2 one must assume that perturbation theory is valid
and higher order QCD corrections to, e.g., the photon wave
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function are meaningful and under control in this limit.
This is yet to be proved. With this caveat in mind it is true
that a variety of approaches to modelling the dipole cross
section can be made to match data very well.

Even though there is no essential connection, the dipole
cross-section approach is often linked to, and used together
with, the approaches which deal with parton saturation at
small x. It is commonly believed that the complications of
small x and low Q2 are entwined, with the assumed large
parton distributions at small x leading to significant reduc-
tion of the evolution due to the mixing of leading-twist
parton evolution with higher-twist multiparton operators at
low Q2 [17,18] (though it is fair to say that the values of x
and Q2 which are relevant are not so commonly agreed).
There has recently been a great deal of work attempting, as
far as is possible, to calculate the dipole cross sections
within this framework of large densities and saturation (see
e.g. [19], or for a slightly different viewpoint [20]), and
many of the dipole fits, including some of the most suc-
cessful, are based on these ideas. In some quarters this has
led to very strong claims that saturation has been discov-
ered. However, there is a conundrum. This picture of
steeply growing parton distributions at small x and low
Q2 tamed by saturation is in conflict with the conventional
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) fits
which actually result in a small or even negative gluon
[and consequently FL�x;Q2�] at small x and Q2. It is
essential to understand this before making any strong
claims for saturation.

In this paper I will investigate the cause of this incon-
sistency. I will base this investigation very much on the
completely standard assumption that the QCD factoriza-
tion theory is completely reliable, correct and quantitative
at fairly high Q2 (as long as x is not too small). Hence the
-1  2005 The American Physical Society
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parton distributions obtained from global fits must be
quantitatively correct in this region. I will use the known
relationships between the dipole cross sections and stan-
dard parton distributions to work back from a fit to data
performed in the dipole framework to obtain the corre-
sponding partons. First, I will examine the question of
whether a large/steep dipole cross section actually means
a large/steep gluon distribution, finding that the dipole
cross section is always steeper at small x than its corre-
sponding gluon distribution. This partially explains the
differing conclusions obtained from the DGLAP and di-
pole approaches, but is not the whole story. In order to
investigate the consistency of the two approaches I obtain a
gluon distribution which evolves in the same way as a
DGLAP gluon (at least for reasonably high Q2) from a
dipole model type fit to structure function data. I then make
a comparison between the gluon distribution obtained at
fairly highQ2 from this dipole model fit and the gluon from
a standard set of parton distributions. This gives strong
evidence as to whether dipole-motivated fits are truly
quantitative, and whether the results from these fits are to
be taken seriously in detail.1 I find that the comparison
between the two illustrates a serious discrepancy, and point
out that the reason for this discrepancy is the approxima-
tion inherent in the LO dipole wave functions. I conclude
that this result casts doubt on whether we should indeed
treat the results of fits to HERA data using the dipole
picture as telling us anything truly quantitative, and I
explain my reservations. Improvements in the quantitative
form of the gluon distributions obtained from dipole model
inspired fits rely mainly on increasing the precision of the
wave functions used to obtain the structure functions from
the dipole cross section.

II. THE RELATIONSHIP BETWEEN THE DIPOLE
CROSS SECTION AND THE GLUON

DISTRIBUTION

The relationship between the gluon distribution and the
dipole cross section was essentially worked out as soon as
the dipole approach was proposed [7], but it is nicely
discussed in a pedagogical manner in [21] which explicitly
shows the relationship between the dipole picture and the
kT-factorization theorem [22] at LO, and also shows how
this relationship breaks down beyond LO. My discussion
partly follows this paper. The diagrams contributing to
deep inelastic scattering at LO are shown below, where
the incoming gluons have finite transverse momentum ~k.
1The results of the fit to data using my particular model for the
dipole cross section, or equivalently gluon distribution, could
also be thought of as providing some evidence as to whether or
not saturation effects are important when using a dipole model
fit. However, since the whole purpose of the paper is to question
the validity of this approach as far as any strong conclusions are
concerned, the implications from my particular model as to the
degree of saturation are really only a side issue.
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Within the LO kT-factorization theory we can write, for
example, the longitudinal �?p cross section as

�L�x;Q2� /
Z 1

0
dz�z�1� z��2

Z d2k
k4

�
Z
d2p

�
1

Q̂2 � p2
�

1

Q̂2 � �p� k�2

�
2

� f�xg; k2�; (1)

where f�xg; k2� is the unintegrated gluon distribution and
Q̂2 � z�1� z�Q2. A similar result, but slightly more com-
plicated formula, also holds for �T . Staying at strictly LO
in ln�1=x� in the kT-factorization theory, we work in the
limit x! 0, i.e., since

ln�x� � ln�xg� � ln�Q̂2=�Q̂2 � k̂2 � �p0�2��; (2)

where ~p0 � ~p� �1� z� ~p, we simply make the identity
x � xg. In this limit Eq. (1) can be simplified significantly.
Integrating over z and p, which in this limit does not
involve f�x; k2� we have the standard kT-factorization ex-
pression, which can be written in terms of the structure
function as

FL�x;Q
2� �

Z dk2
k2
�S2Nf
6�

hL�k
2=Q2�f�x; k2�: (3)

Taking the double Mellin transformation
R
dQ2Q2�2� andR

dx xN we have the familiar expression.

~F L�N;�� �
�S2Nf
6�

~hL���~f�N; ��=�

�
�S2Nf
6�

~hL���~g�N; ��; (4)

where g�x;Q2� �
RQ2

0 �dk2=k2�f�x; k2� is the integrated
gluon distribution, and ~hL��� is the longitudinal impact
factor first calculated in [23]. An exactly analogous ex-
pression can be calculated for F2�x;Q

2�, though it is usu-
ally expressed in terms of dF2=d lnQ2 in order to preserve
finiteness in the infrared limit, i.e.

dF2�x;Q2�

d lnQ2
�

Z dk2
k2
�S2Nf
6�

h2�k2=Q2�f�x; k2�: (5)

If the gluon distribution can be expressed in the simple
form g�N;Q2� � �Q2����S;N� this leads to

Fi�N;Q
2� �

�S2Nf
6�

hi����S;N��g�N;Q
2� (6)
-2



GLUON DISTRIBUTIONS AND FITS USING DIPOLE . . . PHYSICAL REVIEW D 71, 054024 (2005)
which taking the inverse Mellin transformation becomes

F�x;Q2� �
�S2Nf
6�

h����S; ln�1=x��� 
 g�x;Q
2�: (7)

This is the standard result of the LO in ln�1=x�
kT-factorization theorem. Contrary to what seems to be
common belief, the kT-factorization theorem is well de-
fined beyond this order. Indeed, in [23] it is demonstrated
that kT factorization may be thought of as simply a reor-
dering of the calculations performed within the collinear
factorization theorem, and as such it is as well defined as
collinear factorization, i.e., to all orders at leading-twist.

There is an alternative way to proceed from the starting
point of Eq. (1). By using the identity

1

Q̂2 � p2
�

1

2�

Z
d2r exp�ip � r�K0�Q̂r� (8)

and integrating over p2, using the independence of xg on
p2 in the x! 0 limit, one can equivalently write

� �
4�2

3

Z 1

0
dz

Z
d2rj��r; z;Q�j2

�
Z dk2
k4
�Sf�x; k

2��1� J0�kr��: (9)

j��r; z;Q�j2 is the probability for a photon of virtuality Q2

to fluctuate into a dipole pair, as calculated in [7], and is
explicitly

j�T�r; z; Q�j2 �
6�

4�2

X
f

e2f��z
2 � �1� z�2��2K2

1��r�

�m2
fK

2
0��r��; (10)

j�L�r; z; Q�j
2 �

6�

�2

X
f

e2f�Q
2�z2 � �1� z�2�K2

0��r��;

(11)

where �2 � z�1� z�Q2 �m2
f, and mf is the mass of a

given quark flavor. Hence, Eq. (9) can be interpreted as

� �
Z 1

0
dz

Z
d2rj��r; z;Q�j2�̂�x; r2�; (12)

where

�̂�x; r2� �
4�2

3

Z dk2
k4
�Sf�x; k2��1� J0�kr�� (13)

may be associated with the dipole-proton cross section. In
the LO ln�1=x� limit this and Eq. (4) are really equivalent,
but because in Eq. (4) we have reference to the gluon
density, which we think of as evolving perturbatively,
and have an explicit factor of �S, we think of this equation
only having validity forQ2 � �2

QCD. In principle the same
issues exist for Eq. (12), with �̂�x; r2� depending on both
the (unintegrated) gluon distribution and �s, as seen in
054024
Eq. (13). However, ignoring these complications and pro-
posing models for �̂�x; r2� valid for all r, Eq. (12) is often
used down to the photoproduction limit of Q2 � 0, albeit
requiring regularization from finite light-quark masses.
However, as discussed in [21] the form of the expression
in Eq. (12) is definitely not preserved beyond the leading
ln�1=x� limit, with inclusion of real gluon kinematics spoil-
ing the diagonalization in the transverse size ~r of the
incoming and outgoing dipoles.

At LO we can investigate what the equivalence of the
two approaches tells us. In the standard kT-factorization
theorem approach Fi�N;Q2� is given by Eq. (6), or its
equivalent for dF2�N;Q2�=d lnQ2. Taking the Mellin
transformation with respect to x of the intermediate ex-
pression Eq. (9) and using the equivalence we obtain

Fi�N;Q2� �
�S2Nf
6�

hid����S; N��hdg����S; N��g�N;Q2�

�
�S2Nf
6�

hi����S; N��g�N;Q2�; (14)

where hid��� comes from the probability of the photon
splitting to the dipole, while hdg��� comes from the rela-
tionship between the dipole cross section and the gluon
distribution in Eq. (13). Therefore, the effective coefficient
function for the hard cross section hi����S; N�� can be
interpreted as the product of a photon-dipole coefficient
function hid����S; N�� and a dipole-gluon coefficient func-
tion hdg����S; N��, both of which are calculable. For the
more phenomenologically interesting case of dF2=d lnQ

2

we find from a straightforward calculation

hdg��� �
4���1� ��

�1� ����2� ��
; (15)

h2d��� �
�1� 3=2�� 3=2�2�

1� �
4���4�2� ���2�1� ��
��4� 2����2� 2��

;

(16)

h2g��� �
3=2�2� 3�� 3�2�

3� 2�
�3�1� ���3�1� ��
��2� 2����2� 2��

;

(17)

and the equivalence in Eq. (14) is easily verified.
The implications of this turn out to be rather interesting.

Each of these effective coefficient functions can be ex-
panded as a power-series in � about � � 0, where each has
been normalized so that h�0� � 1. For dF2=d lnQ

2 we
obtain

h2��� ��S=N�� � 1� 2:17�� 2:30�2 � 5:07�3

� 3:58�4 � 8:00�5 � � � � : (18)

In order to interpret this we need to know more about �.
Strictly speaking, these expressions are all derived within
the LO in ln�1=x� framework. In this case the gluon
-3
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anomalous dimension is given by the LO BFKL (Balitsky-
Fadin-Kuraev-Lipatov) equation. This results in the power-
series expansion

���S=N� �
��S
N

� 2:4
�
��S
N

�
4
� 2

�
��S
N

�
6
� 17

�
��S
N

�
7
� � � � ;

(19)

where ��S � �3=���S. In x space this results in a splitting
function

xPgg��S; x� � ��S � 2:4
�
��4
Sln

3�1=x�
3!

�
� 2

�
��6
Sln

5�1=x�
5!

�

� 17
�
��7
Sln

6�1=x�
6!

�
� � � � : (20)

This steep growth of xPgg as x decreases leads to a quickly
increasing small-x gluon distribution as Q2 increases.
However, substituting ���S=N� into Eq. (18) we see that
the effective coefficient function also grows quickly at
small N, or equivalently at small x, and consequently
dF2�x;Q2�=d lnQ2 grows considerably more quickly than
g�x;Q2� with decreasing x.

Expanding the other expressions in Eq. (17) in powers of
� we obtain

hdg��� ��S=N�� � 1� 2:23�� 3:49�2 � 3:95�3

� 4:22�4 � 4:06�5 � � � � ; (21)

h2d��� ��S=N�� � 1� 0:07�� 1:05�2 � 3:77�3

� 4:94�4 � 6:53�5 � � � � : (22)

Hence, hdg��� has a power-series expansion in which all
the coefficients are positive, and of rather similar size to
those in the expansion of h2���, whereas h2d��� has a series
expansion where the first two terms are small and negative,
and higher terms oscillate. This has an obvious conse-
quence. To a reasonable approximation all the small-x
enhancement of dF2=d lnQ2 relative to g�x;Q2� is gener-
ated by the dipole-gluon cross section, which is therefore
itself steep relative to the gluon. In the final conversion
from the dipole cross section to dF2=d lnQ

2 there is little
change in x dependence.

In practice the LO BFKL prediction for the gluon is not
really used in any realistic dipole model fits to data. It
predicts a powerlike behavior at small x of x#, where # �
4 ln�2� ��S � 2:65�S, whereas the sort of powerlike behav-
ior used is #� 0:25–0:3. This means an effective value of
�S � 0:1 which is extremely low for scales of a few GeV,
where �S � 0:2–0:3, which is where the data exist. Hence
some models use behavior implied by higher order correc-
tions within the BFKL framework (see, e.g., the calculation
in [24]), and others just use models where the gluon is more
closely associated with standard LO or NLO in �S pertur-
bative QCD. Some are more ad hoc. This departure from
the LO kT factorization is already a deviation from the
054024
theoretical framework within which the simple dipole
picture is valid, but I will essentially disregard this particu-
lar issue throughout this paper. Whatever the inspiration
for the (unintegrated) gluon distribution, in order to match
even the most qualitative trends of the data one needs a
gluon distribution that increases quickly withQ2 at small x,
and every model ultimately has an effective ���S;N� that
grows quickly at small N and equivalently at small x.
Therefore, the general conclusion on the role of the effec-
tive coefficient functions made above is always true. Since
� is positive and increasing at small x, dF2=d lnQ2 is
always steeper in x than g�x;Q2�, and this relative steep-
ness is always associated with the step taking one from the
gluon to the dipole cross section, with the step taking one
from the dipole cross section to the physical structure
function being largely unimportant as far as the shape is
concerned.

This conclusion does not seem to have been made
previously, but it is easy to demonstrate using the very
simple dipole model proposed in [9]. In this case the dipole
cross section is given by

�̂�x; r2� � �0�1� exp��r2=4�x0=x�#��; (23)

where, for the case of the realistic fit which includes charm
as a parton rather than simply using three light flavors, the
parameters obtained from the best fit were �0 �
29:2mb; x0 � 4� 10�5; # � 0:28. This cross section
clearly saturates at large enough r or small enough x.
Using the relationship between the dipole cross section
and the unintegrated gluon distribution it is straightforward
to obtain

fg�x; k2� �
3�0

4�2�S
k4�x=x0�#e�k

2�x=x0�# ; (24)

and this expression is indeed used in [10]. Thus, while
�̂�x; r2� ! �0 as x! 0, fg�x; k2� ! 0 as x! 0, i.e., it
has a valencelike behavior fg�x; k2� � x0:28 as x! 0.
Using the leading-twist relationship between the uninte-
grated and integrated gluon distribution, g�x;Q2� �RQ2

0 �dk2=k2�f�x; k2�, and using fixed coupling (the general
result does not depend on this), we obtain

xg�x;Q2� �
3�0

4�2�S
��Q2e�Q

2�x=x0�# � �x0=x�#

� �1� e�Q
2�x=x0�#��; (25)

which also behaves like x0:28 as x! 0. This is slightly
reminiscent of the valencelike gluons obtained in global
fits, except that the valencelike behavior will always set in
at low enough x in this model (though extremely low x for
high Q2), whereas in the DGLAP approach the valencelike
behavior soon disappears with evolution to higher Q2. The
behavior of the dipole cross section at large r is compared
to that of g�x;Q2� at low Q2 in Fig. 1, and one clearly sees
that the eventual flattening of �̂�x; r2� at low x is accom-
-4
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FIG. 1 (color online). �̂�x; r2� and xg�x;Q2� obtained from the
original Golec-Biernat Wüsthoff dipole model [9]. xfg�x; k2�
has the same type of shape as xg�x;Q2�. A flattening dipole at
small x requires a valencelike integrated or unintegrated gluon
distribution.
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panied by a distinct turnover in g�x;Q2�, with the maxi-
mum as high as x� 0:005 at Q2 � 0:5 GeV2.

It is certainly reasonable to argue that the simple rela-
tionship between the integrated and unintegrated gluons is
not meant to be used in this case, since higher-twist cor-
rections to the gluon will be important. However, again this
takes us beyond the regime where the strict equivalence
between the dipole picture and the rigorously defined
kT-factorization theorem is valid. Also, even if one doubts
the result presented in terms of g�x;Q2�, it is certainly the
case that fg�x; k2� is valencelike. Hence, this simple ex-
ample shows that the dipole cross section becoming large
at a small value of x does not necessarily mean that the
gluon at this value of x is also large. This perhaps clouds
the issue of what saturation actually means, i.e., does it
have to mean a large parton density? However, it might
also go some way towards explaining why fits including
saturation corrections seem to be successful, while stan-
dard DGLAP fits produce very small (or negative) gluons,
at small x and Q2.

In order to provide a definitive answer to this apparent
contradiction it is necessary to undertake some rather more
precise work. Although the original Golec-Biernat
Wüsthoff dipole model was successful with the HERA
data available at the time, it now produces a qualitatively
054024
good fit at best, and some of the more recent fits are direct
attempts to improve it, e.g. [13]. Thus, in order to make
quantitative conclusions it is necessary to relate the gluon
distribution and dipole cross section from a genuinely good
fit to current data.
III. THE MODEL FOR THE GLUON
DISTRIBUTION

In order to make a detailed investigation I will work on
the principle that at reasonably high Q2 the gluon distri-
bution will behave exactly according to standard fixed
order DGLAP evolution. Hence, I propose a simplified
model for the gluon which accurately represents this but
contains a minimum of parameters. I will then use the exact
relationship between the unintegrated gluon distribution
and the dipole cross section in Eq. (13), along with the
standard identity, fg�x; k2� � ��dg�x;Q2��=d lnQ2�Q2�k2 ,
valid at leading twist, in order to obtain the correct ex-
pression for �̂�x; r2�. In the small r2 limit �̂�x; r2� may be
written as

�̂�x; r2� �
4�2

3
r2

Z dk2
k2
�Sf�x;%2� �

�2�S
3
r2g�x;%2�;

(26)

where %2 � A=r2 [25]. The constant A depends on the
precise behavior of the gluon, but it is always the case that
A � 10. It should not be used as a free parameter in a fit.
This expression is sometimes used to relate the gluon
distribution and dipole cross section. However, it is only
ever approximate and only reasonable for very small r. The
completely correct Eq. (13) should really be used if one is
going into the regime of large r and/or small Q2 and k2.

In order to attempt to obtain a matching between the
dipole model gluon distribution and a DGLAP one at large
Q2 I define a gluon distribution which behaves like a
conventional global fit gluon at high scales. I note that to
a very good approximation at LO in �S the gluon anoma-
lous dimension is �gg��s�Q

2�; N� � ��s�Q
2��1=N � 1�,

only differing from this approximate form significantly at
very high N. Hence, the LO evolution is given by this
anomalous dimension to a good accuracy except for fine
details at the highest x. Furthermore, apparently by acci-
dent the NLO correction to gluon evolution is very small,
the coefficient of a possible term of 1=N2 happening to be
zero. It was shown in [26] that for a flat input at scale Q2

0
the solution to the evolution equation for Q2 >Q2

0 using
this anomalous dimension is roughly

xg�x;Q2� / I0

��
2:4)0 log

�log��Q2�=�2
QCD�

log��Q2
0�=�

2
QCD�

��
0:5
�

� exp
�
�1:5 log

�log��Q2�=�2
QCD�

log��Q2
0�=�

2
QCD�

��
; (27)
-5
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where )0 � ln�x0=x�, and strictly speaking x0 is the value
of x above which the flat input gluon distribution falls away
to zero, i.e. g�x;Q2

0� / ��x0 � x�.
This is a very good starting point for a more realistic

gluon distribution. The main modification to be made is to
round off the high-x behavior to something more like
0
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FIG. 2 (color online). Comparison of xg�x;Q2� in my model at
normalization is determined by the best fit to data.
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�1� x�5 rather than a � function at x0, and to take account
of this in the evolution. Also, I want a gluon that can be
used all the way down to Q2 � 0 rather than stopping at
some input scale, and which tends smoothly to a flat
behavior in x as Q2 ! 0. This is achieved by modifying
Eq. (27) to
xg�x;Q2� � A
�

5

5� *

�
2
exp

�
�1:5 log

�log��Q2 �Q2
0�=�

2
QCD�

log��Q2
0�=�

2
QCD�

��

�

�
I0

�
2:4

�
*2�1� exp��*=4��

*� 2:3
�1� exp��*��4 log

�log��Q2 �Q2
0�=�

2
QCD�

log��Q2
0�=�

2
QCD�

��
0:5
�
� 1

�
: (28)
* � ln�1=x�, A�5=�5� *��2 is the input, with A the nor-
malization. This is simply an empirical modification of an
original formula which was theoretically correct in a
slightly idealized framework; and for moderate and high
Q2, i.e., above a few GeV2, the gluon does behave very
similarly indeed to the standard DGLAP gluons coming
from global fits. �QCD � 0:12 GeV, which for the one-
loop coupling gives �S�M2

Z� � 0:118, i.e., roughly the
correct value, and hence it gets the speed of evolution
correct. Q2

0 � 0:5 GeV2, and marks the transition scale
around which perturbative evolution is beginning to break
down. Q2

0 and the input shape �5=�5� *��2 are chosen to
give roughly the correct phenomenological shape in x and
Q2 for the lowish Q2 gluon, but neither is at all fine tuned.
Q2

0 takes on a perfectly typical value for the scale of non-
perturbative physics. It clearly serves the function of slow-
ing the evolution Q2 �Q2

0, but does this in an
x-independent way. I only make the change Q2 ! Q2 �
Q2

0, independent of any consideration of x. This model of
the gluon is not therefore inspired at all by the idea of
slowing evolution associated with high parton densities at
small x, and does not contain saturation effects.

This expression for the gluon is converted into a dipole
cross section using

�̂�x; r2� �
4�2

3

Z dk2
k4
�S�k

2�f�x; k2��1� J0�kr��; (29)

where for consistency �S�%2� is also slowed at low scales
with the same regularization as the gluon,

�S�%2� �
4�

-0 log��%2 �Q2
0�=�

2
QCD�

: (30)

The results of this paper are largely insensitive to the
details of how the low scale coupling is regularized. The
resulting dipole cross section is then put into a fit to data.
The normalization A is the only really free parameter
associated with the gluon in this fit.

Since the shape of the gluon has now been determined,
we can investigate the relative shapes of the gluon distri-
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bution and the dipole cross section without having to know
the value of A. This is illustrated in Fig. 2, where we see
xg�x;Q2� and �̂�x; r2� for a variety of values of Q2 and r.
For the largest value of Q2 and correspondingly the small-
est value of r both g�x;Q2� and �̂�x; r2� rise steeply at
small x, and it is difficult to see any particular difference in
shape. However, at the two lower values ofQ2, 1 GeV2 and
0:2 GeV2, g�x;Q2� is clearly flattening out, and is rising
very slowly indeed in the latter case. For the two larger
values of r, 2 GeV�1 and 10 GeV�1 (which would naively
correspond toQ2 of about 2:5 GeV2 and 0:1 GeV2, respec-
tively), �̂�x; r2� is clearly still rising steeply, and it is in this
regime, which is where any saturation effects are supposed
to be large, that the influence of the effective dipole-gluon
coefficient function is clearly seen. It would seem easy to
believe that saturation were occurring due to a large dipole
cross section, but seems less plausible that this could be
interpreted as being due to a steeply growing density of
gluons.
IV. DETAILS OF THE FIT

There are a number of modifications required compared
to the standard approach to fits to data made within the
dipole picture in order to get a truly quantitative compari-
son to the conventional DGLAP approach. One extremely
important issue is the treatment of heavy quarks, i.e.,
charm and bottom. These are often ignored in dipole fits.
This is certainly excusable for the bottom contribution,
which only really turns on above Q2 � m2

b � 20 GeV2,
and carries a charge weighting of 1=9. However, charm
contributes about 40% of dF2=d lnQ

2 for Q2 >m2
c, i.e., it

turns on from zero to a very sizeable contribution indeed
somewhere in the middle of the dipole regime, and to
ignore it is ludicrous.

However, the charm contribution to inclusive F2�x;Q2�
is often left out in dipole model fits. In the original [9] fits,
two fits were made, with and without charm. The latter
actually gave a worse fit, and the form of the dipole cross
section changed, the saturation parameter x0, i.e the value
of x at which saturation becomes very important at Q2 �
1 GeV2, changed from x0 � 3� 10�4 without charm to
x0 � 4� 10�5 with charm, and the overall magnitude of
the dipole cross section decreased significantly, to about
60% of the previous value except at very large r or ex-
tremely small x. Neither of these results is surprising. If
one is missing up to 40% of dF2=d lnQ

2 one would expect
an enhancement of �̂�x; r2� and g�x;Q2� of up to 1:67.
Since the leading saturation corrections are / g2�x;Q2�,
one would then expect the saturation effects to be much
exaggerated when charm is absent, as seen.2 For some
2Heavy flavors are also absent in the fit in [15]. If charm is
included then the fit quality does improve slightly, but again the
parameter x0 decreases, from �4� 10�5 to �10�5 in this case
[27].

054024
reason the results of the dipole fits are habitually cited
using the parameter values from the fits with charm absent.
These parameters are simply wrong, and should not be
used. Moreover, they clearly suggest that saturation effects
are quite a lot larger than the results obtained from the
more correct dipole fits.

In order to investigate the importance of the charm
contribution to inclusive F2�x;Q

2� I tried performing
global fits with this contribution set to zero, i.e., mimicking
what is done in many dipole fits. The procedure for the fit
was exactly as in the usual MRST fits other than this one
modification. It seems obvious that, in order to counter the
absence of a large part of the theoretical contribution, the
gluon must get bigger at small x to increase evolution.
However, the gluon cannot simply get bigger everywhere
because of the momentum sum rule, so it seemed very
likely that �S would also have to get bigger to also try to
speed up evolution. The results were broadly in line with
these expectations, but were rather dramatic in other
senses. The main point to note is that the quality of the
global fit performed in this manner is terrible, with /2 �
4000 for 2000 points, twice that of the normal global fit. At
small x it is impossible to get dF2=d lnQ

2 consistently
correct at all x and Q2. At low Q2 the gluon wishes to be
not too much bigger than normal, charm not yet being so
important in the evolution. However, such a low Q2 gluon
is then much too small to get evolution correct at higher
Q2. Conversely a gluon large enough for the higherQ2 data
is far too big for the evolution at low Q2. There is no way
around this within the factorization theorem. Also the
increased �S needed to help the small x fit makes the fit
to the rest of the data much worse. The quality of the fit
breaks down everywhere.

This slightly surprising result may be viewed as a very
positive one for collinear factorization. It shows that NLO
and NNLO DGLAP calculations are good enough and
constraining enough to determine that charm has to be
there, and to constrain its mass quite accurately, even
without using any data directly sensitive to charm. This
suggests one should be suspicious of good qualitative
results obtained from calculation where heavy quarks are
ignored, e.g., the proposed geometric scaling [28]. Such
results ought to be incorrect, by up to 40%, until the heavy
flavors are included. It is also an indication of the lack of
constraints on a theory if the free parameters can be read-
justed to account for such a large change in the theoretical
prescription. Although the input partons in the DGLAP
approach have a large number of free parameters (it would
be very much fewer if only small x data were fit), there is
only freedom at a givenQ2

0. How one evolves to otherQ2 is
precisely defined, and this provides a very strong con-
straint, as the above discussion illustrates. Even though
many of the dipole models have few free parameters, they
are such that the whole shape in x and r2, or equivalently x
and Q2, can be changed, and in practice this allows much
more freedom.
-7
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Given the above considerations in my dipole fit I include
the charm contribution, which is done by including the
wave function for the probability for the photon to fluctuate
into a c; �c pair. The only parameter is the charm mass, and I
use mc � 1:3 GeV. I do not include the bottom since it
only contributes at fairly high Q2 and gives a contribution
of at most a few percent, which is comparable to or less
than the errors on the data where it contributes. I note that
since the inclusion would give a positive contribution, its
effect would have to be to make the extracted dipole cross
section and resulting gluon a little smaller.

One also has to be careful about the precise details of the
light quarks in the fit. In total three types of diagram enter
into the expression for F�x;Q2�, shown below.

In the dipole picture usually only the left-hand diagram
is considered, i.e., the whole cross section comes from the
unintegrated gluon within the proton. However, there is the
additional possibility that the unintegrated quark will emit
a gluon which then enters into the same type of scattering
process, as shown in the middle diagram. In the LO
kT-factorization theorem these two diagrams contribute
to the total as fg�x; k2� � 4=9fS�x; k2�, i.e., it is not just
the unintegrated gluon contributing to the dipole cross
section, but really this combination that should appear in
Eq. (13). I shall bear this in mind when investigating the
results quantitatively. Finally there is the right-hand dia-
gram which shows the photon scattering from the non-
perturbative quark distribution (gluons could also be
radiated off the vertical quark line, but this gives a subdo-
minant contribution at small x). Hence, as well as the
contribution to the cross section in Eq. (12) I also include
a contribution of the form fNP �Q2=�Q2 �Q2

0�, repre-
senting the part of F2�x;Q2� coming from the right-hand
diagram. fNP is a free parameter which in practice is small.
The final free parameter is the mass of light quarks mq in
the expressions for the wave functions.

I perform a fit to H1 [29], ZEUS [30,31], and E665 [32]
data for x < 0:01 and 0:5 GeV2 � Q2 � 50 GeV2. The
last of these is important since it constrains the x shape
of the structure function, and hence dipole cross section, at
low Q2 where the HERA data cover only a relatively
narrow range in x. It was included in [9], but has been
neglected in some more recent fits. I let the data normal-
izations vary within their errors, which is important since
the H1 and ZEUS data choose to be �2% different in their
054024
normalization. The precise range of the data is not that
important, as long as it is fairly wide, since the aim of this
paper is not to provide evidence for my model, or to get as
good a fit as possible, but to obtain a quantitatively accu-
rate gluon distribution from a dipole picture fit. The fit
quality would deteriorate outside the two limits, however,
and I will discuss this later.

The best fit is obtained for A � 10:0, f � 0:132, and
m2
q � 0:039 GeV2. The quality of the fit is /2 � 1:1 per

point. This is comparable to the best fits in the previous
approaches. It is about as good as one can get for the three
different data sets, with H1 and ZEUS data tending to pull
the fit in opposing directions. The size of the dipole cross
section obtained from this fit has already been shown in
Fig. 2. One can see that it exceeds the typical saturation
values of �30 mb at very small x and large r2. However,
for comparison I find that with this up-to-date data the
simple dipole model of [9] gives /2 � 2:5 per point, and
with best fit parameters of �0 � 57:3 mb, # � 0:234, and
x0 � 0:000 01.3 The fit using my model for the gluon and
dipole cross section begins to fail forQ2 � 0:5 GeV2, with
the theory overshooting the data, perhaps giving an indi-
cation that some type of saturation corrections could im-
prove matters. The fit also fails for Q2 > 50 GeV2, where
the data are mainly at x > 0:001. This is again due to the
theory overshooting the data, i.e. dF2�x;Q

2�=d lnQ2 grows
too quickly. Saturation is clearly nothing to do with this
failure—it is a feature of the dipole model with a realistic
high-Q2 gluon. I will address this in greater detail below.

In order to try to improve my fit, and perhaps push it to
lower Q2, I incorporate one final modification. I include
some higher-twist corrections due to the type of diagrams
shown below.

These are the contributions due to multiple dipole scat-
tering with the proton. It was shown in [6] that the result of
summing such diagrams in the leading ln�1=x� limit is

�̂�x; r2� � �0�1� exp���̂simp�x; r
2�=�0��; (31)

where �̂simp�x; r
2� is the formula for the dipole cross

section we have used so far, i.e., Eq. (13). Hence, we
have a formula similar to that used in [9]. However, the
-8
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exponentiation is due to the multiple dipole scattering,
while the relationship between a single dipole scattering
and the gluon distribution is unchanged. Hence, it seems
that this may be interpreted as dipole saturation, but not
gluon saturation.

The best fit is now obtained with the parameters �0 �
146:3 mb, A � 10:1, f � 0:118, and m2

q � 0:0249 GeV2.
The large value of �0 and the extremely small change in A
make it clear that the saturation effects are not chosen to be
at all significant by the best fit. The quality of the fit only
improves very slightly, as is obvious since the dipole cross
section itself hardly changes. The extrapolation into the
regionQ2 < 0:5 GeV2 is not really improved. The fit qual-
ity remains much the same as long as �0 � 60 mb (a
proton radius Rp � 1 fm corresponds to �0 � 60 mb),
with A varying by <3%. For this lower value of �0 the
extrapolation for Q2 < 0:5 GeV2 remains poor. However,
it may be argued that for this low Q2 no perturbatively
inspired model is really correct, and nonperturbative phys-
ics is essential to describe the data correctly.

Now that we have the parameter A describing the nor-
malization of the input gluon distribution we can compare
to conventional gluons. The value of A � 10:3 leads to the
gluon distribution shown in Fig. 3 forQ2 � 50 GeV2. This
is a value of Q2 where the data are still being fit using the
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FIG. 3 (color online). Comparison of the gluon distribution
obtained from the dipole model fit to the gluon distribution and
to xg�x;Q2� � 4=9xfs�x;Q2� obtained from a conventional NLO
global fit. All partons are shown for Q2 � 50 GeV2.
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dipole approach, but where saturation effects should have
become negligible except perhaps at the very lowest x.
Hence, this gluon should really be very similar to a con-
ventional gluon obtained from the factorization theorem at
thisQ2. It is compared to the MRST2002 NLO gluon [3] in
order to test this equality. Clearly it fails quite badly, being
approximately 0:65–0:75 of the DGLAP gluon.4 This is
even more striking when one remembers that it should
really be compared to g�x;Q2� � 4=9fS�x;Q

2�. In this
case the factor is now 0:5–0:65. The biggest suppression
in proportional terms is at high x.

Hence, the gluon obtained from the dipole model fit does
not match onto the standard DGLAP gluon at high Q2,
where they should converge. Presumably the DGLAP
gluon is correct at Q2 � 50 GeV2 since, after all, it is
producing the correct slope dF2�x;Q

2�=d lnQ2 to fit a lot
of accurate data at and above this scale, within what should
be a reliable theoretical framework. At this sort of scale
neither saturation corrections nor resummation corrections
in ln�1=x� should be important until very small x. Hence,
the dipole-motivated fit, with its gluon mismatch of up to
50%, is quite considerably inaccurate. Examining the two
competing gluons at low Q2 we find that the dipole fit
gluon is much smaller than DGLAP at moderate x but at
low Q2 eventually becomes bigger at very small x, due to
the fact that my replacement of Q2 ! Q2 �Q2

0 slows the
DGLAP evolution for Q2 not too much greater than Q2

0,
and the evolution leads to the biggest absolute changes at
small x. In order to decide how far we should trust the
gluon coming from the dipole fit we have to understand the
relative behavior of this and the DGLAP gluon. It is
difficult to say which should be more reliable at small x
and low Q2 until we understand why they fail to match at
high Q2.

It is actually not too difficult to do this. The mismatch
comes from the effective coefficient functions or splitting
functions in the dipole approach. Let us consider
dF2=d lnQ2. This is controlled by the gluon and the
anomalous dimension �DIS��S�Q2�; N�. For my model
for the gluon �gg��s�Q2�; N� � ��s�Q2��1=N � 1�, which
is a very good approximation to the LO or NLO DGLAP
anomalous dimension (or NNLO even, at fairly large Q2).
Substituting into Eq. (18) we obtain for the dipole-
motivated fit

�DIS
dip ��S�Q

2�; N� �
�S�Q

2�2Nf
6�

�
1� 2:17 ��S�Q2�

�
1

N
� 1

�

� 2:30 ��2
S�Q

2�

�
1

N
� 1

�
2
� � � �

�
:

(32)

At reasonably high Q2, and not too low x, the first two
4Also the MRST NLO gluon is relatively small compared to
some other NLO gluons.
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FIG. 4 (color online). Comparison of the gluon distribution
obtained from the dipole model fit to xg�x;Q2� � 4=9xfs�x;Q

2�
obtained from a conventional NLO global fit and xg�x;Q2� �
4=9xfs�x;Q

2� from a NLO global fit where the quark-gluon
splitting functions have been used in the same small-x limit as in
the dipole approach (NLODIP). Also shown is the general
probable form of a correct gluon which extrapolates from
NLO at high x to something a little smaller at small x. All
partons are shown for Q2 � 50 GeV2.
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terms dominate the evolution. However, the expression
using the exact result for the anomalous dimensions is

�DIS
exact��S�Q

2�; N� �
�S�Q

2�2Nf
6�

�
�1� 1:08N � � � ��

� 2:17 ��S�Q2�

�
1

N
� 3:05� � � �

�

� � � �

�
; (33)

where I have expanded the exact LO and NLO anomalous
dimensions about N � 0. More precisely, the exact LO
splitting function ���SNf�=2���1� 2x� x2� is replaced
by ���SNf�=3��3�1� x�, while the full expression for
the NLO splitting function is replaced by
���SNf�=3��2:17�1=x� 3�1� x��. Both of the first two
terms are a lot bigger in this approximation in the dipole
approach. Important corrections which are subleading in
ln�1=x� are left out of the quark anomalous dimensions and
splitting functions, significantly increasing the speed of
evolution for a given gluon distribution. Alternatively,
when performing a fit using this effective splitting function
one obtains a smaller gluon than one should, particularly at
moderate x. If one goes to very small x (i.e. smaller N), the
difference between the correct and effective anomalous
dimension at LO and NLO (and NNLO) in �S becomes
less significant. Hence, the smaller x gluon can be nearer
the DGLAP result than the moderate x gluon, and the gluon
appears steeper than it should be.

This overestimate of the low order in �S terms can also
maintain this shape of the gluon at small x, even when
considering the extra terms in the dipole anomalous di-
mension compared to fixed order DGLAP. The terms in
the effective splitting function at higher orders in �S con-
tain parts of the form 1=Nm, which in x space
become lnm�1�1=x�. These give a contribution to
dF2�x;Q

2�=d lnQ2 of the form

Z 1

x

dz
z
�nSln

m�1=z�g�x=z;Q2�: (34)

We see that the form of the convolution means that the
largest values of the splitting function at small z, lnm�1=z�,
are coupled with the largest x in g�x;Q2�. However, the
overestimate of the low order in �S splitting functions has
led to the high and moderate x gluon being much smaller
than it should be. This minimizes the effect of the extra
terms in the dipole splitting function coming from the
ln�1=x� resummation and means that, even with these
higher orders in �ns lnm�1=x� terms, the small x gluon can
be steeper than it should be.

So the difference in the dipole and DGLAP gluons is
largely due to the difference in the effective splitting
functions. This can be qualitatively verified by directly
modifying the DGLAP splitting functions in a conven-
tional global fit, i.e., using the form in Eq. (32) for the
054024
LO and NLO splitting functions. The resulting xg�x;Q2� �
4=9xfs�x;Q

2� for the best fit is shown in Fig. 4. In this case
the distribution is indeed much smaller at high and mod-
erate x, in fact almost identical to that obtained from the
dipole fit, but becomes steep at low x. This distribution is
exactly what we would expect. It becomes larger than that
in the dipole fit at very small x because this fit is missing
the contributions to the effective splitting function at
O��3

S� and beyond. These are positive, speeding the evo-
lution, and their absence allows the dipole-gluon to be a bit
smaller at the lowest x. These terms, or at least their full
form, should be there in a complete theory, so the ‘‘true’’
gluon should be the standard NLO gluon at high and
moderate x, but a little below this at the lowest x. A
probable, ‘‘correct’’ gluon of this form is also shown in
the figure. Indeed, the NNLO gluon is a little smaller than
the NLO gluon at the smallest x, and tends towards the
probable gluon. This more correct gluon is hence a rather
different shape from the dipole-gluon, and this difference
in shape would increase as Q2 is lowered.
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Now that we clearly understand the reason for the mis-
match between the dipole-gluon and the DGLAP gluon at
Q2 � 50 GeV2 we can also understand why the dipole fit
modeled on a gluon distribution that behaves correctly fails
at Q2 > 50 GeV2. In this region the contribution at mod-
erate x to dF2�x;Q2�=d lnQ2 coming from Eq. (32) is just
too large when combined with a normal gluon evolution. In
order to get a good fit to the structure function data, the
gluon at x� 0:01 must actually fall with Q2 for Q2 >
50 GeV2. This is simply incorrect phenomenologically,
but is achieved accidentally in some dipole models.
Similarly the very good fit at Q2 � 20–50 GeV2 in dipole
model fits is achieved with the wrong gluon, i.e., one
cannot rectify a discrepancy of up to 50% over a short
evolution range. At Q2 � 1 GeV2 the missing terms in the
splitting function Eq. (32) are still by no means negligible,
so the dipole extracted gluon cannot be truly accurate here.
It is also true that in this region there is no good reason to
believe that the DGLAP gluons are very accurate either,
and indeed they look rather odd. A quantitatively correct
gluon in this range would require a more complete theo-
retical prescription than either approach (and possibly any
existing competitor) currently provides.
V. CONCLUSIONS

In order to obtain correct results from a fit to structure
function data one has to be very careful. It is not difficult to
obtain a good fit to the data, which are very smooth in x and
Q2, and many people have done so since the HERA data
began to appear. It is even possible to do so using physics
arguments that are demonstrably wrong. It requires far
more care to obtain genuinely meaningful results with
physical interpretations that are in any sense quantitatively
correct, and input quantities that are determined to an
accuracy where they may reliably be used in predicting
other quantities. In this paper I have performed a fit using
the dipole framework, and related this to the standard
leading-twist gluon distribution as accurately as possible
in order to try to understand the seemingly inconsistent
results of large, growing distributions at small x in the
dipole approach, and small x valencelike and sometimes
negative distributions in standard perturbative approaches
at NLO and NNLO. In doing this I have investigated the
degree of precision with which distributions can be ex-
tracted using the dipole approach and the amount of faith
we should have in the quantitative conclusions of such fits.

One major point to make, which should be self-evident
but is very commonly ignored, is that when fitting to the
inclusive structure function data one must use heavy
quarks in the theoretical framework for the fits. The charm
contribution to the structure function comprises up to 40%
of dF2�x;Q

2�=d lnQ2 and alters the qualitative form of
results. In fact, the standard DGLAP fit fails completely
if this is left out. However, many dipole fits disregard it,
overestimating the size of the dipole cross section and the
054024
scale at which saturation occurs, even though the fit is
good. Also, it is pointless to show the success of the model
in predicting the diffractive structure function, if charm is
ignored in both calculations, as is sometimes done; it must
be included in the extraction of the dipole cross section and
in the calculation of the diffractive cross section (and
certainly not in just one of the two, as is also sometimes
done). If the correct inclusion of charm improves any
results it might add weight to the evidence for a particular
theoretical prescription. Conversely, it seems suspicious if
the inclusion of charm makes results worse.

I have discovered two reasons which partially explain
the apparent discrepancy between steep dipole cross sec-
tions and valencelike gluons, which are nothing to do with
any real discrepancy between the DGLAP approach and
the dipole-motivated approach. First, it is more appropriate
to think of the dipole cross section as related to the combi-
nation xg�x;Q2� � 4=9xfs�x;Q

2� rather than just the
gluon. This is because unintegrated quarks in the nucleon
can radiate gluons which then go on (possibly with further
radiation) to take part in the scattering with the dipole. In
the LO kT-factorization theorem the gluon and quark con-
tribute to this type of process in the combination above.
This means that, even if at low scales the gluon is valence-
like, the dipoles can pick up a steep behavior from the
quarks.

Also, the effective coefficient function governing the
size of structure functions in terms of the gluon in
kT factorization may be unambiguously split into a struc-
ture function-dipole part and a dipole-gluon part. The full
coefficient function (or splitting function) leads to a sig-
nificant enhancement of the growth with decreasing x, and
it is found that essentially all of this appears in the dipole-
gluon component. Hence, for a given gluon anomalous
dimension there is a calculable coefficient function which
causes the dipole cross section to be considerably steeper
than the gluon distribution.

Both of these effects are in the direction needed in order
to reconcile the DGLAP approach and the dipole approach.
However, in order to test fully their compatibility I have
constructed a model for the gluon distribution which
evolves quantitatively like a DGLAP gluon for Q2 �
0:5 GeV2, but where the evolution slows down at low Q2

so that for Q2 < 0:5 GeV2 xg�x;Q2� �Q2 and becomes
flat in x. This slowing of the evolution is achieved only by
altering Q2 in the expression, making no special case of
small x and hence not invoking saturation type arguments.
Using such a gluon, a very good fit was obtained
for 0:5 GeV2 < Q2 < 50 GeV2. Above Q2 � 50 GeV2 a
gluon with DGLAP type evolution used within the dipole
approach becomes incompatible with data. The predicted
cross sections are too big at small x forQ2 < 0:5 GeV2 and
x� 10�5, and some reduction is necessary here, possibly a
sign of saturation. However, the gluon for the good fit is
small, and not very steep at low Q2. For x > 10�5 and
-11
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sensible values of Rp we never have the condition
���s�Q

2��xg�x;Q2��=Q2R2
p� � 1, i.e., the naive saturation

requirement [17].
I obtain the important result that the extracted gluon is

much too small to match to a genuine DGLAP gluon at
high Q2. This real discrepancy between the DGLAP ap-
proach, which must be correct to a good accuracy for Q2

above 50 GeV2 (at least until very small x), and the dipole
approach can be seen to be due very largely to inaccuracies
in effective splitting functions or coefficient functions used
when relating the gluon or dipole cross sections to structure
functions. They are expressions that are only really valid in
the leading ln�1=x� limit, and comparison with the exact
perturbative coefficient functions and splitting functions
shows clearly that they give structure functions which are
too large. This affects both the size and the shape of the
gluon and dipole cross section extracted, and the error is
greatest at the moderate x values where the DGLAP gluon
is most reliable, rather than at very small x. The same
problems in relating the dipole cross section to the struc-
ture function exist at smaller Q2, so even though the
DGLAP gluon certainly becomes unreliable at low enough
Q2, the dipole cross section and the resulting gluon are not
truly reliable either.

Hence, part of the discrepancy between the dipole ap-
proach and the conventional DGLAP approach is only an
apparent discrepancy—the dipole cross section being
rather steeper than the gluon distribution at small x, though
this means that one cannot immediately regard saturation
due to a large dipole cross section as being quite the same
as saturation due to a large gluon distribution. However,
part of the discrepancy is real, with the effective coefficient
function allowing one to calculate the structure function
from the dipole cross section missing very important con-
tributions which are present in the exact order-by-order in
�S calculations. These contributions are really there, and
should not be ignored. This consistent inaccuracy in relat-
ing the true dipole cross section to the structure function
data means that one cannot have real faith in the quantita-
tive size and shape of the extracted dipole cross sections,
and can only treat any claims about the suitability of a
particular theoretical foundation based on a fit to data as
justified in very qualitative terms. It has long been realized
that one must go beyond LO kT-factorization theory in a
calculation of the gluon to get any sort of reasonable
054024
quality of fit, but it is necessary to do likewise for the
wave functions in order to be at the level where one has
genuinely quantitative results.

There are various possible avenues. Much work has been
done on calculating the NLO kT-factorization theory im-
pact factors for photon-gluon scattering [33] to go along
with the NLO gluon kernel [34], and these would be useful
in extending the validity of the formalism. The impact
factors with exact gluon kinematics have already been
calculated [35], and these could also give useful informa-
tion about how to improve the calculational framework. It
would be particularly interesting to compare these results
with the complete NLO impact factors, once they are
known, to see how well they predict the complete NLO
contribution. If they are successful in doing this one might
hope they would be a fairly accurate representation at even
higher orders. However, I feel that, even if one is only
fitting HERA data at low x, it is vital to use some calcula-
tional framework which combines both the leading terms
in a ln�1=x� expansion and the leading terms in an order-by
order in �S expansion (along the lines of that used in e.g.
[36]) to be truly accurate, since the latter are always
important even at very small x. Certainly, the use of
corrections to the coefficient functions, such as those cal-
culated using the exact gluon kinematics in [35], do in-
crease the overall normalization of the gluon for a given
structure function, as is required to obtain a closer match to
the DGLAP gluon at high Q2. However, as shown in [21],
the simple dipole picture does not really apply beyond LO
in the kT-factorization theory, due to the lack of diagonal-
ization of the cross section in the transverse position r, and
such calculations are still within the spirit of the
kT-factorization theorem, but are more difficult to interpret
in terms of the dipole picture. Hence, constructing a quan-
titatively accurate dipole picture cross section seems to be
a particularly challenging problem.
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Slovakia, April 2004, and at Low-x 2004, Prague, Czech
Republic, 2004 (unpublished).

[28] A. M. Stasto, K. Golec-Biernat, and J. Kwiecinski, Phys.
Rev. Lett. 86, 596 (2001).

[29] H1 Collaboration, C. Adloff et al., Eur. Phys. J. C 21, 33
(2001).

[30] ZEUS Collaboration, S. Chekanov et al.., Eur. Phys. J. C
21, 443 (2001).

[31] ZEUS Collaboration, J. Breitweg et al.., Phys. Lett. B 487,
53 (2001).

[32] M. R. Adams et al.., Phys. Rev. D 54, 3006 (1996).
[33] J. Bartels, S. Gieseke, and C. F. Qiao, Phys. Rev. D 63,

056014 (2001); 65, 079902(E) (2002); V. S. Fadin, D. Y.
Ivanov, and M. I. Kotsky, Phys. At. Nucl. 65, 1513 (2002);
J. Bartels, S. Gieseke, and A. Kyrieleis, Phys. Rev. D 65,
014006 (2002); J. Bartels, D. Colferai, S. Gieseke, and
A. Kyrieleis, Phys. Rev. D 66, 094017 (2002); J. Bartels
and A. Kyrieleis, Phys. Rev. D 70, 114003 (2004).

[34] V. S. Fadin and L. N. Lipatov, Phys. Lett. B 429, 127
(1998); G. Camici and M. Ciafaloni, Phys. Lett. B 430,
349 (1998).

[35] A. Bialas, H. Navalet, and R. Peschanski, Nucl. Phys.
B603, 218, (2001).

[36] R. S. Thorne, Phys. Rev. D 60, 054031 (1999).
-13


