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Increased connectivity of hub networks
and cognitive impairment in multiple
sclerosis

ABSTRACT

Objective: To investigate default-mode network (DMN) and frontoparietal network (FPN) dysfunc-
tion in cognitively impaired (CI) patients with multiple sclerosis (MS) because these networks
strongly relate to cognition and contain most of the hubs of the brain.

Methods: Resting-state fMRI and neuropsychological assessments were performed in 322 pa-
tients with MS and 96 healthy controls (HCs). Patients with MS were classified as CI (z score
,22.0 on at least 2 tests; n5 87), mildly cognitively impaired (z score,21.5 on at least 2 tests
and not CI; n 5 65), and cognitively preserved (CP; n 5 180). Within-network connectivity,
connectivity with the rest of the brain, and between-network connectivity were calculated and
compared between groups. Connectivity values were normalized for individual means and SDs.

Results: Only in CI, both the DMN and FPN showed increased connectivity with the rest of the
brain compared to HCs and CP, with no change in within- or between-network connectivity.
Regionally, this increased connectivity was driven by the inferior parietal, posterior cingulate,
and angular gyri. Increased connectivity with the rest of the brain correlated with worse cognitive
performance, namely attention for the FPN as well as information processing speed and working
memory for both networks.

Conclusions: In CI patients with MS, the DMN and FPN showed increased connectivity with the
rest of the brain, while normal within- and between-network connectivity levels were maintained.
These findings indicate that cognitive impairment in MS features disturbed communication of
hub-rich networks, but only with the more peripheral (i.e., nonhub) regions of the brain.
Neurology® 2017;88:2107–2114

GLOSSARY
CI 5 cognitively impaired; CP 5 cognitively preserved; DMN 5 default-mode network; EDSS 5 Expanded Disease Severity
Scale; FPN 5 frontoparietal network; GM 5 gray matter; GMV 5 gray matter volume; HC 5 healthy control; MCI 5 mildly
cognitively impaired; MS 5 multiple sclerosis; ROI 5 region of interest; RSN 5 resting-state network; TE 5 echo time; TR 5
repetition time; WM 5 white matter.

Patients with multiple sclerosis (MS) commonly experience cognitive decline, which is most
likely driven by functional network changes.1–3 Across neurologic disorders, changes in connec-
tivity of especially the default-mode network (DMN) and frontoparietal network (FPN) have
been linked to cognitive deficits.4–6 This preferential relationship might be explained by the fact
that these networks contain the majority of highly connected regions, commonly described as
functional hubs.7,8 In fact, such hub regions are essential for optimal cognitive function because
they ensure efficient integration of information between different brain regions.9

Previous studies have reported both increased1,10,11 and decreased3,12,13 global connectivity
levels of the DMN and FPN in relation to cognitive dysfunction in MS. This creates
confusion about how these functional connectivity changes, either increased or decreased,
may actually influence cognition.14 Apart from the directionality of these changes, it remains
unclear whether these effects are due specifically to changes in within-network connectivity,
connectivity with the rest of the brain, or changes in between-network connectivity.
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Although a few studies have separately inves-
tigated such connectivity changes between
resting-state networks (RSNs) in MS,13,15

no study has investigated these 3 connectiv-
ity measures together in relation to cognitive
dysfunction.

The aim of the present study was therefore
to investigate changes in the DMN and FPN
in patients with MS with different severities
of cognitive impairment by specifically inves-
tigating within- and between-network con-
nectivity as well as connectivity with the
rest of the brain.

METHODS Participants. All participants were part of the

Amsterdam MS cohort,2,16 which consists of 332 patients with

clinically definite MS17 (age 48.1 6 11.0 years, disease duration

14.6 years, range 4.6–45.9 years) and 96 matched healthy con-

trols (HCs; age 45.9 6 10.5 years). Of the patients with MS,

243 patients were diagnosed with relapsing remitting MS, 53

patients with secondary progressive MS, and 36 with primary

progressive MS.

Standard protocol approvals, registrations, and patient
consents. The study protocol was approved by the local ethics

review board, and all participants gave written informed consent

before participation.

Neuropsychological assessment and cognitive groups. On

the day of scanning, all participants underwent a neuropsycholog-

ical assessment as previously described,2 consisting of an

expanded Brief Repeatable Battery of Neuropsychological tests

(see e-Methods at Neurology.org). Cognitive scores were

regression-adjusted for normal effects of age, sex, and educational

level on the basis of the effects observed in our HCs.18 These

corrected cognitive test scores were used to compute z scores

relative to the mean and SD of HCs. Patients were defined

cognitively impaired (CI) if they scored at least 2 SDs (i.e., z score
, 22.0) below HCs on at least 2 cognitive tests. Patients who

did not fulfill the criteria for CI but who scored at least 1.5 SDs

below HCs on at least 2 domains were defined mildly CI (MCI).

Noteworthy, this term should not be confused with the clinical

diagnosis of MCI caused by Alzheimer disease or other neurologic

conditions. The remaining patients were defined cognitively

preserved (CP).

MRI studies. MRI was performed on a 3T MRI system using

an 8-channel head-coil (GE Signa-HDxt, Milwaukee, WI). All

participants underwent a 3-dimensional T1-weighted

inversion-prepared fast spoiled gradient recall sequence (repe-

tition time [TR] 7.8 milliseconds, echo time [TE] 3 milli-

seconds, inversion time 450 milliseconds, flip angle 128, sagittal

1.0-mm sections, 0.94 3 0.94–mm2 in-plane resolution) for

volumetric measurements and a 3-dimensional fluid-attenuated

inversion-recovery sequence (FLAIR; TR 8,000 milliseconds,

TE 125 milliseconds, inversion time 2,350 milliseconds, sag-

ittal 1.2-mm slices, 0.98 3 0.98–mm2 in-plane resolution) for

lesion detection. Additionally, resting-state fMRI scans were

acquired with whole-brain coverage and 202 volumes, of which

the first 2 were discarded (echo planar imaging; TR 5 200

milliseconds, TE 5 35 milliseconds, flip angle 208, 3 mm

contiguous axial slices, 3.3 3 3.3–mm in-plane resolution).

Structural brain measures. White matter (WM) lesions were

segmented on FLAIR images with the use of a previously

described automated segmentation technique19 and used to

calculate lesion volumes. The quality of the segmentation was

manually assessed. Lesion filling (LEAP; LEsion Automated

Preprocessing) was applied on the 3-dimensional T1

to minimize the effect of WM lesions on volumetric measure-

ments.20 Total gray matter (GM) volume (GMV), total WM

volume (WMV), and whole brain volume were then quantified

with the lesion-filled T1-weighted image with SIENAX (part of

FSL5, fsl.fmrib.ox.ac.uk). In addition, deep GMV (using FIRST,

also part of FSL) and cortical GMV (by removing FIRST regions

from the GM mask) were computed. All volumes were normal-

ized for head size.

fMRI preprocessing. Preprocessing consisted of removal of

nonbrain tissue, motion correction, spatial smoothing with a 5-

mm full width at half-maximum gaussian kernel, and high-pass

temporal filtering equivalent to 0.01 Hz. All resting-state fMRI

scans were checked for registration errors and artifacts. The

average motion did not exceed 3 mm (i.e., one voxel) for any

participant; the average was 0.08 mm (0.05 mm) with no dif-

ference between HCs and MS (p 5 0.34). Registration param-

eters were calculated with the use of boundary-based registration

between the fMRI and 3-dimensional T1 sequences and non-

linear registration between 3-dimensional T1 and standard space

for subsequent atlas-based steps.

Regions of interest. The brain was separated into regions of

interest (ROIs) with a custom-made native-space atlas as re-

ported previously.2 The cortical atlas was derived from the

standard-space Automated Anatomical Labeling atlas, which was

coregistered to the participant’s T1-weighted scan with inverted

nonlinear registration parameters and nearest-neighbor interpo-

lation. After registration, this cortical atlas was masked by a GM

mask derived from SIENAX to ensure that only cortical GM was

included. Deep GM structures (i.e., thalamus, caudate, putamen,

pallidum, hippocampus, amygdala, and nucleus accumbens) were

segmented with FIRST on the participant’s T1-weighted scans

and were added to the cortical atlas. The complete atlas was

subsequently coregistered to the participant’s resting-state fMRI

scan with an inverted boundary-based registration matrix and

nearest-neighbor interpolation to optimize registration. However,

approaches such as bias-field measurements could further

improve registration. After registration to fMRI, only those ROIs

with at least 30% voxels remaining after registration and masking

with a custom-made fMRI mask were included in the analyses.

This custom-made mask was created to remove any residual

nonbrain tissue and to reduce the effect of echo planar imaging

distortions by excluding voxels with signal intensities in the

lowest quartile of the robust range. On the basis of these criteria,

12 ROIs were excluded, made up of orbitofrontal areas and

nucleus accumbens. The final atlas therefore segmented the fMRI

sequence into 80 regions for which mean time series were

obtained.

To determine which atlas regions make up the DMN and

FPN, the resting-state data were transferred to standard space

to be able to run an independent component analysis with

MELODIC.21 The concatenated fMRI dataset was decom-

posed into 42 components, with a clearly identifiable DMN

and FPN. The following regions were selected for the DMN:

medial superior frontal gyrus, posterior cingulate, angular

gyrus, and precuneus. For the FPN, middle frontal gyrus,

superior frontal gyrus, inferior parietal gyrus, angular gyrus,

and precuneus were selected. Regions that were not part of the

2108 Neurology 88 May 30, 2017

ª 2017 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/lookup/doi/10.1212/WNL.0000000000003982
http://fsl.fmrib.ox.ac.uk/


DMN or FPN were considered to be the rest of the brain,

consisting mainly of nonhub regions.

Connectivity scores. For each participant, Pearson correlation

coefficients were calculated between all 80 regions to construct

connectivity matrices. Given the controversial nature of negative

correlations, 2 approaches were used: either set to zero22,23 or

maintained in the matrices. Each connectivity score was normal-

ized on the basis of the mean and SD of each participant’s con-

nectivity matrix. In effect, these relative connectivity scores reflect

whether connections were stronger (positive z score) or weaker

(negative z score) than the average strength of all connections (z
score5 0) within an individual functional network. This measure

was chosen to specifically look at the ranking of each brain region

within its individual brain network, in doing so correcting for

gross interparticipant variability in mean connectivity. Three dif-

ferent measures were calculated for the DMN and FPN: the

connectivity within these RSNs, the connectivity of these RSNs

with the rest of the brain, and the connectivity between these

RSNs (figure 1). Subsequently, a post hoc regional analysis was

performed for each significant network measure to identify which

brain region within the DMN or FPN was most responsible

statistically for the measured connectivity changes.

Statistical analyses. All statistical analyses in this study were

performed with SPSS 21.0 (Chicago, IL). Variables were checked

for normality with Kolmogorov-Smirnov testing and histogram

inspection. Data were investigated with x2 tests for categorical

variables, Kruskal-Wallis tests for nonnormally distributed vari-

ables (Mann-Whitney U tests as post hoc test), or general linear

models for normally distributed variables. The Levene test for

equality in variances was used to assess homoscedasticity. If this

assumption was violated, the Welch test was used. To investigate

whether the observed connectivity changes were specific for

cognitive function, the analysis was repeated with the use of

groups based on Expanded Disease Severity Scale (EDSS) scores

,3, 3 to 4, and .4 (i.e., based on tertiles). All general linear

models were corrected for age, sex, and education. To limit the

number of statistical tests, group comparisons were limited to

cognitive MS groups vs controls and CI vs CP. fMRI measures

that were different between groups were correlated with structural

measures and clinical data with the use of Pearson correlations for

normally distributed variables or Spearman correlations other-

wise. Only Bonferroni-corrected p values were reported, and

values of p , 0.05 were considered significant.

RESULTS Demographical, clinical, and MRI data. Of
all patients, 180 (54%) were defined as CP, 65 as
MCI (20%), and 87 as CI (26%) (table 1). As ex-
pected, CI patients were older relative to HCs and CP
patients and had a longer symptom duration, higher
EDSS, and lower level of education relative to CP
patients. Additionally, MCI and CI patients had
a lower level of education compared to HCs. There
were more women in the CP group compared to HCs
and CI patients. Among the volumetric measures,
GMV and lesion volume differed between CI and
CP patients, whereas WMV did not. All brain vol-
umes were reduced in all MS groups compared to
controls.

Cognitive profile of patients with MS. As expected, all
cognitive domains were affected in CI patients com-
pared to controls, with the strongest effects in infor-
mation processing speed (z score 5 22.54) and
executive functioning (z score 5 22.53), followed
by working memory (z score 5 22.45; table 2).
Relative to HCs, CP patients had a worse perfor-
mance only on information processing speed and
working memory, while MCI and CI patients scored
lower on all cognitive domains compared to controls,
which was also seen for CI compared to CP patients.

Connectivity of the DMN and FPN. For the DMN,
connectivity with the rest of the brain was increased
only in CI patients compared to HCs (pcorr 5 0.04)

Figure 1 DMN and FPN measures

Within-DMN (green) and within-FPN (blue) connectivity (A) and connectivity between these networks (B). Connectivity between
both the DMN and FPN with the rest of the brain (e.g., all other regions of the Automated Anatomical Labeling atlas except for
the DMN and FPN regions; C). DMN 5 default-mode network; FPN 5 frontoparietal network; RSN 5 resting-state network.
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and CP patients (pcorr 5 0.004; figure 1), while
within-DMN connectivity was not different
between groups. For the FPN, similar results were
observed; i.e., increased connectivity with the rest of
the brain was seen only in CI patients compared to
HCs (pcorr 5 0.004) and CP patients (pcorr 5 0.004;
figure 2), while within-FPN connectivity did not

differ between groups (figure 3). Connectivity
between the DMN and FPN was not different
between any of the groups. Results did not change
when negative correlations were included in the
analysis or when normalized brain volume was
added as a covariate. Additionally, group differences
in brain volumes were not mediated by functional

Table 1 Demographic, clinical, and MRI data of included participants

HCs CP MCI CI Overall p value

Patients, n 96 180 65 87

RRMS/SPMS/PPMS, n 148/21/11 46/6/13 49/26/12a ,0.01b

Age, yc 6 (10.5) 46 (10.5) 49 (12.2) 51 (10.7)a,d ,0.01e

F/M, n 56/40 132/48d 42/23 52/35a 0.04b

Level of education, yf 6 (1–7) 6 (1–7) 4 (1–7)d 4 (2–7)a,d ,0.01g

Symptom duration, yf 10 (5–34) 13 (5–35) 18 (5–46)a 0.01g

EDSS scoref 3 (0–8) 3 (0–8) 4 (2–8)a ,0.01g

NBV, Lc 1.52 (0.07) 1.48 (0.06)d 1.46 (0.07)d 1.40 (0.09)a,d ,0.01h

NGMV, Lc 0.82 (0.05) 0.80 (0.05)d 0.79 (0.05)d 0.75 (0.06)a,d ,0.01h

NDGMV, mLc 62.9 (3.7) 58.6 (5.2)d 56.2 (5.8)d 50.9 (7.8)a,d ,0.01h

NWMV, Lc 0.70 (0.03) 0.68 (0.03)d 0.67 (0.03)d 0.65 (0.04)d ,0.01e

Normalized total lesion
load, mLf

10.8 (0.8–83.5) 14.3 (1.8–56.9) 24.0 (2.1–94.7)a ,0.01g

Abbreviations: CI 5 cognitively impaired; CP 5 cognitively preserved; EDSS 5 Expanded Disease Severity Scale; HC 5

healthy control; MCI 5 mild cognitively impaired; NBV 5 normalized brain volume; NDGMV 5 normalized deep gray matter
volume; NGMV 5 normalized gray matter volume; NWMV 5 normalized white matter volume; PPMS 5 primary progressive
multiple sclerosis; RRMS 5 relapsing remitting multiple sclerosis; SPMS 5 secondary progressive multiple sclerosis.
For the statistical tests conducted to obtain p values, all assumptions were met.
aDifference between CI and CP.
b The x2 test.
c Results are expressed as mean (SD) for normally distributed variables.
dDifference with HCs.
eAnalysis of variance.
f Results are expressed as median (range).
g Kruskal-Wallis test.
hWelch test.

Table 2 Cognitive profile of CP and CI patients

HCs CP MCI CI Overall pcorr value

Executive functioning 0.00 (0.73) 20.20 (0.75) 21.10 (1.02)a 22.72 (2.21)a,b ,0.001c

Verbal memory 0.00 (0.90) 0.02 (0.88) 20.56 (1.01)a 21.48 (1.05)a,b ,0.001d

Information processing speed 0.00 (1.00) 20.36 (0.94)a 21.59 (0.68)a 22.57 (1.17)a,b ,0.001c

Verbal fluency 0.00 (1.00) 20.05 (0.95) 20.74 (0.80)a 21.16 (0.96)a,b ,0.001d

Visuospatial memory 0.00 (0.94) 20.17 (1.01) 20.82 (1.05)a 21.40 (1.11)a,b ,0.001d

Working memory 0.00 (0.85) 20.39 (0.79)a 21.22 (1.01)a 22.45 (1.94)a,b ,0.001c

Attention 0.00 (0.66) 20.18 (0.65) 20.98 (1.05)a 21.45 (1.50)a,b ,0.001c

Abbreviations: CI 5 cognitively impaired; CP 5 cognitively preserved; HC 5 healthy control; MCI 5 mildly cognitively
impaired.
Mean z scores were obtained with cognitive scores of HCs used as reference. A general linear model or Welch test was
used to assess group differences in cognitive performance. Bonferroni-corrected p values are reported.
aDifference with HCs.
bDifference between CI and CP.
cWelch test.
d Linear model.
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connectivity. Although group effects were observed
for the EDSS groups, post hoc comparisons did not
survive multiple-comparison correction.

Post hoc regional connectivity changes. Post hoc analy-
sis revealed increased connectivity with the rest of
the brain for the inferior parietal (pcorr 5 0.01),
posterior cingulate (pcorr 5 0.03), and angular gyri
(pcorr 5 0.01). These changes were observed only
in CI patients, in whom increased connectivity
was observed for the posterior cingulate and angu-
lar gyrus with the rest of the brain relative to CP
(pcorr 5 0.04 and pcorr 5 0.004, respectively)
and for the inferior parietal gyrus relative to HCs
(pcorr , 0.008).

Correlates of DMN and FPN connectivity. In MS,
increased connectivity scores with the rest of the brain
correlated only with worse cognition, including infor-
mation processing speed and working memory for
both the DMN-brain (r 5 20.179 and r 5

20.171, respectively) and FPN-brain (r 5 20.176
and r 5 20.175, respectively) and attention (r 5

20.152) only for the FPN-brain. Lower normalized
deep GMV was associated with higher connectivity
with the rest of the brain of both the DMN (r 5
20.184) and FPN (r 5 20.149). Higher EDSS
scores were associated with higher connectivity
between the DMN and the rest of the brain (r 5
0.142) (all pcorr , 0.05; table e-1).

DISCUSSION In this study, we examined the cog-
nitive relevance of the hub-rich and cognitively
important DMN and FPN in a large cohort of
patients with MS separated into groups of different
severities of cognitive impairment. Of the 332 pa-
tients, 46% were defined as either MCI or CI,
involving multiple cognitive domains, with execu-
tive function and information processing speed
being most severely affected. Despite such a high
incidence in MS and a large body of literature
investigating cognitive dysfunction, the specific
network properties that drive cognitive deteriora-
tion in MS remain unclear. We specifically inves-
tigated hub network functioning by separately
assessing connectivity within each network, of each
network with the rest of the brain, and between the
2 networks. Our results showed that these 2 net-
works remained internally unchanged in terms of
within- and between-network connectivity but
showed increased connectivity with the rest of
the brain in patients with more severe cognitive
impairment.

Regionally, we observed that connectivity in-
creases of the DMN and FPN with the rest of the
brain were driven mostly by the inferior parietal,
posterior cingulate, and angular cortices. Previous
studies have also highlighted the cognitive relevance
of structural16,24 and functional1,25 changes of espe-
cially the posterior cingulate gyrus, the most strongly
connected hub in the brain. Properties of the human
brain network facilitate efficient communication
between separate brain regions by strong local con-
nectivity, enabling local processing, and efficient
long-distance connections, enabling integration of
information.26 Because hubs are thought to guide
most of this information flow in brain networks,
they are likely to relate to cognitive function.9 In
light of this perspective, our findings might indicate
that especially the functional integration between
hub regions and more provincial regions (e.g.,
non-DMN and non-FPN regions) has been altered

Figure 2 Connectivity between the DMNand the
rest of the brain

CI patients showed increased connectivity between the
DMN and the rest of the brain compared to CP patients
and HCs, reflected by higher z scores (i.e., less negative).
Differences are indicated (*pcorr , 0.05), and error bars
reflect SEM. CI 5 cognitively impaired; CP 5 cognitively
preserved; DMN 5 default-mode network; HC 5 healthy
control; MCI 5 mildly cognitively impaired.

Figure 3 Connectivity between the FPN and the
rest of the brain

In CI patients, increased connectivity, reflected by higher z
scores, was observed between the FPN and the rest of the
brain compared to CP patients and HCs. This indicates that
connections between the FPN and all other regions became
stronger than the average strength of all connections
together of the functional network. Differences are indi-
cated (*pcorr , 0.05), and error bars reflect SEM. CI 5 cog-
nitively impaired; CP 5 cognitively preserved; FPN 5

frontoparietal network; HC 5 healthy control; MCI 5 mildly
cognitively impaired.
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in CI patients with MS. GM and WM damage
throughout the brain may result in a lowered poten-
tial for local information processing, forcing the pro-
cessing load away from peripheral areas toward more
centrally located hubs, potentially inducing an inef-
ficient network balance.27 The functional and struc-
tural properties of these hub regions might therefore
predispose them for pathology, more so than non-
hub regions.28 Interestingly, hubs seem to be espe-
cially sensitive to such a network pathology across
many different neurologic disorders, stressing the
clinical relevance of normal hub functioning.28–30

To ensure comparison with other studies, we
defined the hub-rich DMN and FPN on the basis
of an anatomic atlas. However, future studies are
needed to select hub and nonhub regions in a fully
data driven way.

Our finding is supported by previous studies in
which increased connectivity was most often associ-
ated with worse cognitive performance in MS,
possibly indicating a maladaptive process.1,2,25

However, these findings seem to be in contrast to
the functional reorganization hypothesis in which it
would be expected that patients with more severe
structural damage would show decreased functional
connectivity.14 The histopathologic correlate of the
observed increased connectivity remains elusive;
however, this could include an abnormally low
inhibitory, GABA-based activity of interneurons.
In MS, there seems to be a reduction in the pop-
ulation of interneurons,31,32 although it is unclear
whether specifically interneurons are more sensitive
to MS pathology. Nevertheless, a decrease in GA-
BAergic neurotransmission has been observed in
MS.33 In fact, previous neural mass model-based
studies have shown that even a small loss of inter-
neurons, and thus a small drop in inhibitory activ-
ity, can induce a very large functional effect on
hubs and the entire brain network.34 However,
given that excitatory neurons are most likely also
affected by MS, it seems that a lower inhibitory
activity could not be the only mechanism that
underlies functional brain changes. For instance,
a late and possibly ineffective attempt at beneficial
functional reorganization cannot be excluded as an
explanation for our results at this time.14 Such an
attempt at plasticity could present itself by an out-
reach of hub-rich networks such as the DMN and
FPN toward nonhub areas to facilitate information
processing and transfer between hub and nonhub
regions. Unfortunately, the cross-sectional design
of almost all studies in the literature limits strong
causal inferences, highlighting the need for longi-
tudinal data.

In contrast to previous studies, we found no
changes in within-network connectivity.10,13,35,36 Those

studies, however, have been limited mostly to more
conventional methodologies and usually do not
separate CI and CP patient groups. Previous studies
on pediatric and adult MS showed a cognitively
relevant increased connectivity of the DMN with
other brain networks, but not with the FPN spe-
cifically.15,13 Together, these studies seem to sup-
port our findings of increased RSN connectivity
with other, nonhub, brain networks and no
between-network changes.

Exploring the underlying mechanisms of cogni-
tive deficits could help to define whether patients
are genuinely CP or CI. Our data support a more
conservative criterion of 22 SD on at least 2 tests
because no network changes were observed in the
MCI group. The normal functioning of both the
DMN and FPN is known to be important for
a broad range of cognitive demands.4 The increased
connectivity of FPN with the rest of the brain was
associated mostly with attention deficits in our sam-
ple, and the FPN has been implicated as a source of
attention control before.23,37 Interestingly, given
the involvement of frontal regions, the lack of a rela-
tion with our executive function domain is striking.
This might be explained by the fact that the
concept-shifting task, which makes up the executive
functioning domain in our study, also has a prom-
inent information processing speed component.
The DMN is usually considered to be engaged dur-
ing unconstrained cognitive processes, but its rele-
vance for working memory has been shown
before.38 Furthermore, functional connectivity
changes of the DMN and FPN correlated with nor-
malized deep GMV, the main structural correlate of
cognitive dysfunction in MS.2 In addition, the main
descriptive predictor of cognitive dysfunction,
a lower level of education, was confirmed in the
present study, which supports the notion of a cog-
nitive reserve in MS.

We showed that functional connectivity levels of
the DMN and FPN can distinguish cognitive pheno-
types in MS. In CI patients with MS, these hub-rich
networks show an increased level of connectivity, but
only with peripheral, nonhub regions of the brain.
This seemingly negative change in network balance
needs to be investigated further in future longitudinal
studies.
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