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WORDS, DEFINITIONS AND CONCEPTS IN DISCOURSES OF 

MATHEMATICS, TEACHING AND LEARNING 

Candia Morgan, Institute of Education, University of London 

 

PRELIMINARY THOUGHTS 

The book Mathematical Vocabulary (DfES, 2000) represents the current official discourse of 

school mathematics in England, embodying the values, world view and practices that teachers 

are expected to adopt in their classrooms. The importance of language for children‟s learning 

is stated as the most important motivation for the publication and is presented as a simple and 

unquestionable fact. Thus: 

mathematical language is crucial to children‟s development of thinking. If children 

don‟t have the vocabulary to talk about division, or perimeters, or numerical difference, 

they cannot make progress in understanding these areas of mathematical knowledge. 

(p.1) 

However, the only specific aspect of language identified is “vocabulary” – in fact, 

mathematical language appears to be identified with its vocabulary. The title of the book, its 

format (mainly consisting of lists of words) and the repeated emphasis on vocabulary, 

terminology and words (see the extract in Appendix 1 of the introductory article) construct an 

image of mathematical language as a collection of discrete terms. Although there are 

suggestions of language activities such as discussing, hypothesising, reading or writing 

instructions that hint at the complex functions of language in mathematics, these are presented 

only as “opportunities to develop [children‟s] mathematical vocabulary” (p.3) rather than as 

development of a more broadly conceptualised mathematical language.  

 

In contrast to other kinds of language (described as informal), mathematical words are 

described as technical and correct. Teachers are exhorted to “explain their meanings” and to 

“sort out ambiguities or misconceptions” (p.2). The use of a mathematical dictionary is 

described as necessary in every classroom to be used by both children and teacher “to look up 

the meanings of words” (p.36). The relationship between word and meaning is thus 

constructed as one-to-one and as expressible in terms of other already known words. The 

meaning of the mathematical term appears to be identified with its dictionary definition and 
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understanding of mathematical concepts is implicitly equated to understanding the words with 

which they are expressed. 

 

The mathematical term under consideration in the classroom transcript (Appendix 2 of the 

introductory article) is two-dimensional shape. As advised by the NNS, I turned to a 

mathematical dictionary (Selkirk, 1990) and found three definitions for dimension, the one 

most relevant to this context being: 

the number of measures needed to give the place of any point in a given space, the 

number of coordinates needed to define a point in it. (p.170) 

It seems unlikely that such a formal definition is accessible to Y5 children or very useful to 

their teacher. Moreover, even this definition is not entirely unambiguous, as the nature of the 

“given space” is left open. For example, the question of whether a circle is one-dimensional 

or two-dimensional (see turns 24-34) is not immediately resolvable.
i
 This is not a weakness in 

the definition but a characteristic of the mathematical concept itself.  

 

Most importantly, I question whether any definition can capture the richness of the 

mathematical thinking about dimensions that the children and teacher were engaged in during 

the lesson. Rather than producing an unambiguous meaning for this term, the talk of the 

children and the teacher constructs a multi-faceted notion of dimension. This includes: 

 the idea of 2D as “flat” and 3D as “solid” (turns 7, 9); 

 listing dimensions (breadth, height, etc.) invoking an implicit two-ness or three-ness (turns 

6, 32); 

 a notion of 3D involving something extra when compared to 2D (turn 9); 

 the idea  that “thickness” is characteristic of 3D (turn 41); 

 diagrammatic representations of 2D (a square) and 3D (a 2D isometric drawing of a cube) 

(turn 9); 

 imagining what might be meant by one- and even zero-dimensional objects (turns 14-19). 
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All of these aspects of the meanings of two-dimensional and three-dimensional seemed 

relevant, valid, and at some points, especially during the discussion of one- and zero-

dimensions, mathematically sophisticated, though often incomplete or ambiguous (as in the 

listing of circumference, diameter and radius in identifying the dimensionality of a circle at 

turn 32). Yet at no point during the lesson did it seem possible or even appropriate to explain 

or to remove all ambiguities from the ways in which the words were being used or to establish 

a single „correct‟ way of speaking and thinking about dimensionality. 

 

An important aspect of the classroom dialogue in the extract is the implicit nature of the 

definition. An explicit definition of two-dimensional shape is never given, instead: 

 some properties are named (flatness, width and length) – and properties a two-dimensional 

shape should not have (breadth, thickness); 

 some examples (square) and non-examples (cube, line) are given; 

 contrasts are constructed between two-dimensional shapes and shapes with other numbers 

of dimensions (e.g. turns 9, 41). 

 

This perceived tension between the official discourse of the current mathematics curriculum 

and that of mathematical practice in a primary classroom prompted me to look more widely at 

the ways in which word-concept relationships are constructed in different mathematical 

practices. In what follows, I first review the role of definitions in mathematics itself, as 

discussed by mathematicians and mathematics educators. This is followed by an exploratory 

analysis of a small number of examples of definitions taken from published mathematics 

research papers and from school textbooks. The similarities and differences between these 

raise questions about relationships between school mathematics and the mathematics done by 

professional mathematicians (in universities and in industry) and about how the ways in 

which definitions are presented in school may affect students‟ access to higher mathematics. 

 

THE ACADEMIC VIEW OF DEFINITION IN MATHEMATICS 

The notion of definition has a privileged place in many mathematical practices, highlighted by 

the claim by mathematicians and mathematics educators that mathematical definitions are 

different from „ordinary‟ definitions, as well as by its frequent association with terms such as 
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unambiguous, minimal or necessary and sufficient that are highly valued in high status 

mathematical discourses.  

 

Borasi, a mathematics educator who has undertaken research both at school level and with 

university mathematicians, lists the following “commonly accepted requirements for 

mathematical definitions”: 

Precision in terminology. All the terms employed in the definition should have been 

previously defined, unless they are one of the few undefined terms assumed as a starting 

point in the axiomatic system one is working with.
 ii

 

Isolation of the concept. All instances of the concept must meet all the requirements 

stated in its definition, while a non-instance will not satisfy at least one of them. 

Essentiality. Only terms and properties that are strictly necessary to distinguish the 

concept in question from others should be explicitly mentioned in the definition. 

Non-contradiction. All the properties stated in the definition should be able to coexist. 

Non-circularity. The definition should not use the term it is trying to define. 

(Borasi, 1992, pp.17-18) 

In commenting on these requirements, she makes use of two criteria for justifying them. A 

definition of a given mathematical concept should: 

1. Allow us to discriminate between instances and non-instances of the concept with 

certainty, consistency, and efficiency (by simply checking whether a potential candidate 

satisfies all the properties stated in the definition). 

and should: 

2. “Capture” and synthesise the mathematical essence of the concept (all the properties 

belonging to the concept should be logically derivable from those included in its 

definition). 

 

The requirements listed do not seem peculiar to mathematics (apart perhaps from the formal 

acknowledgement of the role of undefined terms), though they may be applied rather more 

rigorously than in other domains. Borasi‟s criteria, however, hint at a role for definitions 

within mathematical practice that goes beyond both the record of usage of standard 
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dictionaries and the technical taxonomising of common-sense phenomena identified by 

Wignell (1998) in the practices of natural and social sciences. Definitions in mathematics 

form a basis for logical derivation not only of those properties already known (perhaps in a 

common-sense way) to belong to the concept but also of new properties. 

 

The notion that mathematics may be generated from definitions by logical deduction is 

strongly embedded in traditional methods of teaching mathematics at the university. Often 

characterised as definition, theorem, proof
iii

, much exposition of mathematics to 

undergraduates has taken the form of the presentation of logical sequences of deduction from 

definitions, though this approach to teaching has been widely criticised by mathematics 

educators and by students themselves for its failure to help students to develop the concepts 

involved or, indeed, to learn how to derive proofs themselves (see, for example, Anderson et 

al., 2000; Burn, 2002). The definition, theorem, proof format is also strongly represented in 

published mathematics research reports. As Burn points out, however, this may not always 

represent the way that research mathematicians actually go about doing mathematics. 

The research mathematician may come to his results starting from special cases, which 

will appear as corollaries in the final version, from which he gets his ideas, which is 

worked with until he has a proof. Then the theorem is what has been proved. At this 

point he formulates his definitions so as to make the theorem and proof as neat as 

possible. (Burn, 2002, p.30) 

During the early stages, the concepts the mathematician works with may thus not be formally 

defined but more or less intuitive, derived from special cases – concept images rather than 

concept definitions, to use Tall & Vinner‟s (1981) distinction.
iv

 The construction of the formal 

definition and the consequent creation of a technical term is a deliberate creative act, aiming 

not simply to describe or “capture” a pre-existing concept but to shape that concept in a way 

that lends itself to particular purposes. Of course, this definition may subsequently be used to 

generate deductive sequences leading to the discovery of further theorems. 

A further characteristic of mathematical definitions is the possibility of multiple „equivalent‟ 

definitions. I have used scare quotes for the term equivalent because, while two definitions 

may identify the same object, it is questionable whether they necessarily correspond to the 

same concept and they certainly lead to different forms of mathematical activity. Borasi gives 

the example of alternative definitions of a circle: the metric definition (focusing on the idea 
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that all points on a circle are equidistant from a given centre), generally used at early stages of 

school mathematics, and the analytic definition (expressed in the form of an equation such as 

    
x a

2

x b
2

r
2
), encountered by students at Advanced level. Either definition can be 

used to solve a problem such as “Find the circle passing through three given points” but the 

choice of definition makes a significant difference to the process of solution (Borasi, 1992, 

p.19). 

 

Characteristics of the use of definitions in mathematics thus include: 

 There exists a possibility of conflict with intuitive images of the concept being defined, 

especially with images formed by generalising from examples. 

 Definitions form a generative basis for logical deduction, not only of known properties of 

the concept but of new properties. 

 Definitions may be created deliberately in particular forms in order to facilitate the 

construction of theorems and proofs. 

 A single object may be defined in several logically but not conceptually equivalent ways 

and such alternative definitions facilitate the generation of different types of theorems, 

proofs and solution methods. 

These characteristics contribute to a relationship between definition and concept that appears 

dynamic and open to manipulation and decision making by mathematicians. This contrasts 

sharply with the static word-concept relationship constructed by the NNS advice. 

 

ANALYSIS OF DEFINITIONS IN MATHEMATICAL TEXTS 

In this section, I shall examine, compare and contrast the roles that definitions play in 

different mathematical practices applying a critical discourse analytic approach (Fairclough, 

1992) to a small number of written texts. This analysis allows us to identify epistemological 

differences between discourses, variations in the ways in which the activity of the human 

mathematician is represented in relation to definitions, and tensions between the various 

discursive resources that teachers and students may draw on as new mathematical language is 

introduced. The texts come from three sources: an article published in an academic research 

journal and two school textbooks aimed at slightly different populations of students. By 
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focusing on written texts, I am looking at only one aspect of the practices in which the texts 

arose. I would argue, however, that because of the high status of written language and the 

extent of writing activities in those practices, the analyses will have high relevance. Research 

papers are often taken to represent the official discourse of mathematics because of their 

important role in regulating the academic mathematics community, although there is also 

variation among them (Burton & Morgan, 2000) and of course there are other forms of 

academic mathematics practice that involve very different kinds of texts. My intention is to 

compare and contrast the place of definitions and the way in which relationships between 

word, definition and concept are constructed in this official discourse of mathematics with 

their place in school mathematics practices and to consider the extent to which the texts that 

inform school students‟ experience of mathematics serve to apprentice them to academic 

mathematics practices. 

 

Rather than examining further texts related to primary mathematics, I have chosen textbooks 

designed for students in Key Stage 4 (aged 15-16). These represent the endpoint of 

mathematics education for many students and a transition to more advanced and specialist 

study for others. They may thus be seen to represent an eventual target towards which the 

Year 5 pupils in the classroom transcript and other primary pupils whose mathematical 

experience is shaped by the NNS are aiming. This provides a basis for considering the ways 

in which the approach to mathematical language recommended by the NNS provides an 

adequate and meaningful preparation for participation in more advanced mathematical 

practices. 

 

The analysis uses tools drawn from systemic functional grammar (Halliday, 1985) selected to 

illuminate the ways in which the nature of mathematics and mathematical activity may be 

constructed through the texts presented to students. These are outlined in Table 1, identifying 

the questions used to interrogate a text and the grammatical tools that operationalise the 

resulting description. The first two questions in the table are related to Halliday‟s (1973) 

ideational function of language, concerned with the nature of our experience of the world, the 

next two to the interpersonal function, concerned with the identities of the participants and 

relationships between them, and the final question to the textual function, concerned with the 

way the text itself becomes a “living message”. The description thus constructed allows us to 

address critical questions about how the text may contribute to possible readers‟ positioning 
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in relation to mathematics and mathematical activity, asking in particular: What is the nature 

of mathematics/ mathematical objects/ mathematical activity? (using the first two questions in 

Table 1) and Where do power and authority lie? (using the second two questions) as well as 

specifically considering the role of definitions in the text and, by extension, in the practice. In 

the cases that follow, I do not present full grammatical descriptions but use the questions and 

tools outlined in Table 1 to highlight selected aspects that contribute significantly to 

addressing these critical questions and allow us to see most clearly the differences between 

the various texts. A fuller discussion of applications of this approach in mathematics 

education research may be found in (Morgan, 1996, 1998). 

 

 Table 1: Analytic Tools. 

Descriptive questions: Grammatical tools: 

Who or what are the actors and where does 

agency lie? 

What objects and humans are present? How 

are active or passive voice used? 

What are the processes? Relational, material, mental/behavioural? 

What are the roles of the author and reader 

and what is the relationship between them? 

How are personal pronouns used? In what 

kinds of processes are author and reader 

actors? 

Describe the modality. Modal verbs, adverbs, adjectives 

How is the status of „definition‟ established 

textually?  

Given/New structures
v
; how cohesion is 

achieved. 

 

Definitions in a research paper 

In two extracts from the same mathematics research paper
vi

, published in a standard academic 

journal, we can see a break from the orthodox expectation of a one-to-one relationship 

between concept and definition and the construction of definition as a (possibly contestable) 

product of human endeavour. The first extract comes from the introductory section of the 

paper. 
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Extract 1 

In the first section of the paper we give a somewhat non-standard definition of the 

Hecke algebra as a subquotient of the group algebra, which is easily seen to be 

equivalent to the usual definitions. This viewpoint makes the actions of the Hecke 

algebra on cohomology more or less transparent (see Lemma 1.1), as well as being 

adapted for our intended applications (e.g., Lemma 5.1).
vii

 

Extract 2 is taken from a later section of the same paper in which findings and the reasoning 

leading to them is presented using the definition, theorem, proof format discussed above. 

Extract 2 

We recall the definition of a G-functor (Green [6]). … 

Definition. A G-functor F = (F, R, I, C) over k consists of a k-module F(H) 

corresponding to each subgroup H of G and the following operations: […] 

Satisfying the following axioms […] 

Definition. A G-functor is said to be cohomological if it satisfies 

(C) IH
K
RH
K
x K : H x whenever H K,x F K  

An analysis of the two extracts, structured by the questions identified in Table 1 above, is 

presented in Table 2 and is discussed below. 

 

Table 2: Analysis of extracts of a mathematics research paper 

 Extract 1 Extract 2 

Actors & 

Agency 

we give a … definition – human agency 

is explicit at first, though the definition 

then is easily seen – the passive voice 

obscuring agency. 

This viewpoint is presented as an actor in 

its own right, completing a shift from 

active human agency to metaphorical 

agency of the definition itself. 

Human agency is present in the first 

sentence, recalling the definition, but is 

obscured by use of the passive voice is 

said to be in the second definition. 

The citation of the mathematician Green 

may be considered to ascribe agency to 

him as originator of the definition. 

Processes Mental process see would normally Mental process we recall. 
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require a sentient agent but here is in the 

passive voice.  

Material process make transparent is 

performed by the abstract viewpoint.  

Behavioural process is said, here in the 

passive voice. 

Relational A G-functor … consists of [a 

collection of its parts] 

Author & 

Reader 

The (single) author uses we in a way that 

cannot include his reader as it refers to 

his act of writing the definition. This is a 

widely, though not universally, observed 

convention in mathematics research 

papers (see Burton & Morgan, 2000). 

The statement that the definition is 

adapted for our intended applications 

establishes the author‟s ownership of the 

material presented in the paper. 

We recall in this case may be read as an 

inclusive use of we orienting the reader 

to knowledge that is available to them as 

members of the academic community. 

Modality The suggestion that the definition is 

easily seen to be equivalent may serve to 

assert authority over the reader. If an 

individual reader cannot see, it must 

arise from their own inadequacy. 

Modifications somewhat non-standard 

and more or less, on the other hand, 

reduce the strength of the claims in this 

section. 

The modality throughout is absolute. At 

this point in the paper, definitions are not 

open to question. 

Textual 

status of 

definition 

As might be expected in an introductory 

paragraph, the thematic structure of the 

first sentence orients the reader to the 

organisation of the paper. Subsequently, 

the viewpoint or definition is itself 

positioned thematically. 

In the first definition, the word G-

functor is given and the description of its 

properties is the new information, 

providing the properties that distinguish 

this concept from others. In the second, 

this order is reversed. A given object is 

said to be cohomological – a pre-

existing concept is given a new name, 
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although the order here is not consistent 

as the properties that allow the new 

name to be used are listed afterwards. 

Bold headings mark definitions as 

important. These and the label (C) will 

be referred back to in the proofs that 

follow later in the paper. 

 

The claims of the paper depend on the idea, made explicit in Extract 1, that the same object 

(the Hecke algebra) can be defined in alternative ways. The modification somewhat non-

standard implies that definitions are not unique but at the same time that there exist privileged 

definitions that are generally acknowledged/valued by the community. A standard definition 

is likely to be known (or at least readily accessible) to the expected reader of this paper. The 

modality of somewhat defers apologetically to the community values but this is tempered by 

the strong authority claim that the new definition can easily be seen to be equivalent. In this 

paragraph, therefore, the author is establishing his identity within the community, 

acknowledging the priority of established knowledge while claiming novelty, validity and 

utility for his own work. 

 

The metaphor of alternative definition as a “viewpoint” is consistent with the discussion of 

multiple equivalent definitions above. A definition is not identical with the object but is a way 

of looking at an independently existing object. The choice of a particular definition is 

presented both in relation to general community values (transparency) and as a personal or 

contextual matter, related to “our intended applications”. It is thus possible to make 

judgements about the value of definitions based not only on the global, structural criteria 

identified by Borasi but also on more local criteria related to the problem currently under 

consideration, in a way similar to that described by Burn (2002). 

 

In Extract 2, the possibility of alternatives is not considered, though the citation ascribes 

ownership of the first definition, suggesting that the definition may not be commonly known 

but was an original product of the cited mathematician. The structure of the definition itself as 

an absolute statement of the constituent parts of the G-functor and of its necessary properties 
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gives no hint of its origin. Did this object pre-exist its definition in some common-sense way 

or was it entirely a product of Green‟s imagination? Thus it is not clear whether this definition 

is an invention or a discovery; it is simply a statement of properties. The second definition, on 

the other hand, is presented as a human construction – or at least a human decision about how 

to name the kind of object described. Whatever the origin of the definitions, their structural 

importance in the mathematical arguments constructed in the paper is marked by the use of 

bold headings and labels. 

 

The presentation of definitions in this research paper thus include features similar to those 

identified in the previous section: 

 there can be different definitions of the same object; 

 choices between definitions may be made on the basis of utility; 

 definitions play an important role in the formation of mathematical argument. 

 they are the product of human activity, though it is not always clear whether this is the 

construction of new objects or naming of pre-existing objects; 

In addition, it appears that various definitions of the same object have different standings 

within the mathematical community and may need more or less justification by an author. 

 

Definitions in school mathematics texts 

The ways in which definitions appear in school mathematics texts vary significantly with the 

type of mathematics involved and with the age of the intended student-readers. At lower 

levels, in spite of the NNS advice, most new terms seem to be introduced by naming and by 

exemplification rather than by explanation or definition. Given the limited space available in 

this paper, it is not possible to review the different approaches in detail, so I have chosen to 

focus on two examples from Key Stage 4 (Years 10 and 11), the stage at which students are 

expected increasingly to engage in formal mathematical reasoning, including the use of 

definitions (DfEE, 1999). The two examples chosen as a starting point are taken from 

textbooks in the same series, written by the same authors, intended for students in Key Stage 

4 preparing for GCSE examinations at Intermediate and at Higher level (public examinations 

taken at age 16+ at the end of compulsory education, set at different levels for students with 
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different expected levels of attainment). Both examples present definitions of trigonometric 

concepts, though at different levels.
viii

 

 

GCSE Intermediate Textbook 

In Investigation 15:1, you found that the ratio 
  
shortest side

longest side
 i.e. 

  
opposite

hypotenuse
 is the same for each 

of these triangles. 

This ratio is given a special name. It is called the sine of 40° or sine 40°. 

The ratio 
  

adj acent

hypotenuse
 is called cosine 40°. The ratio 

  
opposite

adj acent
 is called tangent 40°. 

The abbreviations sin, cos, tan are used for sine, cosine, tangent. 

The ratios sin A, cos A, tan A are called trigonometrical ratios, or trig. ratios. 

 

GCSE Higher Textbook 

The ratios sin  and cos  may be defined in relation to the lengths of the sides of a right-

angled triangle. 

sin  is defined as 
  
length of opposite side

length of hypotenuse
. 

cos  is defined as 
  
length of adj acent side

length of hypotenuse
. 

Since  < 90, sin  and cos  defined in this way only have meaning for angles less than 

90°. 

We will now look at an alternative definition for sin  and cos  which has meaning for 

angles of any size. (…) This gives the following alternative definition for the ratios cos  

and sin . 

The ratios cos  and sin  may be defined as the coordinates of a point P where OP 

makes an angle of  with the positive x-axis and is of length 1. Defined in this way, the 

ratios cos  and sin  have meaning for angles of any size. 

 

An analysis is given in Table 3, laid out to facilitate comparison of the two texts. 
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Table 3: Analysis of GCSE Texts 

 GCSE Intermediate GCSE Higher 

Actors & 

Agency 

The ratio is given a special name, is 

called and the abbreviations … are used 

– passive voice obscures agency 

The ratios … may be defined – passive 

voice 

Sin and cos have meaning 

Processes Material process found by student 

Behavioural processes call, use which 

would normally require a sentient agent 

but here are in the passive voice 

Behavioural processes define and look 

Relational (intensive) have [meaning] 

Author & 

Reader 

You found … – student agent in practical 

activity 

We will look – is this the authors or is it 

an inclusive we? In either case, there is 

some human agency here and it is 

possible to read this as an expression of 

solidarity. 

Modality Generally neutral i.e. absolute modality 

(these are given facts – no questions 

asked) 

The ratio is given a special name – 

stressing the importance of the new 

vocabulary 

Modification of verbs to reduce level of 

certainty – may be defined. This opens 

up the possibility of alternative ways of 

doing things - and the possibility that the 

student might be able to make choices. 

Similar adverbial and adjectival 

modifications: defined in this way, an 

alternative definition 

Textual 

status of 

definition 

All sentences except the first have 

unmarked word order: the ratio (found 

by the student) is the given knowledge; 

the mathematical terminology is the 

new. 

Move from a specific example of a 

concrete object (the ratio of opposite to 

hypotenuse in a 40° triangle) to giving a 

In the final sentence, word order is 

marked by positioning the adverbial 

phrase defined in this way in the „given 

knowledge‟ position. The form of the 

definition is presented as changing the 

meaning of the object – thus definition 

precedes object/concept 

Since  < 90 in a thematic position 
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name to this object and to extending this 

naming to general similar objects – thus 

the object/concept pre-exists the naming 

of it  

Cohesion achieved by repetition of the 

ratio and its cognates in the thematic 

position, presenting the text as a 

collection of facts about the ratio – 

description. 

presents the text as a process of logical 

argument. 

 

Some significant differences between the two texts are apparent from this analysis. 

Considering the nature of mathematics and mathematical activity in the context of definition, 

in both texts agency in the act of naming or defining is obscured by use of the passive voice 

but the types of activity in which human actors are agents are different. In the Intermediate 

text, the student herself is presented as having been involved in an earlier practical activity. In 

the Higher text, there is no practical activity but we are engaged in the intellectual activity of 

looking at an alternative definition. The forms of the two texts themselves also contribute to 

differences in the type of activity that is constructed as mathematical. The Intermediate text is 

essentially descriptive, starting with what is known about a specific concrete example and 

extending the description to naming a more general set of similar objects. The object/concept 

of the ratio between two sides of a triangle is established as the outcome of practical activity 

before it is named. This order is reversed in the Higher text: the choice of an alternative 

definition changes the nature of the object being defined. This text also uses structures that 

highlight the formation of a logical argument – an aspect of mathematical activity absent from 

the Intermediate extract. 

 

The second major difference arises from the modality of the two texts. While the Intermediate 

text lays down a set of absolute and unquestionable facts to be accepted by the student-reader, 

the Higher text allows uncertainty and alternatives, opening up the possibility that the student-

reader herself might choose between the two definitions. The student entered for the Higher 

level examination is thus constructed as a potential initiate into the practices of creative and 

purposeful definition that academic mathematicians engage in.  
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DISCUSSION 

The examples analysed here were not selected in a systematic way so it would be 

inappropriate to draw firm conclusions about differences between various types of texts. The 

analysis does, however, raise some questions and hypotheses about the ways that definitions 

are presented at different levels and the roles that they play in different mathematical 

practices. The extracts from the research paper confirm the characteristics of mathematical 

definition identified in the literature on advanced mathematical thinking, in particular their 

role in argument and the possibility of purposeful choice between alternative definitions of 

the same object. These characteristics may also be seen in the extract from the textbook for 

Higher level students. The definitions encountered by the Intermediate level students involve 

naming and formalising a pre-existing concept, playing a role much closer to that 

characteristic of definitions in natural and social sciences (Wignell, 1998). Similar differential 

access to mathematical practices is identified by Dowling (1998) in his analysis of a 

differentiated textbook scheme. In that case, the „lower‟ students were constructed as engaged 

in „everyday‟ practices and were denied access to esoteric mathematical practices. 

 

The NNS characterisation of the relationship between mathematical vocabulary, meaning and 

understanding contains no hint of the logical, generative or creative aspects of mathematical 

definition. Of course, it is necessary to consider whether this reflects essential differences 

between different types of mathematical concept met at different stages of learning 

mathematics. Perhaps only the concepts encountered at more advanced levels lend themselves 

to these forms of mathematical activity? A counter-example to this suggestion, familiar to 

many teachers of mathematics at both primary and secondary levels, is the concept of 

rectangle and the debate that arises in classrooms about whether a square is a rectangle 

(resulting, perhaps, from trying to find the rectangle with the largest area for a given 

perimeter). Resolving this debate involves making a choice about the precise definition of 

rectangle to be used and then engaging in logical argument based on the chosen definition. It 

also seems to involve the sort of conflict between concept image and concept definition 

identified by researchers in advanced mathematical thinking (e.g., Tall & Vinner, 1981). 
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Returning to the primary classroom transcript, here too we can see younger students involved 

in forms of mathematical practice that go beyond those suggested by the NNS booklet. While 

no formal definition of dimension is given in the lesson, the discussion towards the end of the 

transcript shows participants using their implicit definitions to form arguments about whether 

particular shapes (and even whole classes of potentially constructible shapes) fulfil the 

necessary conditions to be classified as two-dimensional (turns 41-56). As we have seen, this 

form of reasoning is one of the important ways in which definitions are used in mathematics 

and plays a significant role in mathematical reasoning and proof. If formalised, it could match 

the conventional order of presentation of definition, theorem, proof found in academic papers. 

At the same time, the ambiguity and multiplicity of meanings at play in this classroom 

provide a setting for argumentation that seems likely to contribute more to the children‟s 

developing understanding of the concepts involved – and of mathematical activity itself – 

than any “clear explanation” could.  

 

Another interesting – and mathematical – aspect of the transcript is the generative activity. 

Starting from the children‟s conceptions of two and three dimensions, derived at least in part 

from experience with concrete objects, new, increasingly abstract, objects are conceived with 

one dimension and no dimensions. Again, the adaptation and extension of definitions into 

new domains is an important way in which new mathematics is created. These children, like 

those using the Higher level GCSE text, are being inducted into creative mathematical 

practices. The one-to-one word-to-meaning relationship apparent in the NNS official 

discourse thus seems neither to reflect the way in which mathematical words and meanings 

are related in practice nor to provide any inkling of the powerful and productive role that 

definitions can play in mathematics.  

 

The image of vocabulary and concept development presented by the NNS is thus both 

restrictive in the model it presents of language use and inadequate to describe what actually 

happens in classrooms. The differences identified between the treatment of definition of 

trigonometric ratios in Higher and Intermediate textbooks also suggest that opportunities to 

experience some characteristically mathematical aspects of the use of definitions may be 

being restricted for many students. There is a need to look more thoroughly and critically at 

the ways in which concepts and vocabulary are introduced to younger and less advanced 
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students in classroom practice and in texts and curriculum guidance and to consider 

alternatives that may serve to introduce them to powerful forms of mathematical thinking. 

 

Equally the emphasis put on vocabulary by the NNS presents a restricted image of the nature 

of mathematical language itself. The analysis of mathematical texts that I have offered in this 

article, by considering the grammatical construction of mathematical meanings and of 

relationships between the authors and readers mathematical texts, also demonstrates some of 

the ways in which mathematical language consists of more than just specialist vocabulary. 

Learning to engage in mathematical discourse thus involves learning more than definitions of 

mathematical words. Taking definitions as just one example of a type of mathematical text, 

their formation and their incorporation into mathematical arguments are fundamental 

mathematical activities that take place in language. Induction into mathematical practices 

must involve students in developing ways of speaking and writing that enable them to engage 

in these activities. The importance of mathematical language has been recognised by the NNS 

and current teaching practice at both primary and secondary levels in English schools now 

involves considerable effort to incorporate „key words‟ into lesson plans and into the 

classroom environment. While I am not convinced that official endorsement is enough to 

change classroom practice for the better, recognition of the broader nature of mathematical 

language and what may be done with it might create opportunities for teachers and students to 

develop greater awareness of the ways in which they can use language to do mathematics. 
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NOTES 

i
 If the circle is seen as a part of a more substantial space such as a plane then two measures 

will be needed to define a point on it. However, if the circle itself constitutes the entire space, 

only one measure is needed, i.e. the distance from a fixed point on the circle in a positive 

direction around the circumference. 

ii
 In this context, undefined term does not mean a non-scientific or „everyday‟ term. It refers to 

the basic objects of an abstract mathematical system.  

iii
 In this form of presentation, one or more definitions are given, the theorem to be proved is 

stated, then an argument is made showing how the definitions (together with other theorems 

that have already been established in this way) logically imply the theorem. 

iv
 A concept image is a more or less intuitive concept, generally derived from experience of a 

number of examples and from analogies with informal or everyday concepts, visual images 

and language. The corresponding concept definition does not simply describe a concept image 

but may even conflict with it. A typical example of such conflict arises with the concept of the 

limit of a sequence. For many students, their concept image includes the notion that a limit is 

never reached and that subsequent terms of a given sequence will get closer and closer to its 

limit. The concept definition, however, is formulated to include constant sequences, all of 

whose terms are equal to the limit of the sequence. 

v
 Halliday notes that, grammatically, definitions may be set up “facing both ways”, using 

constructions: “a is defined as x” or “x is called a” (1993, p.73). In the first of these 

constructions, the word itself is „given‟ while the description of the concept is presented as 

„new‟; this order is consistent with a creative function of definition. The act of defining brings 

the mathematical concept into being and provides it formally with the properties that 

distinguish it from other concepts. The second construction, by contrast, suggests that the 

concept pre-exists its definition; by being given a technical name, a „common sense‟ or more 

intuitive technical concept is “translated” into specialised knowledge (Martin, 1993, p.209).  

vi
 The details of the sample of mathematics research papers from which this paper is taken are 

given in (Burton & Morgan, 2000). 

vii
 I will not attempt to clarify the meaning of this passage for the non-mathematician reader. It 

may be helpful, however, to recognise that the term algebra as used here does not refer to the 
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kind of manipulation of letters experienced within school mathematics. It refers to an abstract 

structure consisting of elements that may be combined in specified ways. An algebra is thus 

an object rather than a field of activity. 

viii
 The textbook, of course, is not the only source of definition for students. In most 

classrooms, the text is likely to be mediated by the teacher and this will affect the ways in 

which students interact with the text themselves. As students construct their understandings of 

the nature of mathematics and mathematical activity and of their own identities in relation to 

mathematics they will draw to different extents on the textbook, the teacher‟s speech and 

actions and on their previous experiences. However, where teachers are insecure in their own 

subject knowledge they are likely to rely heavily on the forms of definition and argumentation 

that are provided for them in published resources. Haggarty and Pepin (2002) note that in 

England, while students themselves make relatively little use of textbooks, their teachers use 

them extensively in planning lessons. Textbooks thus have a strong influence, whether direct 

or indirect, on students‟ experience of mathematics.  

 


