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ABSTRACT 

 

The brain is organized on multiple levels. The lowest meaningful one pertains 

to the molecular realm, followed by subcellular structures like the synapses, by cells 

like the neurons, and by microcircuits, mesocircuits and large-scale circuit assemblies. 

This stratified structure has so far hampered the interpretation of brain functions in 

terms of elementary electrochemical events occurring in the membranes of neurons and 

synapses. Each organization level is governed by emerging rules that do not simply 

account for the summation of events at the lower levels but require the understanding 

of highly non-linear interactions occurring in complex feed-forward and feed-back 

loops. Moreover, various forms of plasticity can persistently modify the neural circuits 

and their connections depending on the interactions of the organism with the 

environment. The brain appears thus to operate as a complex adaptive dynamical system 

and interpreting its function requires understanding the time-dependent evolution of 

multiple local activities and their rewiring during behaviour. While experimental 

evidence is instrumental to any further consideration on how the brain might operate, 

interpreting its multiscale organization in mechanistic terms requires the development 

of appropriate models. In this work we will illustrate how low-level representations of 

neuronal activity, intermediate level large-field networks and high-level connectomics 

can be used to explain how ensemble brain functions might emerge from elementary 

neuronal components. 
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PART 1.  

MODELLING THE BRAIN: THE NATURE OF THE ISSUE 

 

Understanding the brain is a core issue for Neuroscience and this concept has 

been recently casted into a theoretical framework [1]. Moreover, a surge of interest has 

addressed the possibility of modelling brain functions [2-5]. But what would be the gain 

of having a model for understanding the brain ? At the very least, a model would 

instantiate Richard Feynmann’s reflection that “What I cannot create, I do not 

understand”. In fact, there are specific and compelling reasons indicating that 

constructing a model is essential toward the understanding of how the brain works. 

And, as a consequence, a brain model would foster the reproduction of functions in 

artificial machines and would provide new cues for curing brain diseases. But this is 

not all what a model of the brain would mean in this context, there is much more. 

 

Brain organization and function: the complexity issue  

The brain is the most fascinating and probably the most complex structure of 

the universe. With its 1012 neurons and 1015 synapses, the human brain generates an 

internal representation of the world and self, controls behaviours, perceives sensations, 

commands movements, feels emotions, generates thoughts, stores and retrieves 

memories and makes all of this conscious. The number of publications on brain 

structure and function has shown a tremendous increase in the last years 1 but still we 

do not understand how the brain works. Or, to be more precise, the fundamental 

question on how the highest brain functions arise from molecular properties of neurons 

remains unanswered. Why? There are several reason to consider, but first of all we have 

to face the issue of brain complexity. 

Complexity depends on the number of interactions and possible states assumed 

by a system and not by the number of elements only, and this applies to any physical 

system and to brain too [6]. The brain (2% of body mass) is certainly much more 

difficult to understand than the muscles (40% of body mass), for which we can provide 

a direct explanation of force generation based on their molecular properties and 

mechanical arrangement!. What is somehow misleading is that the brain is made of 

principal cells (the neurons), supporting cells (the glial cells) and blood vessel cells, so 

that in this respect it does not differ from other body structures, with whom it shares 

fundamental biological and pathological mechanisms. After all, neurons are cells and 

the molecular networks controlling the membrane, cytoplasmic and nuclear functions 

of neurons are no more complex than those of other cells in principle. Thus, the reason 

of our failure to understand the brain does not seem to reside in molecular and cellular 

aspects (though these play a critical role, as explained below) but rather in the 

complexity of neuronal interactions and on their multi-layered architecture. These issue 

will now be considered in turn. 

 

                                                        
1 One can count the articles in Pubmed (www.pubmed.gov) which contain the word "neuron" in their 

titles or abstracts. Impressively, the number increases from about 1000 in the 70s to about 25000 in 2015 

! However, clearly this search doesn't capture all the neuroscience articles, in particular those related to 

brain imaging or psychophysics. When the search is expanding to include "neuron OR neural OR 

neuronal OR brain", this number almost quadruples (e.g. from about 25,000 to 100,000 articles in 2015). 

Interestingly, about one every five of these papers also contains the word “model” (e.g. about articles 

18000 in 2015). The current pace of scientific publication in neuroscience is so high that it's becoming 

almost impossible to keep up. 

http://www.pubmed.gov/
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Fig. 1. The multiscale organization of the brain. The figure illustrates the multiple levels characterizing 

brain organization, from molecules to cells, circuits and behaviour. Reprinted from [7]. 

 

The multiscale organization of the brain 

Unanimated matter is best conceived as being made of elementary components, 

e.g. a large collection of atoms or molecules, whose properties have an immediate 

reflection into those of the structure they constitute. For example, in a star, fundamental 

laws of physics predict how atomic properties generate mass, volume, temperature, 

light, gravity, radiation and so forth. In other words, astrophysicists can jump directly 

from elementary to ensemble properties and can therefore understand how a star is 

generated and evolves. This clearly does not apply to the brain, in which self 

organization of biomolecules and biostructures generates a multi-layered system (Fig. 

1). We recognize at least 8 distinct anatomo-functional levels, which can also be 

referred as to microscale (1-6), mesoscale (7), and macroscale (8).  

1) Bio-molecules (DNA, enzymes, etc.) 

2) Simple subcellular structures (bio-membranes, calcium stores etc.)  

3) Complex subcellular structures (synapses, dendritic spines, axon hillock 

etc.) 

4) Aggregates of specialized subcellular structures (multi-synaptic 

microcircuits, synaptic glomeruli etc.) 

5) Cells (neurons, glial cells, blood-vessel cells) 

6) Local multicellular aggregates (local neuronal microcircuits, including glial 

components and blood vessels) 

7) Interconnected microcircuits (e.g. thalamo-cortical circuit, other major brain 

structures) 

8) Large-scale networks (the brain) 

Each one of these levels has its own complexity and can be investigated through 

specific techniques. Normally, the properties of one level can be used to predict those 

of the higher hierarchical level or can be demonstrated to descend from those of the 

lower hierarchical level, but longer jumps (e.g. from molecules to brain) are unpractical 
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and unconstrained. This is one of the reasons why a multiscale model of the brain is so 

important. 

Historically, mostly for practical and methodological reasons, disciplines have 

evolved to deal with these different organization levels and this has caused a 

fragmentation of actions rather than an advantage towards the final goal of 

understanding the brain. Nor clarity was added by the diatribe on the brain-mind 

problem, which has been dividing philosophers around the concepts of dualism and 

monism. The problem originates from the observation that, while brain and mind are 

related to one other, the brain is material while the mind is immaterial, leading to 

various conceptual solutions dating back to Aristotele, Plato, Kant and Descartes, just 

to mention a few main ones2. This issue has been reinterpreted by neuroscientists in 

seminal papers and, since the 50's [8, 9], more and more importance has been given to 

the fact that traceable brain activity is causative for mental function and dysfunction. 

Modern neurophylosophy is telling us that dualism is not likely to provide the solution 

but rather it supports the concept that mental functions derive from the brain, in a way 

that reflects the ensemble activity of the underlying structures (a huge impulse in this 

direction has recently been given by MRI and connectomics, as explained below [10-

12]. Clearly one may speculate whether an appropriate model that reflects the multi-

layered structure of the brain could eventually generate high-order functions - like 

behaviour and thought - and eventually consciousness [13].  
  

The properties of molecules  

Knowing that the brain is made of molecules does not help much by itself to 

explain its functioning, unless the relationship of molecules with higher level 

phenomena is known. The problem is that this relationship appears to be elusive when 

considering the huge number of molecules and the complexity of their interactions and 

functions. The importance of molecules could emerge only if they were embedded into 

detailed molecular-cellular level computational models [14-17]. For example, one may 

reconstruct a model of the molecular interactions deriving from the activation of a 

membrane receptor, with activation of intracellular transduction cascades and 

production of second messengers, that would eventually modulate effectors like 

enzymes, structural proteins, ionic channels, membrane receptors and even the genome. 

These mechanisms, in turn, would generate mechanistic predictions about phenomena 

like neuromodulation, synaptic plasticity, homeostasis, neurodegeneration, neural 

growth etc. The level of representation of molecular properties can go down to the 

atomic level, for example using molecular dynamics models. Unfortunately, beside 

their attractiveness, models based on explicit reconstructions of molecular structure-

function-dynamic relationships are probably too complex and laborious at present to be 

used in the context of large-scale brain simulations.  

An important aspect of molecular properties, that could bring about relevant 

consequences once molecular properties are accounted for, is the emergence of 

stochasticity that would lead beyond a deterministic interpretation of brain function and 

behaviour [18]. However, at present, kinetic descriptions of chemical transformations 

based on deterministic differential equations are commonly used to describe the 

underlying processes. An example of this is the classical Hodgkin-Huxley model used 

for modelling the molecular properties of ionic channels [19, 20].  

The activity of neurons and microcircuits 

                                                        
2 For a recent critical review, see the elaboration by Skirry in Internet Encyclopedia of Philosophy. Renè 

Descartes: The Mind-Body Distinction. http://www.iep.utm.edu/descmind/ 

http://www.iep.utm.edu/descmind/#H4
http://www.iep.utm.edu/descmind/#H4
http://www.iep.utm.edu/descmind/


Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

5 
 

 Brain activity is based on the continuous exchange of information between 

neurons (e.g. see [7], and Appendix A for biophysical foundations). Neurons are 

specialized cells generating electrical signals across their membrane and chemical 

signals at the synapses. In essence, the membrane of neurons is polarized due to the 

establishment of electrochemical potentials. This causes a negative resting membrane 

potential between -60 and -70 mV depending on the neuron type, although some 

neurons have an oscillating membrane potential and are never strictly at rest. Whether 

resting or oscillating, the neuron initial state can be perturbed giving rise to an action 

potential. This is a rapid (~1-ms) membrane potential transition from negative to 

positive potentials and back, which activates in an all-or-none fashion when a threshold 

around -40 mV is crossed. Sophisticated mechanisms can regulate the process of action 

potential generation forming patterns that represent the neuronal signals. The action 

potentials travel at high speed along the axons to reach the synapses. Here, complex 

molecular mechanisms allow releasing chemical neurotransmitters that reach the 

nearby neurons generating a postsynaptic potential. When this potential crosses the 

threshold, new action potentials are generated in the postsynaptic neuron and 

information flows through the neuronal chain.  

 The processes of action potential generation are highly non-linear with respect 

to time and voltage, as are those of synaptic transmission and signal transduction [19]. 

Moreover, in addition to synapses that excite the postsynaptic neuron, there are those 

that inhibit it. Finally, neurotransmission can activate biochemical transduction systems 

also independently from ionic current control across the neuronal membrane. 

 

 

 
Fig. 2. The multiscale organization of the cerebellum. The figure illustrates how multiscale organization 

characterizes the cerebellar circuit. Reprinted from [21]. 

 

 Neurons assemble into local aggregates, called local microcircuits. These are 

formed by 104-105 neurons that generate intricate connection patterns. While neurons 

are the elementary cellular components, it is at the level of microcircuits that the 

fundamental brain computations take place. Neurons, by receiving about 103 synapses 
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each (between 101-106, depending on the neuron type), have the capacity of integrating 

a huge amount of information and to generate action potential patterns that reflect the 

non-linear transformation that neuronal processing operates. Local microcircuits in turn 

exploit neuronal processing to perform parallel and distributed computations on the 

inputs, that are themselves coming from other microcircuits. At present, the function 

and dynamics of signal processing in local neuronal networks can be precisely resolved 

using “realistic” bottom-up modelling strategies (see below).  

Local microcircuits perform specific operations on the inputs. The activity of 

multiple microcircuits can be coordinated and propagated to neighboring connected 

structures forming integrated systems that are functional units on the mesoscale. An 

example is the cortico-thalamic circuit, in which cortical microcircuits interact with 

thalamic microcircuits to form cortico-thalamic loops. Another example is the loop 

formed by cerebellar cortical microcircuits (or microzones) with deep cerebellar nuclei 

and inferior olive to generate the cerebellar microcomplex [22] (Fig. 2). Beyond this, 

large-scale circuits involving multiple mesoscale or microscale circuits can 

interconnect distant brain areas, for example the cerebro-thalamic loops with 

cerebellum microcomplexes. At the large-scale level, the main problem is to resolve 

the geometrical organization of these regions (the so called “connectome”, see below) 

and to determine how the connectome is related to system function and dynamics [23-

25]. How these different organization and functional levels correspond to different 

experimental approaches is shown in Fig. 3.  

 

 
Fig. 3. The multiscale experimental approach. Different experimental approaches are used at different 

brain scales. Patch-clamp recordings are used for single neurons (e.g. a Golgi cell; [26] and the cells are 

reconstructed using immunofluorescence. Multi-photon confocal microscopy is used for recording 

multiple neurons simultaneously in neuronal microcircuits (e.g. granule cells; [27]. Long-range 

connections are reconstructed using MRI tractography (e.g. a cerebello-prefrontal tract; [28]. Brain 

function and pathology are analyzed using resting-state fMRI (e.g. AD and MCI; [29]. 

 

Principles of brain functioning 
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At the macroscale, there are several guiding principles that can help 

understanding how the brain ultimately operates.  

The brain operates as an autonomous system modulated by senses (Fig. 4). This 

means that the brain generates an internal virtual representation of reality that is 

continuously confronted with the signals conveyed by senses. The external inputs are 

remapped in the internal space, where they undergo complex spatio-temporal 

transformations, and interfere with the ongoing activity of the brain. Indeed, the brain 

is never resting and shows internal rhythms attesting the coherence and frequency of 

underlying neuronal oscillations. Therefore, the brain has to be treated as a dynamical 

system, and the sole structure-function relationship is insufficient to understand how 

the brain works and evolves in life [30]. 

The brain requires continuous tuning to operate. Since there is no way to pre-

tune all synapses genetically, information coming from the senses is used to this 

purpose 3. The way synapses transmit signals and neurons generate action potentials is 

not fixed and specific mechanisms of synaptic and non-synaptic plasticity are thought 

to support this function. 

The brain operates as a predictive machine. This is not an intuitive issue at all. 

The brain exploits its internal representation to predict future system states and 

anticipate their occurrence through actions 4 . This also allows consciousness to be 

instantaneous and continuous and movement to be controlled in real-time. The 

continuous internal activity of the brain provides the reference frame with respect to 

which all other signals are remapped. 

 

                                                        
3 With its 1012 neurons and 103 connections/neuron, and assuming that each connection requires 1 bit, 

the brain would require 1015 bits to tuned at least once. Beside the fact that tuning is continuously 

reshaped, it is easy to demonstrate that biological systems do not have a way to transmit such information 

to the progeny. The human genome is made of 3x109 base-pairs, each one occurring in 4 possible 

configurations corresponding to occurrence of one of the 4 nucleotides (ACGT). Thus, each base-pair 

contains log2 4 = 2 bits of information and the whole genome contains 6x109 bits (corresponding to about 

5.5 GB), i.e. nearly 3 orders of magnitude below the number of synapses. Thus the genome cannot 

program all brain connections, neither in case it would be used only once and just for this purpose. The 

information required for brain wiring must come from the environment. 

 
4 Suppose that a car moves at 100 km/hour, i.e 27.7m/sec. Since the cerebral cortex employs in the best 

case about 100 ms to elaborate a percept, this means that the time elapsed from car position and when 

the driver recognizes a turn is about 2.7 m . This is enough to drive the car out of the road. Clearly, the 

brain needs to anticipate the occurrence of events when it is engaged in sensory-motor loops !   
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Fig. 4. The brain as a complex adaptive system. The brain generates an internal virtual reality (gray 

shadowing) that is continuously compared to the external reality through the implementation of schemes 

and sensory feed-back. The changes to the schemes are maintained through plasticity mechanisms 

determining learning and memory.  

 

The brain proceeds through the implementation of adaptable schemes (Fig. 4). 

Schemes are based on previous memory and cognitive processing, but then are tuned 

through sensory feed-back deriving from experience. It should be noted that the brain 

evolved to allow animals to move and that the motor system implements basic 

coordination schemes that need, then, to be tuned for the specific environmental 

conditions and cases of use. The schemes are thus tuned on the basis of active 

interaction with the environment. Cognition and higher functions can be thought as 

deriving from this initial design. In order to support this process, appropriate circuits 

have evolved, for example those involving the cerebellum and the cerebral cortex (see 

below). 

Therefore, at the macroscale, the brain can be conceived as a dynamic adaptive 

system operating through predictive tunable schemes on the basis of an internal virtual 

representation of the world and self. Clearly here we have taken a top-down attitude, 

we have considered what the system does and hinted at how it might operate. 

Eventually, an appropriate bottom-up model should be able to uncover these emerging 

system properties.  

 

Problems descending from complexity and the need for a brain model  

There are a series of drawbacks descending from the framework explained above. 

• Difficulty in analyzing microcircuit activity. While single neurons can be rather 

well investigated and understood in their biophysical and biochemical 

mechanisms, understanding a connected microcircuit (typically 103-104 neurons) 

remains challenging. This is a critical technical issue, requiring the development 

of new imaging and electrophysiological tools [31, 32]. 

• Structure – function – dynamics relationship not always clear. A common 

approach used to investigate the brain is that of defining its structure, performing 

stimulus-response experiments to investigate its functions, and then reconnect 

these aspects to explain the dynamic behaviour of the system in space and time. 
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However, the relationship between structure – function – dynamics remains 

unclear in many cases [30]. 

• Elusive link between brain function and consciousness. Ultimately, the brain 

generates a virtual reality of which we are aware, a property called consciousness. 

But the link between brain functioning and consciousness lacks critical 

experimental measurements [6]. 

• Elusive signal coding strategies and multidimensional mapping. The way the 

brain remaps and process space and time inside its circuits still creates conceptual 

problems. These fundamental physical dimensions are encrypted in the neuronal 

network space and their processing is hard to decipher [33]. 

• Incomplete understanding of stochasticity. The brain has several stochastic 

processes running inside its circuits, nevertheless we use to treat it as a 

deterministic machine. The implications of stochasticity in brain processing, such 

as emerging from molecular level studies, are far from clear [34]. 

All these elements underline the fact that, in essence, there is no single accepted theory 

on how the brain works, that could be tested and falsified. The absence of a unified 

theory for the brain is to be searched in a long-standing ontological issue, the Turing-

Goedel theorem, stating that a machine cannot understand another with a similar or 

higher complexity [35]. But then, is understating the brain possible for humans at all? 

We believe the answer is yes, we can understand the brain [1], provided that we have a 

theoretical framework and a model. A model constructed in a way that it is grounded 

on neuronal biophysics, that reflects accurately the structure, functions and dynamics 

of brain circuits and that allows generating predictions that can be tested and falsified. 

Ultimately, the biophysics of neuronal signal processing and the architecture of the 

brain have to emerge into higher order functions. Here we will illustrate how such a 

model is not utopia, but is actually already in fieri5. 

 

  

                                                        
5 In Physics, there are several cases in which theory and models have produced strong advancements in 

the understanding of natural phenomena. Maybe the most dramatic example is provided by the theory of 

general relativity, which has generated models of the Universe. There are also concrete examples in the 

field of climate and material science that closely resemble the case of the brain [36]. Numerical weather 

prediction uses computational models based on physical principles of the atmosphere and oceans to 

predict the weather based on initial conditions. Manipulating the vast datasets provided by satellites and 

on-earth observations and performing the complex calculations necessary to modern numerical weather 

prediction requires some of the most powerful supercomputers in the world. Weather models use systems 

of differential equations based on the laws of physics, fluid motion, and chemistry, and use a coordinate 

system, which divides the planet into a 3D grid. Winds, heat transfer, solar radiation, relative humidity, 

and surface hydrology are calculated within each grid cell, and the interactions with neighboring cells 

are used to calculate atmospheric properties in the future. The accuracy of numerical predictions is 

affected by the density and quality of observations used as input and by deficiencies in the numerical 

models. A critical issue lies in the chaotic nature of the partial differential equations that govern the 

atmosphere, which are impossible to solve exactly causing error propagation and limiting the extent of 

predictions to a few days rather than long term predictions. As it will become clear in the main text of 

the manuscript, very similar issues are faced when tackling the brain and similar computational and 

modelling strategies can be used for brain modelling, although the underlying physics and parameters 

are obviously different. 
 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Winds
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Solar_radiation
https://en.wikipedia.org/wiki/Relative_humidity
https://en.wikipedia.org/wiki/Hydrology
https://en.wikipedia.org/wiki/Chaos_theory
https://en.wikipedia.org/wiki/Partial_differential_equation
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Realistic modelling: a bottom-up approach to the brain  

A model taking into account biological details through a construction-validation 

process is called realistic 6 . The approach for reconstructing a model from its 

components proceeds bottom-up, in contrast to top-down models that anticipate an 

intuition on how the system works and then elaborate a plausible explanation. The 

realistic bottom-up approach implements a process of reverse engineering, in which 

construction is based on local rules of elementary interactions, while general rules about 

the system are extracted a posteriori from the ensemble behaviour of the construction.  

For the brain, top-down may be used but the success is limited by the exceeding 

complexity, the multiscale organization and the overwhelming number of details that 

make the brain a still enigmatic machine [3, 4, 21, 37]. For example, intuition cannot 

easily jump from molecules to consciousness, nor it can account for all the elements 

that could be critical to determine function and dynamics. Therefore, bottom-up 

approaches appear to be a winning card and are probably essential in the attempt to 

modelling the brain. In addition, the bottom-up approach has further specific 

advantages. First, it can incorporate all relevant details of brain function, down to 

molecular dynamics and up to large-scale connectivity. In this way it naturally 

implements multiscale architectures. Secondly, it can account for brains typical of 

different animal species. Once "scaffold" models for neurons and microcircuits are 

designed, their microscopic parameters and modular connectivity can be modified 

leading to species-specific variants. In this way, bottom-up modelling also helps 

addressing evolutionary principles and explaining how different functions emerge from 

specific neuronal properties and microcircuit organization. Thirdly, it can be improved 

and updated as soon as new relevant data are provided. Therefore, a bottom-up model 

co-evolves with experimental research, of which it becomes an inherent component. 

Finally, since general biophysical and biological rules are used for construction, then 

the bottom-up strategy can compensate for missing knowledge accelerating the process 

of system reconstruction. This appears as an essential element of the strategy that can 

prevent a never-ended collection of pieces of the puzzle. Thus, the fundamental 

importance and independence of biological discoveries notwithstanding, bottom-up 

realistic models can easily incorporate novelties and predict missing knowledge, 

promoting research in critical directions and accelerating the reconstruction of the 

global picture.  

It is in this sense that the model constructed through a realistic bottom-up 

approach can promote the development of a theory of the brain. A theory that can be 

updated, tested and falsified. This iterative process promotes new experiments that 

eventually will allow researchers to improve the model and so forth. The details of this 

iterative procedure will be explained below. 

 

Realistic modelling strategies: construction, validation, propagation 

To summarize, we are facing the most complex structure of the Universe but we 

do not know its “project”, that is actually what we would like to discover. Critical data 

are missing and system complexity is so high that we will never be able to obtain all 

the data in a reasonable time. But we have the constructing rules and a dataset sufficient 

to generate an initial (or scaffold) model of the brain through a bottom-up realistic 

approach. The general plan and the general organization of the brain can be 

                                                        
6 Calling these models realistic does not mean that other models are unrealistic ! This rather indicates 

that these models are based on realistic biophysical mechanisms and are therefore biophysically detailed.  
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reconstructed through a process of reverse engineering proceeding through a series of 

well defined steps:  

•  In the reconstruction phase, the neurons and brain circuits are reconstructed 

through a model compensating for missing data. 

• The model will then be subjected to validation against experimental data that 

had not been used for reconstruction. 

• Finally the model will be investigated through simulations in order to obtain 

predictions about the system functional states. 

The construction rules encompass the lows of cellular biophysics and of connectivity 

in neuronal assemblies that have recently been defined in the exemplar reconstruction 

of the cortical microcolumn [38]. This strategy is waiting for generalization though the 

reconstruction of other brain microcircuits, specifically those of hippocampus, 

cerebellum and basal ganglia. 

In order to implement the bottom-up modelling strategy for large neuronal 

assemblies, supercomputing resources are needed. De facto, the realistic bottom-up 

strategy is now becoming feasible since supercomputers are reaching the exa-flop scale, 

providing the computational power needed for large-scale network simulations [5]7. 

Likewise, neuromorphic computing architecture may in the future transform the way 

brain simulations are carried out bringing them into hardware and providing at the same 

time new electronic computing architectures. 

Informatics is causing a revolution in the way brain science is developing8. The 

large data-sets required for bottom-up brain modelling are becoming available through 

specialized databases, in which data are collected, curated and organized. Among these, 

the Allen Institute for Brain Science has developed the Allen Brain Atlas over the last 

decade, which covers multiscale data from genomics to proteomics, cell types and 

connectomics 9 . Advanced brain atlases bringing whole-brain reconstruction to the 

subcellular level are being. produced combining MRI technologies with histology, 

electron microscopy, and advanced techniques like knife-edge scanning microscopy 

[39]10, 11. 

Databasing initiatives are also promoting neuron modelling12. These databases 

contain the required information and drivers that allow to reconstruct neuronal and 

microcircuit models through specific modelling platforms13. Therefore, understanding 

the brain requires modelling the brain and this in turn requires informatics, databasing 

and high-performance computing (see also 4).  

This visionary strategy embracing realistic bottom-up brain modelling, 

supercomputing and neuromorphic hardware, and the implementation / exploitation of 

large databases, has been elaborated into large-scale projects pioneered by the European 

Flagship, Human Brain Project (HBP; [38]). Clearly, brain investigation requires big-

science and advanced infrastructures fueling at the same time the advancement of 

science and technology in a virtuous cycle [2, 3, 40-42]. 

 

                                                        
7 High-performance computing (HPC) is becoming available through an open-access scheme based on 

international initiatives like the Partnership for Advanced Computing in Europe (PRACE) and the 

Neuroscience Gateway (NSG) in USA as well as through Cloud Computing. 
8 Several links can be find at https://www.openconnectomeproject.org/links 
9 Allen Brain Atlas  (http://www.brain-map.org/) 
10 Human Connectome Project (http://cbs.fas.harvard.edu/science/connectome-project) 
11 FlyEM Project (https://www.janelia.org/project-team/flyem) 
12  ModelDB (https://senselab.med.yale.edu/modeldb/), Neuromorpho (http://neuromorpho.org/) and 

Channelpedia (http://channelpedia.epfl.ch/) 
13 NEURON (https://www.neuron.yale.edu/neuron/) 

https://www.openconnectomeproject.org/links
http://cbs.fas.harvard.edu/science/connectome-project
https://www.janelia.org/project-team/flyem
http://channelpedia.epfl.ch/
https://www.neuron.yale.edu/neuron/
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The process of network simplification: from micro to macro-circuit models  

In order to scale-up from local microcircuits to models of interconnected brain 

regions (from microscale to mesoscale and macroscale), some further steps need to be 

taken. While in principle, given enough computational power and appropriate 

neuroinformatic strategies, a full simulation of multiple interconnected realistic 

microcircuits could be achieved, this would not help much our intuition towards what 

the system is doing. Therefore, a first step to make the interpretation of implicit model 

computations affordable, is to simplify it. 

The simplification process is not trivial and should occur under supervised 

guidance. This means retaining, even after simplification, the fundamental 

computations and dynamics that are thought to characterize the real system and the 

realistic model. Simplification involves a top-down process, in which it is important to 

identify constraints derived from experiments and to decide whether they have to be 

retained in the simplified model. Thus, a good simplified model should be one that does 

not introduce arbitrary choices (as it will become clearer later in the article) and is at 

the same time computationally efficient. A way to achieve these goals is (1) to identify 

the biological target of any simulation, (2) to identify the properties of neurons that are 

relevant and need to be retained, and (3) to reproduce them with minimal computational 

efforts. Examples in this direction have been provided in recent works using the 

generalized leaky integrate-and-fire models (GLIF: [43, 44]), which allow to represent 

several aspects of neuronal electroresponsiveness accurately. The switch from bottom-

up models to simplified ones is needed in a set of often coexisting cases:  

- When the scale of simulations requires representing a huge number of neurons and 

connections. For example, this approach has been used to model a whole cortico-

thalamic system [45].  

- When circuit models have to be embedded into control loops. For example, 

simplified models should eventually be able to generate realistic microcircuit 

interactions, allowing simulations into closed-loop systems using simulated neuro-

robots [46].  

- When circuit models have to be accelerated to real-time performance in order to 

drive a real robot [47]. 

- When circuit models have to be transformed into hardware to generate 

neuromorphic computers [48, 49]. 

- When a theoretical analysis is needed [50]. Actually, simplified models represent 

the link between the pure bottom-up strategy enforced through realistic 

microcircuit reconstruction and the top-down inference from the observation of 

high-level brain functions. A crucial achievement that exploits the confluence of 

theories at different scales has been provided by generating neuronal masses and 

connecting them to investigate the interplay of local microcircuit dynamics and 

ensemble dynamics. This has allowed to reconnect simplified models to statistical 

physics and thermodynamics. The computation of entropy and information out of 

model simulations has allowed developing the concepts of metastable states 

operating at the edge of chaos to explain the inner physics of brain functioning [23-

25, 50, 51]. 

Therefore, the role of mesoscale/macroscale simplified models is just that of giving a 

substrate in terms of circuits and mechanisms to the conceptual scheme reported in Fig. 

5. 
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Fig. 5. The different steps of brain modelling. Note that all required information is originated by 

biological investigations. However, while realistic modelling proceeds bottom-up, relevant top-down 

intervention is needed to generate control systems and simplified models. Description in the text. 

 

Wrap-up: an integrated view of the whole brain modelling process 

 The general scheme that derives from the considerations above is illustrated in 

Fig. 5. Molecular and cellular neurophysiology provide, through biological recordings, 

the fundamental observations needed to generate realistic models of neurons and 

microcircuits that need than to be simplified and embedded into control systems 

designed to enable behaviour. At the same time, biological recordings provide critical 

information about the nature and localization of plasticity in microcircuit synapses and 

neurons. Once the system has been reconstructed, it can be connected to a simulated or 

a real robot that will allow the circuit interaction with the environment. In this way, by 

tracking the activity of each underlying component within the microcircuit itself during 

the ongoing interaction with the environment, it becomes possible to discover the 

cellular basis for the emergence of behaviour.  

 Importantly, data generated by these modelled control systems could then be 

compared to those derived from high-level measurements in vivo (e.g. LFP, fMRI, hd-

EEG). As a last step, the properties of the system can be analyzed with tools deriving 

from the field and neuronal masses approach [23, 51-53] to obtain theoretical insight. 

It should be noted that, notwithstanding the absolute relevance of biological data, the 

model is our only way to access information otherwise inaccessible, as the model is 

able to provide a full set of information at different mechanistic levels far from 

experimental reach. Examples of all these procedures are provided in part 3.  

 

PART 2. BRAIN CONNECTIVITY 

 

Brain organization and function: the problem of complexity  

In Part 1 we have highlighted the problem of complexity from a bottom-up point 

of view. Similarly to the cellular level it is possible to approach the investigation of 

brain properties at macroscopic level in vivo implying that a top-down approach is also 

needed. Fundamental information can be obtained using tomographic techniques such 
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as magnetic resonance imaging (MRI) as well as electrophysiological measurements 

using for example electroencephalography (EEG). 

 

 
 
Fig. 6. Macroscopic measurement of microscopic brain properties. This simple scheme shows the 

versatility of MRI that can give in vivo quantitative imaging biomarkers exploring microstructure, 

metabolism and function. Although these properties are measured at mm scale, they can be reconducted 

to biophysical properties of the underline tissue. 

 

In this part we will focus on MRI, as its contribution to understanding the brain 

from a top-down level has been amazing and we will refer to other techniques as it 

becomes necessary. MRI is an in vivo non-invasive way to investigate brain properties 

from structural, functional and metabolic point of view. The versatility of MRI allows 

the user to sensitize the measured signal to specific properties of the underlying tissue. 

What is measured are ensemble properties of the brain, averaged at millimetre scale, 

which reflect though the cellular properties that determine tissue structure and function 

(Fig. 6).  

The arguments of layered complexity addressed at cellular and microcircuits 

levels are supported even at millimetre scale. In fact, with MRI it is possible to obtain 

quantitative metrics of local tissue characteristics that reflect microstructural properties 

such as axonal density, fibre coherence and orientation complexity, myelin and 

macromolecular water fractions, iron content, and even properties such as tortuosity 

and mean axon diameter. Recently, development of acquisition strategies report even 

measurements of g-ratio, i.e. the ration between the inner and outer diameter of an axon, 

hence giving local tissue information that could be related to signal conduction, 

showing alterations in diseases such as multiple sclerosis or dementia. Thanks to 

magnetic resonance spectroscopy (MRS) we can also study average metabolic 

properties linked to axonal integrity, energy consumption, gliosis to say a few. By 
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employing dedicated hardware, metabolism and physiological aspects of the brain 

become more approachable, for example through phosphorous spectroscopy that gives 

quantifications of ATP and PH, or through sodium imaging where intra and 

extracellular sodium ions quantification becomes possible at ultra-high field.  

But MRI is not only incredibly powerful for the assessment of microstructural 

and metabolic properties of tissue. It is also able to access information about blood 

perfusion, quantifying blood volume, blood flow and arrival transit time, opening the 

view over an expanding range of aspects. Thanks to MRI sensitivity to blood 

oxygenation level, functional MRI was introduced [54] as a mean of studying brain 

function. It is now well known that when performing a task, there is a blood 

oxygenation level dependent (BOLD) signal change of a few % that can be statistically 

significant and therefore can be used to map which brain areas are responsible for a 

specific task. By collecting a wealth of results obtained with BOLD functional MRI 

(fMRI), with EEG or with other imaging methods such as positron emission 

tomography (PET), magnetoencephalography (MEG) or near infrared spectroscopy 

(NIRS), we now can clearly map where the sources of many brain functions are in vivo 

in humans.  

All in all, therefore, we have a very sophisticated set of tools for assessing tissue 

microstructure, metabolism and local function. These tools also provide advanced 

technical approaches to understand how the brain works and to answer questions like 

how motion is generated or where does cognition come from. In order to doing so we 

have to step up a level and start looking at how these brain regions that share consistent 

micro, meso and macroscopic properties across the human race (and sometimes even 

across races) interact with each other and are structurally and functionally connected. 

Before moving into a more specific discussion of what can be learnt from 

quantitative MRI of the brain structure and function, it is important to stress that, when 

analyzing MRI data, one has to take advantage of a cascade of models and 

computational strategies that affect the outcome of the research. Recent attention has 

highlighted how structural and functional imaging studies can heavily depend on model 

assumptions as well as on pre-processing steps implemented in owns algorithms or in 

available software packages [55]. For functional imaging, in particular, statistical 

modelling is also a source of debatable results, with false positive rates inflated by the 

wrong assumptions [56, 57].  

In MRI we have the signal, which is an “integrated” truth of the functional and 

structural properties of the brain. This “truth” is, indeed, influenced by the biophysical 

properties of the tissue, at molecular and cellular level, which evolve dynamically over 

timeframes that span from instantaneous cellular processes to changes lasting 

milliseconds or more, which are happening over a scale comparable to that of the MRI 

experiment itself. We can say that the physiological basis of the MRI signals are 

dynamic, and introduce variability in the results of repeated scans and contribute to 

group analysis outcomes. Caffeine intake, time of the day for scanning, day of the week 

even, hydration or dehydration, are all variable that is impossible to control and that 

influence our brain dynamics and connectivity. Bottom-up models of integrated brain 

functions are indeed one possible way to cope with this large physiological and 

methodological variability and dependency on parameterization and assumption in our 

analysis.  
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The multiscale organization of the brain reflected at macroscopic level 

The multi-scale organization of the brain is also reflected at macroscopic level. 

While looking at microscopic properties, it became apparent that it was possible to start 

investigating network properties both from a structural and functional point of view. 

How is this possible? Given that it is not feasible to track the location of each single 

neuron in vivo nor it is possible to measure the action potential of a single channel or 

synapsis, how can we access network properties and investigate how the brain works 

in vivo? We must start from top-down assumptions. We can measure properties and 

hypothesize that these properties reflect a known biophysical property.  

We can assume for example models of axonal organization to derive metrics 

that reflect axonal density and verify that what we measure is consistent with 

biophysical properties. This is a huge problem that the MRI research community is 

constantly tackling and that may find a solution when bottom-up models will find their 

way to meet top-down ones. Even harder is to verify functional imaging results, where 

the best way is to compare multi-modal recording in humans in vivo. An alternative to 

prove the validity of fMRI is by multi-electrode-array recordings in animals where 

single or multi unit spikes can be assessed directly and compared with fMRI results. 

A similar problem comes when we want to reconstruct fibre pathways and 

networks based on the sensitivity of MRI to water diffusion in tissue. By introducing 

signal dephasing associated to positional change (diffusion) of water molecules in the 

magnetic field, it is possible to probe tissue microstructure as water molecules will be 

hindered and restricted in their movement by cells membranes. Mapping the probability 

density function of the water displacement in tissue in vivo, for example, with 

constrained spherical deconvolution of the signal [58], we can reconstruct possible fibre 

pathways (tractography) connecting regions of the brain. While tracers experiments 

have confirmed the ability of tracking real fibre pathways in non-human primates [59], 

there is also substantial evidence that these tractograms are affected especially by false 

positives [60, 61]. This is due to the intrinsic limitation of diffusion MRI to detect 

synapsis, distinguish crossing from kissing fibres, and differentiate afferent from 

efferent fibres from specific brain regions. It is essential therefore that macroscopic 

networks of specific systems, obtained from MRI diffusion tractography, are supported 

by a priori hypothesis based on anatomical knowledge. 

In parallel, fMRI data not only revels local changes in BOLD signal associated 

to specific tasks, but can be analyzed to determine the functional connectivity between 

regions during the task. This process is a statistical analysis of time series of signal at 

voxel level under the assumption that regions that are functional connected will 

oscillate with the same patterns and respond to the task in the same way. The fact that 

two regions are functionally connected it doesn't meant that these are also structurally 

connected as their ability to support the same function could depend on a third party. 

Scaling up the question of the brain functional and structural connectivity, one 

reaches the problem of reconstructing the human connectome (Fig. 7), a challenge that 

was at first proposed by the human connectome project (HCP) 

(http://www.humanconnectome.org/data/). The overwhelming amount of data (1200 

healthy subjects collected between 2012-2015) collected is available to the research 

community for developing ever-sophisticated tools to read data and contribute to the 

understanding of brain function.  
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Fig. 7. Building the human structural connectome. Grey matter can be segmented into sub-regions based 

on anatomical or functional parcellations that can be considered as nodes of a graph. In the figure, “AAL 

parcellations” is a color-coded representation of different grey matter regions obtained with the 

anatomical automatic labelling (AAL), one of the most reliable digital brain atlas. “Tractography 

streamlines” is a representation of the streamlines obtained using constrained spherical deconvolution 

(CSD) tractography. Counting streamlines that reach pairs of AAL regions, it is possible to obtain 

measures of connectivity, shown as connecting edges in the “Connectivity” box of the figure. Graphs are 

then shown as metrices with AAL regions as columns and rows labels, and connectivity measures as 

values. Graphs are weighted by the “number of streamlines” between pairs, but also by structural 

properties of tracts connecting pairs, such as “Fractional anisotropy” or “Mean diffusivity”. (Courtesy of 

Thalis Charalambous, UCL, UK and Fulvia Palesi, UniPV, Italy) 

 

The activity of neurons and the human connectome 

Mathematical models can come into rescue and help understanding structural 

and functional connectivity at network level. These models are again top-down as they 

start from assumptions of how the network may work and may be connected because 

of the impossibility of direct measures of neuronal connectivity and function in humans 

in vivo. We should also not forget that fMRI is an indirect measure of function (Fig. 8). 

Between the action potential generation at cellular level and a BOLD response there are 

several processes at neuronal and synaptic level whose interaction gives raise to the 

measured changes.  

A specific structural network can be constructed from nodes and edges, 

represented into a graph that can then be analyzed mathematically. From graph theory 

analysis it has been possible to study the brain as a large scale network and to reveal 

emerging properties such as that of small worldness, i.e. the brain is organized into 

small worlds clustered around hubs, characterized by short path length and high 

clustering coefficients [62]. Nodes of the graph are typically associated to grey matter 

regions, where signal processing takes place, synapsis occur and dynamics are 

evolving. Edges are identified with white matter tracts that are connecting the nodes. 

Typical networks are identified in terms of regions that emerge as contributing to 

specific functions and the white matter tracts that connect these regions. There are 

several ways to build the connectome though as reported in Appendix B, reflecting 

different properties of the brain.  
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Fig. 8. Resting state networks and functional connectivity. Resting state networks (RSNs) obtained by 

independent component analysis (ICA) of signal fluctuations in time between brain areas. The circular 

representation of the RSNs shows the AAL anatomical regions that are involved in each RSNs (colour 

coded) and their functional connectivity as represented by the semi-circular lines. Abbreviations are: 

auditory network (AN), right (R) and left (L) ventral attention networks (VAN), language network (LN), 

sensory motor network (SMN), executive control network (ECN), default mode network (DMN), medial 

visual network (MVN), lateral visual network (LVN), cerebellar network (CBLN), salience network (SN), 

task positive network (TPN), frontal cortex network (FCN), anterior insular network (AIN), Basal 

ganglia network (BGN) (Courtesy of Gloria Castellazzi, UniPV, Italy). 

 

Interestingly, MRI is sensitive to the synchronized oscillations that pervade the 

brain even when at rest [63]. As pointed out in part 1, the brain is never shut down, but 

rather in resting or active condition. Based on low-frequency analysis of signal time 

series acquired in absence of tasks, it is possible to identify a set of networks 

incorporating areas of the brain statistically similar in their oscillatory patterns. Such 

networks have been identified as being the core regions for specific functions, implying 

that the brain has a pre-defined scheme ready to be excited in order to function [64]. 

Correlations between regions can define a functional connectivity matrix that represent 

the functional connectome of the brain, where pairs of nodes are “functionally 

connected” depending on their functional connectivity. As this relies on group analysis 

of signal fluctuation in time, the functional connectome is defined at group level (Fig. 

9).  

Worth considering that resting state functional networks are not completely 

independent, either, as structural and functional connectivity exists between regions 

belonging to different RSNs. It is therefore possible to investigate the connectivity 

between functional networks by calculating full and partial correlations between the 

mean time course signal of each RSN, which can be used as a mean for investigating 

the top level organization of the brain. 

 

Toward a theoretical interpretation of brain functions 

The connectomic reconstruction obtained using high-definition MRI, EEG and 

MEG technologies is fundamental to reconnect local to global brain activities [23, 24]. 

This allows to reconcile under a single theoretical framework apparently antithetic 

hypothesis, localizationism and globalism. The first claims that specific functions have 

specific localization in the brain, and actually fMRI studies support this view by 

showing that certain areas are activated in relation to specific behaviours, as expected 

from previous neurophysiological and anatomical studies. The second claims that 

higher brain functions are distributed and involve multiple brain areas. There is 

evidence that local and global activities are reconnected through brain dynamics [63, 
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65], in such a way that global dynamics over distributed brain areas emerge from the 

local dynamics of each brain area and, at the same time, constraint local dynamics. The 

system therefore shows circular causality and becomes self-organizing [66].  

 

 
Fig. 9. Full and partial correlations of resting state networks. Resting state networks (RSNs) are 

identified by independent component analysis (ICA) on signal fluctuation of individual voxels. When 

considering the overall RSNs’ signal behaviour it is possible to determine full and partial correlations 

between RSNs themselves. The top panel shows one RSN per each column of the graph metric. The 

graph metric shows colour coded the full and partial functional correlations between pairs of RSNs. The 

star diagrams in the right panels are showing the partial and full RSNs correlations. Notice how the 

cerebellum displays both partial and full correlations with the medial visual networks, the basal ganglia 

and the default mode network, i.e. both sensory and cognitive networks. 

 

Clearly here top-down and bottom-up modelling approaches find a merging 

point through the concepts of functional connectivity and effective connectivity . The 

former is the statistic dependence between remote neurophysiological events, and is 

normally assessed through simple correlations or coherence analysis in fMRI and EEG. 

The latter is the influence that a system exerts on another, explicitly depending on the 

underlying model of neuronal dynamics [67]. Thus, functional connectivity can be 

extracted from connectomics and connectivity matrices, while effective connectivity 

can be generated using neuronal microcircuit models like those obtained using fields 

and neuronal masses [23, 51, 52]. Eventually, the local dynamics generated in local 

circuits communicate on the large-scale through long-range connections. 

In order to understand the interplay among several neuron aggregates, the 

attractor theory can be used [68]. The aggregates operate as multi-stable attractors that 

tend to settle around stability points depending on their internal effective connectivity. 

Interactions between aggregates can set-up complex global dynamics. For example, 

structured firing fluctuations around a low-frequency equilibrium state lead the 

aggregates to generate activities resembling those of the resting state fMRI networks. 

The transitions between multistable attractors are driven by noise and the average 

uncertainty that a given attractor is associated with, starting from a random condition, 

provides an estimate of system entropy. Interestingly, when the inter-area connections 

are too low or too high, there is only one attractor state possible and the entropy is zero. 
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The number of attractors increases for intermediate connectivity strengths along with 

entropy [23].  

This theoretical analysis suggests therefore that, like in real networks, 

interesting computations occur when the information (entropy) processed by the system 

is non-zero, as it occurs at an intermediate connectivity state near a phase transition. At 

this point, the correlation with empirical functional connectivity could be obtained by 

deconvolving the fMRI signal with the haemodynamic response function to obtain 

neuronal activity, e.g. using the Ballon-Windkessel model [69, 70]. This comparison 

actually shows that entropy for real networks in resting-state fMRI is very similar to 

that obtained from the attractor theory.  

In summary, these results suggest that theoretical models can strongly support 

our understanding of how brain works. It can be envisaged that the availability of more 

and more precise microcircuit models could substitute neural masses and lead to 

understanding in great details the relationship between low-level (molecular and 

cellular) properties and the global dynamics in which they are engaged [63].  

 

 

PART 3. EXAMPLES FROM THE CEREBELLAR CIRCUIT 

 

The cerebellar circuit and its models: foundations of the issue  

The history of neuroscience is profoundly bound to the cerebellum. With more 

than 50% of all brain neurons, the cerebellum forms the second major cortical structure 

of the brain (Fig. 2). From the anatomical view point, the cerebellum has not just 

fostered the generation of the concept of neuron [71] but also of one of the first 

integrated brain theories, the Motor Learning Theory of David Marr [72]. This theory 

is remarkable in several respects and makes predictions about the role of the cerebellum 

in behaviour, hinting towards the neuronal nature of functions [73, 74]. The Nobel 

laureate J.C. Eccles, in his foreword to a seminal book written by Masao Ito [75], wrote: 

 

“For me the most significant property of the cerebellar circuitry would be its plastic 

ability, whereby it can participate in motor learning, that is the acquisition of skills. 

This immense neuronal machine with the double innervation of Purkinje cells begins to 

make sense if it plays a key role in motor learning… it could be optimistically predicted 

that the manner of operation of the cerebellum in movement and posture would soon 

be known in principle”.  

 

However, Marr did not consider either the existence of forms of plasticity in addition 

to long-term depression (LTD) at Purkinje cell synapses, nor the relevance of intrinsic 

neuronal dynamics (he assumed implicit rate coding), nor the impact of network 

geometry (he used only statistics of connections). While Marr’s theory is a brilliant 

example of synthesis of concepts and still guides our thinking on how the cerebellum 

might work, its foundations have been weakened by a series of recent discoveries 

showing that the olivo-cerebellar circuit expresses more than 15 recognized forms of 

plasticity, shows remarkable non-linear dynamics in its neurons, and demonstrates a 

connectivity patterns that were not recognized previously [21]. This is a case in which 

the fate of a top-down models, as venerable as it might be, is undermined by disrupting 

discoveries that weaken its foundations. 

Cerebellar realistic models: from experiments to simulations and back  

In order to take into account the relevant molecular and cellular details and the 

geometrical structure of network connectivity in an easily updatable framework, a 
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realistic multiscale modelling approach is needed. At present, all cerebellar neurons 

have been carefully reconstructed in the simulation platform PYNN 

(http://neuralensemble.org/PyNN/) [76] and advanced dataset are available for single 

neurons and for microcircuit construction and validation. In the cerebellum, the 

alternate progress of experiments and models has been pioneered and developed since 

15 years already and provides an almost complete case of application of the principles 

described above [21, 77]. We will proceed here through a series of exemplar cases.  

 

The models of cerebellar granule cells.  

Granule cells are small neurons in which most ionic conductances have been 

resolved experimentally and a precise hypothesis on the mechanism of action potential 

generation was proposed [78]. However, when the 7 known ionic currents of the neuron 

were placed in a realistic model, this was unable to predict the whole set of granule cell 

functional states. In particular, the newly discovered oscillatory and resonant 

behaviours in a low-frequency band (the theta band on EEG) could not be resolved. 

This prompted the search for the hypothesized missing current, that was actually 

discovered and characterized. Once this last current was introduced in the model, this 

was able to reproduce reliably all the granule cell electrophysiological behaviours [79].  

 

 
Fig. 10. The case of cerebellar granule cell modelling. Accurate biological determinations have started 

repeated cycles of modelling which, in turn, revealed weaknesses in previous hypotheses and promoted 

the experimental investigation further. The case started with accurate determination of the main ionic 

currents generating granule cell electroresponsiveness leading to the first model and the identification of 

an additional yet undiscovered current [78]. The inability of this first model to account for the small GrC 

spike amplitude led to a second model accurately describing action potential generation [80]. This model 

solved the issue of action potential generation and accounted for specific properties of the Na current 

[81, 82]. The precise description of action potential conduction finally led to the last model including a 

new model of the axon [83].  

 

A second case concerns the generation of action potentials in granule cells. 

While the general mechanisms were accounted for by a single-compartment model, the 

size of the action potential was larger than that measured experimentally suggesting 

that some elements were missing. Sometime later, immunolocalization experiments 

revealed that Na channels are located primarily in the axonal initial segment [82] and 

this result was soon confirmed by single channel and whole-cell recordings [81]. The 
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construction of a new multicompartmental model, which was keeping these details into 

consideration, explained what was happening [80]. The spikes were actually generated 

in the axon initial segment and then back-propagated passively into the soma loosing 

amplitude and explaining the anomaly of the first model. 

A third case concerns the transmission of action potentials in the granule cell 

axon, the parallel fibre. While experimental measurements show that the action 

potential can travel long distances without shape or velocity alteration along the parallel 

fibres, the model showed a progressive reduction of the action potential size and 

anomalies in the subsequent spike after hyperpolarization. The reason for this effect 

came to light in consequence of experiments using advanced imaging techniques with 

voltage sensitive dyes. These recordings suggested that the membrane resistance of the 

axon tended to infinity, at odds with the Hodgkin-Huxley model [84] that assumes a 

finite membrane leakage. Once this high resistance was placed in the axon of the 

granule cell model, only single action potentials were generated by the axon, but not 

the repetitive firing, resembling the alteration caused by mutations of a growth factor 

called FHF (fibroblast growth factor homologous factor). FHF is a modulatory factor 

that shifts the inactivation curve of the Na channel. When this curve was shifted, the 

model became able to generate repetitive firing in the axon at appropriate frequency 

and transmission speed. The absence of FHF in the axon was subsequently 

demonstrated [83] (Fig. 10). 

 

The models of cerebellar Golgi cells. 

Golgi cells are the main interneurons of the cerebellar granular layer and their 

active membrane properties were revealed experimentally [26]. Golgi cells are neurons 

showing short response bursts, pace-making and phase-rest in vivo. While certain of 

these properties, it was still unclear whether these properties originated by intrinsic 

factors or by network dynamics (i.e. through the intervention of other neurons). The 

realistic model predicted that the Golgi neurons can themselves generate all these 

properties based on the ionic channel complement [85, 86]. Further developments of 

these models allowed to account for electrical communication between Golgi cells 

through gap junctions [87-89].  

 

The models of the cerebellar granular layer. 

  The whole granular layer circuit was reconstructed using the granule cell and 

Golgi cell models reported above using dynamical synapses [90, 91] (Fig. 11). In this 

way, the properties of single neuron models were propagated into the circuit [92]. 

Interestingly, the model predicted a set of emerging properties about the spatio-

temporal organization of signal processing. These include the conversion of noisy 

inputs into coherent low-frequency oscillations, the organization of responses to single 

active fibre bundles into centre-surround, and the generation of logical operations inside 

the circuit. At the mechanistic level, the properties of neurons match the circuit time 

constant and frequency-dependencies, so that intrinsic oscillations and resonance are 

instrumental to make the whole circuit oscillating at the same frequency. 

 The models of granule cells were used to predict the generation of LFPS in vivo. 

The models were used to generate extracellular current that were then let circulate in 

the extracellular space reconstructing the electric field [93, 94]. This allowed to explain 

the origin of LFPs in vivo, showing that are generated by dense neuronal clusters in 

apparent contrast with the Marr theory that predicted sparse granule cell activation. 

Again, realistic models challenge foundational theories constructed top-down. 
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Fig. 11. The model of the cerebellar granular layer microcircuit. The assembly of GrC and GoC models 

through precise connectivity rules and the development of synaptic transmission models has allowed full 

modelling of the granular layer microcircuit. This specific example is taken from a 10000 neuron network 

[92], that is able to reproduce all the known spatiotemporal dynamics of the microcircuit. These include 

oscillations, resonance, bursting and centre-surround response patterns. 

 

Other cerebellar neuron models  

Further combined experimental and modelling investigation are now being 

carried out for the Purkinje cells and stellate cells [95]. These examples show that 

realistic modelling is able to optimally interact with experimental determinations 

providing the basis for a mechanistic understanding of microcircuit computation. 

 

A quest for modelling across scales starting from the molecular-level  

 Cerebellum modelling fully embraces the concepts of multiscale modelling [21, 

77, 96]. It would be therefore critical to start from the molecular level in order to 

incorporate fundamental knowledge about the underlying low-level phenomena that 

generate in a natural way the complex set of mechanisms controlling plasticity, 

homeostasis and neuromodulation. For example, while a wealth of information is 

available on multiple forms of plasticity in the cerebellar glomerulus, they have for the 

moment been described only in theoretical models [97]. Preliminary models of the 

biochemical cascades leading to cerebellar LTP and LTD are available and a unified 

mechanisms explain LTP and LTD dependence on frequency, duration, phase (STDP), 

and membrane voltage has been proposed [98]14. These preliminary results suggest that 

complex multiparametric plasticity rules could be reconstructed based on the molecular 

interactions. For example, in the cerebellar glomerulus, the biochemical mechanisms 

activated by glutamate and GABA receptors influence one another and control several 

                                                        
14 A further elaboration of the integrated control of glomerular plasticity has been presented in the 

Bachelor Degree thesis of Leonardo Daniel Herbas Burgos, University of Pavia, 10 September 2016 

"Simulazione di un modello realistico per la plasticità sinaptica tra le fibre muscoidi e la cellula dei 

granuli".  
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processes through generation of second messengers and calcium waves in the 

cytoplasm, regulating membrane channels and receptors as well as presynaptic 

neurotransmitter release [97, 99]. A full understanding of the system would therefore 

require a precise reconstruction of cerebellar glomeruli in terms of molecular 

mechanisms. Interestingly, the same molecular mechanisms can even explain vascular 

motility [100], generating a close bridge between microcircuit functions and the origin 

of MRI signals. 

 

Cerebellar spiking neuro-robots: closed-loop simulations of behaviour 

In order to analyze the circuit at work in closed-loop, an hybrid system with a 

spiking neural network (SNN) of the cerebellum embedded into a classical controller 

was constructed [101-105] (Fig. 12). The microcircuit had to be simplified and the 

choice was, to begin with, to use leaky integrate-and-fire (LIF) neurons. These are very 

simple neuron models lacking internal non-linear dynamics and are rate-modulated, but 

have the advantage to be easily implemented and to be computationally inexpensive. 

These LIF models were tuned toward the fundamental properties of specific neurons in 

terms of membrane time constant and synaptic inputs, so that the general reactivity of 

the system was maintained. Thus, while a direct insight on factors, like connectivity 

and plasticity, could be gained, the question remains on how more realistic neuronal 

dynamics would modify robot behaviour. Eventually, these models have provided 

remarkable insight on how the system operates in closed loop. The controller and SNN 

architecture was adapted to achieve very fast computations, up to real-time, so that 

massive simulations lasting for the time required (minutes to hours) could be run and 

the impact of long-term synaptic plasticity on the network could be investigated along 

with the motor control strategies adopted by the system. Importantly, we have been able 

to introduce different multiple forms of plasticity tuned toward the time constants of 

the real circuit and to investigate their impact. 

The cerebellum acting in closed loop demonstrated the ability to learn and 

control motor tasks for which it was not programmed explicitly, revealing therefore that 

it implemented a general algorithm that could be used under many different 

circumstances. These included eye-blink classical conditioning, vestibulo-ocular reflex, 

force-field adaptation, obstacle avoidance tasks, and continuous motor control toward 

a complex target trajectory. The cerebellar network was therefore spontaneously 

operating as a generalized adaptable controller. 

 

The impact of multiple plasticities  

The first advantage of having a SSN of the cerebellum embedded into a robotic 

controller was to be able to investigate the role of multiple forms of plasticity [77]. The 

cerebellum plays a critical role in adaptive motor control and its complex plasticity 

mechanisms implement fundamental operations of prediction, timing and learning. The 

spiking cerebellar robot proved able to reproduce a cerebellar-driven associative 

paradigm, the EyeBlink Classical Conditioning (EBCC). Bidirectional plasticity at 3 

different sites (the parallel fibre - Purkinje cell synapse, the Purkinje cell - DCN 

synapse, the mossy fibre - DCN synapse) was required to reproduce the whole set of 

properties of human EBCC, comprising timing and response rate, fast acquisition, 

stabilization, extinction, and re-acquisition. Importantly, learning proceeded through 

two steps determining a faster and slower learning phase, as indeed revealed 

experimentally. Thus, through this closed loop modelling, the unanswered role of the 

multiple plasticity forms of cerebellum starts to come to light.  
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Fig. 12. Robotic models and simulations of cerebellar microcircuit functions. This figure shows a 
robotic simulation of an associative learning task using a cerebellar spiking neural network (SNN). 
The cerebellum circuit was simplified and embedded into a robotic control system, in which it 
provided the substrate to integrate spatio-temporal information in different associative learning 
tasks. (eye blink classical conditioning (EBCC)-like, vestibulo-ocular reflex (VOR) and upper limb 
reaching perturbed by force fields). Note that this model uses multiple bidirectional plasticities 
and allows to analyze the firing pattern of single neurons and its evolution during learning 
(Modified from [77, 104, 106]). 

 

This approach is relevant for its ability to match the top-down intuition of 

Marr’s motor-learning theory [106]. The Marr’s theory envisaged that a circuit 

algorithm could be resolved on the basis of microcircuit computation and 

implementation. Actually, the SNN of the robot generated implicit spiking 

computations able to produce associative sensory-motor behaviours. That is, we have 

reversed the original procedure: rather than anticipating an algorithm and looking for 

possible computations and implementations capable of generating it (inverse problem), 

we have followed a bottom-up approach yielding a behavioural response (an adaptive 

sensori-motor association) built on network constructive principles and plasticity rules. 

In addition, rather than investigating the cerebellar circuit in isolation, we have engaged 

it into the feed-back and feed-forward loops of an entire sensori-motor system operating 

in closed-loop. Therefore, a main conceptual pillar derived from Marr’s theory has been 

satisfied, although with extensions to the original concepts. 

 

The cerebellum as a generalized controller. 

The second remarkable fall out has been to address one of the core questions 

about the cerebellar network: how can the cerebellum perform its operation of forward 

/ feed-back controller [104] ? The cerebellum receives command from the motor 
cortex and sensory inputs form the spinal cord, with whom it is integrated both in 
feed-forward loops (delivering corrective terms to the spinal cord) and in feed-
back loops (delivering correcting terms to motor cortex). In the feed-forward 
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scheme, the cerebellum receives sensory inputs and produces motor corrective 
terms, implementing therefore an ‘‘inverse model’’ of the kinematics and 
dynamics of movement. In the feed-back scheme, the cerebellum receives motor 
inputs from the cerebral cortex and produces sensory corrective terms 
implementing therefore a ‘‘forward model’’ [107, 108].  

Eventually, closed-loop robotic simulations allowed to identify the role of 
the multiple controller loops and plasticity forms to determine unique properties 
of biological learning and motor control, including generalization, acceleration and 

dynamic memory transfer.  

 

Closed-loop robotic simulations: how far from human behaviour ?  

In summary, neurorobotic simulations provide a unique tool to understand how 

the elementary properties of neurons and the architecture of circuit organization impact 

on behaviour. Of special interest from our cerebellar work is that models reconstructed 

from mice data enabled the robot to reproduce behaviours of humans. Nonetheless, for 

impressive it might be, this result does not mean that the goal of simulating humans 

behaviour has been achieved. This simply means that there are elementary components 

of behaviour that are maintained across species, and the EBCC is one of these. Other 

more complex behaviours are species-specific. This issue is relevant once considering 

that there are special properties of neurons and microcircuits [109] and that there are 

even bigger differences in the architecture of large-scale connections and modules, that 

differentiate species one from the other [110, 111]. For example, humans have many 

more cortical microcolumns and than mice have, and their connectivity is much more 

complex too. Therefore, scaling up from mice to humans is not just a question of size 

but requires specific knowledge of cellular and microcircuit properties, as well as of the 

connectome, that need to be incorporated in robotic simulations. This scale-up 

modelling exercise between species needs to rely on techniques such as MRI that take 

integrated signals and interpret them currently with top-down models, indirectly 

reconstructing functional and structural connectivity properties for example between 

cortical areas. Here is where bottom-up realistic models could help validating results in 

humans in vivo, translating cellular and microcircuits properties to large-scale systems.  

Another important aspect pertains the predictive power of these robotic 

simulations. Alterations in the cerebellar microcircuit model have been shown to 

precisely predict EBCC alterations in human pathology (the correspondence to humans 

reflects again the considerations given above). And, as far as the elementary aspects of 

circuit functioning are concerned, these results may be very useful for their potential 

biomedical applications. The challenge is now to substitute the current simplified 

models of neurons and microcircuits with more realistic ones so that, from their activity 

during a specific behavioural task, scientists should be able to infer the underlying 

coding strategies at the microscopic level. Moreover, by generating a complex 

cerebellar connectivity would allow to move toward macroscale brain modelling, 

enabling the robotic system to face "human-like" behaviours more complex than 

EBCC.  

 

The cerebellar connectome: toward macroscale brain modelling 

As explained in chapter 2, MRI and connectomics are fundamental to linking 

low-level to high-levels brain phenomena and provide therefore critical data for 

understanding brain structure and function and for brain modelling. At the very least, 

MRI tractography can be used to reconstruct the connectome in large-scale brain 

models, and fMRI can provide fundamental validation cues for model simulations. 



Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

27 
 

Surprisingly enough, MRI studies have rarely addressed the cerebellum and only 

recently an MRI perspective on cerebellar connectivity and functioning started to 

appear (Fig, 13; see also Figs 6-9). 

 

 
Fig. 13. in vivo cerebro-cerebellar loop. Diffusion tractography can be used to reconstruct the 

streamlines that connect different cortical areas. Here we show a preliminary graphical representation of 

the cerebro-cerebellar loop reconstructed in vivo in human starting from the superior and middle 

cerebellar peduncles as the efferent and afferent points of the cerebellar tracts. Validation of the loop in 

large populations and using multi modal techniques including MRI and TMS is currently under 

investigation. (Courtesy of Fulvia Palesi and Andrea De Rinaldis, UNIPV, Italy)  

 

An important discovery has been that the cerebellum is not only connected to 

motor areas but also to associative areas, in particular to the prefrontal cortex and the 

temporal cortex, two regions controlling higher cognitive and memory functions [28]. 

This connectivity is reciprocal and accounts for up to 80% of all cerebellar connections 

with the neocortex (although MRI tractography is not strictly quantitative and can 

generate false positives, this percentage is impressive). This observation was an 

indication that the cerebellum was involved not just in motor but also in cognitive 

processing, in line with an extensive analysis of available literature [22].  

On the functional side, fMRI investigations have revealed that the cerebellum 

is engaged in multiple aspects of sensori-motor and cognitive processing. During 

voluntary movement, for example a squeeze-ball task [112], several cerebellar areas are 

involved along with sensori-motor and associative areas in the cerebral cortex, 

including primary and secondary motor areas, visual areas, temporal areas and 

prefrontal areas. Connectomic maps have also been obtained from resting state fMRI 

signals [29]. These connectomic reconstructions actually indicate the cerebellar and 

cerebrocortical areas that are functionally correlated suggesting possible architectures 

for cerebrocortical interactions. Interestingly, the combination of tractographic and 

functional data has allowed an advanced reconstruction of the cerebellar connectome, 

in which both edges and nodes are defined and weighted. In the future, the application 

of Dynamic Causal Modelling and Psycho-physiological Interactions techniques [25] 

may be used to investigating how distributed signal processing occurs in the network.  

It is therefore envisaged that, like in the basal ganglia [113], the cerebellar 

modules are connected to different and multiple cerebro-cortical areas forming closed 

loops controlling different aspects of behaviour [37]. This hypothesis is currently under 
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investigation using a combination of psychophysiological tests, fMRI and TMS 

techniques.  

 

High-level model validation from integrative physiology 

TMS (transcranial magnetic stimulation) is a technique that allows non-invasive 

localized brain stimulation elaborating causal relationships between brain regions and 

functionalities. The application of TMS pulses to the cerebellum proved able to impair 

both sensori-motor and cognitive processing. In both cases, the cerebellum is engaged 

in processing precise and fast response timing, which is disrupted once the system is 

perturbed. Moreover, in both cases the cerebellum is involved in predictive actions (see 

Fig. 12). 

In sensori-motor paradigms, repetitive TMS on the vermian and paravermian 

cerebellum impairs memory consolidation in eye-blink classical conditioning (EBCC) 

[114]. Interestingly, the availability of precise learning curves has allowed to implement 

robotic simulations that have fitted the experimental data [105, 106]. The robotic 

simulations, by allowing to explore internal model parameters, have provided a 

hypothesis for learning in the cerebellar circuit, in which patterns are first rapidly 

acquired in the cerebellar cortical circuit and are subsequently transferred to the deep-

cerebellar nuclei for consolidation of memory. These results support previous 

observation carried out using different learning paradigms [115]. 

In cognitive processing, single-pulse TMS on the lateral hemispheres impairs 

motion detection and visual pattern discrimination [116, 117]. In this case, rather than 

interfering with cerebellar learning, the protocol interferes with cerebellar processing 

on a fast time scale. Presentation of visual patterns for less than 50 ms activates the 

cerebellum but not the cerebral cortex and this is enough to generate a prediction on 

pattern motion. Interfering with cerebellar processing using TMS significantly altered 

task performance.  

An interesting development has been to apply TMS to a psychopathological 

condition, the Bordeline Personality Disorder (BPD) [118]. BPD is a complex 

behavioural disorder characterized by a loss of impulsivity control presumably 

involving alterations of the cerebello-prefrontal axis. Indeed, BPD subjects confronted 

with an affective go-no-go task performed worse than healthy subjects, but inhibitory 

cerebellar TMS was able to improve BPD performance toward control values. 

 

 

PART 4. CONCLUSIONS AND OUTSTANDING QUESTIONS  

 

It can be envisaged that multiscale models will help answering fundamental 

biomedical questions. Can modelling help to reconstruct the fMRI signal starting from 

neuronal activities? Can modelling help to predict pathological states starting from 

neuronal activities? Is it possible to develop accurate neuromorphic hardware 

accounting for biological neuronal activities? Will ultimately be possible to generate a 

theory of the brain through a reverse engineering process? 

Cerebellar modelling can help addressing the issues, since it is available at different 

levels, from realistic modelling of neurons and microcircuits to robotics and in vivo in 

humans connectomics, and is providing one of the most compelling examples of the 

integrated application of experiments and modelling to neuroscience. This modelling is 

intrinsically multiscale and contains both bottom-up and top-down elements. This 

modelling is progressing rapidly thanks to (i) the availability of detailed data on cellular 

and microcircuit neurophysiology and on in vivo connectomics, (ii) the predictions of 
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foundational theories, and (iii) the possibility of implementing sensori-motor loops in 

robotic simulations. Thus, cerebellar modelling clearly illustrates how low-level 

representations of neuronal activity, intermediate level large-field networks and high-

level connectomics can be used to explain how ensemble brain functions might emerge 

from elementary neuronal components. 
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Appendix A. The biophysical principles of realistic neuronal modelling 
 

“Realistic” neuronal modelling indicates models that are biophysically detailed and that 

can generate membrane electroresponsiveness based on know principle of neuronal 

membrane cellular biophysics. The membrane model is based on the “parallel electrical 

equivalent circuit” [19, 20]. The inside and the outside of the plasma membrane are 

connected through parallel electrical resistances representing the ionic conductances. 

Moreover, a capacitive branch represents the hydrophobic non-conductive lipidic 

bilayer. Across the membrane a potential difference, Vm, is established. The 

conductances gk, gNa, gCl, gCa correspond to the main permeant ions, Na+, K+, Cl- and 

Ca2+, and Ek, ENa, ECl and ECa are the equilibrium potentials for these ions. In addition, 

there is an aspecific leakage conductance gleak with the associated Eleak. The resistive 

branches are effective current generators with tunable resistance. Thus, when a current 

Im flows through the membrane, it divides between the capacitance Cm and the 

conductances gk, gNa, gCl , gCa and gleak. According to this equivalent electric circuit, the 

membrane equation is: 

 

 

Im = 𝐼𝑐 + (𝐼𝑘 + 𝐼𝑁𝑎+𝐼𝐶𝑎 + 𝐼𝐶𝑙 + 𝐼𝑙𝑒𝑎𝑘) + 𝐼𝑖𝑛𝑗 

 

Im = 𝐶𝑚
𝑑𝑉

𝑑𝑡
+∑ [gi ∗ (Vm − Ei)] + Iinj

𝑖
 

 

 

where (Vm – Ei) is actually the driving force for each ith ionic current: (Vm - Ek), (Vm - 

ENa), (Vm – ECl), (Vm – ECa) (Vm – Eleak). The membrane equation, due to the capacitive 

term, is a first order differential equation with exponential solution. Importantly, the 

conductances gk, gNa, gCl and gCa are themselves a function of Vm and t (while gleak is 

voltage and time independent). The standard description of voltage- and time-

dependent conductances has been pioneered by Hodgkin and Huxley [84, 119, 120], 

who showed that each ionic conductance depends on the probability that some gating 

particles are in the permissive (y) or non-permissive state (1-y). Moreover, there are 

both activation (yi-act) and inactivation (yi-inact) particles that can be replicated in 

numerous copies (m, n) inside each channel. There can be multiple such particles in 

each ion channel and each one can oscillate between y and 1-y. Eventually, each ionic 

conductance depends on the probability that the activation or inactivation particles are 

in the permissive state scaled by a maximum value gmax: 

 

 

gi = 𝑔𝑖
𝑚𝑎𝑥 ∙ 𝑦𝑖−𝑎𝑐𝑡

𝑛 ∙ 𝑦𝑖−𝑖𝑛𝑎𝑐𝑡
𝑚  

 

 

The y to 1-y conversion occurs at a rate determined by gating constants,  and , 

following first order reaction kinetics and bringing the reaction from the initial value y0 

to the final value y∞. The voltage dependence of the gating particles can be 

approximated by Boltzmann and Arrhenius equations. By considering each ith 

activation or inactivation particle, the mathematical description of the membrane can 

be represented by an ordinary differential equation (ODE) system: 
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{
 
 
 
 
 

 
 
 
 
 𝑑𝑉

𝑑𝑡
=
1

𝑡𝑚
(𝑉𝑚 −

∑ [gi ∗ (Vm − Ei)]i + Iinj       

gtot
)

where: 𝑡𝑚 = 
Cm
gtot

where: gi = 𝑔𝑖
𝑚𝑎𝑥 ∙ 𝑦𝑖−𝑎𝑐𝑡

𝑛 ∙ 𝑦𝑖−𝑖𝑛𝑎𝑐𝑡
𝑚

𝑑𝑦𝑖
𝑑𝑡

= 𝛼𝑖 − (𝛼𝑖+ 𝛽𝑖) ∙ 𝑦𝑖

  

 

 

In neuron, there are several gating particles describing the many ion channel types that 

populate the membrane. This yields a large ODE system, which is usually solved 

through numerical methods [121, 122]. Once appropriately parameterized, the solution 

of this ODE system gives the membrane potential time course [79, 92]. A variant of 

this approach can be applied to describe the synaptic vesicle cycle causing 

neurotransmitter release [123]. 
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Appendix B. Principles of connectomics 
 

In order to sample the human connectome it is important first of all to distinguish how 

to represent it and what properties are going to be exploited. Graph theory was 

identified as able to represent a set of nodes (e.g. discrete grey matter regions, 

anatomically or functionally defined) and define a connectivity metric between each 

pair of nodes (Fig. 14). Such metric can be calculated in several ways, depending on 

the property of the brain to be studied, either as structural, functional or effective 

connectivity [124]. Moreover, a modular structure can be identified as subtending the 

brain connectome, with key nodes identified as hubs of a typical small world network 

[62]. 

 
Fig. 14. Schematic representation of graph properties. The brain connectome can be reconstructed 

assuming that grey matter regions are nodes and structural and functional connectivity are edges. Here 

we show a schematic representation of a few key properties of the graphs, referring the readers to 

Rubinov and Sporns 2010 for a full comprehensive description. 

 

Nodes can be defined based on common atlases (e.g. automated anatomical labeling 
(AAL) system [125], including the neo-cortex only or deep grey matter regions and 

the cerebellar cortex. Such parcellation of grey matter regions to be used as the 

connectome nodes must then be registered to each individual subject’s space and used 

for the edge definition. 

 

The structural connectome can be created from diffusion weighted imaging data, 

applying methods like tractography to define connectivity between grey matter nodes 

[126]. This method relies on the ability of tractography to depict connections and 

estimate number of streamlines between nodes in a consistent manner, therefore it is 

imperative to take advantage of the latest software packages implementing the most 

robust and model-free (if possible) methods for tractography. The edge metric for this 



Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

33 
 

connectome becomes therefore the number of streamlines between pairs of nodes. 

Other tract properties can be used as node metrics, including emerging ones such as the 

g-ratio or the axonal density along the tract.  

 

It is important to note that the structural connectome can be built on the individual 

subject basis as nodes and edges can be determined specifically for each brain. 

 

Another metric used to calculate a structural connectome is the average thickness of the 

grey matter parcellations. From an evolution point of view, cortical regions belonging 

to the same structural network are growing with similar properties, including average 

thickness. At group level it is indeed possible to determine patterns of correlations 

between grey matter regions, whose value can be used as edge in the graph metric of 

the connectome.  

 

Similarly, it is possible to build the functional connectome of the brain by analyzing 

the functional connectivity of brain regions, i.e. establishing correlations between the 

synchronous fluctuations of the MRI signal along the time series of the acquired data.  

 

Once a graph has been built with nodes and connectivity strengths, i.e. edges, whether 

these are properties of tracts or correlation coefficients reflecting similarities of 

properties of an underlying biomarker (e.g. cortical thickness, functional connectivity), 

then it is possible to determine macroscopic characteristics of the graph that collapse 

network properties in a handful of measures such as global efficiency, nodal degree, 

edge density, segregation (for the mathematical representation of the graph and its 

properties see [124]).  

  

 

 

 

 

  



Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

34 
 

 

REFERENCES 

 

[1] YUFIK Y. M. and FRISTON K., Front. Syst. Neurosci., 10 (2016) 98. 

[2] MARKRAM H., Nat. Rev. Neurosci., 7 (2006) 153. 

[3] MARKRAM H., Scientific American Magazine, 306 (2012) 50.  

[4] MARKRAM H., Funct. Neurol., 28 (2013) 145.  

[5] AMUNTS K., EBELL C., MULLER J., TELEFONT M., KNOLL A. and LIPPERT T., 

Neuron, 92 (2016) 574. 

[6] TONONI G., BOLY M., MASSIMINI M. and KOCH C., Nat. Rev. Neurosci., 17 

(2016) 450. 

[7] D’ANGELO E. and PERES A. (eds.), Fisiologia (Edi-Ermes, Milano) 2011. 

[8] ECCLES J. C. (ed.), The neurophysiological basis of mind: the principles of 

neurophysiology (Oxford University Press, London) 1953. 

[9] SPERRY R. W., American Scientist, 40 (1952) 291. 

[10] CHURCHLAND P. S. (ed.), Neurophilosophy: toward a unified science of the 

mind–brain (Bradford Book, MIT Press, Cambridge) 1989. 

[11] CHURCHLAND P. S. (ed.), Brain-wise: studies in neurophilosophy (Bradford 

Books, MIT Press, Cambridge) 2002. 

[12] KANDEL E. R. (ed.), in In search of memory: the emergence of a new science of 

mind (W. W. Norton and Company, New York) 2007, p. 382. 

[13] KOCH C. (ed.), The quest for consciousness: a neurobiological approach 

(Roberts and Company Publishers, Pittsburgh) 2004. 

[14] DE SCHUTTER E., EKEBERG O., KOTALESKI J. H., ACHARD P. and LANSNER A., 

Trends Neurosci., 28 (2005) 562. 

[15] BOUTEILLER J. M., ALLAM S. L., HU E. Y., GREGET R., AMBERT N., KELLER A. 

F., PERNOT F., BISCHOFF S., BAUDRY M. and BERGER T. W., Conf. Proc. IEEE Eng. 

Med. Biol. Soc., 2011 (2011) 445. 

[16] GRILLNER S., KOZLOV A. and KOTALESKI J. H., Curr. Opin. Neurobiol., 15 

(2005) 614. 

[17] KOTALESKI J. H. and BLACKWELL K. T., Nat. Rev. Neurosci., 11 (2010) 239. 

[18] CHEN W. and DE SCHUTTER E., Front. Neuroinform., 11 (2017) 13. 

[19] KOCH C. and SEGEV I. (eds.), Methods in Neuronal Modeling - Second Edition 

(MIT Press, Cambridge) 1998. 

[20] DE SCHUTTER E. and STEUBER V., in Computational neuroscience: realistic 

modeling for experimentalists, edited by DE SCHUTTER E. (CRC Press, Boca Raton) 

2000, pp. 233–257. 

[21] D’ANGELO E., ANTONIETTI A., CASALI S., CASELLATO C., GARRIDO J. A., 

LUQUE N. R., MAPELLI L., MASOLI S., PEDROCCHI A., PRESTORI F. and RIZZA M. F., 

Front. Cell. Neurosci., 10 (2016) 176. 

[22] D’ANGELO E. and CASALI S., Front. Neural Circuits, 6 (2013) 116. 

[23] DECO G., JIRSA V. K., ROBINSON P. A., BREAKSPEAR M. and FRISTON K., PLoS 

Comput. Biol. 4 (2008) e1000092.  

[24] DECO G., JIRSA V. K. and FRISTON K .J., in Principles of Brain Dynamics, edited 

by RABINOVICH M. I., FRISTON K. J. and VARONA P. (MIT Press, Cambridge) 2012, 

chapter 1. 
[25] RABINOVICH M. I., FRISTON K. J. and VARONA P. (eds.), Principles of Brain 

Dynamics (MIT Press, Cambridge) 2012. 

[26] FORTI L., CESANA E., MAPELLI J. and D’ANGELO E., J. Physiol., 574 (2006) 711. 

http://frontiersin.org/people/u/231142
https://books.google.com/books?id=hAeFMFW3rDUC&pg=PA548
https://books.google.com/books?id=hAeFMFW3rDUC&pg=PA548
https://books.google.com/books?id=vGY1BkA-gyYC&pg=PA476
https://books.google.com/books?id=PFnRwWXzypgC&pg=PA382
https://books.google.com/books?id=PFnRwWXzypgC&pg=PA382
https://mitpress.mit.edu/authors/christof-koch
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Bouteiller%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Allam%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Hu%20EY%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Greget%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Ambert%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Keller%20AF%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Keller%20AF%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Pernot%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Bischoff%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Baudry%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Berger%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=22254344
https://mitpress.mit.edu/authors/christof-koch
https://mitpress.mit.edu/authors/idan-segev
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=D%27Angelo%20E%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Antonietti%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Casali%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Casellato%20C%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Garrido%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Luque%20NR%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Mapelli%20L%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Masoli%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Pedrocchi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Prestori%20F%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Rizza%20MF%5BAuthor%5D&cauthor=true&cauthor_uid=27458345
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/27458345
http://cognet.mit.edu/contributor/mikhail-i-rabinovich
http://cognet.mit.edu/contributor/karl-j-friston


Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

35 
 

[27] GANDOLFI D., POZZI P., TOGNOLINA M., CHIRICO G., MAPELLI J. and D’ANGELO 

E., Front. Cell. Neurosci., 8 (2014) 92. 

[28] PALESI F., TOURNIER D. J., CALAMANTE F., MUHLERT N., CASTELLAZZI G., 

CHARD D., D’ANGELO E. and WHEELER-KINGSHOTT C. A. M., Brain Struct. Funct., 220 

(2015) 3369. 

[29] CASTELLAZZI G., PALESI F., CASALI S., VITALI P., SINFORIANI E., WHEELER-

KINGSHOTT C. A. M. and D’ANGELO E., Front. Neurosci., 8 (2014) 223. 

[30] ARBIB M., ÉRDI P. and SZENTAGOTHAI J., Behav. Brain Sci., 23 (1997) 513. 

[31] FERREA E., MACCIONE A., MEDRIHAN L., NIEUS T., GHEZZI D., BALDELLI P., 

BENFENATI F. and BERDONDINI L., Front. Neural Circuits, 6 (2012) 80. 

[32] MACCIONE A., GANDOLFO M., ZORDAN S., AMIN H., DI MARCO S., NIEUS T., 

ANGOTZI G. N. and BERDONDINI L., Brain Res. Bull., 119 (2015) 118. 

[33] RIEKE F., WARLAND D., DE RUYTER VAN STEVENINCK R. and BIALEK W. (eds.), 

Spikes: Exploring the Neural Code (Computational Neuroscience) (MIT Press, 

Cambridge) 1999. 

[34] PALMER T. N. and O'SHEA M., Front. Comput. Neurosci., 9 (2015) 124. 

[35] HODGES A. (ed.), Alan Turing: the enigma (Burnett Books, London) 1983 p. 

111. 

[36] LYNCH, P. (ed.), The Emergence of Numerical Weather Prediction (Cambridge 

University Press, Cambridge) 2006, pp. 1–27. 

[37] D’ANGELO E., SOLINAS S., GARRIDO J., CASELLATO C., PEDROCCHI A., MAPELLI 

J., GANDOLFI D. and PRESTORI F., Funct. Neurol., 28 (2013) 153. 

[38] MARKRAM H., MULLER E., RAMASWAMY S., REIMANN M. W., ABDELLAH M., 

SANCHEZ C. A., AILAMAKI A., ALONSO-NANCLARES L., ANTILLE N., ARSEVER S., 

KAHOU G. A., BERGER T. K., BILGILI A., BUNCIC N., CHALIMOURDA A., CHINDEMI G., 

COURCOL J. D., DELALONDRE F., DELATTRE V., DRUCKMANN S., DUMUSC R., DYNES J., 

EILEMANN S., GAL E., GEVAERT M. E., GHOBRIL J. P., GIDON A., GRAHAM J. W., GUPTA 

A., HAENEL V., HAY E., HEINIS T., HERNANDO J. B., HINES M., KANARI L., KELLER D., 

KENYON J., KHAZEN G., KIM Y., KING J. G., KISVARDAY Z., KUMBHAR P., LASSERRE S., 

LE BÉ J. V., MAGALHÃES B. R., MERCHÁN-PÉREZ A., MEYSTRE J., MORRICE B. R., 

MULLER J., MUÑOZ-CÉSPEDES A., MURALIDHAR S., MUTHURASA K., NACHBAUR D., 

NEWTON T. H., NOLTE M., OVCHARENKO A., PALACIOS J., PASTOR L., PERIN R., 

RANJAN R., RIACHI I., RODRÍGUEZ J. R., RIQUELME J. L., RÖSSERT C., SFYRAKIS K., SHI 

Y., SHILLCOCK J. C., SILBERBERG G., SILVA R., TAUHEED F., TELEFONT M., TOLEDO-

RODRIGUEZ M., TRÄNKLER T., VAN GEIT W., DÍAZ J. V., WALKER R., WANG Y., 

ZANINETTA S. M., DEFELIPE J., HILL S. L., SEGEV I. and SCHÜRMANN F., Cell, 163 

(2015) 456. 

[39] CHUNG J. R., SUNG C., MAYERICH D., KWON J., MILLER D. E., HUFFMAN T., 

KEYSER J., ABBOTT L. C. and CHOE Y., Front. Neuroinform., 5 (2011) 29. 

[40] STIX G., in Scientific American Blog - February 25, 2013, Big Neuroscience: 

Billions and Billions (Maybe) to Unravel Mysteries of the Brain.  

[41] UNDERWOOD E., Science 339 (2013) 1022. 

[42] WADMAN M., in Nature News Blog - 02 Apr 2013, Obama launches 

multibillion-dollar brainmap project.  

[43] POZZORINI C., MENSI S., HAGENS O., NAUD R., KOCH C. and GERSTNER W., 

PLoS Comput. Biol. 11 (2015) e1004275. 

[44] WANG Z., GUO L. and ADJOUADI M., Int. J. Neural Syst., 24 (2014) 1440004. 

[45] IZHIKEVICH E. M. and EDELMAN G. M., Proc. Natl. Acad. Sci. USA, 105 (2008) 

3593. 

https://www.amazon.com/Fred-Rieke/e/B00J248KRA/ref=dp_byline_cont_book_1
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=David+Warland&search-alias=books&field-author=David+Warland&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Rob+de+Ruyter+van+Steveninck&search-alias=books&field-author=Rob+de+Ruyter+van+Steveninck&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&text=William+Bialek&search-alias=books&field-author=William+Bialek&sort=relevancerank
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Cambridge_University_Press
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=D%27Angelo%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Solinas%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Garrido%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Casellato%20C%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Pedrocchi%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Mapelli%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Mapelli%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gandolfi%20D%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Prestori%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24139652
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Markram%20H%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Muller%20E%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Ramaswamy%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Reimann%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Abdellah%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Sanchez%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Ailamaki%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Alonso-Nanclares%20L%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Antille%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Arsever%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kahou%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Berger%20TK%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Bilgili%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Buncic%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Chalimourda%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Chindemi%20G%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Courcol%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Delalondre%20F%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Delattre%20V%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Druckmann%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Dumusc%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Dynes%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Eilemann%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gal%20E%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gevaert%20ME%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Ghobril%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gidon%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Graham%20JW%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gupta%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gupta%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Haenel%20V%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Hay%20E%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Heinis%20T%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Hernando%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Hines%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kanari%20L%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Keller%20D%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kenyon%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Khazen%20G%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kim%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=King%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kisvarday%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kumbhar%20P%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Lasserre%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Le%20B%C3%A9%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Magalh%C3%A3es%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Merch%C3%A1n-P%C3%A9rez%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Meystre%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Morrice%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Muller%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Mu%C3%B1oz-C%C3%A9spedes%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Muralidhar%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Muthurasa%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Nachbaur%20D%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Newton%20TH%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Nolte%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Ovcharenko%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Palacios%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Pastor%20L%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Perin%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Ranjan%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Riachi%20I%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Rodr%C3%ADguez%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Riquelme%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=R%C3%B6ssert%20C%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Sfyrakis%20K%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Shi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Shi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Shillcock%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Silberberg%20G%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Silva%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Tauheed%20F%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Telefont%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Toledo-Rodriguez%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Toledo-Rodriguez%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Tr%C3%A4nkler%20T%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Van%20Geit%20W%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=D%C3%ADaz%20JV%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Walker%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Wang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Zaninetta%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=DeFelipe%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Hill%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Segev%20I%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Sch%C3%BCrmann%20F%5BAuthor%5D&cauthor=true&cauthor_uid=26451489
http://www.frontiersin.org/WhosWhoDetails.aspx?UID=30129&d=1&sname=Ji_RyangChung&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=29875&d=3&sname=SungChul&name=Technology
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=16474&d=0&sname=DavidMayerich&name=all%20people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=16475&d=0&sname=JaerockKwon&name=all%20people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=16477&d=0&sname=DanielMiller&name=all%20people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=29872&d=1&sname=ToddHuffman&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=16472&d=0&sname=LouiseAbbott&name=all%20people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=4667&d=1&sname=YoonsuckChoe&name=Science
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=24875788
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Guo%20L%5BAuthor%5D&cauthor=true&cauthor_uid=24875788
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Adjouadi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24875788
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/24875788


Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

36 
 

[46] FALOTICO E., VANNUCCI L., AMBROSANO A., ALBANESE U., ULBRICH S., 

VASQUEZ TIECK J. C., HINKEL G., KAISER J., PERIC I., DENNINGER O., CAULI N., KIRTAY 

M., ROENNAU A., KLINKER G., VON ARNIM A., GUYOT L., PEPPICELLI D., MARTÍNEZ-

CAÑADA P., ROS E., MAIER P., WEBER S., HUBER M., PLECHER D., RÖHRBEIN F., DESER 

S., ROITBERG A., VAN DER SMAGT P., DILLMAN R., LEVI P., LASCHI C., KNOLL A. C. and 

GEWALTIG M. O., Front. Neurorobot., 11 (2017) 2.  

[47] CARRILLO R. R., ROS E., BOUCHENY C. and COENEN O. J., Biosystems, 94 (2008) 

18. 

[48] BRÜDERLE D., PETROVICI M. A., VOGGINGER B., EHRLICH M., PFEIL T., 

MILLNER S., GRÜBL A., WENDT K., MÜLLER E., SCHWARTZ M. O., DE OLIVEIRA D. H., 

JELTSCH S., FIERES J., SCHILLING M., MÜLLER P., BREITWIESER O., PETKOV V., MULLER 

L., DAVISON A. P., KRISHNAMURTHY P., KREMKOW J., LUNDQVIST M., MULLER E., 

PARTZSCH J., SCHOLZE S., ZÜHL L., MAYR C., DESTEXHE A., DIESMANN M., POTJANS T. 

C., LANSNER A., SCHÜFFNY R., SCHEMMEL J. and MEIER K., Biol. Cybern., 104 (2011) 

263. 

[49] PFEIL T., GRÜBL A., JELTSCH S., MÜLLER E., MÜLLER P., PETROVICI M. A., 

SCHMUKER M., BRÜDERLE D., SCHEMMEL J. and MEIER K., Front. Neurosci., 7 (2013) 

11. 

[50] GERSTNER W., SPREKELER H. and DECO G., Science, 338 (2012) 60. 

[51] MORAN R., PINOTSIS D. A. and FRISTON K., Front. Comput. Neurosci., 7 (2013) 

57. 

[52] SPIEGLER A. and JIRSA V. K., Neuroimage, 83 (2013) 704. 

[53] JIRSA V. K. and STEFANESCU R. A., Bull. Math. Biol., 73 (2011) 325. 

[54] OGAWA S., TANK D. W., MENON R., ELLERMANN J. M., KIM S. G., MERKLE H. 

and UGURBIL K., Proc. Natl. Acad. Sci. USA, 89 (1992) 5951. 

[55] PAULI R., BOWRING A., REYNOLDS R., CHEN G., NICHOLS T. E. and MAUMET C., 

Front. Neuroinform., 10 (2016) 24. 

[56] EKLUND A., NICHOLS T. E. and KNUTSSON H., Proc. Natl. Acad. Sci. USA, 113 

(2016) 7900. 

[57] WOO C. W., KRISHNAN A. and WAGER T. D., Neuroimage, 91 (2014) 412  

[58] TOURNIER J. D., YEH C. H., CALAMANTE F., CHO K. H., CONNELLY A. and LIN 

C. P., Neuroimage, 42 (2008) 617. 

[59] PARKER G. J., STEPHAN K. E., BARKER G. J., ROWE J. B., MACMANUS D. G., 

WHEELER-KINGSHOTT C. A., CICCARELLI O., PASSINGHAM R. E., SPINKS R. L., LEMON 

R. N. and TURNER R., Neuroimage, 15 (2002) 797. 

[60] THOMAS C., YE F. Q., IRFANOGLU M. O., MODI P., SALEEM K. S., LEOPOLD D. 

A. and PIERPAOLI C., Proc. Natl. Acad. Sci. USA, 111 (2014) 16574. 

[61] DADUCCI A., DAL PALÚ A., DESCOTEAUX M. and THIRAN J. P., Front. Neurosci., 

10 (2016) 247. 

[62] BASSETT D. S. and BULLMORE E. T., Neuroscientist, (2016) pii: 

1073858416667720. 

[63] BUZSAKI G. (ed.), Rhythms of the Brain (Oxford University Press, Oxford) 

2006. 

[64] BECKMANN C. F., DELUCA M., DEVLIN J. T. and SMITH S. M., Philos. Trans. R. 

Soc. Lond. B. Biol. Sci., 360 (2005) 1001. 

[65] MENON V., in Principles of Brain Dynamics, edited by RABINOVICH M. I., 

FRISTON K. J. and VARONA P. (MIT Press, Cambridge) 2012. 

[66] SANZ LEON P., KNOCK S. A., WOODMAN M. M., DOMIDE L., MERSMANN J., 

MCINTOSH A. R. and JIRSA V. K., Front. Neuroinform., 7 (2013) 10. 

https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Gerstner%20W%5BAuthor%5D&cauthor=true&cauthor_uid=23042882
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Sprekeler%20H%5BAuthor%5D&cauthor=true&cauthor_uid=23042882
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Deco%20G%5BAuthor%5D&cauthor=true&cauthor_uid=23042882
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nichols%20TE%5BAuthor%5D&cauthor=true&cauthor_uid=27357684
https://www.ncbi.nlm.nih.gov/pubmed/?term=Knutsson%20H%5BAuthor%5D&cauthor=true&cauthor_uid=27357684
https://www.ncbi.nlm.nih.gov/pubmed/?term=Woo%20CW%5BAuthor%5D&cauthor=true&cauthor_uid=24412399
https://www.ncbi.nlm.nih.gov/pubmed/?term=Krishnan%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24412399
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wager%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=24412399
https://scholar.google.it/citations?user=DVl9E8YAAAAJ&hl=it&oi=sra
https://books.google.it/books?hl=it&lr=&id=ldz58irprjYC&oi=fnd&pg=PA4&dq=buzsaki+rhythms+of+the+brain&ots=Q1_602cIFX&sig=pvtilx7zO3g06MG4uFMVQa_Gzec


Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

37 
 

[67] FRISTON K. J., MECHELLI A., TURNER R. and PRICE C.J ., Neuroimage, 4 (2000) 

466. 

[68] BRUNEL N. and WANG X. J., J. Comput. Neurosci., 1 (2001) 63. Erratum in: J. 

Comput. Neurosci., 37 (2014) 593. 

[69] FRISTON K. J., HARRISON L. and PENNY W., Neuroimage, 19 (2003) 1273. 

[70] LEE L., FRISTON K. and HORWITZ B., Neuroimage, 30 (2006) 1243. 

[71] GALLIANO E., MAZZARELLO P. and D’ANGELO E., J. Physiol., 588 (2010) 3639. 

[72] MARR D., J. Physiol., 202 (1969) 437.  

[73] D’ANGELO E., in Computational theories and their implementation in the brain 

- The legacy of David Marr, edited by VAINA L. M. and PASSINGHAM R. E. (Oxford 

University Press, Oxford) 2016, pp. 62-78. 

[74] HONDA T. and ITO M., in Computational theories and their implementation in 

the brain - The legacy of David Marr, edited by VAINA L. M. and PASSINGHAM R. E. 

(Oxford University Press, Oxford) 2016, pp. 29-61. 

[75] ITO M. (ed.), Cerebellum and Neural Control (Raven Publishing, New York) 
1984. 

[76] DAVISON A.P., HINES M. and MULLER E., Front. Neurosci., 3 (2009) 374. 

[77] D’ANGELO E., MAPELLI L., CASELLATO C., GARRIDO J. A., LUQUE N., MONACO 

J., PRESTORI F., PEDROCCHI A. and ROS E., Cerebellum, 15 (2016) 139. 

[78] D’ANGELO E., DE FILIPPI G., ROSSI P. and TAGLIETTI V., J. Neurophysiol., 80 

(1998) 493.  

[79] D’ANGELO E., NIEUS T., MAFFEI A., ARMANO S., ROSSI P., TAGLIETTI V., 

FONTANA A. and NALDI G., J. Neurosci., 21 (2001) 759. 

[80] DIWAKAR S., MAGISTRETTI J., GOLDFARB M., NALDI G. and D’ANGELO E., J. 

Neurophysiol., 101 (2009) 519. 

[81] MAGISTRETTI J., CASTELLI L., FORTI L. and D’ANGELO E., J. Physiol., 573 

(2006) 83.  

[82] GOLDFARB M., SCHOORLEMMER J., WILLIAMS A., DIWAKAR S., WANG Q., 

HUANG X., GIZA J., TCHETCHIK D., KELLEY K., VEGA A., MATTHEWS G., ROSSI P., 

ORNITZ D. M. and D’ANGELO E., Neuron, 55 (2007) 449. 

[83] DOVER K., MARRA C., SOLINAS S., POPOVIC M., SUBRAMANIYAM S., ZECEVIC 

D., D’ANGELO E. and GOLDFARB M., Nat. Commun., 7 (2016) 12895. 

[84] HODGKIN A. L. and HUXLEY A. F., J. Physiol., 117 (1952) 500. 

[85] SOLINAS S., FORTI L., CESANA E., MAPELLI J., DE SCHUTTER E. and D’ANGELO 

E., Front. Cell. Neurosci., 1 (2007) 4. 

[86] SOLINAS S., FORTI L., CESANA E., MAPELLI J., DE SCHUTTER E. and D’ANGELO 

E., Front. Cell. Neurosci., 1 (2007) 2. 

[87] VERVAEKE K., LORINCZ A., GLEESON P., FARINELLA M., NUSSER Z. and SILVER 

R. A., Neuron, 67 (2010) 435. 

[88] VERVAEKE K., LORINCZ A., NUSSER Z. and SILVER R. A., Science, 335 (2012) 

1624. 

[89] SZOBOSZLAY M., LŐRINCZ A., LANORE F., VERVAEKE K., SILVER R. A. and 

NUSSER Z., Neuron, 90 (2016) 1043. 

[90] NIEUS T., SOLA E., MAPELLI J., SAFTENKU E., ROSSI P. and D’ANGELO E., J. 

Neurophysiol., 95 (2006) 686. 

[91] NIEUS T. R., MAPELLI L. and D’ANGELO E., Front. Cell. Neurosci., 8 (2014) 

246. Erratum in: Front. Cell. Neurosci., 10 (2016) 30. 

[92] SOLINAS S., NIEUS T. and D’ANGELO E., Front. Cell. Neurosci., 4 (2010) 12. 

[93] DIWAKAR S., LOMBARDO P., SOLINAS S., NALDI G. and D’ANGELO E., PLoS 

One, 6 (2011) e21928. 

http://refhub.elsevier.com/S0896-6273(15)01036-3/sref20
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/26909023


Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

38 
 

[94] PARASURAM H., NAIR B., D’ANGELO E., HINES M., NALDI G. and DIWAKAR S., 

Front. Comput. Neurosci., 10 (2016) 65. 

[95] MASOLI S., SOLINAS S. and D’ANGELO E., Front. Cell. Neurosci., 9 (2015) 47. 

[96] D’ANGELO E. and DE ZEEUW C. I., Trends Neurosci., 32 (2009) 30. 

[97] D’ANGELO E., Prog Brain Res., 210 (2014) 31. 

[98] SGRITTA M., LOCATELLI F., SODA T., PRESTORI F. and D’ANGELO E., J 

Neurosci., 37 (2017) 2809. 

[99] SOLA E., PRESTORI F., ROSSI P., TAGLIETTI V. and D’ANGELO E., J. Physiol., 

557 (2004) 843. 

[100] MAPELLI L., GAGLIANO G., SODA T., LAFORENZA U., MOCCIA F. and D’ANGELO 

E., J. Neurosci., 37 (2017) 1340. 

[101] GARRIDO J. A., ROS E. and D’ANGELO E., Front. Comput. Neurosci., 7 (2013) 

64.  

[102] GARRIDO J. A., LUQUE N. R. and D’ANGELO E., Front. Neural Circuits, 7 (2013) 

159. 

[103] LUQUE N. R., GARRIDO J. A., CARRILLO R. R., D’ANGELO E. and ROS E., Front. 

Comput. Neurosci., 8 (2014) 97. 

[104] CASELLATO C., ANTONIETTI A., GARRIDO J. A., CARRILLO R. R., LUQUE N. R., 

ROS E., PEDROCCHI A. and D’ANGELO E., in Plos One, 9 (2014) e112265. 

[105] CASELLATO C., ANTONIETTI A., GARRIDO J. A., FERRIGNO G., D’ANGELO E. and 

PEDROCCHI A., Front. Comput. Neurosci., 9 (2015) 24. 

[106] ANTONIETTI A., CASELLATO C., D’ANGELO E. and PEDROCCHI A., IEEE Trans. 

Neural Netw. Learn. Syst., PP (2017) 99.  

[107] KAWATO M., KURODA S. and SCHWEIGHOFER N., Curr. Opin. Neurobiol., 21 

(2011) 791. 

[108] LANG E. J., APPS R., BENGTSSON F., CERMINARA N. L., DE ZEEUW C. I., EBNER 

T. J., HECK D. H., JAEGER D., JÖRNTELL H., KAWATO M., OTIS T. S., OZYILDIRIM O., 

POPA L. S., REEVES A. M., SCHWEIGHOFER N., SUGIHARA I. and XIAO J., Cerebellum, 

16 (2017) 230.  

[109] EYAL G., VERHOOG M. B., TESTA-SILVA G., DEITCHER Y., LODDER J. C., 

BENAVIDES-PICCIONE R., MORALES J., DEFELIPE J., DE KOCK C. P., MANSVELDER H. D. 

and SEGEV I., Elife, 5 (2016) e16553.  

[110] CAZEMIER J. L., CLASCÁ F. and TIESINGA P. H., Front. Neuroanat., 10 (2016) 

110.  

[111] BADER A. A., SHERIF G., NOAH O., CHRISTOPHER O., GEORGIOS P., JOHN O. and 

KAI Z., J. Theor. Biol., 422 (2017) 18. 

[112] ALAHMADI A. A., PARDINI M., SAMSON R. S., D’ANGELO E., FRISTON K., TOOSY 

A. T. and GANDINI WHEELER-KINGSHOTT C. A., Hum. Brain Mapp., 36 (2015) 5079. 

[113] GRILLNER S. and ROBERTSON B., Curr. Biology, 26 (2016) R1088. 

[114] MONACO J., CASELLATO C., KOCH G. and D’ANGELO E., Eur. J. Neurosci., 40 

(2014) 3363. 

[115] SHADMEHR R., SMITH M. A. and KRAKAUER J. W., Annu. Rev. Neurosci., 33 

(2010) 89.  

[116] RENZI C., VECCHI T., D’ANGELO E., SILVANTO J. and CATTANEO Z., Clin. 

Neurophysiol., 125 (2014) 2132. 

[117] CATTANEO Z., RENZI C., CASALI S., SILVANTO J., VECCHI T., PAPAGNO C. and 

D’ANGELO E., Cortex, 58 (2014) 272. 

[118] DE VIDOVICH G. Z., MUFFATTI R., MONACO J., CARAMIA N., BROGLIA D., 

CAVERZASI E., BARALE F. and D’ANGELO E., Front. Hum. Neurosci., 10 (2016) 582. 

[119] CONNOR J. A. and STEVENS C. F., J. Physiol., 213 (1971) 21.  

https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kawato%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21665461
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Kuroda%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21665461
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/?term=Schweighofer%20N%5BAuthor%5D&cauthor=true&cauthor_uid=21665461
https://www-ncbi-nlm-nih-gov.bibliosan.clas.cineca.it/pubmed/21665461


Nuovo Cimento - Brain modelling  Thursday, 27 July 2017 

39 
 

[120] CONNOR J. A. and STEVENS C. F., J. Physiol., 213 (1971) 31.  

[121] HINES M. L. and CARNEVALE N. T., J. Neurosci. Methods, 169 (2008) 425. 

[122] MCDOUGAL R. A., MORSE T. M., CARNEVALE T., MARENCO L., WANG R., 

MIGLIORE M., MILLER P. L., SHEPHERD G. M. and HINES M. L., J. Comput. Neurosci., 

42 (2017) 1. 

[123] TSODYKS M. V. and MARKRAM H., Proc. Natl. Acad. Sci. USA, 94 (1997) 719. 

Correction in:  Proc. Natl. Acad. Sci. USA, 94 (1997) 5495.  

[124] RUBINOV M. and SPORNS O., in Neuroimage, 52 (2010) 1059. 

[125] TZOURIO-MAZOYER N., LANDEAU B., PAPATHANASSIOU D., CRIVELLO F., 

ETARD O., DELCROIX N., MAZOYER B. and JOLIOT M., Neuroimage, 15 (2002) 273. 

[126] CLAYDEN J. D., Funct. Neurol., 28 (2013) 197. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC56129/

