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Abstract: 

Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer 

to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery 

Program Expedition 362 sampled incoming sediments offshore Northern Sumatra, revealing recent 

release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous 

silica dehydration driven by rapid burial-induced temperature increases in the last 9 Myr. Complete 

dehydration of silicates is expected before plate subduction, contrasting with prevailing models for 

subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra 

appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with 

weakening proposed for the shallow Tohoku-oki 2011 rupture, but our results are applicable to other 

thickly-sedimented subduction zones including those with limited earthquake records. 

 

One Sentence Summary: 

Dehydration of buried silicates within Sumatra input sediments before subduction explains shallow slip 

of the 2004 MW≈9.2 earthquake. 

 

Main Text: 

The largest earthquakes occur along subduction plate boundary faults and typically generate large, far-

reaching tsunamis. The mechanical (e.g, unstable sliding rheology) and hydrogeological conditions (i.e., 

fluid generation) of the fault interface, which depend on the properties of the materials being subducted, 

control where and when megathrust earthquakes occur as well as the earthquake magnitude and tsunami 

hazard (1, 2). Current models tie the updip limit of seismogenesis, and hence the seaward extent and 

width of the earthquake rupture, to mechanical compaction and mineral dehydration reactions that 

generate fluids and promote lithification within the subduction zone (landward of the deformation front) 

(2, 3). These models lead to predictions that rupture should occur at depth within the subduction zone 

with limited coseismic slip in the outer forearc (2, 4). However, during the 2004 Sumatra-Andaman and 

the 2011 Tohoku-Oki earthquakes, slip extended much farther and closer to the seaward limits of the 

subduction forearc than predicted (5), resulting in wider rupture zones, larger earthquakes, and tsunamis. 



This unexpected behavior requires reappraisal of models of subduction earthquake seismogenesis and a 

better understanding of the sediments that form megathrust faults, ultimately through direct sampling of 

fault or fault-forming materials. 

 

On 26 December 2004, a MW≈9.2 earthquake ruptured ~1300 km from offshore northern Sumatra to the 

Andaman Islands, where the Indo-Australian plate subducts beneath the Burma-Sunda plate (6; Fig. 1), 

causing the devastating tsunami that killed more than 250,000 people (7). Coseismic slip propagated 

seaward beneath the accretionary prism, possibly extending to the trench (8, 9). Previously, the 

outermost plate-boundary fault (or décollement) at subduction zones had been assumed to be primarily 

aseismic (2, 4) so that the main seismic moment release was expected farther landward, as observed 

during the 2005 MW≈8.7 Nias earthquake offshore Central Sumatra (10, Fig. 1) and at other accretionary 

margins (2, 4). Seismic slip models (11, 12) show that rupture nucleation and propagation of the 2004 

earthquake offshore northern Sumatra occurred largely under a broad plateau in the accretionary prism. 

Previous studies (13-15) related this to strengthening of the incoming sediment outboard of the 

subduction zone, leading to a seaward shift of seismogenesis.  

 

The Sumatra margin is distinctive from other accretionary margins because the incoming sequence is 

up to 4-5 km thick at the deformation front and includes thick sediments of the Bengal-Nicobar fan. It 

is also characterized by a seismic horizon that develops into a high amplitude negative polarity (HANP) 

seismic reflector near the subduction zone (13, Fig. 1). The HANP horizon has been interpreted as a 

weak, porous, overpressured, fluid-rich layer that is the locus for décollement initiation along parts of 

the margin, based on fault interpretation of seismic data (13). During International Ocean Discovery 

Program (IODP) Expedition 362 we sampled sediments about ~225 km seaward of the North Sumatran 

deformation front, including the sediments that ultimately form the Sunda plate boundary fault and 

forearc. At Site U1480, we recovered input sediment to basement at ~1420 mbsf (meters below seafloor) 

and we sampled sediment at Site U1481 from 1150 to 1500 mbsf (Fig. 1, Fig. S1). The thick sedimentary 

sequence reflects the >200 m/Myr Nicobar fan deposition that began ~9 Myr ago (units I and II, Fig. 2, 

16). On approaching the subduction zone, the plate flexes and rapid sedimentation adds an additional 



~2-3 km of trench wedge sediment to the input sequence (Fig. 1b). Geochemical analyses show that 

sediment in the volcanogenic-rich pelagic unit underlying the Nicobar Fan sequence (unit III, Fig. S1) 

contains >20 wt.-% amorphous silica (16-18), which constitutes a significant reservoir of mineral-bound 

water available for release upon dehydration (Fig. 2). Smear slide observations of samples from this unit 

document the presence of dominantly clay-size, amorphous and poorly crystalline silicate material, 

identified as palagonite, with minor fragmented sponge spicules and radiolaria (Fig. S2). X-ray 

diffraction analyses (XRD, Fig. S3) support geochemical and smear slide inferences for the presence of 

amorphous and poorly crystalline silicates. These amorphous silicates reflect complete alteration and 

hydration of volcanic glass, which we attribute to ~30 Myr of seawater exposure during the slow 

accumulation of the pelagic sediment (Fig. 2). We also found evidence of recent dehydration reactions 

of these altered sediments within unit III as documented by a sharp, ~80-m thick freshening anomaly, 

where chloride decreases from ~580 mM to ~520 mM (U1480: 1250-1330 mbsf, U1481: 1350-1450 

mbsf) and interpret this as a response to rapid Nicobar Fan sedimentation (Fig. 2, Fig. S4, 16). We used 

a simple diffusion model to show that this freshening occurred very recently (last 100 kyr) (17) (Fig. 

S4).The same stratigraphic interval in unit III corresponds to increased porosity (Fig. S5) and is 

correlated to the HANP seismic horizon (13, Fig. 1).  

 

To mechanistically test what drives shallow seismogenesis and to elucidate the origin of the HANP 

reflector, we modeled fluid production of the incoming sediment using reaction kinetics (19, 20) along 

a time-temperature progression of unit III sediments from deposition to accretion at the subduction zone 

(17, Fig. S6). Our models predict most of the observed freshening at the drilled sites can be explained 

by biosilica dehydration (Fig. 3) as the pelagic sediments reached >50°C <1 Myr, facilitating the 

transition from opal-A to opal-CT to quartz (Fig. 3). The observed freshening corresponds to a biosilica 

input of ~18 wt.-%, which falls within the range expected for Eocene pelagic sediments (18). The 

calculated reaction progress suggests 4 wt.-% opal-A, 2 wt.-% opal-CT and 12 wt.-% quartz at the 

present location of Site U1480, consistent with XRD data. We projected the dehydration simulations to 

estimate fluid production as temperature increases towards the subduction deformation front. Given 

uncertainties regarding palagonite dehydration kinetics (21), we used smectite as a palagonite proxy to 



model the altered volcanogenic component undergoing dehydration, consistent with our XRD results 

showing a poorly crystalline expandable clay as the dominant material in the palagonite and that smectite 

is the final replacement product of palagonitization (21). Model results (Fig. 3) demonstrate that fluid 

production from opal dehydration peaks before sediments enter the trench, smectite/palagonite 

dehydration peaks close to the deformation front, and that fluids produced by dehydration reactions 

exceed fluids produced by compaction-driven dewatering (Fig. 3). We acknowledge uncertainties in 

these estimates, which include: a) the opal water content, which we assumed to be 12.1 wt-% (22); b) 

the onset of palagonite dehydration, which we assumed to follow smectite kinetics (19); and c) the depth 

estimate of unit III in the trench. A lower amount of water-bound opal and an earlier onset of palagonite 

dehydration dehydration (relative to the onset expected from the smectite proxy) may balance to account 

for the freshening observed at Site U1480. We note that in addition to palagonite, smectite itself may 

also contribute to fluid production pre-subduction. Water released from smectite/palagonite 

corresponding to sediment loading at the trench is indicated in Fig. 3. Notwithstanding the uncertainties, 

our simulations show that dehydration leads to pre-subduction pore fluid production that is consistent 

with the HANP reflector observable seaward of the North Sumatra trench (Fig. 1), and point to a larger 

pore fluid content in this area relative to Central Sumatra (Fig. 1, 13). The lack of strong décollement 

reflectivity beneath the prism (13) further supports that, by this stage, either dehydration is minimal 

and/or produced fluids are rapidly released from the décollement.  

 

The level of compaction and diagenesis of the incoming sediment to North Sumatra differs from that of 

well-studied accretionary margins such as Nankai or northern Barbados Ridge (Lesser Antilles). At the 

level of the décollement, compaction and diagenesis are more limited by the trench and outermost 

forearc at Nankai and Barbados (from drilling results) than modeled for North Sumatra (see Table S1, 

17), including the Nankai-Muroto transect where high heat flow leads to shallow and early diagenesis 

(see Table S1). Hydrogeological models of these margins showed that excess pore pressures from 

porosity reduction and mineral dehydration dissipate from the décollement horizon at or near the updip 

limit of seismogenesis, deeper within the subduction zone and not in the outermost forearc (2, 3). Burial 

by thick Nicobar Fan and trench wedge sediments offshore North Sumatra causes mechanical 



compaction and mineral dehydration along the proto-décollement to reach completion before subduction 

(Fig. 3). Early diagenesis creates a fluid pressure pulse that dissipates from the décollement horizon 

within the outermost forearc, as evidenced by the seismically reflective outer prism faults and by a 

reduction in reflection amplitude at the HANP horizon beneath the toe of the prism (13, 14). The increase 

in effective stress from the pressure dissipation and the precipitation of quartz from opal diagenesis (23) 

and smectite-to-illite transformation (3) are consistent with a tendency towards an unstable sliding 

rheology (3, 24) that extends seismogenesis seaward to the shallow outer forearc.  

 

Sampling of the fault-forming materials at the North Sumatran subduction zone provides direct evidence 

that diagenesis before subduction may drive shallow slip and therefore the unexpected increase in 

earthquake rupture width and magnitude. The Sumatra-Andaman 2004 and Tohoku-Oki 2011 

earthquakes both had shallow slip, but with different driving processes. Both events show that the 

commonly accepted seismogenic model of nucleation deep within the subduction zone and limited 

seaward rupture is just one among a varied set of conditions that control earthquake rupture and 

coseismic slip. The shallow slip along the Japan Trench was attributed to a weak, smectite-rich fault 

zone (25) while shallow slip offshore North Sumatra occurred on a clay-rich fault that was strengthened 

by diagenesis. The model derived from our analysis of the Sumatran core samples may be applicable to 

other subduction zones that have thick input sediments or high temperatures or both, including the 

Makran, Cascadia, southern Lesser Antilles, and Eastern Aleutians (25; Table S1). The thickness and 

thermal state of sediments at the Cascadia, southern Lesser Antilles, and Makran margins (Table S1), 

all affected by input of submarine fan sequences, suggest similarities to North Sumatra in terms of state 

of diagenesis and potential for shallow slip. We also note that although dehydration is modeled to peak 

within and not outboard of the Eastern Aleutians subduction zone (26), slip in the outermost forearc was 

recorded during the 1964 earthquake (27) (Table S1). Many of these subduction zones have either never 

been sampled (e.g., Makran) or have a limited historic rupture record (e.g., Makran, southern Lesser 

Antilles, Cascadia), but shallow slip during megathrust rupture may be possible. As the specific 

earthquake and tsunami potential is not well known in these regions, a wide range of models should be 



applied to better assess the range of earthquake magnitude and tsunamigenesis possible from a large 

megathrust earthquake. 
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Figure captions: 

Figure 1. Overview of study area and sampling locations. (A) Map of IODP Expedition 362 sites (red 

dots) and 2004 and 2005 rupture zones (modified from 29). Red arrows and numbers show convergence 

vectors (cm/yr). White arrows and numbers indicate subduction velocities accounting for forearc motion 

(30). Yellow lines mark seismic profiles (13, 15, 31) where a high amplitude negative polarity (HANP) 

reflector is imaged or reported (yellow area). Dashed yellow line shows estimated extent of the HANP 



reflector. (B) Seismic profile of the North Sumatran subduction inputs in the area of the drill sites, 

location is orange line in (A).   

 

Figure 2. Depth profiles of key results from cored Sites U1480 (in red) and U1481 (in blue) showing 

simplified lithostratigraphy with lithologic units, sediment age, solid-phase amorphous SiO2 (wt-%) and 

dissolved Cl concentration. Within unit III Cl concentrations drop to ~520 mM corresponding to 

increased amorphous silica content. Smear slide observations (Fig. S2) show biosilica and a 

homogeneous red-colored microcrystalline material, interpreted as a palagonite alteration product from 

volcanic ash, at 1250-1327 m below seafloor.  

 

Figure 3. Modeling results of time- and temperature-dependent reaction kinetics and compaction in unit 

III from deposition to arrival at the subduction deformation front. 0 Myr is present time. (A) Combined 

fluid production from opal-A to opal-CT to quartz transition reaches the highest values close to Site 

U1480 with a double peak due to the onset of trench wedge sedimentation. The blue area shows the opal 

dehydration based on the possible range of bound water (2.1 - 12.1 wt.-%) (22). A minimum of 18 wt.-% 

opal-A is required to explain the observed freshening at Site U1480 assuming a high water content (12.1 

wt.-%). Simulated dehydration of palagonite uses smectite to illite reaction kinetics as a proxy and peaks 

approximately 131 to 76 km seaward of the trench. Dehydration has been modeled for a final burial 

depth of 4 to 5 km for the base of unit III in the trench (red dashed and solid line, respectively). Weight 

percentages of 50 wt.-% and 100 wt.-% are assumed to show the potential range on fluid production. 

(B) Relative composition showing that opal-A transforms to quartz seaward of the subduction front. The 

smectite to illite transition (as a proxy for palagonite dehydration) should also be largely completed 

before subduction due to simulated temperatures of ~120 to 150°C using both 4 and 5 km sediment 

thickness in the trench, respectively (red dashed and solid line, respectively, shaded orange between).  
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