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Abstract 

Artificial grammar learning (AGL) is an empirical paradigm which investigates basic pattern- 

and structural processing in different populations. It can inform how higher cognitive 

functions, such as language use, take place. Our study used AGL to assess how children with 

Williams syndrome (WS) (n=16) extract patterns in structured sequences of synthetic speech, 

how they compare to typically developing (TD) children (n=60), and how prosodic cues 

affect learning. The TD group was divided into: a group whose non-verbal abilities (NVMA) 

were within the range of the WS group, and a group whose chronological age (CA) was 

within the range of the WS group. TD children relied mainly on rule-based generalization 

when making judgements about sequence acceptability, whereas children with WS relied on 

familiarity with specific stimulus combinations. The TD participants whose NVMA were 

similar to the WS group, showed less evidence of relying on grammaticality than TD 

participants whose CA was similar to the WS group. In absence of prosodic cues, the children 

with WS did not demonstrate evidence of learning. Results suggest that, in WS children, the 

transition to rule-based processing in language does not keep pace with TD children and may 

be an indication of differences in neuro-cognitive mechanisms. 
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1. Introduction   

Linguistic input in language acquisition is thought to consist of strings of words which 

conform to the grammatical patterns of the target language (Maratsos & Chakley, 1980; 

Pinker, 1984; Wexler & Culicover, 1980). Language processing involves the ability to parse 

these strings, detect regularities and generalise them onto new sequences. One way to 

determine the basic principles on which these processes take place is to observe them in 

artificial grammar learning (AGL) tasks. AGL (Reber, 1967) is an empirical paradigm which 

has contributed to research on the relationship between general information structure 

processing and language. AGL investigates how individuals parse combinations of stimuli, 

extract knowledge about their structure, and apply this knowledge to new combinations. 

AGL tasks have been used over the last 50 years to identify the representations acquired 

through learning, and to model language or syntax acquisition (Pothos, 2007). AGL can 

reveal processing biases underlying developmental profiles. The present study investigates 

how children and adolescents with WS extract patterns from structured sequences of AGL 

stimuli, how they compare to typically developing (TD) children, and how pattern extraction 

processes may change in TD children during maturation.  Traditionally, auditory AGL tasks 

have been presented with no prosodic cues. However, natural language provides cues to 

language structure, such as prosody, which is particularly relevant for language acquisition. 

We therefore also investigated how prosodic cues affect learning.  

 

1.1.The Williams syndrome (WS) neuro-cognitive profile 

WS is a genetic disorder which occurs due to a micro-deletion on the long arm of 

chromosome 7q23 affecting the alleles of the elastin gene (Tassabehji et al., 1999). It is 

estimated to affect 1 in 20,000 to 25,000 live births (Greenberg, 1990), with the most recent 

epidemiological study suggesting an incidence rate of 1 in 7,500 live births (Strømme, 
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Bjømstad, & Ramstad, 2002). Individuals with WS typically display an uneven neuro-

cognitive profile, with mild to severe learning difficulties, serious impairments in problem 

solving and deficits in spatial cognition, but relatively good social cognition, linguistic 

abilities and auditory rote memory (Mervis & Klein-Tasman, 2000). Initial descriptions of the 

WS profile emphasised the discrepancy between superior language abilities, social over-

friendliness and seemingly normal face-processing abilities, and impaired general cognitive 

abilities (Bellugi, Sabo, & Vaid, 1988; Bellugi, Bihrle, Neville, Jernigan, & Doherty, 1992; 

Bellugi, Wang, & Jernigan, 1994; Bellugi, Lichtenberger, Mills, Galaburda, & Korenberg, 

1999).  

There is growing evidence, however, to suggest that the overall linguistic performance in 

individuals with WS matches their nonverbal mental age in terms of morpho-syntactic skills, 

expressive and receptive vocabulary, expressive and receptive prosody (e.g., Brock, 2007; 

Stojanovik, Perkins & Howard, 2004; Stojanovik, 2010; Stojanovik, 2012; Ypsilanti, 

Grouios, Alevriadou, & Tsapkini, 2005). In addition, children with WS have been shown to 

perform not only similarly but also worse than mental age matched controls and/or children 

with Down syndrome (DS), on comprehension and production of wh-questions and 

understanding of passive sentences (Joffe & Varlokosta, 2007). These studies challenge 

claims of superior language abilities in individuals WS as well as assumptions that their 

language develops independently of general cognitive processes. 

As an alternative, it has been suggested that language acquisition in WS follows an 

atypical trajectory (Mervis & John, 2012), and that, although individuals with WS may show 

similar behavioural outcomes on various tasks, they achieve these via different cognitive-

level and neural-level processes compared to neuro-typical individuals (Karmiloff-Smith & 

Farran, 2012). For example, unlike typically developing (TD) children and those with DS, 

children with WS do not show referential pointing prior to the onset of referential language 
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(Mervis, Robinson, Rowe, Becerra, & Klein-Tasman., 2004). Despite missing this early 

precursor to language, they still achieve relatively good vocabulary scores, especially with 

concrete vocabulary which is more dependent on referential pointing (Mervis & John, 2008). 

Similarly, an earlier study by Stevens and Karmiloff-Smith (1997) reported that individuals 

with WS used slightly different strategies when acquiring new words. Unlike TD children 

who use fast mapping and show mutual exclusivity, whole object and taxonomic constraints, 

individuals with WS appear to only use fast mapping and mutual exclusivity criteria. Yet, 

receptive vocabulary is a recognised strength in individuals with WS (Brock, 2007), which 

suggests that despite similar behaviour (equivalent vocabulary scores between TD and WS 

groups), individuals with WS may acquire new words in a different manner from TD 

children. More evidence comes from Nazzi, Paterson, and Karmiloff-Smith (2003) who 

showed that children with WS aged between 15 and 48 months were unable to segment 

words with a weak-strong stress pattern. Yet, the mean expressive vocabulary for the group 

was 83 words suggesting that, although an important precursor to language (speech 

segmentation) may not have been fully acquired, the children had acquired some language.  

The view that seemingly similar behaviours may be grounded in different neural systems 

is supported by neuroimaging studies in domains other than language. For example, Grice et 

al. (2003), using event related potentials (ERPs), showed that, although individuals with WS 

manifested typical susceptibility to visual illusions, their neural activation was substantially 

different from activation in neuro-typical controls.  

 Underlying higher cognition in WS may be a dissociation between local (piecemeal or 

detailed focused) and global (holistic) processing. Individuals with WS have shown a local 

over a global processing bias (Bellugi, Lichtenberger, Jones, Lai & St George, 2000; Farran, 

Jarrold & Gathercole, 2003; Karmiloff-Smith et al., 2004). This is different from typical 

adults who process faces based on their global configuration rather than individual features 
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(Young, Hellawell, & Hay, 1987). A recent study by D’Souza, Booth, Connolly, Happé and 

Karmiloff-Smith (2015) demonstrated, in a series of tasks, that individuals with WS did not 

show a consistent local processing bias. In TD children, there is a shift, from global 

processing in early infancy to a local processing bias in early childhood to a more global 

processing bias becoming more dominant between the ages of 6 and 10 (Mondloch, Grand, & 

Maurer, 2002; Poirel, Mallet, Houdé, & Pineau, 2008). Neurophysiological evidence suggests 

that the shift from a local to a global processing bias may be related to a reduction of grey 

matter along the visual dorsal stream (Poirel et al., 2008). An fMRI study of individuals with 

WS showed that, on a global processing task, there was reduced activation of the dorsal 

stream pathway (Mobbs, et al., 2007). 

 Despite evidence that behavioural, cognitive and neural processes in WS may differ 

from the typical population, and seemingly similar behavioural responses may be the result of 

the involvement of different cognitive mechanisms (Karmiloff-Smith, 2012), the majority of 

studies investigating language in WS have so far focused on accuracy scores, which may not 

reveal how participants generally perceive and structure information. The evidence to date 

suggests that the linguistic differences between the WS and TD populations may result from 

differences in general cognitive abilities and that, although individuals with WS may show 

similar behavioural outcomes on various tasks to neuro-typical controls, the behaviour 

outcomes in WS may be grounded in different neuro-cognitive mechanisms. These 

investigations are crucial in order to fully understand the neuro-cognitive profile of WS and 

address how individuals with WS approach the task of language acquisition at a more 

fundamental level and what is the involvement of general cognitive mechanisms.    

1.2. Artificial grammar learning and the contribution of prosodic cues 

 AGL is an empirical paradigm which has contributed to research on the relationship 

between general information structure processing and language. AGL experiments typically 
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consist of a training phase and a test phase. During training, participants are presented with 

stimulus sequences which differ from one another, but share an underlying structure; they are 

generated by the same “grammar”. In the test phase, new sequences are presented. Some are 

grammatical with regards to the target grammar, others are ungrammatical. Participants 

accept or reject test sequences based on whether they “fit” with the training sequences. 

Behavioural patterns indicate which aspects of the grammar were learned and generalised. 

Because experimenters can control the lexical-semantic nature of the stimuli, the sensory 

modality in which the stimuli are presented, and the structural complexity of the stimuli 

combinations, it is possible to investigate the relationship between specific processing (or 

learning) mechanisms and language. Importantly, the paradigm has been used to investigate 

different ways in which participants approach stimulus sequences (Pothos, 2007; Visser, 

Raijmakers, & Pothos, 2009; Zimmerer, Cowell, & Varley, 2011). AGL performance is 

related to a speaker’s ability to predict language input based on the semantic and statistical 

context (Conway, Bauernschmidt, Huang, & Pisoni, 2010). Typically developing seven-

month-old infants are able to extract syntactic information from stimulus sequences only after 

a couple of minutes of exposure (Marcus, Vijayan, Rao, & Vishton, 1999), and eight-month-

old infants have access to the “powerful mechanisms for the computation of statistical 

properties of the language input” (Saffran, Aislin, & Newport, 1996, p.1926).  

AGL tasks engage left inferior areas in the brain, in particular Broca’s area (Petersson, 

Forkstam, & Ingvar, 2004; Petersson, Folia, & Hagoort, 2012), and studies using AGL have 

contributed towards our understanding of language pathology in different clinical 

populations, such as for example people with aphasia (Christiansen, Kelly, Schillock, & 

Greenfield, 2010; Dominey, Hoen, Blanc, & Lelekov-Boissard, 2003; Zimmerer, Cowell, & 

Varley, 2014; Zimmerer & Varley, 2015), by providing evidence for an underlying 

impairment of general sequence structure processing systems.  
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The first (and to our knowledge only) study to investigate AGL in WS was by Don, 

Schellenberg, Reber, Girolamo, and Wang (2003). Twenty-seven individuals with WS, 

spanning a wide age range (9-49), and 27 chronological age matched controls took part in 

two implicit learning tasks, one of which was an AGL task containing visually presented 

stimuli.  Although the individuals with WS showed evidence of learning, the control group 

matched for chronological age outperformed the WS group in the AGL task. Differences in 

learning were related to between group differences in non-verbal intelligence and working 

memory: when either counting span and K-BIT Matrices scores were included as covariates, 

differences were not significant. By contrast, differences in vocabulary did not eliminate the 

between-group differences. This study suggests that information processing capacities in WS 

are largely on a par with their mental age.  

AGL tasks (if presented auditorily) have traditionally been presented with no prosodic 

cues. However, natural language incorporates cues to language structure, such as prosody 

(Morgan, Meier & Newport, 1987). Prosodic cues are particularly important in early child 

language acquisition. For example, newborn infants discriminate between languages on the 

basis of their rhythmic properties (Jusczyk, Cutler, & Redanz 1993); at age 6 months, infants 

rely on prosodic cues to segment incoming speech into words (Jusczyk et al., 1993) as well as 

to acquire the syntactic rules of language (Hirsh-Pasek et al., 1987). The evidence is mixed 

with regard to what extent and whether children (aged 5 and above) make use of prosody in 

language processing. Beach, Katz and Skowronski (1996) show that 5-year old children use 

intonational or duration properties to disambiguate ambiguous phrases, but Snedeker and 

Trueswell (2001) present evidence that 5-year old children do not use prosody to 

disambiguate ambiguous sentences. Evidence from adults suggests that adult listeners do not 

necessarily rely on prosodic cues when other cues such as lexical or segmental cues are 

available in the input (Mattys, White, & Melhorn, 2005). Individuals with WS have been 
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reported to have expressive and receptive prosodic abilities in line with their language 

abilities (Stojanovik, Setter & van Ewijk, 2007) which would suggest that they are able to use 

prosody in language processing. In addition, individuals with WS are very interested in 

music; some learn to sing and play musical instruments very successfully and have enhanced 

absolute pitch perception, which has led some to suggest that music is a preserved domain in 

WS (Lenhoff, 1998; Levitin & Bellugi, 1998; Levitin et al., 2004). It has been postulated in 

theoretical models that there are certain commonalities between language and music, in that 

they share similar developmental mechanisms (McMullen & Saffran, 2004; Trehub, 2003), 

and they share processing resources, especially those which are dedicated to the processing of 

structural relations which unfold over time (Patel, 2003). Elsabbagh, Cohen and Karmiloff-

Smith (2010) suggested that children with WS may be lacking the sensitivity to prosodic 

contour cues and may require a more extended period of exposure to linguistic input in order 

for them to discover language structure.  

We present a novel AGL study which investigates differences between children with WS 

and TD controls, with a particular focus on whether participants from different groups extract 

different types of structural information from stimulus sequences. In particular, we aim to see 

how both groups make use of grammaticality, as determined by rules, and familiarity, as 

determined by the frequency of stimuli or stimulus combinations encountered during training, 

when accepting and rejecting sequences in the test phase. We further investigate each group’s 

sensitivity to prosodic cues. We will also subdivide the TD group into a non-verbal ability 

matched TD group (matched to the WS group on non-verbal ability) and an age matched TD 

group (matched to the WS group on chronological age) so that we can further investigate the 

effect of chronological age on the children’s use of grammaticality or familiarity in making 

the judgements, as well as their use of prosodic cues.  
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2. Method 

AGL experiments are challenging to conduct on child populations because of demanding 

task instructions (judge whether new sequences are correct based on the training set). In 

infant populations, AGL tasks do not involve decisions, but the use of the habituation/head-

turn preference paradigm. However, head-turn preference data become unreliable as children 

become older and develop stronger executive control. Our design is novel and includes a 

narrative which serves to make the decision task more child-friendly and easier to understand. 

“Words” in the artificial language were mapped to aspects of events which were presented 

together with each sequence.  

2.1. Participants 

 

All participants were monolingual children aged between four and eighteen years of age. 

Nineteen participants with WS were originally recruited through the WS Foundation in the 

United Kingdom. These represented 70% of the total number of participants available in the 

South of England (a list of 27 participants aged between 6 and 16 from the South of England 

was provided by the WS Foundation), hence our sample is fairly representative of the WS 

population living in the South of England. Because the task manipulated prosody, in order to 

minimise any issues arising from regional variation, we recruited exclusively from the South 

of England. Other studies investigating prosodic aspects of language in children and 

adolescents with WS had similar sample sizes or smaller mainly due to the rarity of the 

syndrome and the relatively small numbers of participants available within a certain age band 

(e.g. Catterall et al., 2006; Martinez, Stojanovik, Setter & Sotillo, 2012; Reilly, Klima & 

Bellugi, 1990; Setter, Stojanovik, van Ewijk & Moreland, 2008; Stojanovik, Setter & van 

Ewijk, 2007; Stojanovik, 2010).  

Diagnosis of WS in all participants had previously been confirmed by a clinician and a 

positive Fluorescence in Situ Hybridization (FISH) test to ensure deletion of the elastin gene, 
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observed in 95% of those with WS (de Souza, Moretti-Ferreira, & Rugolo, 2007). Three 

participants had to be excluded from the analyses because they showed a strong response bias 

(100% rejection or 100% acceptance of test sequences) during the AGL task, or did not 

complete the task. The analysis is therefore based on 16 participants with WS (Mean age = 9 

years 7 months, range between 6 years 0 months - 18 years 5 months; 7 males, 9 females). 

There were eight participants in the prosody (WSP) and eight in the no prosody condition 

(WSNP).  

Sixty three typically developing children were recruited through the Child Development 

Research Group participant database at the University of Reading and from local and regional 

schools. Of these, three children were excluded from the analyses due to missing data, strong 

response bias, or failure to complete the task, hence analyses are based on data for 60 

children (Mean age = 7 years 5 month; range between 3 years 4 months and 12 years 1 

month; 31 males, 29 females). Thirty three participated in the prosody condition (TDP), and 

27 in the no prosody condition (TDNP). In addition to comparing the entire TD participant 

group with the group with WS, we split TD participants according to their Raven’s Coloured 

Progressive Matrices (RCPM) scores with the aim of creating a subgroup that matches the 

children with WS in general cognitive ability. Because children with WS have general 

cognitive abilities which are lower than expected for their chronological age (Thomas, Purser, 

& Van Herwegen, 2012), and the fact that general cognitive abilities may be related to 

children’s ability to learn an artificial grammar (Don et al., 2003), the performance of the WS 

group on the AGL task was compared with that of TD children who have similar general 

cognitive abilities as measured by the RCPM. This allows for the pattern of performance of 

the WS group to be assessed as being commensurate to their general level of non-verbal 

ability, or to their CA, or as deviating from the patterns of performance of both control 

groups, and possibly not following a typical developmental trajectory (Farran, Jarrold & 
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Gathercole, 2003). RCPM was chosen because it has been shown that it is a valid means of 

matching TD children and those with intellectual disabilities on mental age in experimental 

studies (Goharpey, Tsoutsoulis & Crewther, (2012). The reason raw scores are selected over 

standardised scores was that the latter are age-corrected. It would therefore not be possible to 

recruit TD children with matched standardised scores, as these participants would be 

considered severely delayed or impaired (3 SDs below the mean). Because the highest RCPM 

raw score in the WS was 21, we used this value as a cut-off point. This created two groups: a 

non-verbal mental age (NVMA) group which did not differ from the WS group for NVMA 

and was subsequently younger, and a chronological age (CA) matched group which did not 

differ from the WS group on chronological age (subsequently older and with higher NVMA).  

The study had received full ethical approval from the University of the University of 

Reading. 

 

2.2. Materials 

 

Standardised Tasks: Participants completed Raven’s Coloured Progressive Matrices 

(RCPM; Raven, 2007) as a measure of fluid intelligence which is suitable for use in 

developmental disorder groups (e.g., Farran et al., 2003). The Word Structure subtest of the 

Clinical Evaluation of Language Fundamentals (CELF-4) or the Pre-School version, CELF-2 

were used (Semel, Wiig, & Secord, 2004; the choice of test depended on a participant’s age) 

to assess expressive language ability. For 5 typically developing participants older than 8;11, 

the Formulated Sentences subtest was used as there is no Word Structures subtest for children 

between the ages of 9 and 16;11. Thus we also report percentage correct (rather than only raw 

scores) in order to make the results of the standardised language assessments comparable.  

Table 1 shows participant group demographic information regarding chronological age 

and their raw scores for the RCPM and CELF percentage correct scores (as depending on the 
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child’s age either Word structures from the Pre-school -2 or School version of the CELF-4, or 

the Formulated sentences subtest for the CELF-4 were used). We report standardized RCPM 

scores for reference, but do not use these in analysis (see Table 1). We did not obtain RCPM 

scores from one child in the TD group. We included this child in the analysis of the full 

group, but excluded her from the subgroup analysis. We also were unable to obtain RCPM 

scores from two children in the WS group. Note that the results do not differ with the 

exclusion of these children.  
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Table 1 

Age, non-verbal ability (measured using RCPM) and language ability (measured using the CELF-4 or 

pre-school CELF-2 WSs subtest, or CELF-4 FS subtest). Group averages and standard deviations, 

minima and maxima values and number of data points.  

_________________________________________________________________________________________   

     AGE in months  CELF   RCPM   RCPM 

     Raw%   Raw   Standard 

_________________________________________________________________________________________ 

             Mean (sd)  Mean % correct (sd)        Mean score (sd)          Mean  score (sd)   

              Min-Max             Min-Max              Min-Max               Min-Max 

________________________________________________________________________________________  

WS   116 (36)   50 (23)   13(4)   60 (8) 

(n=16)  72-222   .03-79   5-21    55-75 

     (n=14)   (n=15)   (n=14)  

________________________________________________________________________________________  

TD   90 (30)   81 (16)   25 (8)   103 (16) 

(entire sample)  

(n=60)  38-145   29-100   9-36   65-140 

     (n=56)   (n=59)      (n=58) 

________________________________________________________________________________________ 

TD  61 (17)   69(17)   15(4)   93 (13) 

(RCPM≤ 21) 

(n=21)  38-102   29-97   9-21   65-125 

     (n=18)   (n=21)   (n=19) 

________________________________________________________________________________________  

TD  105 (23)   86(12)   30(4)   109 (15) 

(RCPM>21) 

(n=38)  55-145   50-100   20-36   70-140 

     (n=37)   (n=38)   (n=38) 

________________________________________________________________________________________  

Key: TD – typically developing; WS – Williams syndrome; RCPM – Raven’s Coloured Progressive Matrices; 

CELF– Clinical Evaluation of Language Fundamentals; WSs – word structures; FS – formulated sentences% -

percentage; sd – standard deviation; Min – minimum; Max-Maximum; n= number of data points available for 

each calculation 
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Table 2 shows the comparisons between the WS group and the TD groups. As evident 

from Table 2, when the WS group was compared to the TD group (pooled together), the TD 

children were significantly younger than the participants with WS and performed 

significantly better than the WS group on RCPM and CELF. The TD group, which was 

matched to the WS group on RCPM raw scores, were also significantly younger that the WS 

group and had significantly higher percentage correct scores on the CELF (Word 

Structures/Formulated sentences subtest). The unmatched TD group did not differ from the 

WS group on chronological age, but outperformed it on RCPM and the CELF (Table 2).  

Table 2 

Student’s t-tests comparing participants with WS to TD participants (entire group and subgroups) for 

chronological age, RCPM raw score and CELF percentage correct score 

_________________________________________________________________________  

Comparison   CA   RCPM raw score CELF-% correct 

___________________________________________________________________________ 

WS vs TD   t(74)=-3.060  t(71)=5.141  t(69)=5.951 

    p=.003   p<0.001  p<0.001 

WS vs TD (RCPM > 21) t(52)=1.367  t(50)=13.169  t(50)=7.391 

    p=.177   p<0.001  p<0.001 

WS vs TD (RCPM ≤ 21) t(35)=-6.212  t(33)=1.418  t(31)=2.681 

    p<0.001  p=.166   p=.012 

_________________________________________________________________________________   

Key: TD – typically developing; WS – Williams syndrome; RCPM–Raven’s Coloured Progressive Matrices; 

CELF–Clinical Evaluation of Language Fundamentals 

 

2.3. The Artificial Grammar Learning task 

We used auditory stimuli which were shown simultaneously with events on a 

computer screen. The grammar used in this task can be described as A(B)C. It consisted of 

three word classes A, B and C. Each class was mapped to one aspect of an event which was 

presented on the screen, which was usually an animal. Class A referred to the object type 

appearing on screen. Class B referred to the size or color of the object. Class C referred to 
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what happened to the object (e.g., it might spin or zoom in). The semantic mapping was made 

to support congruency between different types of information. Membership to each word 

class was marked by a distinct phonological onset and each item was disyllabic. Words of 

class A and B were CVCV(C).  Class A words began with a liquid consonant followed by [a], 

then by a nasal consonant followed by [a], [ɒ] or [ɛ] with an optional final consonant (for 

example ‘rana’ or ‘lanel’). All class B words began with a voiceless alveolar fricative 

followed by [ɛ] or [u] and then by any consonant followed by [i], [əʊ] or [u] with an optional 

final consonant (for example: ‘subi’). Words of class C were CV(C)CVC, starting with a 

voiced or voiceless bilabial plosive followed by [a], [ɪ], [ɛ] or [u], then a plosive or fricative 

consonant followed by [ɪ], [ɒ] or [u] and closing with a consonant (for example: ‘pidur’).  

Some class C words had a homorganic nasal or lateral consonant before the onset of the 

second syllable (for example: ‘belsop’). There were two conditions: Prosody and No prosody. 

The two conditions are described further below.  

This is a deviation from the standard AGL protocol which would typically present a 

continuous string of sounds only auditorily, with no prosody and without a narrative. This 

was done so that the cognitive demands of the task were  minimized and the task could be 

understood by and administered to young typically developing children and children with 

learning difficulties. Children tend to be more attentive if characters appear and move on a 

screen than if they are only presented auditorily (Abrams & Christ, 2003). A screenshot of 

the experiment is presented in Figure 1.  
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Figure 1: Sample familiarisation stimulus 

 

 

Audio file played: raret seno banton 

Using these word classes, grammatical phrases could consist of two (AC) or three 

(ABC) words. Both A and C words must appear in a phrase for it to be grammatical.  C 

words must always follow A words and B words (if present) must follow A words, precede C 

words and could only be used if an A word is present. Violations were generated by changing 

the order of word classes (for example: ‘budoc subi lanel’), by repeating the same word class 

(for example: ‘pafil budoc pidur’) or by having both a word order change and a repetition (for 

example: ‘pafil rana rana’).  The task had two phases: a familiarisation phase and a judgment 

phase.  

Familiarisation: Ten sentences were generated based on the artificial grammar using 

Cepstral’s (Cepstral LLC, 2011) British English synthesised voice (Lawrence) configured to 

speak at a rate of 136 words per minute. This represents a slow typical speech rate (Tauroza 

& Allison, 1990) in order to aid comprehension. All phrases were sampled at a rate of 

44100Hz, 16bit in stereo with intensity scaled to 70dB. In the No Prosody condition the 

fundamental frequency (F0) of the phrases was kept constant at 100Hz using Praat (Boersma 

& Weenink, 2005). In the Prosody condition, F0 fell across the phrase: the F0 of A words 
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was 125Hz, B words were at an F0 of 100Hz and C words were 75Hz. There was a falling 

tone on the last word, and the first syllable was higher in pitch than the second syllable of the 

last word. Familiarisation trials were created and presented using Microsoft PowerPoint using 

adapted clipart images of a Magician and the animals from the artificial grammar scheme. 

Images were adapted using GNU Image Manipulation Program (GIMP 2.6).  

 Experimental Trials: Experimental trials were presented on a laptop computer using 

Eprime 2.0 Professional (Psychology Software Tools, Inc). At test, there were 10 

ungrammatical and 10 grammatical phrases (see Appendix). The grammatical phrases 

consisted of six phrases from the familiarisation trials, and four new, unfamiliar phrases that 

followed the grammar scheme but were novel to that participant. The ungrammatical phrases 

consisted of repetitions of word classes (either the same word repeated or repetitions of the 

same word class) or violations of dependency rules (such as a B word followed by a B word). 

As in the familiarisation trials, in the Prosody condition the F0 of A words was 125Hz, B 

words were at an F0 of 100Hz and C words were 75Hz. This meant that the ungrammatical 

phrases were distinct from the grammatical phrases due to an unfamiliar F0 in addition to the 

violation at the syntactic level. In the No Prosody condition all phrases were presented at a F0 

of 100Hz.  

2.4. Procedure 

 

Each participant was tested individually in a quiet room at the University of Reading or at 

the participant’s school. Before the familiarisation phase, children were told that they were 

about to see a magician who would be practising his spells and all they had to do was to 

watch and listen to the spells. They were also told that the spells would sound funny because 

the magician comes from another planet. Participants were randomly assigned to the 

‘Prosody’ or ‘No prosody’ condition. There were no significant differences between the WS 

participants in the prosody and in the no prosody conditions on their scores on the RCPM 



Artificial grammar learning in Williams syndrome and in typical development (pre-proofs) 

19 
 

(Mann-Whitney U=.805), CELF-word structures (Mann-Whitney U =.536) or CA (Mann-

Whitney U = .442). The non-verbal ability matched TD group in the prosody condition was 

not significantly different from the non-verbal ability matched TD group in the no-prosody 

condition on the RCPM (Mann-Whitney U=.863), CELF-word structures (Mann-Whitney 

U=.077) or CA (Mann-Whitney U=.605) and the age-matched TD group in the prosody 

condition did not significantly differ from the age-matched older TD group in the no-prosody 

condition on the RCPM (Mann-Whitney U=.078), CELF-word structures (Mann-Whitney 

U=.596) nor on CA (Mann-Whitney U= .243).   

Previous studies using the AGL paradigm with child participants do not always report 

total familiarisation time; they report the number of times the training stimuli were presented 

(e.g. Gebauer & Mackintosh, 2007). Of the studies which explicitly report the familiarisation 

time, there is some variation. Infants were familiarised for 2 minutes in Marcus et al., (1999) 

and in Saffran et al., (1996); children with and without developmental dyslexia (mean age 10 

years 7 months) were familiarised in approximately 6 mins (Pavlidou, Williams, & Kelly, 

2009). Based on previous research, and the fact that some of the participants in our study had 

learning difficulties, we decided on a familiarization phase of 7 minutes, after which the 

experimental trials were presented. The familiarisation phase was divided into 8 blocks, each 

lasting approximately 1 minute. The phrases were repeated on average 10 times (range 9-11) 

within the 8 minutes familiarisation. The phrases were presented along with corresponding 

animations in the PowerPoint presentation. Instructions were given throughout the 

familiarisation trials using synthesised speech with prosody, regardless of prosody condition.  

A game was used between each block to maintain participants’ attention. These were simple 

games that involved the child clicking on animals, or finding objects, and also at the end of 

every two blocks the child got an award of “magic balls” to maintain motivation. These 

“magic balls” appeared on the screen and were all of a different colour.  
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In the test trials participants were told that the magician was teaching another magician 

some spells, and that sometimes these spells would be right and sometimes wrong. The child 

had to judge whether spells obeyed or violated the rules based on the resemblance to the 

familiarisation spells. If the participant judged the spell to be correct, they pressed a green 

smiling face on the keyboard; if they judged a spell to be incorrect, they pressed a red sad 

face on the keyboard. Subsequent to the judgement of grammaticality, participants saw an 

animation of the spell if it was grammatical; if it was ungrammatical, they saw an animated, 

amorphous, pink blob. These animations were independent of participants’ responses in order 

to introduce no feedback to guide later judgements (there was no pattern with regard to 

specific animations indicating a correct or incorrect response).  

At the end of each AGL session, the participant was asked to tell us how they knew 

which spells would work. None of them were able to report that they had spotted the pattern 

of how the spells worked. Children commonly responded with: “I was guessing” or “I don’t 

know”.  

 

3.0. Data Analysis and Results 

3.1. Data analysis 

We were interested in the effect of grammaticality of the test sequence, as defined by the 

target grammar, as well as in the effect of familiarity on acceptance/rejection behaviour of 

each group. Grammaticality is a binary variable: sequences were either grammatical or 

ungrammatical. In this experimental design, familiarity was also treated as a binary variable, 

as some grammatical test sequences appeared during familiarisation (hence they were 

familiar) and others did not (they were unfamiliar). 

The first stage of data analysis was based on these binary distinctions and looked at 

responses to the sequence categories Grammatical/Familiar (GrF), Grammatical/Unfamiliar 
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(GrU) and Ungrammatical (Ungr). Response data were converted to “D Scores” (Perruchet & 

Pacteau, 1990; Zimmerer, et al., 2011). To calculate a measure of sensitivity to 

grammaticality, we used the following formula: 

D(Grammaticality) = (percentage of Ungr sequences rejected) – (percentage of GrF 

and GrU sequences rejected) 

Given our interest in acceptance/rejection patterns based on familiarity, we calculated a 

second variable using the following formula: 

D(Familiarity) = (percentage of GrU sequences rejected) – (percentage of GrF 

sequences rejected) 

For the familiarity D Score, and in order to avoid the confounding effect of 

ungrammatical sequences, we only considered grammatical sequences. D scores lie on a scale 

between -100 and 100, with 100 representing a perfect discrimination between grammatical 

and ungrammatical sequences, and zero representing chance. D scores allow easier 

comparison between grammaticality and familiarity scores. It should be noted that all twenty 

test sequences were included for grammaticality D Scores, while only ten (only the 

grammatical ones) were included for familiarity D scores. Both scores were calculated for 

each individual participant. 

 Over decades of AGL research, the use of interval familiarity variables has emerged 

as the “gold standard” (Brooks & Vokey, 1991; Knowlton & Squire, 1994; Pothos & Bailey, 

2000; Redington & Chater, 1996). Instead of relying on a simple familiar/unfamiliar 

dichotomy, these variables allow to study the effects of degrees of familiarity. Our second 

stage of data analysis, which was carried out post-hoc, therefore included the effects of three 

types of interval familiarity variables. Associative Chunk Strength (ACS) describes the 
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average frequency in which parts of a test sequence appear during familiarisation. It is 

common to average frequencies of bigrams and trigrams to calculate ACS (e.g., Christiansen, 

Kelly, Shillock, & Greenfield, 2010). However, due to our stimulus sequences being only two 

or three words long, we averaged occurrences of single words and bigrams. We calculated 

Anchor Strength for the initial (AFI) and the final (ASF) word, which determines how often a 

familiarisation stimulus started or ended with the respective word. We also computed Edit 

Distance (ED), which is the minimum number of word insertions and deletions that have to 

occur to change a test sequence into one of the familiarisation sequences. For instance, the 

familiarisation sequence most similar to the test sequence “Ranos Surug Budoc” is “Ranos 

Seto Budoc”. It requires one word deletion (“Surug”) and one addition (“Seto”) to transform 

the test sequence into the familiarization sequence. The ED for “Ranos Surug Budoc” is 

therefore 2. 

 This step of the analysis was item-based. Our independent variable was the proportion 

of participants from a particular group who accepted a stimulus string. As predictors, we 

selected each string’s ACS, AFI, ASF, ED and Grammaticality (as a binary variable). We 

used forward stepwise regressions to investigate which variables determined participant 

behaviour. Forward stepwise regressions start building a model by including solely the best 

predictor, and add further predictors only if they significantly improve the model. We chose 

this stricter model because the novelty of this research meant that we had no basis to exclude 

variables before running the analysis and we did not want to obscure the potential impact of 

strong predictors. 

3.2. Results 

3.2.1 Grammaticality and Familiarity D Scores  
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Table 3 below shows the number of rejections (in percentage) of the grammatical and 

ungrammatical sequences, and within the grammatical ones, the number of rejections (in 

percentage) of familiar and unfamiliar sequences and the grammaticality and familiarity D-

scores by the TD and WS groups. One-sample t-tests were run to investigate whether the 

grammaticality and familiarity D-scores differed significantly from zero.  
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Table 3 

Grammaticality D and familiarity D-scores for TD and WS groups 

Group TDP 

ALL 

(n=33) 

Mean 

95% CI 

TDP 

NVMA 

(n= 11) 

Mean 

95% CI 

 

 

TDP 

CA 

( n=21) 

Mean 

95%CI 

 

TDNP 

ALL 
(n=27) 

Mean 

95% CI 

TDNP 

NVMA 

(n=10) 

Mean 

95% CI 

TDNP 

CA 

(n=17) 

Mean 

95%CI 

WSP 

 

( n=8) 

Mean 

95% CI 

 

WSNP 

 

( n=8) 

Mean 

95% CI 

 

Gram D 

 

38.3*** 

25.4, 52.2 

 

10 

-9.7, 29.7 

 

 

 

 

51.4*** 

36.4, 66.5 

 

39.6*** 

29, 50.3 

 

27* 

7.3, 46.7 

 

 

47*** 

34.5, 59.6 

 

 

31.2* 

5, 57.5 

 

-11.2 

-39.7, 17.2 

Fam D 14.6** 

4.5, 24.8 

13.6 

-7, 34.3 

 

 

 

16.7* 

3.8, 29.5 

 

21.6*** 

10.6, 32.6 

 

24.2* 

4.8, 43.5 

 

20.1* 

5.2, 43.5 

 

7.3 

-26.1, 37.2 

-1 

-29.5, 27.4 

Key: TDP NVMA – typically developing group, prosody condition, similar to the Williams syndrome group on non-verbal mental age; TDP CA – typically developing group, 
prosody condition, similar to the Williams syndrome group on chronological age; TDNP NVMA-  typically developing group, no -prosody condition, similar to the Williams 
syndrome group non-verbal mental age; TDNP CA- typically developing group, no-prosody condition, similar to the Williams syndrome group on chronological age; WSP – 
Williams syndrome group, prosody condition; WSNP- Williams syndrome group, no- prosody condition; Gram D – grammaticality D score; Fam D – familiarity D score; 95% 
CI – 95% confidence interval 

If a D score is significantly higher than zero, this is marked using stars and in bold * significance at 0.05; ** significance at 0.01 level; *** significance at 0.001 level 
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As Table 3 shows, in the Prosody condition, the TD group when pooled together had a 

mean grammaticality D Score which was significantly higher than zero, t(32)=5.906, p<.001. 

Their mean familiarity D Score was also significantly higher than zero, t(32)=2.930, p=.006. 

With the groups split into NVMA and CA matched groups, it was only the CA matched TDP 

group which had a grammaticality D Score significantly higher than zero, t(20)=7.129, 

p<.001 and a familiarity D Score was also significantly higher than zero, t(20)=2.715, 

p=.013. In the No-prosody condition, when the TD group was pooled together, their mean 

grammaticality D Score was significantly higher than zero, t(26)=7.638, p<.001 and their 

familiarity D Score was also significantly higher than zero, t(26)=4.030, p<.001. When the 

groups were split into NVMA and CA matched, the NVMA group’s mean  grammaticality D 

Score differed significantly from zero, t(9)=3.104, p=.013 and so did the mean familiarity D 

Score, t(9) = 2.824, p=.020. The CA matched group’s grammaticality D score was 

significantly higher than zero, t(16)=7.941, p<.001 and their familiarity mean D score was 

also significantly higher than zero, t(16)=2.855, p=.011. With the regard to the WS group, the 

mean grammaticality D Score was differed significantly from zero only in the prosody 

condition, t(7)= 2.818, p=.026. The familiarity D score did not significantly differ from zero 

in neither condition.  

3.2.2. Between-group comparisons  

We compared the grammaticality and familiarity D scores of the TD group, both the 

prosody and no prosody subgroups (not split by RCPM scores), with the WS group (both 

prosody and no prosody subgroups) using a Kruskal-Wallis H. There were no statistically 

significant differences between the groups on familiarity D scores, H (3) =  4.397, p=.222, 

but there was a significant difference between the groups on grammaticality D scores, H (3) = 

10.839, p = .013. A series of two Mann--Whitney tests were conducted to investigate which 

groups significantly differ. The significance level was set at .025, corrected to control for 
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Type I error. There was a statistically significant difference with a large effect size between 

the TD and WS groups in the No-prosody condition, U = 27.000, Z = -3.198, p = .001, r = -

.54. There was no difference between the grammaticality D-scores of the TD and WS groups 

in the prosody condition, U = 113.500, Z = -.613, p = .550.  

The analysis was then run including the two TD subgroups (NVMA and CA). There 

was no statistically significant difference between the groups on familiarity D scores, H (5) = 

4.791, p= .442, but there was a statistically significant difference between the groups on 

grammaticality D scores, H (5) = 20.652, p = .001. A series of three Mann-Whitney tests was 

conducted to investigate which groups differ. The significance level was set at .012, corrected 

to control for Type I error. In the Prosody condition, the WS group did not differ on 

grammaticality D scores from the NVMA TD group, U = 34.500, Z = -1.067, p = .286 neither 

did it differ from the CA matched TD group, U = 52.000, Z = -1.572, p = .116. In the No-

prosody condition, there was no statistically significant difference between the WS group and 

the NVMA TD group, U = 15.500, Z = -2.189, p = .029, however there was a statistically 

significant difference with a large effect size between the WS group and the CA matched TD 

group, U = 11.500, Z = -3.314, p = .001, r = -.66.  

Tables 4 and 5 present one-tailed Spearman’s correlations between D Scores and 

chronological age, RCPM scores and scores from the CELF word structure subtest (prosody 

and no-prosody conditions were pooled, both TD subgroups were pooled together). In the TD 

group, Grammaticality D Scores were significantly and positively correlated with age, RCPM 

and language ability as measured by the Word Structure/Formulated sentences subtest of the 

CELF.  Chronological age, RCPM and Word Structure scores significantly correlated with 

each other. In the WS group, Grammaticality D scores were only correlated positively with 

percentage correct CELF scores.  
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Table 4 

Spearman’s correlations within the TD group (both conditions pooled) between Grammaticality D 

Scores, Familiarity D Scores, chronological age in months, RCPM scores and CELF percentage 

correct scores  

_______________________________________________________________________________ 

   Grammaticality D Familiarity D  CA (months) RCPM 

_______________________________________________________________________________

  

Grammaticality D 1     

Familiarity D  .-033   1   

   (n=60) 

CA (months)  .593**   .028   1   

   (n=60)          

RCPM   .628**   .-006   .806**  1 

   (n=59)   (n=59)   (n=59) 

CELF % correct .387**   .061   .725**  .579** 

                                       (n=56)   (n=56)   (n=56)  (n=55) 

_________________________________________________________________________________ 

* p<.05, ** p<.001; n= number of data points available for each calculation. 

Key: CA- chronological age; RCPM–Raven’s Coloured Progressive Matrices; CELF–Clinical Evaluation of 

Language Fundamentals 
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Table 5 

Spearnan’s correlations within the WS group (both conditions pooled) between Grammaticality D 

Scores, Familiarity D Scores, Chronological age in months, RCPM scores and CELF percentage 

correct scores  

_______________________________________________________________________________ 

   Grammaticality D Familiarity D  CA (months) RCPM 

_______________________________________________________________________________

  

Grammaticality D 1     

Familiarity D  .018   1   

   (n=16) 

CA (months)  .147   .066   1   

   (n=16)   (n=16)      

RCPM   .425   .214   .566*  1 

   (n=16)   (n=16)   (n=16) 

CELF % correct .534*   .454   .238  .207 

                                       (n=16)   (n=16)   (n=16)  (n=16) 

_________________________________________________________________________________ 

* p<.05, ** p<.01; n= number of data points available for each calculation. 

Key: CA- chronological age; RCPM–Raven’s Coloured Progressive Matrices; CELF–Clinical 

Evaluation of Language Fundamentals 

 

Post-hoc stepwise linear regressions were calculated to determine predictors for D 

Scores in each group (TD and WS). The independent variables were the children’s 

chronological age in months, RCPM and their percentage correct scores on the CELF Word 

Structures/Formulated sentences subtest. In the TD group, one variable significantly 

predicted 34% of the variance in grammaticality D Scores, [R2=.341, F(1,54)=27.225, 

p<.001]. This was CA, which significantly predicted grammaticality D Scores, β=.583, 
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p<.001, as children who were older were better at distinguishing grammatical from 

ungrammatical sequences. The regression model did not significantly improve when adding 

further predictors. In the WS group, a different variable significantly predicted 30% of the 

variance in grammaticality D scores, [R2=.301, F(1,13)=5.033, p=.045], i.e. CELF (% 

correct) significantly predicted grammaticality D scores, β=.544, p=.045. There were no 

significant predictors of familiarity D Scores in either group. 

 3.3. Analysis using continuous familiarity variables 

Using the continuous measures of familiarity, i.e., Associative Chunk Strength (ASC), 

Anchor Strength for the Initial (ASI), Anchor Strength for the Final (ASF) word and Edit 

Distance (ED), separate stepwise multiple regressions were carried for each of the groups: 

TDP (entire group and subgroups), TDNP (entire group and subgroups), WSP and WSNP. 

Regressions were item based: for each test sequence, we entered its Grammaticality, ACS, 

ASI, ASF and ED as predictor variables (see table 6). The dependent variable was the 

percentage of children that accepted the sequence in a given participant group. 

For the TDP group, one predictor explained 86% of the variance, R2=.858, 

F(1,19)=108.709, p<.001. Grammaticality significantly predicted whether sequences were 

accepted or rejected, β=.93, p<.001. For the NVMA matched TDP participants, none of the 

variables predicted whether sequences were accepted or rejected. In the CA matched TDP 

group, two variables explained 92% of the variance, R2=.921, F(1,17)=99.214, p<.001. The 

strongest predictor was Grammaticality, β=.77, p<.001. The other predictor was ED, β=.24, 

p=.038. 

 For the TDNP group, two predictors explained 83% of the variance, R2=.828, 

F(2,17)=46.811, p<.001. Grammaticality of sequences significantly predicted whether they 

were accepted, β=.54, p=.002. The second predictor was ED, β=.44, p=.008. In the NVMA 



Artificial grammar learning in Williams syndrome and in typical development (pre-proofs) 

30 
 

matched TDNP group, one predictor explained 64% of the variance in whether test sequences 

were accepted or rejected:R2=.636, F(1,18)=31.401, p<.001. The predictor was ED, β=.80, 

p<.001. In the CA matched TDNP group, two predictors explained 87% of the variance, 

R2=.869. The strongest predictor was Grammaticality, β=.66, p<.001. The second predictor 

was ED, β=.32, p=.03. 

For the WSP group, analysis revealed that one predictor explained 53% of the 

variance, R2=.529, F (1,18)=20.216, p<.001. ED significantly predicted whether sequences 

were accepted or rejected, β=.73, p<.001. For the WSNP group, analysis revealed no 

predictors at significant levels.  
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Table 6 

Predictors of sequence acceptance/rejection in typically developing children (entire group as 

well as matched and non-matched subgroups) and in participants with WS as determined by 

stepwise linear regressions 

______________________________________________________________________________ 

Group   Prosody Condition   No-Prosody Condition 

______________________________________________________________________________  

TD entire group  Grammaticality (β=.93, p<.001)  Grammaticality (β=.54, p=.002) 

(n=60)        Edit Distance (β=.44, p=.008) 

 

TD subgroup  No predictors    Edit Distance (β=.80, p<.001) 

(RCPM score ≤ 21)  

(n=21) 

 

TD subgroup  Grammaticality (β=.77, p<.001)  Grammaticality (β=.66, p<.001) 

(RCPM score >21)  Edit Distance (β=.24, p=.038)  Edit Distance (β=.32, p=.03) 

(n=38) 

 

WS group  Edit Distance (β=.73, p<.001)  No predictors 

(n=16) 

__________________________________________________________________________________ 

Key: TD-typically developing; WS-Williams syndrome; RCPM-Raven’s Coloured Progressive 

Matrices 

 

4.0 Discussion 

This study used a child-friendly AGL paradigm to investigate whether individuals 

with WS were able to extract patterns in structured sequences of synthetic speech, how they 

compared to TD children, and whether prosodic cues affected learning. Importantly, the study 
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aimed to establish whether children with WS focussed on different aspects of structure 

(grammaticality vs familiarity) compared to TD children. The main findings are: 1) the TD 

group (taken as a whole) outperformed the WS group with regard to grammaticality based 

judgements. However, once the WS group was matched on non-verbal ability to a subset of 

the TD group, there was no difference between the TD and WS groups; 2) the behaviour of 

the participants with WS seems to be driven by familiarity (item-based generalisation), while 

the behaviour of the TD children seems to be predominantly driven by grammaticality, i.e. 

rule-based generalisations; 3) in the absence of prosodic cues, children with WS did not 

demonstrate evidence of learning. The non-verbal ability matched TD children, however, 

showed the opposite pattern, whereby they showed evidence of learning when no prosody 

was present and no evidence of learning when prosodic cues were present; 4) within the TD 

group, evidence for rule-based generalisations was stronger in the age-matched subgroup 

(mean age 8 years 7 months), which had higher non-verbal ability. The evidence for rule-

based generalisations for the non-verbal ability matched subgroup (mean age 5 years 1 

month) was weaker. We elaborate on each of these main findings below.  

When considered as a whole, the TD group outperformed the WS group with regard 

to their use of grammaticality when making judgments about the acceptability of sequences. 

This is not surprising, given that the TD group had significantly higher verbal and non-verbal 

abilities. When some of the differences between the groups were eliminated, and the WS 

group was compared only to those TD individuals who were matched on non-verbal abilities, 

the WS did not differ from the TD group with regard to their reliance on grammaticality 

when making judgements about the acceptability of sequences. These findings are in line 

with those of Don et al. (2003), who also reported that TD individuals outperformed 

individuals with WS on two implicit learning tasks, one of which was an AGL task.  
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Of the familiarity variables tested, Edit Distance (ED) explained much of the 

behaviour in the WS group, and in the non-verbal ability matched TD groups, but only in the 

no-prosody condition (the issue of the possible role of prosody will be discussed separately). 

AGL behaviour driven by ED is regarded as evidence for exemplar-based processing, in 

which sequences are not segmented but stored as a single unit (Perruchet, 1994; Pothos, 

2007). This means that acceptability of test stimuli is dependent on how similar the form is to 

the one of the learned exemplars. It seems that, unlike TD children, who appear to change 

processing biases from familiarity to grammaticality based between the ages of 5 and 7, 

children and adolescents with WS, who in this study were aged between 6 and 18, retain a 

bias towards familiarity until they are much older.  Whether the processing bias changes later 

into adolescence or early adulthood in WS would need to be investigated in adolescents and 

adults with WS.   

Our findings are in line with those reported by Thomas, et al., (2001) who 

investigated past-tense formation in individuals with WS, the English past tense being a 

paradigm which contrasts rule-based (regular forms) and exemplar-based processing 

(irregular forms). They reported that individuals with WS performed equally on both regular 

and irregular forms, and importantly, when controlled for verbal mental ager, the WS group 

were weaker at generalising the “add-ed” rule to novel forms, suggesting exemplar-based 

instead of rule-based processing.  

 There is evidence from domains other than language that individuals with WS have 

difficulties processing complex arrangements at a ‘global’ level, i.e., as the sum of their parts. 

For example, when given a task in which they are required to draw a picture, individuals with 

WS tend to produce different elements without connecting these to make a whole (Wang, 

Doherty, Rourke & Bellugi, 1995). A number of studies have argued that individuals with 

WS focus on local rather than the global characteristics of visual stimuli (Bihrle, Bellugi, 
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Delis, & Marks, 1989; Bellugi et al., 1994, 1999; Deruelle, Mancini, Livet, Cassé Perrot, & 

de Schonen, 1999). Furthermore, a recent ERP study by Key and Dykens (2011) provides 

evidence that the brain mechanisms underlying attention to local information during the early 

stages of perceptual analysis, and at the more advanced stages of cognitive processing, are 

atypical in WS. With regard to auditory processing, Deruelle, Schön, Rondan, and Mancini 

(2005) reported that children with WS did not show the typical global precedence in music 

processing observed in TD children. While TD children were better at detecting the 

difference between two melodies in a contour-violated than in an interval-violated condition, 

the individuals with WS performed equally in both conditions. A recent study by Elsabbagh 

et al. (2010) also showed that adolescents and adults with WS, unlike TD individuals, did not 

rely on contour cues in unfamiliar melody perception suggesting absence of use of global 

processing in music.   

 Although the above studies focus on visual and music processing, we could 

hypothesise that similar processing biases might apply in the processing of language-like 

auditory stimuli. Certain commonalities between language and music have been suggested in 

that they may share similar developmental mechanisms (McMullen & Saffran, 2004; Trehub, 

2003). Given that evidence suggests that individuals with WS tend to have a local processing 

bias with music, it is not surprising to find a similar bias with language-like stimuli. 

Furthermore, the WS brain develops atypically at different levels, including anatomy, 

biochemistry and functional connectivity, and it is characterised with different spatial and 

temporal patterns compared with neuro-typical brains (Karmiloff-Smith, 2012). It is, 

therefore, plausible that individuals with WS may be processing auditory stimuli differently 

from TD children. This does not automatically imply that individuals with WS are ‘local’ 

processors in general, as some earlier studies would have suggested (e.g. Bellugi, et al.,2000;  

Farran, et al., 2003; Wang, Mottron, Peng, Berthiaume & Dawson, 2007). A recent study by 
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D’Souza, et al. (2015) shows, in a series of tasks, that individuals with neurodevelopmental 

disorders, including WS, have both global and local processing biases, depending on the task 

and stimuli. Also, an earlier study by Pani, Mervis and Robinson (1999) observed that adults 

with WS organised spatial displays at a global level and found it more difficult than typical 

controls to change from global to local processing. Hence, the preference for exemplar-based 

processing applies as far as the AGL task in our study is concerned and the specific language-

like stimuli employed.  

 Another novel finding from the study was related to the differences between the WS 

and TD groups with regard to the effect of prosody in learning an artificial grammar. Unlike 

traditional AGL tasks, we included a prosody manipulation element to find out whether 

prosody would facilitate the learning of an artificial grammar. We found that, indeed, for the 

children with WS, prosody may have a significant facilitating effect compared to TD 

controls, and especially when compared to the non-verbal ability matched TD controls.  

Such a finding fits well within the hierarchical framework of speech segmentation cues 

proposed by Mattys, et al., (2005), in which it is suggested that segmentation cues are 

hierarchically integrated so that lexical cues are preferred over segmental, and these are 

preferred over prosodic cues (the prosodic cues being the lowest in the hierarchy). They 

further suggest that “the lower weighted cues in adult speech segmentation seem to be the 

earliest and hence the most critical ones at the onset of language development” (p.493).  A 

rich body of literature supports this view showing that young learners use prosody to cue the 

locations of syntactically relevant units, such as phrases and clauses, and to identify the 

structural relations among these units (e.g., Brown, 1973; Fisher, 1991; Gleitman, Gleitman, 

Landau & Wanner, 1988; Hirsh-Pasek et al., 1987; Jusczyk et al., 1992; Morgan, et al., 

1987). It appears that individuals with WS seem to be ‘stuck’ in the lowest part of the 

hierarchy (prosodic cues) where they need prosodic cues in order to be able to make reliable 
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acceptability judgments. And because of their strong preference for local processing, they 

need the prosodic cues to help them decide which sequences are acceptable. We suspect that 

the emergence of the grammaticality bias in language processing, which seems to start around 

age 5, reduces the need for prosodic cues in TD children, hence they do not benefit from 

prosodic cues in the same way as children with WS.  

The last finding relates to differences between non-verbal ability matched and age-

matched TD children with regard to AGL. One of the assumptions in the past has been that 

older children and adults use the same mechanisms when acquiring artificial grammar as non-

verbal ability matched children (Ingram & Pye, 1993). However, to our knowledge, studies 

so far have not compared younger and older TD children. Our study filled this gap and found 

that non-verbal ability matched (and subsequently younger TD children) and age –matched 

(and subsequently older TD children) have different processing preferences when making 

their judgments, in that children (with a similar NVMA to the children with WS (and 

subsequently younger) tend to rely on familiarity, and older children (similar to the WS on 

CA) tend to rely on grammaticality when judging the acceptability of test stimuli. None of the 

children tested in our experiment reported knowledge of any structure, which suggests that 

learning was implicit. It is already known that processing biases change from local to global 

sometime between the ages of 6 and 10 (Mondloch, et al., 2002; Poirel, et al., 2008).  If this is 

the case, our results imply that implicit learning as measured by an AGL task changes at a 

qualitative level during maturation. The literature is inconclusive as to how age and IQ may 

influence implicit learning, with some studies showing that age does not affect implicit 

learning (Thomas & Nelson, 2001; Vinter & Perruchet, 2000); however, others have reported 

that chronological age is related to implicit learning (Maybery, Taylor & O’Brien-Malone, 

2005). A large-scale study employing the AGL paradigm to a group of 605 TD children 

reported that performance in an AGL task did not correlate with various measures of 
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intelligence (Gebauer & Mackintosh, 2007). However, studies which have included children 

with intellectual disabilities show that implicit learning is related to mental age (MA) 

(Fletcher, Maybery & Bennett, 2000), as well as non-verbal intelligence and working 

memory (Don et al., 2003). Our current study is not in a position to investigate the effects of 

age and non-verbal abilities in isolation; however, the data suggest a relationship between 

chronological age and implicit learning as measured by an AGL task for the TD group, in that 

34% of the variance in acceptance of grammatical sequences was explained by chronological 

age. In the WS group, language ability as measured by a subtest of the CELF was the only 

variable which positively correlated with grammaticality D scores and explained 30% of the 

variance in grammaticality D scores, suggesting a possible relationship between implicit 

learning as measured by our AGL task and language ability.   

The findings from the study provide evidence that language learning in children with WS 

may be qualitatively different from that of TD, and that these differences may be related to 

their general cognitive profiles. In particular, AGL behaviour in WS appears different both 

with regard to the type of sequence information processed and with regard to their reliance on 

prosody. It is impossible to know from the current study exactly how the familiarity 

(exemplar-based) processing bias found in the AGL task may be related to other non-

language aspects of cognition, but it may possibly explain why the general language skills 

(except for receptive vocabulary) in individuals with WS rarely exceed those of typical 5-7 

year olds (Grant, Valian & Karmiloff-Smith., 2002). It is also possible that the fact that 

general cognitive abilities in WS rarely develop higher than what would be expected of a 

typical 5-7 year old child means that the most readily available route to language learning is 

the one that is typical of this level of general cognitive ability.  

A non-trivial limitation of the current study is the relatively small number of individuals 

with WS which arose from the limitation of participant availability within a relatively limited 
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age range and in a relatively small geographical area (due to the fact that we used Southern 

British English intonation in the prosody condition), as well as the rarity of the condition. A 

larger study including slightly older individuals with WS to cover adolescents and adults with 

WS is needed to complete the picture and address questions about the relationship between 

general cognitive factors and language acquisition in WS. Also we did not collect data on 

participants’ engagement in musical activities and it is possible that engagement in music 

activities may have been related to children’s sensitivity to prosodic cues, especially in the 

WS group.  
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APPENDIX 

Phrases used in judgment task (experimental trial) 

 

Familiar Grammatical 

A, C  ranos banton 

A, C lanel pidur 

A, B, C  rana subi pafil 

A, B, C  lannut seto pidur 

A, B, C  ranos seto budoc 

A, B, C  rana seto banton 

 

Unfamiliar Grammatical 

A, C  lanel banton 

A, C  raret pidur 

A, B, C  lannut subi belsop 

A, B, C  ranos surug budoc 

 

 

Ungrammatical 

C, A, A  pafil rana rana 

A, A, C  lannut lannut belsop 

A, B, B  lanel subi subi 

B, B  seto surug 

C, C, C  pafil budoc pidur 

A, A, A  lanel ranos raret 

A, B  lanel seno 

C, B  belsop seno 

A, C, B  pidur lannut surug 

C, B, A  banton seto ranos 

 

 


