
Integrable delay-differential
equations

Bjorn Karl Berntson

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Mathematics

University College London

July 24, 2017



2

I, Bjorn Karl Berntson, confirm that the work presented in this thesis is

my own. Where information has been derived from other sources, I confirm

that this has been indicated in the work.



Abstract

Delay-differential equations are differential-difference equations in which the

derivatives and shifts are taken with respect to the same variable. This thesis is

concerned with these equations from the perspective of the theory of integrable

systems, and more specifically, Painlevé equations. Both the classical Painlevé

equations and their discrete analogues can be obtained as deautonomizations

of equations solved by two-parameter families of elliptic functions. In analogy

with this paradigm, we consider autonomous delay-differential equations solved

by elliptic functions, delay-differential extensions of the Painlevé equations,

and the interrelations between these classes of equations. We develop a method

to identify delay-differential equations that admit families of elliptic solutions

with at least two degrees of parametric freedom and apply it to two natural

16-parameter families of delay-differential equations. Some of the resulting

equations are related to known models including the differential-difference sine-

Gordon equation and the Volterra lattice; the corresponding new solutions to

these and other equations are constructed in a number of examples. Other

equations we have identified appear to be new.

Bäcklund transformations for the classical Painlevé equations provide a

source of delay-differential Painlevé equations. These transformations were

previously used to derive discrete Painlevé equations. We use similar meth-

ods to identify delay-differential equations with continuum limits to the first

classical Painlevé equation. The equations we identify are solved by elliptic

functions in particular limits corresponding to the autonomous limit of the

classical first Painlevé equation.
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Chapter 1

Introduction

This thesis is concerned with nonlinear delay-differential equations from the

perspective of integrable systems. Delay-differential equations have been

widely studied from the perspective of dynamics and stability, but little is

known about their integrability properties. On the other hand, the theory

of integrable systems encompasses a broad range of concepts and methods,

some of which apply naturally to the study of delay-differential equations.

We emphasize that there is no universal definition of an integrable system.

Rather, the term applies to systems in many different contexts that are in

some sense exactly solvable. Integrability in particular settings is discussed in

the subsequent chapter. In the context of delay-differential equations, it seems

promising to pursue analogies with Painlevé equations.

The classical Painlevé equations are paradigmatic examples of integrable

systems. The transcendents obeying these six nonlinear, nonautonomous,

second-order ordinary differential equations can be viewed as generalizations

of elliptic functions; appropriate autonomous limits of the Painlevé equations

have elliptic functions as their general solutions. Similarly, discrete ana-

logues of the classical Painlevé equations have been studied. Many such equa-

tions arise as deautonomizations of the symmetric Quispel-Roberts-Thompson

(QRT) map, an 12-parameter difference equation whose general solution (up
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to arbitrary periodic functions) is given in terms of the Jacobi sine function

un = α sn(Ωn+ z0) +β

γ sn(Ωn+ z0) + δ
(1.1)

for appropriate parameters: z0 is free while the remaining parameters share a

single degree of freedom. Integration of the symmetric QRT map is facilitated

by a rational first integral I = I(un,un+1) whose numerator and denomina-

tor are quadratic in each of its arguments. Parameterization of the curve

I(un,un+1) = const. in terms of elliptic functions leads to (1.1).

In searching for delay-differential Painlevé equations, it would be conve-

nient to have a class of autonomous equations solved by elliptic functions, i.e.

an analogue of the symmetric QRT map. The main difficulty here is that there

is no clear analogue of a first integral in the delay-differential setting. The sym-

metric QRT map arises from the condition (E−1)I(un,un+1) = 0, where E is

the shift map that evolves n to n+1. If we promote n to a continuous variable,

we could introduce an operator L, a linear combination of d/dn and E− 1,

and consider equations LI(un,un+1) = 0. This integrates to I(un,un+1) = ψ,

where Lψ = 0. Choosing ψ to be a constant, we see that the class of equations

F (un,un+1,u
′
n,u
′
n+1) +G(un−1,un,un+1) = 0 (1.2)

(where ′ = d/dn) is solvable in terms of elliptic functions. Unfortunately, this

asymmetric class does not contain any of the known delay-differential equations

that admit elliptic solutions. For instance, the addition law for the Jacobi sine

function (A.58a) is closely related to a Painlevé type equation identified in

[68]:

au′ = bu+u(u−u); (1.3)

this equation is solved by the Jacobi sine function in a special case. How-

ever, neither of these equations are contained in (1.2), even after this class is

generalized by a Möbius transformation of the dependent variable. Classes of

equations corresponding to more general operators L= f(E)d/dn+g(E) also
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fail to contain these important examples.

In this thesis, we take a direct approach: we search for equations that

admit elliptic solutions in the form (1.1) with at least two degrees of para-

metric freedom, in analogy with the autonomous differential equations that

underlie the classical Painlevé equations and the symmetric QRT map. We

will show that this ansatz contains all order-two elliptic functions: elliptic

functions that take each value in the extended complex plane twice, counting

multiplicity, within each period parallelogram. Our search is performed within

two 16-parameter classes of delay-differential equations. The first of these con-

sists of bi-Riccati equations that are simultaneously Riccati equations for the

dependent variable and its upshift. This class has previously been studied in

[32], where a number of equations with continuum limits to classical Painlevé

equations were identified. The second class of equations involves a dependent

variable and its downshift and upshift. While this class has not been stud-

ied before, it contains the examples described above and also includes travel-

ing wave reductions of some known integrable differential-difference equations.

Within these two classes, we classify all equations admitting order-two elliptic

solutions and develop a method to identify a number of equations admitting

multiparameter families of such solutions. Some of the equations we identify

are related to known differential-difference equations. We exploit this con-

nection to give new elliptic solutions to the Wadati lattice and Toda lattice

equations. Other equations we identify appear to be new. Lastly, we show

that Painlevé-type delay-differential equations can be obtained from particu-

lar Bäcklund transformations for the classical Painlevé equations. We identify

two such equations and discuss their relationship to equations in our classifi-

cation; in particular, we find their elliptic solutions in appropriate limits.



Chapter 2

Integrability in continuous and

discrete systems

This chapter is concerned with several classes of nonlinear equations: ordi-

nary differential, ordinary difference, partial differential, partial difference, and

differential-difference. At the end of the chapter we discuss some basic prop-

erties of delay-differential equations, the main topic of this thesis. The term

‘integrability’ has been applied to each equation class we discuss, but given

the fundamental differences between the classes, it is unsurprising that there

is no universal definition of an integrable system. Even in a particular setting,

it is often difficult to define integrability, and we will not attempt to do so.

Instead, we will focus on some key structures typically associated with inte-

grable systems. For our purposes, the singularity structure associated to an

equation will be an important tool to isolate systems of interest. Those equa-

tions that admit elliptic function solutions are associated with particularly

simple singularity structures.

The primary purpose of this chapter is to motivate the results reported in

this thesis, which depend not only on features associated with integrable sys-

tems, but also on examples of well-known equations themselves. The Painlevé

equations, Korteweg-de Vries equation, sine-Gordon equation, Volterra lattice,

and Toda lattice will all be discussed. Transformations from these equations

to themselves and other equations play an important role in establishing and
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contextualizing results in subsequent chapters.

This introduction is organized as follows: single-variable equations are dis-

cussed first, followed by multivariable equations. Delay-differential equations

and their place in the context of integrable systems are considered last.

2.1 Painlevé equations
In this section, we will discuss two classes of Painlevé equations: continuous

and discrete. We first focus on the singularity analysis used to isolate the

classical Painlevé equations before discussing some of the properties of these

equations. We then move to the discrete case where we have opportunity to

discuss the singularity confinement criterion and how this, together with the

symmetric QRT map, leads to various discrete Painlevé equations.

2.1.1 Singularities in the complex plane

Here, we consider the singularities that can develop in solutions to ordinary

differential equations (ODEs) in the complex plane. We restrict ourselves to

ODEs of the form
dnu
dzn = f

(
z;u, dudz , . . . ,

dn−1u

dzn−1

)
, (2.1)

where f is locally analytic—analytic with respect to each of its arguments in

some common domain (a connected, open subset of the complex plane). In

this case the ODE is locally represented as a first-order system

dui
dz = fi (z;u1, . . . ,un) , i= 1, . . . ,n, (2.2)

to which Cauchy’s existence and uniqueness theorem applies.

Theorem 2.1.1 (Cauchy). Suppose f1, . . . ,fn are analytic functions on a do-

main Ω ⊂ Cn+1 and (z0,u1,0, . . . ,un,0) ∈ Ω. Then the system (2.2), together

with the initial conditions

ui(z0) = ui,0, i= 1, . . . ,n, (2.3)
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admits a unique analytic solution in some neighborhood of z0.

In the standard proof of the theorem [44], the neighborhood of solution

analyticity is constructed as a disk D ⊂ C centered at z0. Unsurprisingly,

this disk is contained within Ω1 ⊂ C, the domain of analyticity of f with

respect to z.1 Solutions are not guaranteed to be analytic outside of D, in fact

singularities of two qualitatively distinct origins may arise. Anywhere outside

of D, solutions may develop singularities whose locations depend on the initial

conditions; such singularities are movable. Movable singularities arise due to

singularities of f that involve the values (including the point at infinity) of u

or its derivatives (i.e. are singularities whose location is not determined by

the value of z alone). Outside of Ω1 ⊃D solutions possess fixed singularities

wherever f is singular due only to the value of z. The concepts here are well-

illustrated by an example due to Filipuk and Halburd [26]. In the first-order

ODE

u′ = u−u3

2(z+ 1) := f(z;u), (2.4)

the function f is singular at z = −1, so we expect that any solution is also

singular at this point. f is also singular when u =∞, but this provides no

information about where in the z-plane the corresponding solution singularity

occurs. To determine the values of z for which u =∞, we need to know the

(particular) solution, which is in turn determined by the initial data. If we

adjoin the initial condition u(0) = u0 /∈ {0,±1} to (2.4), a unique, analytic

solution is given by

u(z) = u0

√
1 + z

1 +u2
0z

(2.5)

within the origin-centered open disk of radius min
{

1, |u0|−2
}
. Outside of this

disk we find, as expected, a singularity at z = −1. This singularity is an

algebraic branch point. There is a second singularity (another algebraic branch

1It is more convenient to discuss the singularity structure of f in (2.1) rather than the
singularity structure of the fi appearing in (2.2). The two are equivalent under the first
assumption of Cauchy’s theorem. Suppose we have a system (2.2); by assumption, the
system can be put into the form (2.1), where f is analytic on Ω.
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point) at z=−u−2
0 . This existence of this movable singularity was predicted by

the behavior of f when u=∞. It is interesting to consider the case when the

initial data u(z0) = u0 ∈ {0,±1} is imposed on (2.4). In this case the solutions

are analytic (in fact constant) on C\{−1} and the singularity at z = −1 is

removable. These solutions have no movable singularities, a fact that can

actually be predicted from the ODE itself: if the domain of f is restricted to

finite values of u, there is a single singular point at z =−1. Put another way,

bounded solutions of (2.4) have only a fixed singularity at z =−1.

It is worth remarking that linear equations have only fixed singularities.

For such an equation, (2.1) reduces to

dnu
dzn = a0(z)u+a1(z)du

dz + · · ·+an−1(z)dn−1u

dzn−1 , (2.6)

where the ai are functions of z. The RHS of (2.6) is singular when either one

of the coefficient functions is singular or when u is singular. By restricting to

analytic coefficient functions and finite initial data, the following result [38, 44]

may be established by direct construction of the solution.

Theorem 2.1.2. Suppose a0, . . . ,an−1 are analytic functions on a simply con-

nected domain Ω ⊂ C. Then the system (2.6), together with the initial condi-

tions

u(i)(z0) = ui ∈ C, i= 0, . . . ,n−1, (2.7)

admits a unique analytic solution in Ω.

We now return to nonlinear equations, again taking (2.4) as an example.

We observe again that the solution (2.5) possesses movable algebraic branch

points. It is natural to ask what other kinds of singularities can develop in

solutions to equations in the same class. The question was first posed and

investigated by Picard [65], thus initiating the study and classification of non-

linear ODEs on the basis of their singularity structures.
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2.1.2 Painlevé-Gambier-Fuchs classification
The school Painlevé, Gambier, and L Fuchs studied nonlinear second-order

ODEs from the perspective proposed by Picard. We first discuss the corre-

sponding analysis of first-order equations.

2.1.2.1 First-order equations
We discuss the class of first-order rational equations

u′ =R(z;u), (2.8)

where R is rational in u with coefficients analytic in z. It turns out that for

this class, the possible kinds of movable singularities are very restricted. For

a more general class2 of equations, Painlevé established the following.

Theorem 2.1.3 (Painlevé [63]). Suppose the function P (z;u,u′) is polynomial

in u and u′ with coefficients analytic in z on some domain Ω. On Ω, any

movable singularity of a solution to the equation

P
(
z;u,u′

)
= 0 (2.9)

is either a pole or an algebraic branch point.

It is then natural to ask which equations admit only solutions that are

singled-valued about their movable singularities, i.e. the only movable singu-

larities are poles. It turns out there is only one such equation within the class

(2.8).

Theorem 2.1.4 (Picard [65]). Suppose that R(z;u) is rational in u with co-

efficients analytic in z in some domain Ω. If the solutions of (2.8) have no

movable algebraic branch points on Ω, then

R(z;u) = a0(z) +a1(z)u+a2(z)u2, (2.10)
2First-order rational equations are a subclass of the polynomial class (2.9), obtained when

P is affine in its third argument.
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where the coefficient functions a0, a1, and a2 are analytic on Ω.

The equation identified by Picard is called a Riccati equation. A general

Riccati equation has the form

u′ = a0(z) +a1(z)u+a2(z)u2, (2.11)

where a0, a1, and a2 are locally analytic and a2 is not identically zero (i.e. the

equation is nonlinear). Riccati equations are linearizable: they can be solved

in terms of linear, homogenous second-order ODEs. The change of variables

u=− v′

a2v
(2.12)

in (2.11) leads to

v′′ =
(
a1 + a′2

a2

)
v′−a0a2v. (2.13)

In these variables, it is easy to see why solutions of (2.11) have no algebraic

branch points. As the equation for v is linear, v has no movable singularities.

Therefore the only singularities of u arise from the transformation (2.12); u

has a pole at any point where v has a zero. The zeroes of v depend in general

on the initial conditions imposed on (2.13), so they give rise to movable poles

of u.

Riccati equations also possess a nonlinear superposition principle. In par-

ticular, if we have four particular solutions u1, u2, u3, and u4 to (2.11), their

cross-ratio is constant:

(u1−u2)(u3−u4)
(u1−u3)(u2−u4) = const. (2.14)

This relation can be verified by differentiating with respect to z and using the

Riccati equation to eliminate derivatives. The superposition formula can be

inverted for u4 to obtain the general solution to (2.11) when three particular

solutions are known. In the Riccati equation, we have seen how analysis of

singularity structure leads to equations with special properties. We will see
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the phenomenon again in second-order equations, to which we now turn.

2.1.2.2 Second-order equations
Here, we restrict ourselves to second-order rational equations

u′′ =R(z;u,u′), (2.15)

where R is rational in u and u′ and locally analytic in z. The singularity

structure for these equations is more complicated than in the first-order case

(2.8). Solutions of second-order rational equations may develop movable sin-

gularities that are logarithmic branch points, transcendental branch points,

or essential singularities, in addition to the possible singularities of first-order

rational equations. A number of examples are given in [1].

As before, it is natural to look for equations in the class (2.8) with sim-

ple singularity structure. Equations with the same singularity structure as a

Riccati equation are said to possess the Painlevé property.

Definition 2.1.1 (Painlevé property). An ordinary differential equation has

the Painlevé property if each movable singularity of each solution is a pole.

It should be noted that some authors use a weaker definition for the

Painlevé property, requiring only that each solution is single-valued about

each movable singularity. This definition allows for movable essential points

in addition to poles. The difference between these two definitions will not be

significant in this thesis.

The Riccati equation is the only first-order rational ODE of the form (2.8)

with the Painlevé property.3 The situation for rational second-order equations

is more intricate. Here, there are fifty equations with the Painlevé property

modulo the Möbius transformations

v(ζ) = α(z)u+β(z)
γ(z)u+ δ(z) , ζ = ζ(z), (2.16)

3The Weierstrass equation (u′)2 = 4u3−g2u−g3 possesses the Painlevé property, but is
not contained in the class (2.8).
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where α, β, γ, δ, and ζ are analytic and αδ−βγ 6= 0. The work of Painlevé

[64], Gambier [30], and R. Fuchs [29] shows that six of these equations, called

Painlevé equations, define new trancendents; the remaining 44 equations can be

solved in terms of these new transcendents and known transcendents: elliptic

functions and the solutions of linear ODEs and elliptic functions. The six

Painlevé equations are:

PI : u′′ =6u2 + z (2.17a)

PII : u′′ =2u3 + zu+a (2.17b)

PIII : u′′ =1
u

(
u′
)2
− 1
z
u′+ au2 + b

z
+ cu3 + d

u
(2.17c)

PIV : u′′ = 1
2u
(
u′
)2

+ 3
2u

3 + 4zu2 + 2
(
z2−a

)
u+ b

u
(2.17d)

PV : u′′ =
( 1

2u + 1
u−1

)(
u′
)2
− 1
z
u′+ (u−1)2

z2

(
au+ b

u

)
(2.17e)

+ cu

z
+ du(u+ 1)

u−1
PVI : u′′ =1

2

(1
u

+ 1
u−1 + 1

u− z

)(
u′
)2
−
(1
z

+ 1
z−1 + 1

u− z

)
u′ (2.17f)

+ u(u−1)(u− z)
z2(z−1)2

[
a+ bz

u2 + c(z−1)
(u−1)2 + dz(z−1)

(u− z)2

]
.

Here, a, b, c, and d are arbitrary complex parameters. The Painlevé equations

enjoy a number of remarkable properties; a review of these is given in [14].

Here, we will discuss their classical solutions, relationship to elliptic functions,

and Bäcklund transformations.

2.1.2.3 Classical solutions and degenerations

For particular parameters values, PII-PV (2.17b-2.17f) admit solutions in terms

of classical special functions. Conversely, PI (2.17a) admits no solutions in

terms of known transcendents. The proofs of this result [60, 78] are technical,

making use of differential Galois theory, and will not be repeated here.

We recall that the hypergeometric equation degenerates into a number of

simpler linear equations, according to the following diagram:
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Bessel

↗ ↘

hypergeometric →
confluent

hypergeometric
Airy.

↘ ↗

Hermite-Weber
(2.18)

Very similarly, the Painlevé equations PI−PV are obtained from PVI through

successive degeneration:

PIII

↗ ↘

PVI → PIV PII (→ PI).

↘ ↗

PIV

(2.19)

Beyond this formal relationship, each Painlevé equation (besides PI, which

has no counterpart in the first diagram) possesses special solutions in terms

of the corresponding linear special function appearing in the first diagram.

The precise formulae for the degenerations in the above diagrams and special

solutions of the Painlevé equations are given in [20].

2.1.2.4 Autonomous limits of Painlevé equations

The Painlevé equations are closely related to differential equations that de-

scribe elliptic functions. If any explicit dependence on z in (2.17) is replaced

by a constant, the resulting equation can be integrated in terms of elliptic

functions. Let us illustrate this phenomenon for PI (2.17a). If we make the

replacement z→ p= const., we obtain the autonomous limit

u′′ = 6u2 +p. (2.20)
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Integrating this once and comparing with (A.8), we find the general solution

℘(z+ z0;−2p,g3). (2.21)

In a less straightforward way, elliptic solutions may be constructed for the

autonomous limits of the remaining Painlevé equations; further details are

given in [44]. The asymptotics of the first two Painlevé equations have been

shown to be similarly related to elliptic functions [49].

2.1.2.5 Bäcklund transformations

Each of the Painlevé equations besides the first involves at least one arbitrary

complex parameter. An auto-Bäcklund transformation maps solutions of one

of the Painlevé equations to a solution of the same equation with different

parameters. More generally, a Bäcklund transformation may relate two distinct

Painlevé transcendents, but we will not find use for such transformations in

this thesis.

We will now give two examples that will find application later in the thesis.

When c= 0 and a= d=−1, PIII (2.17c) reduces to

u′′ = 1
u

(
u′
)2
− 1
z
u′+ b−u2

z
− 1
u
. (2.22)

Suppose now that u(z;b) solves (2.22). Then we have the following solutions

u(z;b+ 2) = x [1 +u′(x;b)]
u(z;b)2 − b+ 1

u(z;b) (2.23a)

u(z;b−2) = x [1−u′(z;b)]
u(z;b)2 − b−1

u(z;b) (2.23b)

for (2.22) when b is replaced by b+2 and b−2, respectively. Both (2.23a) and

(2.23b) are auto-Bäcklund transformations for this special case of PIII. Let us

consider another special case of PIII (2.17c) with c=−d= 1:

u′′ = 1
u

(
u′
)2
− 1
z
u′+ au2 + b

z
+u3− 1

u
. (2.24)
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If we denote solutions to this equation by u(z;a,b), we have the following

auto-Bäcklund transformations:

u(z;−a,−b) =−u(z;a,b) (2.25a)

u(z;−b,−a) = 1
u(z;a,b) (2.25b)

u(z;−b−2,−a−2) =

u(x;a,b) + (2 +a+ b)u(z;a,b)2

z [u′(z;a,b) +u(z;a,b)2 + 1]− (1 + b)u(z;a,b) . (2.25c)

2.1.3 Painlevé test

If an ODE has the Painlevé property, each solution must be locally described by

a Laurent series containing a number of integration constants corresponding to

the order of the equation. The Painlevé test is a sequence of steps to determine

if an equation satisfies these necessary for the equation to have the Painlevé

property. The test essentially consists of substitution of the series

u=
∞∑
n=0

un(z− z0)n+p (2.26)

into the equation; about any singular point z0 we must verify that p is inte-

gral and that there is sufficient freedom in the expansion coefficients so that

arbitrary initial data may be accounted for.

The philosophy behind the Painlevé test is that local singularity analysis

can check for strong necessary conditions for a given equation to possess the

Painlevé property. In particular, algebraic branching is easily detected through

this analysis. Extensions of the method to detect logarithmic branching have

been considered [66].

As an example, we perform the standard Painlevé test on PI (2.17a).

Possible values of p are determined by the leading order ansatz u∼ u0(z−z0)p.

We find that

u′′ ∼ p(p−1)u0(z− z0)p−2, u2 ∼ u2
0(z− z0)2p. (2.27)
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Dominant balance occurs only when p = −2; by substitution into (2.17a) we

find that u0 = 1. We now consider the full Laurent expansion about the singular

point z0:

u=
∞∑
n=0

un(z− z0)n−2 (2.28a)

u′′ = 6u0
(z− z0)4 + 2u1

(z− z0)3 +
∞∑
n=0

un(z− z0)n−4 (2.28b)

u2 =
∞∑
n=0

n∑
m=0

unun−m(z− z0)n−4. (2.28c)

Given the initial value u0 = 1 from the leading order analysis, the differential

equation (2.17a) is used to generate a sequence of recurrence relations. We

look for values of n where the expansion coefficient un is arbitrary. The initial

iterates are calculated to be

u0 = 1, u1 = u2 = u3 = 0, u4 =− z0
10 , u5 =−1

6 . (2.29)

At n= 6 we obtain the relation

u2
3 + 2u2u4 + 2u1u5 + 2u6(u0−1) = 0, (2.30)

so that u6 is an arbitrary constant. The expansion also contains the arbi-

trary location of the pole, z0. No further arbitrary constants arise from the

recurrence relations: for n≥ 4 we have the relations

(n+ 1)(n−6)un =
n−1∑
n=1

umun−m (2.31)

and the polynomial multiplying un does not vanish for n > 6. We conclude

that PI (2.17a) passes the Painlevé test as a single-valued expression with two

degrees of freedom:

u= 1
(z− z0)2 −

z0
10(z− z0)2− 1

6(z− z0)3 +u6(z− z0)4 + · · · , (2.32)
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can be generated about z0.

Let us consider the polynomial in n that appears on the LHS of (2.31).

This is called a resonance polynomial, and its roots are the locations of arbi-

trary coefficients in the expansion (2.28a). One root is n = 6, the location of

the arbitrary coefficient u6. The other root, n=−1, is called the universal res-

onance and corresponds to z0, the arbitrary location of the pole. The universal

resonance is found in any expansion with a leading order pole. To see this, we

perturb z0 in (2.26) by a small value ε satisfying |ε| < |z− z0| and perform a

binomial expansion. At leading order we now have u ∼ pεu0(z− z0)p−1; the

perturbation introduces a pole of order 1−p at a position which corresponds

to n=−1 in the expansion.

2.1.4 Quispel-Roberts-Thompson map

We now begin our discussion of discrete systems. Much like how differential

equations for elliptic functions underlie the integrability of the Painlevé equa-

tions, a very general autonomous difference equation underlies the integrability

of discrete Painlevé equations. We will first discuss this equation before show-

ing how it, together with the notion of singularity confinement, is related to

discrete analogues of the Painlevé equations.

Reductions of integrable differential-difference equations to pure difference

equations were studied in [69, 70], where it was noted that all reductions were

contained in a particular 18-parameter class of mappings. We construct this

class as follows. Starting with two arbitrary matrices A0,A1 ∈C3×3, we define

two vectors of functions:

f(vn) = t(f1(vn),f2(vn),f3(vn)) = (A0Vn)∧ (A1Vn), tVn =
(
v2
n,vn,1

)
(2.33a)

g(un) = t(g1(un),g2(un),g3(un)) =
(

tA0Un
)
∧
(

tA1Un
)
, tUn =

(
u2
n,un,1

)
.

(2.33b)
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Then, the system of equations

un+1 = f1(vn)−unf2(vn)
f2(un)−unf3(vn) (2.34a)

vn+1 = g1(un+1)−vng2(un+1)
g2(un+1)−vnf3(un+1) (2.34b)

is called the Quispel-Roberts-Thompson (QRT) map [70]. The system (2.34)

is equivalent to

tUn(f(vn)∧Un+1) = tVn(g(un)∧Vn+1) = 0. (2.35)

It follows from (2.33) that

(
tUnA0Vn

)(
tUn+1A1Vn

)
−
(

tUn+1A0Vn
)(

tUnA1Vn
)

= 0 (2.36a)(
tUn+1A0Vn

)(
tUn+1A1Vn+1

)
−
(

tUn+1A0Vn+1
)(

tUn+1A1Vn
)

= 0 (2.36b)

This implies that

I(un,vn) =
tUnA0Vn
tUnA1Vn

(2.37)

is a conserved quantity under the discrete evolutions un→ un+1 or vn→ vn+1.

Given a value for the integral I, the biquadratic family of curves defined by

(2.37) can be parameterized in terms of Jacobi elliptic functions [71, 43]

When tA0 = A0 and tA1 = A1, we have the symmetric QRT map

un+1 = f1(un)−un−1f2(un)
f2(un)−un−1f3(un) , (2.38)

with f as in (2.33a). In this case, the invariant curves take the form

a1u
2
nu

2
n+1 +a2unun+1(un+un+1) +a3

(
u2
n+u2

n+1
)
,

+a4unun+1 +a5(un+un+1) +a6 = 0 (2.39)

where the coefficients ai depend on the entries of the matrices A0 and A1 and
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the value of the integral (2.37). A Möbius transformation4

un = αwn+β

γwn+ δ
, un+1 = αwn+1 +β

γwn+1 + δ
(2.40)

can bring (2.39) into the canonical form [8]

w2
nw

2
n+1 + ã3

(
w2
n+w2

n+1
)

+ ã4wnwn+1 + 1. (2.41)

It remains only to parameterize (2.41) in terms of the Jacobi sine function; by

setting

wn = α̃ sn(Ωn+ z0|m) (2.42)

and using (A.58a), we find that (2.42) satisfies (2.41) when α̃4 = m and the

parameters m and Ω satisfy

ã3
2 =− m

sn4(Ω|m) , ã4 =−2ã3 cn(Ω|m)dn(Ω|m). (2.43)

We thus obtain two-parameter family of solutions to (2.38):

un = αm
1
4 sn(Ωn+ z0|m) +β

γm
1
4 sn(Ωn+ z0|m) + δ

. (2.44)

Here z0 is an arbitrary complex constant; the remaining parameters depend on

the entries of A0 and A1 and the value of the integral (2.37), which constitutes

the second degree of freedom.

2.1.4.1 McMillan map

An interesting special case of the symmetric QRT map (2.38) is obtained when

A0 =


1 0 0

0 0 0

0 0 0

 , A1 =


1 0 −1

0 −2a 0

−1 0 0

 . (2.45)

4The expressions for the Möbius parameters in terms of the ai are complicated. Full
details are given in [71, 43].
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The resulting map

un−1 +un+1 = 2aun
1−u2

n
(2.46)

is called the McMillan map. As a special case of the QRT map, this equation

can be integrated in terms of elliptic functions. If we set wn = sn(Ωn+ z0|m),

it follows simply from (A.58a) that

wn−1 +wn+1 = 2wn cn(Ω|m)dn(Ω|m)
1−mw2

n sn2(Ω|m) . (2.47)

Then, it is easily seen that

un =±
√
msn(Ω|m)sn(Ωn+ z0|m) (2.48)

solves (2.46) when the parameters satisfy

cn(Ω|m)dn(Ω|m) = a. (2.49)

A five-parameter generalization of the McMillan map is obtained A1 is an

arbitrary symmetric matrix and A0 is the same as in (2.45). The result,

un−1 +un+1 = a2u2
n+a4un+a5

a1u2
n+a2un+a3

(2.50)

is called the McMillan family of maps. The solution of this map is more

complicated that that of (2.46). However, as (2.50) is a special case of (2.38),

its solution is given by (2.44).

2.1.5 Singularity confinement and discrete Painlevé

equations

Let us begin by analyzing the singularity structure of the McMillan map (2.46).

Taking the initial conditions

un−1 = u, un =±1 + z, (2.51)
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where z is a small perturbation, the next iterate will develop a pole:

un+1 =−∓ a
z
−u∓ 3a

2 +O(z). (2.52)

However, iterating further we find that

un+2 =∓1 + z+O(z2), un+3 =−u+O(z); (2.53)

the behavior of un+1 is such that a pole is avoided at un+3. Because the singu-

larity at un+1 does not propagate further and the initial condition influences

the value of un+3, the singularity developed at un+1 is said to be confined [33].

While that singularity confinement is not a well-defined property, it has proven

to be a useful tool to identify integrability candidates, as we now illustrate. A

nonautnonomous generalization of the McMillan map is

un−1 +un+1 = an+ bnun
1−u2

n
. (2.54)

We will demand that the singularity structure of this equation follows that

of its autonomous counterpart and this will lead to conditions on an and bn.

Assuming the same initial conditions as before (2.51) we compute

un+1 = ∓an+1− bn+1
2z +O(1), un+2 =∓1 +O(z)

un+3 = (±an+1 + bn+1)[an+1−an+3± (bn+1−2bn+2 + bn+3)]
2z[an+1± (bn+1−2bn+2)] +O(1) (2.55)

and so un+3 will be regular if an is affine in (−1)n and bn is affine in n. If we

take an to be constant, the resulting map is

un−1 +un+1 = (an+ b)un+ c

1−u2
n

. (2.56)

This map has a formal continuum limit to PII (2.17b): under the transforma-

tion

un = εw(z), z = εn, a= ε, b= 2, c= ε3α, (2.57)
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we obtain precisely (2.17b) (with a replaced by α) in the limit ε→ 0. Another

interesting transformation of (2.56) is

un = 1 + εvn, a= 4 + 2εã−2ε2b̃, b=−4−2εã, c=−2ε2b̃; (2.58)

in the limit ε→ 0, we obtain the equation

vn−1 +vn+vn+1 = an+ b

vn
+ c. (2.59)

This equation is a discrete version of PI (2.17a): under the transformation

vn = 1
6 − ε

2w(z), z = εn, ã=− 1
18ε

5, b̃=− 1
12 , c̃= 1, (2.60)

one obtains (2.17a) in the limit ε→ 0.

Auto-Bäcklund transformations for the classical Painlevé equations are

another source of discrete Painlevé equations [28]. Taking the difference of the

auto-Bäcklund transformations in (2.23), we have

u(z;b−2) +u(z;b+ 2) = 2z
u(z;b)2 −

2b
u(z;b) . (2.61)

If we make the transformation

vn = u(z;b), n= b

2 , (2.62)

and view z as a parameter, we obtain the discrete equation

vn−1 +vn+1 = z

v2
n
− 4n
vn
. (2.63)

This is another discrete PI equation; it has a continuum limit to (2.17a) and

a coalescence limit from (2.56). We also note that the autonomous form of

(2.63) is in the McMillan family (2.50).

Ordinary difference equations are more fundamental than ODEs: multi-
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ple discrete equations with the same continuum limit can be constructed. In

order to qualify as a discrete Painlevé equation, it is required that the equa-

tion possess special properties in analogy with its continuous counterpart. A

discussion of these properties is found in [31].

A partial list of discrete Painlevé equations [71], in analogy with the clas-

sical list (2.17), is

dPI : u(un+1 +un+wn−1) = an+ b+ cun (2.64a)

dPII : un+1 +un−1 = (an+ b)un+ c

1−u2
n

(2.64b)

qPIII : un+1un−1 = cd
(un−aqn)(u− bqn)

(un− c)(un−d) (2.64c)

dPIV : (un+un+1)(un−1 +un) =

(
u2
n−a2

)(
u2
n− b2

)
(un−an− b)2− c2

(2.64d)

qPV : (un+1un−1)(unun−1−1) = (2.64e)

cdq2n (un−a)(un−1/a)(un− b)(un−1/b)
(un− cqn)(un−dqn)

qPVI :

(
unun+1− q2

0q
2n+1

)(
unun−1− q2

0q
2n−1

)
(un+1un−1)(unun−1−1) = (2.64f)

(un−aq0qn)(un− q0qn/a)(un− bq0qn)(un− q0qn/b)
(un− c)(un−1/c)(un−d)(un−1/d) .

Three of these equations are, as indicated by the notation, q-difference equa-

tions where the explicit dependence on the independent variable enters as an

exponent. Differences [45] between these and difference equations where the in-

dependent variable enters as an affine function, e.g. (2.64a), are not important

in this thesis. For our purposes, there are two salient features of the equations

(2.64a-2.64f): each equation possesses a continuum limit to its corresponding

continuous Painlevé equation and the autonomous limit of each equation is

contained in the symmetric QRT map (2.38).

We remark that the classification of discrete Painlevé equations is more

complicated that for the continuous Painlevé equations: there are multiple

discrete Painlevé equations for each continuous Painlevé equation; the list
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(2.64) is not canonical. A classification of discrete Painlevé equations was

achieved by Sakai in [75]. The geometric approach taken there is beyond the

scope of this thesis.

2.2 Partial differential equations
In this section, we will consider the integrability of partial differential equations

(PDEs). We do not seek to give an exhaustive account of the theory, but rather

to introduce a number of key equations that are related to results presented in

the subsequent chapters. In particular, we will be interested in the Korteweg-

de Vries (KdV) and sine-Gordon equations.

2.2.1 Korteweg-de Vries type equations

The KdV equation

ut = 6uux+uxxx (2.65)

is the prototypical integrable PDE. It possesses a number of known exact

solutions, a Bäcklund transformation, a Lax representation, and an infinity of

conservation laws. We will focus on the first two properties.

We begin by taking a traveling wave reduction

w(z) =−1
2u(x,t)− p

12 , z = x−pt+x0 (2.66)

of (2.65) to obtain

w′′′ = 12ww′, (2.67)

where ′ = d/dz. After integrating twice, we obtain

(
w′
)2

= 4w3−g2w−g3 (2.68)

where g2 and g3 are constants of integration. This is precisely the differential

equation for the Weierstrass ℘ function and hence we obtain

u(x,t) =−2℘(x−pt+x0;g2,g3)− p6 (2.69)
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as a traveling wave solution to the KdV equation. This solution can be ex-

pressed in terms of Jacobi elliptic functions. The result is the cnoidal wave

u(x,t) =−p6 + 2e3 + 2(e2− e3)cn2
(√

e1− e2(x−pt) +x0
∣∣∣m) (2.70)

with m as in (A.51) and where the ei satisfy (A.33-A.34). In the limit m→ 0

we recover the soliton solution

u(x,t) = 2k2sech2
(
kx+ 4k3t+x0

)
, (2.71)

if we define k =
√
e1− e2 and choose p= 12e3.

The soliton solution we just obtained can actually be found from the

auto-Bäcklund transformation for the (potential) KdV equation. The meaning

of Bäcklund transformation in this context is similar to that in the case of

Painlevé equations; it is taken to mean a relationship between solutions of any

pair of PDEs and the specialized term auto-Bäcklund is used when we have

a relationship between solutions of the same PDE (possibly with different

parameters).

We now follow [45]. There is a Bäcklund transformation from the equation

vt = 6λvx−6v2vx+vxxx (2.72)

to (2.65), called the Miura transformation [55]. Explicitly this transformation

is given by

u= λ−vx−v2. (2.73)

From the invariance of (2.72) under negation of v, we obtain another KdV

solution

ũ= λ+vx−v2. (2.74)

The Miura pair (2.73-2.74) is equivalent to

u+ ũ=2
(
λ−v2

)
(2.75a)
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ũ−u=2vx. (2.75b)

If we introduce a variable w satisfying wx = u, we have

wx+ w̃x =2
(
λ−v2

)
(2.76a)

w̃x−wx =2vx, (2.76b)

where w satisfies the potential KdV (pKdV) equation

wt = 3w2
x+wxxx. (2.77)

In the new variables, v can be eliminated from (2.76) leading to the Bäcklund

transformation for (2.77)

wx+ w̃x =2λ− 1
2 (w− w̃)2 (2.78a)

wt+ w̃t =− (w̃−w)(w̃xx−wxx) + 2
(
w2
x+ 2wxw̃x+ w̃2

x

)
. (2.78b)

If we also consider the Bäcklund transformation with a new parameter µ (lead-

ing to a new solution ŵ):

wx+ ŵx =2µ− 1
2 (w− ŵ)2 (2.79a)

wt+ ŵt =− (ŵ−w)(ŵxx−wxx) + 2
(
w2
x+ 2wxŵx+ ŵ2

x

)
, (2.79b)

we can construct a superposition principle from the compatibility of the two

transformations (2.78-2.79)

(
ˆ̃w−w

)
(ŵ− w̃) = 4(µ−λ). (2.80)

We will use such equations to derive three-point differential difference equa-

tions in the next section.

To recover the soliton solution (2.71), we note that w(x,t) = 0 is a solution
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of (2.77). We can use (2.78) to generate a new solution w̃. When w= 0, (2.78)

reduces to

w̃x =2λ− 1
2w̃

2 (2.81a)

w̃t =− w̃w̃xx+ 2w̃2
x (2.81b)

with solution

w(x,t) = 2k tanh
(
kx+k3t+x0

)
, (2.82)

where k2 = λ. Differentiating this with respect to x, we obtain precisely (2.71),

in accordance with the substitution used to obtain (2.76).

Bäcklund pairs can be constructed for other KdV type equations. One

of these is the modified KdV (mKdV) equation, obtained by taking λ = 0 in

(2.72):

ut =−6u2ux+uxxx. (2.83)

The corresponding potential modified KdV equation (pmKdV) is

ut =−3uxuxx
u

+uxxx, (2.84)

which admits the transformation

uxũ+uũx =λ
(
ũ2−u2

)
(2.85a)

utũ+uũt =2λ
(
ũũxx−uuxx−2ũ2

x+ 2u2
x

)
. (2.85b)

The associated superposition principle is

λ
(
uû− ũˆ̃u

)
= µ

(
uũ− ûˆ̃u

)
. (2.86)

The Schwarzian KdV (SKdV) equation

ut =−3
2
u2
xx

ux
+uxxx (2.87)
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was identified using the Painlevé test for PDEs [82]. The equation is named

for its invariance under Möbius transformations. It admits the Bäcklund pair

uxũx = λ
(
ũ2−u2

)
(2.88a)

uxũt+utũx = uxxũxx+ 2(ũ−u)(ũxx−uxx)−4λ(ũx−ux)2 (2.88b)

and the superposition principle

(
ˆ̃u− û

)
(ũ−u)(

ˆ̃u− ũ
)

(û−u)
= λ2

µ2 . (2.89)

Special solutions in analogy with (2.70-2.71) can also be found for the mKdV

(2.83) and SKdV (2.87) equations.

2.2.2 Sine-Gordon equation

The sine-Gordon equation,

uxt = sinu, (2.90)

is another well-known integrable PDE, but is not directly related to the KdV

equation. This equation was obtained in the study of pseudospherical surfaces

in R3. Like the KdV type equations we considered, it admits soliton solu-

tions and is actually the first equation for which a Bäcklund transformation

was derived. There is an extensive literature on this equation; a geometric

introduction is combined with more recent results in [73]. Special solutions

are discussed in [12]. For our purposes, it suffices to write down the Bäcklund

transformation:

ũx−ux = 2λsin 1
2(u+ ũ) (2.91a)

ut+ ũt = 2
λ

sin 1
2(ũ−u), (2.91b)
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which is closely related to some equations we obtain in subsequent chapters.

The corresponding superposition principle is

λsin
[1
4
(
ˆ̃u+ û− ũ−u

)]
= µsin

[1
4
(
ˆ̃u+ ũ− û−u

)]
. (2.92)

2.3 Differential-difference equations
This section is devoted to differential-difference equations: equations of one

discrete and one continuous variable. One important way these equations

arise is from Bäcklund transformations for integrable PDEs. By reinterpreting

the discrete variable in these as a separate continuous variable, reductions to

delay-differential equations can be performed. We will make extensive use of

such reductions later in this thesis.

2.3.1 Equations from Bäcklund transformations
Each of the components of the Bäcklund pairs discussed in the last chapter

can be considered as a differential-difference equation. For definiteness, let us

consider the spatial part of the pKdV Bäcklund pair (2.78a):

u′n+u′n+1 = 2λ− 1
2 (un−un+1)2 , (2.93)

where ′ = d/dx and we have relabeled the dependent variables. The idea here

is that the process of generating solutions using the Bäcklund transformation

can be iterated, giving us a countable infinity of solutions labeled by an integer

n. For notational consistency in what follows, we will work with (2.93) in the

form

w′n+w′n+1 = λ+ (wn+1−wn)2. (2.94)

For KdV type equations, we focus on the spatial components of the Bäck-

lund pairs, as they involve derivatives with respect to only one of the indepen-

dent variables. Written as differential-difference equations, we have

w′nwn+1 +wnw
′
n+1 = λ

(
w2
n+1−w2

n

)
(2.95)
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and

w′nw
′
n+1 = λ

(
w2
n+1−w2

n

)
(2.96)

for the pmKdV (2.84) and SKdV (2.87) equations, respectively. For the sine-

Gordon equation, each component of the Bäcklund transformation has explicit

dependence on a single independent variable:

(un+1−un)x = 2λsin 1
2(un+1 +un) (2.97a)

(un+1 +un)t = 2
λ

sin 1
2(un+1−un). (2.97b)

It is natural to consider the reductions wn(x) = un(x,t) and wn(t) = un(x,t)

of (2.97a) and (2.97b), respectively, to obtain:

w′n+1−w′n = 2λsin 1
2(wn+1 +wn), wn = wn(x), ′ = d

dx (2.98a)

w′n+1 +w′n = 2
λ

sin 1
2(wn+1−wn), wn = wn(t), ′ = d

dt . (2.98b)

These two differential-difference equations play an important role in the sub-

sequent chapter.

2.3.1.1 Skew-continuum limits

For each of the KdV type equations we have analyzed, a ‘skew continuum limit’

of the superposition principle can be taken to obtain a three point differential-

difference equation. To do this, a change of variables (l,m)→ (l,n= l+m) is

made and a continuum limit (in l) is taken as before. Full details are given in

[45]. The resulting equations,

pw′n−w′n(wn+1−wn−1) = wn−1−wn+1 (2.99)

pw′n = wn
wn+1−wn−1
wn−1 +wn+1

(2.100)

pw′n = (wn+1−wn)(wn−wn−1)
wn+1−wn−1

, (2.101)
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where p ∈ C is a free parameter (obtained by redefinition of Bäcklund pa-

rameters), are differential-difference analogues of (2.65), (2.83), and (2.87),

respectively.

2.3.2 Volterra lattice

There is a Miura transformation [45] from (2.99) to the equation

v′n = pv2
n(vn+1−vn−1) (2.102)

given by

vn =− 1
p+un−1−un+1

. (2.103)

(2.102) is equivalent to a special case (q = 0) of the modified Volterra lattice

v′n =
(
v2
n− q2

)
(vn+1−vn−1). (2.104)

This equation [13] has a continuum limit to the mKdV equation (2.83) and a

Miura transformation to the Volterra lattice:

w′n = wn(wn+1−wn−1) (2.105)

given by

wn = (vn+ q)(vn+1− q). (2.106)

The Volterra lattice has a continuum limit to the KdV equation (2.65). The

Volterra lattice and the modified Volterra lattice have many properties asso-

ciated with integrability. Historically, these equations first attracted interest

due to their relationship with the Toda lattice, which we now discuss.

2.3.3 Toda lattice

The Toda lattice is a further well-known integrable differential-difference equa-

tion that is not known to arise from a Bäcklund transformation of an integrable

PDE. It is however, closely related to the Volterra lattice we have just dis-
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cussed. The equation

w′′n = exp(wn−1−wn)− exp(wn−wn+1) (2.107)

was introduced in [77] and a solution in terms of the Jacobi Z-function (A.73)

was given. It is often convenient to use the Flaschka variables [27]

un =1
2 exp 1

2 (wn−1−wn) (2.108a)

vn =− 1
2w
′
n−1, (2.108b)

so that the Toda lattice is realized as the first-order system

u′n =un (vn+1−vn) (2.109a)

v′n =2
(
u2
n−u2

n−1
)
. (2.109b)

In this form, there is a simple Miura transformation from the Volterra lattice;

if wn solves (2.105), then

un =1
2
√
w2nw2n+1 (2.110a)

vn =1
2(w2n+w2n−1) (2.110b)

solves (2.109).

2.4 Delay-differential equations
In this section, we begin to discuss delay-differential equations from the per-

spective of integrability by reviewing known results. In particular, we discuss

an analogue of singularity confinement in this setting and discuss known, pos-

sibly integrable delay-differential equations.

2.4.1 Singularity confinement
As in the case of purely discrete equations, a notion of singularity confinement

has been developed [72] and used to identify integrability candidates [32]. Here,
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the notion of singularity confinement is a hybrid of the classical Painlevé test

for ODEs and the singularity confinement criterion for discrete systems. We

begin with a pair of definitions.

Definition 2.4.1 (Singularity sequence). A sequence of Frobenius series

(u0, . . . ,um), with m≥ r and

uk =
∞∑
n=0

uk,n(z− z0)n+pk , pk ∈Q, (2.111)

is called a singularity sequence.

Definition 2.4.2 (Admissible sequence). A singularity sequence is an ad-

missible sequence for an r-point delay-differential equation if u(z + kh) =

uk, . . . ,u(z + (m− r+ 1)h) = um−r+1 formally satisfy the k-upshifted delay-

differential equation when u and its upshifts are viewed as independent vari-

ables, for each k ∈ {0, . . . ,m− r+ 1}.

There is not a clear definition of what it means for a delay-differential

equation to confine singularities. Roughly speaking, a delay-differential con-

fines singularities if every admissible singularity sequence beginning with a

Taylor series consists of only Laurent series (i.e. pk is always integral) and is a

subsequence of an admissable singularity sequence that terminates with a Tay-

lor series. However, there may be an infinite number of singularity sequences

to check. Moreover, one could, in principle, have an admissible repeating se-

quence such as

(
. . . ,

a

z
+O(1), b+O(z− z0), a

z
+O(1), b+O(z− z0), . . .

)
(2.112)

in which the singularity is not really confined. Nevertheless, the test has been

successful in identifying equations; in [32] it is claimed that the simplest singu-

larity sequences provide “essential constraints” needed to isolate integrability

candidates. In the subsequent chapter,2 we will show that admissibility of

particular singularity sequences provides necessary conditions for an equation
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to admit certain elliptic solutions.

For now we will demonstrate singularity confinement for a particular equa-

tion and particular singularity sequence. In doing so, it is convenient to use the

following shorthand notation for terms in the singularity sequence (rg stands

for regular):

∞p = u0
(z− z0)p +O

(
(z− z0)−p+1

)
, u0 6= 0, p ∈ N (2.113a)

0p =u0(z− z0)p+O
(
(z− z0)p+1

)
, u0 6= 0, p ∈ N (2.113b)

rg =u0 +O(z− z0). (2.113c)

Here each term is understood to be a Laurent series with arbitrary expansion

coefficients. If there are multiple series with the same leading order, we will

indicate that they are distinct with subscripts. When we have two simple poles

or simple zeroes with leading coefficients that differ only by a sign, it will be

convenient to use the notation

∞1
± = ±u0

z− z0
+O(1), (2.114a)

01
± =±u0(z− z0) +O

(
(z− z0)2

)
. (2.114b)

We now turn to the equation

u′+u′ = u2−u2. (2.115)

This is a special case of an equation identified in [32]. We substitute an arbi-

trary Taylor series

u=
∞∑
n=0

unz
n (2.116)

into (2.115) to obtain an ODE; we perform the usual Painlevé test on the

result. Taking

u=
∞∑
n=0

unz
n+p1 (2.117)
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we find that either the principal part of the series vanishes or p1 = −1, in

which case u−1 =−1 and u0 = 0. Assuming the latter, for n 6=−1 we have the

recurrence relations

(n+ 2)un =
n−1∑
j=0

(ujun−j−1−ujun−j−1)−nun, (2.118)

The resonance polynomial on the LHS of (2.118) indicates that there is a

resonance (the universal resonance) at n = −2, but there are no resonance

conditions to check. Now supposing the expansion coefficients un are known,

we upshift (2.115) and take

u=
∞∑
n=0

unz
n+p2 , (2.119)

and find we must have p2 =−1 and u−1 = 1 and u0 = u0 = 0. For n 6=−1 the

recurrence relations are

(n−2)un =
n−1∑
j=0

(ujun−j−1−ujun−j−1)− (n−2)un. (2.120)

We see there is a resonance condition at n= 2:

u0u1−u0u1 = 0 (2.121)

which is satisfied because u0 = u0 = 0. We upshift the equation once more and

take

u=
∞∑
n=0

unz
n+p3 (2.122)

and find that either p3 = −1 and u−1 = −1 or p3 = 0. In the latter case, we

have the recurrence relations, valid for each n:

nun =
n−1∑
j=0

(
ujun−j−1−ujun−j−1

)
− (n+ 2)un. (2.123)

There is a resonance at n= 0. The condition is simply u0 = 0, which is satisfied.
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We conclude that (2.115) admits the singularity sequence

(
rg1,∞1

±,∞1
∓,rg2

)
(2.124)

where the first term is an arbitrary Taylor series (2.116) and the other terms

are given, respectively, by (2.117, 2.119, 2.122) and the associated recurrence

relations (2.118, 2.120, 2.123). We note that we only considered the case p3 = 0

above. In the case p3 = −1, we enter into a longer singularity sequence; we

will not consider this sequence as it is precisely (2.124) that is closely related

to the admittance of elliptic solutions. We will see later that in fact (2.115)

admits a multiparameter family of such solutions.

2.4.2 Known equations

We will briefly discuss the delay-differential equations that have been obtained

in the context of integrable systems and the role of such equations in this thesis.

The first such equation,

au′ = bu+u(u−u). (2.125)

was identified by Quispel, Capel, and Sahadevan [68] as a Lie symmetry re-

duction of the Volterra lattice (2.105). Here it was claimed that the equation

(2.125) possesses a continuum limit to the first Painlevé equation (2.17a),

though the given continuum limit was incorrect. We will discuss this equation

in the fourth chapter of this thesis and give the correct continuum limit.

A number of equations were identified by Grammaticos, Ramani, and

Moreira in [32]. They worked within the bi-Riccati class, which consists of

equations that are separately Riccati equations (2.11) in both u and u′, and

identified eight equations by means of a kind of singularity confinement:

u′+u′ = (u−u)2 + b1(u+u) + b2 + b3e
2b1z (2.126)

u′+u′ = (u−u)2 + b1(u+u) + b2 + b3z (2.127)

u′u+uu′ = eωz
(
b1u

2 + b2u
2
)

(2.128)
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u′u−uu= eωz
(
b1 + b2u

2u2
)

(2.129)

u′+u′ = u2−u2 + b1(u+u) + b2 (2.130)

u′u−uu′ =−u2u2 + b(u+u) (2.131)

u′u−uu′ = b1u+ b2u+ b3u
2u+ b4uu

2 (2.132)

u′u+uu′ = b1u+ b2u+ b3u
2u+ b4uu

2 + b5. (2.133)

Some of these equations possess continuum limits to classical Painlevé equa-

tions. Bi-Riccati equations are the subject of the subsequent chapter, in which

we discuss elliptic solutions to some of the equations identified [32] and dis-

cuss the relationship between the notion of singularity confinement in [32] and

elliptic functions.

Another PI type equation has been identified by Joshi [46] as a direct

reduction of the Toda lattice:

au+u′ = u(v−v), av+v′+ b= 2(u−u2). (2.134)

A similar, but less general, equation was obtained by Levi and Winternitz as

Lie symmetry reductions of the Toda lattice [51]. We will give solutions to

a special case of (2.134) using results in the fourth chapter and the Miura

transformation between the Volterra and Toda lattices (2.110).

Most recently, Halburd and Korhonen [35] used Nevanlinna theory to

study delay-differential equations. The equations they identified are nonau-

tonomous extensions of either (2.125) or

au′ = bu+u2(u−u), (2.135)

which is a symmetry reduction of the semidiscrete modified Korteweg-de Vries

equation. We obtain this equation in the final chapter from a Bäcklund trans-

formation for the third Painlevé equation.

There have been several efforts to contextualize claimed integrable delay-
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differential equations with respect to integrable systems at large. The bilinear

forms of some of the known Painlevé type delay-differential equations were

given in [11]. Some of these same equations were generalized to semidiscrete

equations in [7]. An interesting formal relationship between delay-differential

equations and integro-differential equations was established in [72].



Chapter 3

Bi-Riccati equations

The bi-Riccati family of delay-differential equations consists of equations that

are separately Riccati equations for both the variable u= u(z) and its upshift

u = u(z+h). More explicitly, a generic equation in the bi-Riccati class takes

the form
tUXU = 0, U =

t(
1,u,u2,u′

)
, X : C→ C4×4. (3.1)

These equations were introduced and studied by Grammaticos, Ramani, and

Moreira [32] from the perspective of the combined singularity confinement-

Painlevé test [72] for differential-difference equations described in the previous

chapter. Using this method, seven equations were identified; some of these

equations possess continuum limits to Painlevé equations (2.17).

In this chapter, we will first discuss the relationship between the singularity

structure of bi-Riccati equations and the existence of elliptic function solutions

for these equations. The results in the first section provide a link between the

results of [32] and the program we are pursuing in this thesis. As discussed in

the introduction to this thesis, the construction of delay-differential QRT ana-

logues is hampered by the absence of obvious conserved quantities in this new

setting. Instead we directly seek autonomous delay-differential equations that

admit elliptic solutions with two degrees of parametric freedom, as one finds

in the general solutions of the symmetric QRT (2.38) map and autonomized

Painlevé equations. The remainder of this chapter is devoted to performing
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this search within the class (3.1). We restrict ourselves to elliptic solutions

that may be expressed as a Möbius transformation of the Jacobi sine function,

as one finds as the general solution of the symmetric QRT map (2.44). It is

a relatively simple matter to identify all bi-Riccati equations, up to Möbius

equivalence, that admit the Jacobi sine function as a solution with at least

one degree of parametric freedom. Having done this, we develop a method to

identify equations that admit such solutions with at least two degrees of para-

metric freedom. Classifying all such equations poses significant computational

problems. Nonetheless, we are able to isolate five families of delay-differential

equations that admit the desired elliptic solutions. Four of the equations we

identify are related to known models, in particular semidiscrete sine-Gordon

and Korteweg-de Vries equations. This relationship is discussed in detail and

new solutions to the known equations are given.

3.1 Singularity structure of bi-Riccati equa-

tions
In seeking elliptic solutions for delay-differential equations, we begin with a

general representation of an elliptic function [6]:

f(z) = A0
0 +

N∑
n=1

A1
nζ(z−an;g2,g3) +

N∑
n=1

Mn∑
m=2

Amn ℘
(m−2)(z−an;g2,g3). (3.2)

A set of N pairs {(an,Mn) : 1≤ n≤N}, where an is the location of a pole and

Mn is the multiplicity of that pole, together with (3.2), determines an elliptic

function up to specification of the expansion coefficients Amn (the expansion co-

efficients A1
n are constrained by Cauchy’s residue theorem). We immediately

restrict ourselves to order-two elliptic functions. These functions take each

value in the extended complex plane twice, counting multiplicity, in each pe-

riod parallelogram. This simplest class of elliptic functions contains the most

commonly used elliptic functions: the Weierstrass ℘-function and the twelve

Jacobi elliptic functions. These functions are the most frequent examples of
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elliptic solutions to integrable systems. If the order of the elliptic function is

two, we must have M1 + · · ·+MN = 2 in (3.2). By Cauchy’s residue theorem,

we must also have A1
1 + · · ·+A1

N = 0, so there are only two possibilities:

Case I: N = 1, M1 = 2

f1(z) = α℘(z−a;g2,g3) +β (3.3)

Case II: N = 2, M1 =M2 = 1

f2(z) = α [ζ(z−a1;g2,g3)− ζ(z−a2;g2,g3)] +β, (3.4)

Let us focus on the first case. Suppose f1 solves an autonomous delay-

differential equation. Using translational freedom in the independent variable

z we can take a= 0 in (3.3) without loss of generality. The resulting function,

α℘(z;g2,g3) +β (3.5)

possesses a double pole at z = 0 mod Λ, where Λ = Λ(g2,g3) is the lattice as-

sociated to the elliptic function. The locations of the zeroes of the Weierstrass

℘-function are, in general, given by a very complicated formula [24]. On the

other hand, the zeroes of the function

℘(z;g2,g2)−℘(h;g2,g3), (3.6)

where h ∈ C\Λ is constant, are very simple to characterize. In particular, the

zeroes occur when z =±h mod Λ; the zeroes are simple unless ℘′(h;g2,g3) = 0

(equivalently 2h ∈ Λ). Thus, in what follows, it will be more convenient to

work with (3.6) versus ℘ itself. By redefining the parameters appearing in

(3.5),

β→ β−α℘(h;g2,g3), (3.7)
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we arrive at

f̃1(z) = α [℘(z;g2,g3)−℘(h;g2,g3)] +β. (3.8)

We will use this form of (3.5) to establish a relationship with particular sin-

gularity sequences. We will need the following definition.

Definition 3.1.1. A function g : C→ C∪{∞} contains a singularity sequence

(u0, . . . ,un) with prescribed step size h ∈C\{0} if there exists z0 ∈C and ε > 0

such that g(z+mh− z0) = um for each m ∈ {0, . . . ,n} in a punctured disk of

radius ε about z0.

We will now show that a generic order-two elliptic function, possibly after

an affine transformation, must contain one of several particular singularity

sequences that arise often in the application of singularity confinement. It

follows that the admittance of these particular singularity sequences provides

necessary conditions for an equation to admit an order-two elliptic solution.

We will make use of the notation (2.113-2.114) introduced in the previous

chapter. Ellipses are used to indicate that singularity sequence repeats.

Theorem 3.1.1. Consider the functions

f1(z) = α℘(z−a;g2,g3) +β, (3.9)

and

f̃1(z) = α[℘(z−a;g2,g3)−℘(h;g2,g3)], (3.10)

where α 6= 0 and β 6=−α℘(h;g2,g3). If h∈Λ, f1 and f̃1 contain the singularity

sequence (
. . . ,∞2,∞2, . . .

)
. (3.11)

If h /∈ Λ and 2h ∈ Λ, f1 contains the singularity sequence

(
. . . ,rg,∞2,rg,∞2, . . .

)
. (3.12)
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and f̃1 contains the singularity sequence

(
. . . ,02,∞2,02,∞2, . . .

)
. (3.13)

If h /∈ Λ and 2h /∈ Λ, f1 contains the singularity sequence

(
rg,∞2,rg

)
. (3.14)

and f̃1 contains the singularity sequence

(
01
±,∞2,01

∓
)
. (3.15)

Proof. We may take a = 0 in (3.9-3.10) without loss of generality. In a punc-

tured disk centered at z = 0 we have the Laurent series

f(z) = α

z2 +O(1), f̃1(z) = α

z2 +O(1). (3.16)

Near z =±h there are three cases to consider.

Case 1: h ∈ Λ. If h is a period we have

f1(z+nh) = α

z2 +O(1), n ∈ Z (3.17)

in a punctured disk about z = 0. Hence f1 contains a singularity sequence of

the form (3.11). An identical argument applies to f̃1.

Case 2: h /∈ Λ and 2h ∈ Λ. By assumption that h is a half-period, we have

that

f1(z+ 2nh) = 1
z2 +O(1), n ∈ Z (3.18)

in a punctured disk about z = 0. By the same assumption, we have

f1(z) = α℘(h;g2,g3) +β+O
(
(z∓h)2

)
(3.19)
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near z =±h. It follows that

f1(z+ (2n−1)h) = α℘(h;g2,g3) +β+O
(
z2
)
, n ∈ Z (3.20)

near z = 0. The sequence consisting of Laurent series expansion of f1(z+nh)

about z= 0, for n∈Z, is contained in the function f1 and the resulting sequence

is of the form (3.13).

We now turn to the function f̃1. By assumption that h is a half-period,

we have that

f̃1(z+ 2nh) = 1
z2 +O(1), n ∈ Z (3.21)

in a punctured disk about z = 0. By the same assumption, we have

f̃1(z) =
[
3℘(h;g2,g3)2− g2

4

]
(z∓h)2 +O

(
(z∓h)3

)
(3.22)

near z =±h. It follows that

f̃1(z+ (2n−1)h) =
[
3℘(h;g2,g3)2− g2

4

]
z2 +O

(
z3
)
, n ∈ Z (3.23)

near z = 0. The sequence consisting of Laurent series expansion of f̃1(z+nh)

about z = 0, for n ∈ Z, is contained in the function f̃1(z) and the resulting

sequence is of the form (3.12).

Case 3: h /∈ Λ and 2h /∈ Λ. Near z =±h we have

f1(z) = α℘(h;g2,g3) +β+O (z∓h) , (3.24)

which implies that

f1(z±h) = α℘(h;g2,g3) +β+O (z) (3.25)

near z = 0. In (3.26-3.27), ℘′(h;g2,g3) 6= 0 by the assumption that h is not

a half-period. Then, the Laurent series expansions of f1(z− h), f1(z) and
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f1(z+h) about z = 0 are of the form (3.14).

We again return to the function f̃1. Near z =±h we have

f̃1(z) =±℘′(h;g2,g3)(z∓h) +O
(
(z∓h)2

)
, (3.26)

which implies that

f̃1(z±h) =±℘′(h;g2,g3)z+O
(
z2
)

(3.27)

near z = 0. In (3.26-3.27), ℘′(h;g2,g3) 6= 0 by the assumption that h is not

a half-period. Then, the Laurent series expansions of f̃1(z− h), f̃1(z) and

f̃1(z+h) about z = 0 of the form (3.15).

Let us consider this result in the context of a particular delay-differential

equation: (
u′
)2
−
(
u′
)2

= 4
(
u3−u3

)
−g2(u−u). (3.28)

This equation is solved by

u(z) = ℘(z;g2,g3), (3.29)

where g2 is fixed by the equation and g3 is free. It follows from (3.1.1) that

(3.28) must admit the singularity sequence (3.11), since g3 can be chosen so

that h∈Λ. Alternatively, g3 can be chosen so that h /∈Λ, in which case (3.28),

after an affine transformation, must admit either (3.13) or (3.15), depending

on whether or not 2h ∈ Λ.

Now we consider the second kind of order-two elliptic solution (3.4). In

the context of autonomous delay-differential equations, we can take a1 =−a2

without loss of generality. Then we have

f2(z) = α [ζ(z+a;g2,g3)− ζ(z−a;g2,g3)] +β. (3.30)

There are two special cases to consider. In the limit a→ 0 mod Λ, we obtain
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(3.3) (with a = 0) after redefining α and β. When 2a ∈ Λ, but a /∈ Λ we

have ℘′(a;g2,g3) = 0. Then, by means of the addition law for the Weierstrass

ζ-function (A.27), (3.30) can be rewritten:

f2(z) =− α℘′(a;g2,g3)
℘(z,g2,g3)−℘(a;g2,g3) +β+ 2αζ(a;g2,g3) (3.31)

and we see that f2 reduces to a constant. So we assume that a /∈Λ and 2a /∈Λ.

In this nondegenerate case (3.31) still holds. Under the further assumption

h /∈ Λ, this can be written as (the invariants appearing in the Weierstrass

functions are suppressed)

f2(z) = −α℘
′(a) + [β+ 2αζ(a)] [f(z) +℘(h)−℘(a)]

f(z) +℘(h)−℘(a) , (3.32)

where f(z) represents (3.6). Therefore, we could extend the previous theorem

(3.1.1), by allowing full Möbius transformations instead of only affine trans-

formations, to include (3.30). However, the singularity sequences associated

with (3.30) are more easily characterized without reference to the Weierstass

℘-function. In doing this, we will find use for the function

ζ(z+a;g2,g3)− ζ(z−a;g2,g3)−2ζ(a;g2,g3). (3.33)

This function has double zeroes at z = 0 mod Λ.

Theorem 3.1.2. Consider the functions

f2(z) = α [ζ(z−a1;g2,g3)− ζ(z−a2;g2,g3)] +β (3.34)

and

f̃2(z) = α[ζ(z+a;g2,g3)− ζ(z−a;g2,g3)−2ζ(a;g2,g3)], (3.35)

where a /∈Λ, 2a /∈Λ, α 6= 0, and β 6=−2αζ(a;g2,g3). If h∈Λ, f2 and f̃2 contain
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the singularity sequences

(
. . . ,∈ cn(Ωh|m)dn(Ωh|m)fty1

+,∞1
+, . . .

)
and

(
. . . ,∞1

−,∞1
−, . . .

)
. (3.36)

If h /∈ Λ and h= 2a mod Λ, f2 and f̃2 contain the sequence

(
rg1,∞1

±,∞1
∓,rg2

)
. (3.37)

If h /∈ Λ and h 6= a mod Λ and h 6= 2a mod Λ, f2 and f̃2 contain the sequence

(
rg1,∞1,rg2

)
. (3.38)

If h /∈ Λ and h= a mod Λ, f2 contains the sequence

(
∞1
±,rg,∞1

∓
)

(3.39)

and f̃2 contains the sequence

(
∞1
±,02,∞1

∓
)
. (3.40)

Proof. We proceed by cases. We can take a1 =−a2 =−a in (3.34-3.35) without

loss of generality.

Case 1: h ∈ Λ. We have the Laurent expansions

f2(z) =∓ α

z±a
+O(1) (3.41)

in punctured disks about z =−a and z = a, respectively. The assumption that

h is a period implies that

f2(z∓a+nh) =∓ α

z±a
+O(1), n ∈ Z (3.42)

in a punctured disk about z = 0. The sequences consisting of the Laurent series

for f2(z− a+nh) and f2(z+ a+nh) about z = 0 are of the form of those in
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(3.36), i.e. the coefficients of the leading order terms differ only by a sign. An

identical argument applies to f̃2(z).

Case 2: h /∈ Λ and h= 2a mod Λ In a punctured disk about z = a we have

f2(z) =− α

z−a
+O(1); (3.43)

it follows that

f2(z+a) =−α
z

+O(1). (3.44)

in a punctured disk about z = 0. By assumption, z = a+h is neither a zero

nor a pole (and so is a regular point). By assumption and the parity of f we

have

f2(z+a−h) = f2(z−a) = f2(z+a) = α

z
+O(1). (3.45)

in a punctured disk about z = 0. Again by parity, it follows that z = −a−

h = a− 2h is a regular point. The sequence consisting of the Laurent series

expansions of f2(z+a− 2h), f2(z+a−h), f2(z+a), and f2(z+a+h) about

z = 0 is of the form (3.37). An identical argument applies to g.

Case 3: h /∈ Λ and h 6= a mod Λ and h 6= 2a mod Λ. In this case we also

have (3.44) in a punctured disk about z = 0. By assumption, z = a±h are

regular points. Then, the sequence consisting of the Laurent series expansions

of f2(z+a−h), f2(z+a), and f2(z+a+h) about z = 0 is of the form (3.38).

An identical argument applies to f̃2.

Case 4: h /∈ Λ and h= a mod Λ. Near z = 0 we have

f2(z) =−α℘′(a;g2,g3)z2 +O
(
z4
)

(3.46)

in a punctured disk about z = h we have

f2(z) =− α

z−h
+O(1). (3.47)
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It follows that

f2(z+h) =−α
z

+O(1) (3.48)

in a punctured disk about z = 0. By the parity of f2, it follows that

f2(z−h) = α

z
+O(1) (3.49)

in a punctured disk about z = 0. The sequence consisting of the Laurent series

expansions of f2(z−h), f2(z), and f2(z+h) about z = 0 is of the form (3.40).

We now turn to the function f̃2. Near z = 0 we have

f̃2(z) = β+ 2αζ(a;g2,g3) +O
(
z2
)

(3.50)

in a punctured disk about z = h we have

f̃2(z) =− α

z−h
+O(1). (3.51)

It follows that

f̃2(z+h) =−α
z

+O(1) (3.52)

in a punctured disk about z = 0. By the parity of f̃2, it follows that

f̃2(z−h) = α

z
+O(1) (3.53)

in a punctured disk about z = 0. The sequence consisting of the Laurent series

expansions of f̃2(z−h), f̃2(z), and f̃2(z+h) about z = 0 is of the form (3.39).

It is worth discussing the sequences (3.37) and (3.38) in greater detail. By

the parity of f in (3.33), it is easily seen that if

rg1 =
∞∑
n=0

unz
n (3.54)
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in (3.37), we must have

rg2 =
∞∑
n=0

(−1)nunzn (3.55)

in the same sequence. For the same reason if

rg1 =
∞∑
n=0

unz
n, rg2 =

∞∑
n=0

vnz
n (3.56)

in (3.38) with positive residue, the equation must also admit a sequence with

negative residue and

rg′1 =
∞∑
n=0

(−1)nvnzn, rg′2 =
∞∑
n=0

(−1)nunzn (3.57)

with the same expansion coefficients as in (3.56).

We can now return briefly to an example (2.115) discussed in the previous

chapter. The equation

u′+u′ = u2−u2 (3.58)

was shown to admit the singularity sequence (3.37), which, by theorem (3.1.2),

is a necessary condition for an equation to admit an order-two elliptic solution

of the form (3.34) (with h= 2a mod Λ). Later in this chapter, we construct a

solution of this form for the equation (3.58).

We conclude this section by reiterating its intent: to establish a relation-

ship between the singularity sequences often used to isolate integrable equa-

tions and the elliptic solutions that are the focus of this thesis. This explains

the fact that a number of known examples are recovered in our classification

performed in the subsequent section. These are then discussed as examples

later in this chapter.

3.2 Order-two elliptic solutions
The main result of this section is a list of five equations, solvable by order-

two elliptic functions with at least two degrees of parametric freedom. In

order to achieve this result, we first identify all equations, in the form of a
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vector subspace of 4× 4 matrices X in (3.1), that admit order-two elliptic

solutions with at least a single degree of parametric freedom. Having done

this, a search may be performed within the vector subspace for equations that

admit multiparameter elliptic solutions.

We begin by classifying all equations in the bi-Riccati class (3.1) that

are solved by order-two elliptic functions. We will show that we may use the

Möbius-Jacobi representation

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (3.59a)

αδ−βγ = 1 (3.59b)

for any such function. The parameter z0 ∈ C is free by the translational sym-

metry inherent in autonomous equations. For this reason, we omit it in inter-

mediate calculations.

Any order-two elliptic function can be written in the form (3.59). In the

previous section, we established that any order-two elliptic function can be

written as a Möbius transformation of the Weierstrass ℘-function. Therefore,

if we can show that there exist parameters α, β, γ, δ, z0, Ω and m such that

℘(z;g2,g3) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
(3.60a)

αδ−βγ 6= 0, (3.60b)

we can take Möbius transformation of both sides of (3.60a) to represent an

arbitrary order-two elliptic function as a Möbius transformation of a Jacobi

sine function. As our ultimate interest is in solutions to autonomous delay-

differential equations, we regard two elliptic functions as equivalent when they

differ by a constant translation of the independent variable. Thus, it suffices

to show that the differential equations

(
u′
)2

=Ω2
(
1−u2

)(
1−mu2

)
(3.61a)
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(
v′
)2

=4v3−g2v−g3, (3.61b)

solved by sn(Ωz + z0|m) and ℘(z + z0;g2,g3), respectively, are Möbius-

equivalent. We set u = (αv+ β)/(γv+ δ) in (3.61a) and equate the result

with (3.61b) to give us a system of equations in powers of v. After imposing

αδ−βγ = 1, we obtain the solution1

α2 = Ω(1 + 14m+m2)
6g2(1−m) , β = 5−m

6α(1−m) , γ = α

Ω2 =
2g2

2(1 +m)
(
1−34m+m2

)
3g3 (1 + 14m+m2)2 , 1 + 14m+m2 = 12g2

Ω4 . (3.62)

Thus we have established that all order-two elliptic functions can be expressed

in Möbius-Jacobi form (3.59) and we will next find all such solutions of bi-

Riccati equations.

We now observe that the bi-Riccati class is form-invariant under Möbius

transformations of the dependent variable. Under the change of variables

u→ αu+β

γu+ δ
, αδ−βγ = 1, (3.63)

(3.1) becomes

tU tMXMU = 0, U =
(
1,u,u2,u′

)
, X : C→ C4×4 (3.64)

where

M =



δ2 2γδ γ2 0

βδ αδ+βγ αγ 0

β2 2αβ α2 0

0 0 0 1


. (3.65)

Specializing to the case of Jacobi sine solutions, if (3.59) solves (3.1), then

1The solution is written somewhat implicitly to simplify the presentation. Note that by
squaring the fourth equation and substituting it into the fifth, we obtain an eighth-order
polynomial equation for m in terms of given quantities (g2 and g3). Supposing this can be
solved for m, we can sequentially solve for Ω, α, β, and γ.
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sn(Ωz|m) solves (3.64). But (3.64) is equivalent to (3.1) via a redefinition of

X:

X → tM−1XM−1. (3.66)

Therefore we restrict ourselves to the problem of finding all X ∈ C4×4 such

that

tUXU = 0 (3.67a)

U =
(
1,sn(Ωz|m),sn2(Ωz|m),sn(Ωz|m)′

)
. (3.67b)

In doing this, we will require standard identities for Jacobian elliptic functions,

in particular the differential relations (A.54), algebraic relations (A.55), differ-

ential equations (A.56-A.57), and the addition law (A.58a). To simplify the

presentation we also introduce the notation2

u= sn(Ωz|m), s = sn(Ωh|m), c = cn(Ωh|m) d = dn(Ωh|m). (3.68)

We now return to (3.67). By means of the addition law (A.58a), we see

that U tXU in (3.67a) is rational in u and its first and second derivatives and

linear in each entry of X. By clearing out denominators and using differential

equations (A.56a) and (A.57a) to replace u′′ and (u′)2, respectively, we arrive

at a polynomial equation

P (u;X) +u′Q(u;X) = 0, (3.69)

where P and Q are seventh- and fifth-order in u, respectively, with coefficients

rational in Ω, m, s, c, d and linear in the entries of X. According to (A.57a),

u and u′ are linearly independent; by treating them as formal variables we see

that

L= P (u;X) +u′Q(u;X) (3.70)

2By our notation, quantities such as cd indicate cn(Ωh|m)dn(Ωh|m) and not the Jacobi
cd-function cn(Ωh|m)/dn(Ωh|m).
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is a linear map from C4×4 to a twelve-dimensional subspace of C[u]⊕u′C[u].

Choosing the standard bases for both vector spaces, the kernel of this map

can be computed by Gauss-Jordan elimination on the matrix representation

of L. We will choose a particular basis for this kernel where each basis vector

has at most one nonzero entry in the fourth row or column of the matrix.

Through (3.1) this corresponds to the appearance of at most one derivative

in the bi-Riccati delay-differential equation. Viewed in this way, seven of our

basis elements, X1, . . . ,X7,3 contain a single derivative while one basis element,

X0, corresponds to a purely discrete equation:

kerL= span
{
X0,X1,X2,X3,X4,X5,X6,X7

}
, (3.71)

where

X0 =Ω
s



s2 0 −1 0

0 2cd 0 0

−1 0 ms2 0

0 0 0 0


(3.72a)

X1 =1
s



0 −Ω 0 0

cdΩ 0 0 0

0 ms2Ω 0 0

s 0 0 0


(3.72b)

X2 =1
s



−Ω 0 0 0

0 −cdΩ 0 0

Ω 0 0 0

0 s 0 0


(3.72c)

3Here, and in what follows, superscripts on X, x, λ, and φ are labels. This is done so
that subscripts may indicate partial derivatives or evaluation at a particular value of the
deformation parameter ε, as explained below.



3.2. Order-two elliptic solutions 61

X3 =1
s



0 −Ω 0 0

0 0 −cdΩ 0

0 Ω 0 0

0 0 s 0


(3.72d)

X4 = 1
s2



0 0 −cdΩ2 0

0
[
2− (1 +m)s2

]
Ω2 0 0

−cdΩ2 0 0 0

0 0 0 s2


(3.72e)

X5 =1
s



0 −cdΩ 0 s

Ω 0 −ms2Ω 0

0 0 0 0

0 0 0 0


(3.72f)

X6 =1
s



Ωs2 0 −Ω 0

0 cdΩ 0 s

0 0 0 0

0 0 0 0


(3.72g)

X7 =1
s



0 0 0 0

s2 0 −Ω 0

0 cdΩ 0 s

0 0 0 0


. (3.72h)

A bi-Riccati equation (3.1) with constant X is solved by u = sn(Ωz+ z0|m)

if and only if X ∈ kerL, for which we have given an explicit basis. The eight

basis elements correspond to a seven parameter family of bi-Riccati equations:

a generic X ∈ kerL may be represented by a set of eight expansion coefficients

{λn} together with the basis (3.72). The corresponding bi-Riccati equation

(3.1) is homogenous in the expansion coefficients, and so we may divide through

by any nonzero λn leaving seven degrees of freedom.

We will now discuss the existence of multiparameter Möbius-Jacobi fam-

ilies of solutions to autonomous bi-Riccati equations. In particular, we search
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for equations that admit solutions

u(z;ε) = α(ε)sn(Ω(ε)z+ z0|m(ε)) +β(ε)
γ(ε)sn(Ω(ε)z+ z0|m(ε)) + δ(ε) , (3.73a)

α(ε)δ(ε)−β(ε)γ(ε) 6= 0, (3.73b)

where at least one of the parameters α, β, γ, δ, Ω, and m has nontrivial

dependence on the auxiliary variable ε. This parametric freedom is in addition

to the translational symmetry represented by z0 (which, again, will be omitted

in intermediate calculations). Suppose (3.73) solves an autonomous bi-Riccati

equation
tU(ε)X0U(ε) = 0, X0 ∈ C4×4, (3.74)

where we have emphasized the ε-dependence of U through the parameters in

(3.73). It follows that u(z) = sn(Ω(ε)z|m(ε)) solves

tU(ε)tM(ε)X0M(ε)U(ε) = 0, (3.75)

where

M(ε) =



δ(ε)2 2γ(ε)δ(ε) γ(ε)2 0

β(ε)δ(ε) α(ε)δ(ε) +β(ε)γ(ε) α(ε)γ(ε) 0

β(ε)2 2α(ε)β(ε) α(ε)2 0

0 0 0 α(ε)δ(ε)−β(ε)γ(ε)


.

(3.76)

We seek to identify matrices X0 and parameterizations α, β, γ, δ, Ω, and m

such that (3.75) is satisfied in some neighborhood of ε= 0.

As before, we perform our classification up to a constant Möbius trans-

formation: by the redefinition

X0→ tM(0)−1X0M(0)−1 (3.77)
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we may take

α(0) = δ(0) = 1, β(0) = γ(0) = 0, (3.78)

i.e. the Möbius transformation (3.76) reduces to the identity at ε= 0. We will

also parameterize the Möbius transformation by δ(ε) = 1:

M(ε) =



1 2γ(ε) γ(ε)2 0

β(ε) α(ε) +β(ε)γ(ε) α(ε)γ(ε) 0

β(ε)2 2α(ε)β(ε) α(ε)2 0

0 0 0 α(ε)−β(ε)γ(ε)


. (3.79)

Because (3.78) implies that M(ε) is locally invertible near ε= 0, this parame-

terization is locally equivalent to (3.59b). Returning now to (3.75) with M(ε)

as in (3.79), we define

X(ε) = tM(ε)X0M(ε) (3.80)

so that (3.75) becomes
tU(ε)X(ε)U(ε) = 0. (3.81)

We view this as an equation for X(ε). As a consequence of (3.72), the solution

space of (3.81), for X(ε), consists of elements

7∑
n=0

λnXn =


Ωs
(
λ0−λ2 +λ6

)
−Ω

s

(
λ1 + s2λ3 + cdλ5

)
−Ω

s

(
λ0 + Ωcd

s λ4 +λ6
)

λ5

Ω
s

(
cdλ1 +λ5 + s2λ7

)
Ωcd

s

(
2λ0−λ2 +λ6

)
+ Ω2(c2+d2)

s2 λ4 −Ω
s

(
cdλ3 +ms2λ5 +λ7

)
λ6

−Ω
s

(
λ0−λ2 + cdΩ

s λ4
)

Ω
s

(
ms2λ1 +λ3 + cdλ7

)
Ωmsλ0 λ7

λ1 λ2 λ3 λ4


.

(3.82)

The parameters Ω andm (and consequently s, c, and d) above have suppressed

dependence on ε. The solution space is parameterized by expansion coefficients

λi. We use the notation xij for the entries of the matrix X(ε) and xij0 for the
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entries of X0. If X(ε) satisfies (3.81), we have

λ1 = x41, λ2 = x42, λ3 = x43, λ4 = x44, λ5 = x14, λ6 = x24, λ7 = x34 (3.83)

and

λ0 = x33

Ωms . (3.84)

The remaining entries of X(ε) (those not appearing in (3.83-3.84)) can be

parameterized in terms of the xij appearing in (3.83-3.84) if X(ε) ∈ kerL.

This parameterization is given by

φn(X(ε),Ω(ε),m(ε)) = 0, n= 1, . . . ,8, (3.85)

where

φ1 =x11− 1
m
x33 + Ωs

(
x42−x24

)
(3.86a)

φ2 =x12 + Ω
s
(
x41 + s2x43 + cdx14

)
(3.86b)

φ3 =x13 + 1
ms2x

33 + Ω2cd
s2 x44 + Ω

s x
24 (3.86c)

φ4 =x21− Ω
s
(
cdx41 +x14 + s2x34

)
(3.86d)

φ5 =x22− 2cd
ms2x

33 + Ωcd
s
(
x42−x24

)
−

Ω2
(
c2 + d2

)
s2 x44 (3.86e)

φ6 =x23 + Ω
s
(
cdx43 +ms2x14 +x43

)
(3.86f)

φ7 =x31 + 1
ms2x

33− Ω
s x

42 + Ω2cd
s2 x44 (3.86g)

φ8 =x32− Ω
s
(
ms2x41 +x43 + cdx34

)
. (3.86h)

Recalling that the xij depend on the Möbius parameters via (3.80), we view φ

(with components (3.86)) as a map from C5 (the space of tuples (α,β,γ,Ω,m))

to C8, parameterized by the matrix X0. It is clear that X(ε) satisfies (3.81)
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and only if (3.85) holds. In particular, at ε= 0 we must have

φn(X0,Ω0,m0) = 0, n= 1, . . .8, (3.87)

where Ω0 = Ω(0) andm0 =m(0) (going forward, we will extend this notation to

s0 = sn(Ω0h|m0), etc.). This gives us a parameterization of the matrix X0. We

can view (3.85), whenever (3.87) holds, as a symmetry condition. Substituting

(3.87) into (3.85) leads to a complicated system which is not immediately

solvable, although one trivial solution is known:

α = 1, β = 0, γ = 0, Ω = Ω0, m=m0 (3.88)

Thus we focus on a linearized symmetry condition; by a Taylor expansion of

(3.85) about the trivial solution, we obtain:

φ(X(ε),Ω(ε),m(ε)) = φ(X0,Ω0,m0) + ε

(
∂φ

∂Ω
dΩ
dε + ∂φ

∂m

dm
dε

)∣∣∣∣∣
ε=0

+ε
∑

1≤i,j≤4

[
∂φ

∂xij

(
∂xij

∂α

dα
dε + ∂xij

∂β

dβ
dε + ∂xij

∂γ

dγ
dε

)]∣∣∣∣∣
ε=0

+O
(
ε2
)
. (3.89)

If (3.85) is satisfied in some neighborhood of ε = 0, it is necessary that the

order-ε1 term above vanish (the order-ε0 term vanishes by assumption). To

discuss this further it is convenient to introduce the the Jacobian

J = ∂(φ1, . . . ,φ8)
∂(α,β,γ,Ω,m)

∣∣∣∣∣
ε=0

(3.90)
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and write (3.89) as

φ(X(ε),Ω(ε),m(ε)) = φ(X0,Ω0,m0)+ε ∂(φ1, . . . ,φ8)
∂(α,β,γ,Ω,m)

∣∣∣∣∣
ε=0



dα
dε

∣∣∣
ε=0

dβ
dε

∣∣∣
ε=0

dγ
dε

∣∣∣
ε=0

dΩ
dε

∣∣∣
ε=0

dm
dε

∣∣∣
ε=0


+O

(
ε2
)
.

(3.91)

In this form, we see that the order-ε1 term can vanish either trivially (when

the column vector consisting of ε-derivatives is identically zero) or nontrivially,

when the Jacobian is rank-deficient (has a rank less than its maximal rank of

5). As a consequence of (3.86), each entry of the Jacobian is linear in the

entries of X0, but (3.87) can be used to eliminate eight of these. As a result,

the Jacobian depends on eight parameters xij0 ; our aim is to determine the

conditions on these parameters so the Jacobian is rank-deficient.

In computing the Jacobian, we require derivatives of (3.80) with respect

to the Möbius parameters (we use the notation Mα = ∂M/∂α, etc.):

∂X

∂α
=tMα

tM−1X+XM−1Mα (3.92a)
∂X

∂β
=tMβ

tM−1X+XM−1Mβ (3.92b)

∂X

∂γ
=tMγ

tM−1X+XM−1Mγ . (3.92c)

At ε= 0, M and X reduce to the identity and X0, respectively, and we obtain

∂X

∂α

∣∣∣∣∣
ε=0

= tMα|ε=0X0 +X0Mα|ε=0 (3.93a)

∂X

∂β

∣∣∣∣∣
ε=0

= tMβ|ε=0X0 +X0Mβ|ε=0 (3.93b)

∂X

∂γ

∣∣∣∣∣
ε=0

= tMγ |ε=0X0 +X0Mγ |ε=0, (3.93c)
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where

Mα|ε=0 =



0 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1


(3.94a)

Mβ|ε=0 =



0 0 0 0

1 0 0 0

0 2 0 0

0 0 0 0


(3.94b)

Mγ |ε=0 =



0 2 0 0

0 0 1 0

0 0 0 0

0 0 0 0


. (3.94c)

We arrive at

∂X

∂α

∣∣∣∣∣
ε=0

=



0 x12
0 2x13

0 x14
0

x21
0 2x22

0 3x23
0 2x24

0

2x31
0 3x32

0 4x33
0 3x34

0

x41
0 2x42

0 3x43
0 2x44

0


(3.95a)

∂X

∂β

∣∣∣∣∣
ε=0

=



x12
0 +x21

0 2x13
0 +x22

0 x23
0 x24

0

x22
0 + 2x31

0 2x23
0 + 2x32

0 2x33
0 2x34

0

x32
0 2x33

0 0 0

x42
0 2x43

0 0 0


(3.95b)

∂X

∂γ

∣∣∣∣∣
ε=0

=



0 2x11
0 x12

0 0

2x11
0 2x12

0 + 2x21
0 2x13

0 +x22
0 2x14

0

x21
0 x22

0 +x31
0 x23

0 +x32
0 x24

0

0 2x41
0 x42

0 0


. (3.95c)

We will also require derivatives of the Jacobi elliptic functions with respect
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to the modulus [50]:

∂

∂m
sn(z|m) =cn(z|m)dn(z|m)

2m(1−m) [(1−m)z−E(z|m) +msn(z|m)cd(z|m)]

(3.96a)
∂

∂m
cn(z|m) =− sn(z|m)dn(z|m)

2m(1−m) [(1−m)z−E(z|m) +msn(z|m)cd(z|m)]

(3.96b)
∂

∂m
dn(z|m) =− sn(z|m)cn(z|m)

2(1−m) [(1−m)z−E(z|m) + dn(z|m)sc(z|m)]

(3.96c)

where E(z|m) is the Jacobian E-function

E(z|m) :=
z∫

0
dn2(t|m)dt. (3.97)

If we introduce the quantity

Ξ = Ωh(1−m)−E(Ωh|m)
2hm(1−m) + sc

2hd(1−m) , (3.98)

the Ω and m derivatives of s, c, and d can be related in a very simple way:

∂s
∂m

= Ξ ∂s
∂Ω ,

∂c
∂m

= Ξ ∂c
∂Ω ,

∂d
∂m

=
(

Ξ + s
2hmcd

)
∂d
∂Ω . (3.99)

We are now prepared to write down the components of the Jacobian (3.90).

To do this, we express each component of φ as

φn =
3∑

i,j=0
xijpnij(Ω,m)qnij(s,c,d), n= 1, . . . ,8. (3.100)

Here the dependence on the parameters Ω andm enters explicitly only through

the coefficients pnij , whereas the qnij carry only implicit dependence on these

parameters through s, c, and d. The xij depend on the Möbius parameters
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through (3.80). The derivative with respect to α is computed as

∂φn

∂α
=

3∑
i,j=0

∂xij

∂α
pnijq

n
ij . (3.101)

At ε = 0, the derivatives ∂xij/∂α can be found from (3.95) and the condition

(3.87), together with the (3.86), ensures that the resulting expression can be

written in terms of the eight xij0 appearing in (3.83-3.84). Derivatives with

respect to β and γ are calculated analogously. The derivative with respect to

Ω is

∂φn

∂Ω =
3∑

i,j=0
xij

[
∂pnij
∂Ω qnij +pnij

(
∂qnij
∂s

∂s
∂Ω +

∂qnij
∂c

∂c
∂Ω +

∂qnij
∂d

∂d
∂Ω

)]
(3.102)

and the derivative with respect to m is

∂φn

∂m
=

3∑
i,j=0

xij
[
∂pnij
∂m

qnij +pnij

(
∂qnij
∂s

∂s
∂m

+
∂qnij
∂c

∂c
∂m

+
∂qnij
∂d

∂d
∂m

)]
. (3.103)

Using (3.99), the latter can be written in terms of Ω derivatives and the quan-

tity Ξ:

∂φn

∂m
=

3∑
i,j=0

xij
[
∂pnij
∂m

qnij + s(cd)−1

2hm pnij
∂qnij
∂d + Ξpnij

(
∂qnij
∂s

∂s
∂Ω +

∂qnij
∂c

∂c
∂Ω +

∂qnij
∂d

∂d
∂Ω

)]
.

(3.104)

Consider now the linear combination

∂φ

∂m
+AΩ ∂φ

∂Ω +Aα
∂φ

∂α
+Aβ

∂φ

∂β
+Aγ

∂φ

∂γ
; (3.105)

if this is zero for some choice of the A-coefficients the Jacobian is rank-deficient.

In this case, it is clear from the Gauss-Jordan elimination algorithm and the

structure of φm that each A must be affine in Ξ, i.e. AΩ = AΩ
0 +AΩ

1 Ξ and

similarly for other parameters. Hence,

∂φn

∂m
+AΩ∂φ

n

∂Ω +Aα
∂φn

∂α
+Aβ

∂φn

∂β
+Aγ

∂φn

∂γ
=
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3∑
i,j=0

xij
∂pijk

∂m
+AΩ

0
∂pnij
∂Ω

qnij + s(cd)−1

2hm pnij
∂qnij
∂d


+ xijAΩ

0 p
n
ij

(
∂qnij
∂s

∂s
∂Ω +

∂qnij
∂c

∂c
∂Ω +

∂qnij
∂d

∂d
∂Ω

)
+
(
Aα0

∂xij

∂α
+Aβ0

∂xij

∂β
+Aγ0

∂xij

∂γ

)
pnijq

n
ij

}

+ Ξ
3∑

i,j=0

{
xij

[
AΩ

1
∂pnij
∂Ω qnij + (1 +AΩ

1 )pnij
(
∂qnij
∂s

∂s
∂Ω +

∂qnij
∂c

∂c
∂Ω +

∂qnij
∂d

∂d
∂Ω

)]

+
(
Aα0

∂xij

∂α
+Aβ0

∂xij

∂β
+Aγ0

∂xij

∂γ

)
pnijq

n
ij

}
. (3.106)

There are two qualitatively distinct ways for the above expression to vanish.

One possibility is that both sums vanish simultaneously. Otherwise the equa-

tion (with the LHS set to zero) can be solved for Ξ and hence E . In particular,

Ξ must be expressible as

E(Ωh|m) = 2hm(1−m)S
i
0
Si1

+ Ωh(1−m) +m−1 sc
d , (3.107)

where Si0 and Si1 are the first and second sums appearing in (3.106), respec-

tively. The Jacobi E-function satisfies an identity involving elliptic integrals.

In particular, the function is quasi-periodic with period 4K (where K =K(m)

is the complete elliptic integral of the first kind (A.67)) and remainder 4E

(where E = E(m) is the complete elliptic integral of the second kind (A.68)):

E(z+ 4K|m) = E(z|m) + 4E(m). (3.108)

Let ĥ= h+4Ω−1K(m) so that E(Ωĥ|m) = E(Ωh|m)+4E(m). If (3.107) holds,

Si0 and Si1 must satisfy

2m(1−m)
(
ĥ
Ŝi0
Ŝi1
−hS

i
0
Si1

)
+ 4(1−m)K(m) = 4E(m), (3.109)

where ˆ indicates evaluation at ĥ. In particular, the quantity ĥŜi0/Ŝi1−hSi0/Si1
must be independent of Ω and h, for each i. While not impossible, this con-

dition is not satisfied for any known examples (to be discussed towards the
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conclusion of this chapter) and so we will pursue only the mechanism of rank

drop where the sums in (3.106) vanish simultaneously.

The general condition for the rank of the Jacobian to drop is

Am
∂φ

∂m
+AΩ ∂φ

∂Ω +Aα
∂φ

∂α
+Aβ

∂φ

∂β
+Aγ

∂φ

∂γ
= 0 (3.110)

for some choice of A-coefficients. There are two cases to consider: either Am

is zero or Am is nonzero (in which case we take it to be one and the linear

combination reduces to (3.105)). In the first case, the rank of the reduced

Jacobian

J red =
∂
(
φ1, . . . ,φ8

)
∂(α,β,γ,Ω) (3.111)

must drop (rkJ red ≤ 3). In the second case, it is convenient to work with the

column-equivalent matrix

J̃ = JC (3.112)

where

C =



0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 −Ξ 1


. (3.113)

This matrix has the block structure

J̃ =

B1 B3

B2 B4

 , (3.114)

where B1 and B2 are each 4× 2 matrices and B3 and B4 are 4× 3 matrices.

Each submatrix depends on only four of the eight parameters x14
0 , x41

0 , x34
0 ,

x43
0 , x24

0 , x42
0 , x33

0 , and x44
0 . B1 and B4 depend only on the parameters x14

0 ,

x41
0 , x34

0 , and x43
0 . B2 and B3 depend only on x24

0 , x42
0 , x33

0 , and x44
0 .

By our discussion above, we search for rank deficiency conditions where

both sums in (3.106) vanish simultaneously. To do this, we introduce an 8×6
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extended Jacobian matrix J̃ext as follows. Note that the components of the

fifth column of J̃ can each be written as

J̃i,5 = J̃0
i,5 + ΞJ̃1

i,5, (3.115)

where J0
i,5 and J1

i,5 are independent of Ξ. We define J̃ext so the first four

columns of this matrix coincide with those of J̃ while the fifth and sixth

columns are given by J̃ext
i,5 = J̃0

i,5 and J̃ext
i,6 = J̃1

i,5, respectively. The resulting

matrix has the block structure

J̃ext =

B1 Bext
3

B2 Bext
4

 , (3.116)

with B1 and B2 as before. Bext
3 and Bext

4 are 4×4 matrices with the same xij0
dependences as B3 and B4, respectively. As J̃ext is the principal tool in the

computations that follow, we will write its components explicitly. In order to

present the matrix in a reasonable way and also for future analysis, we use the

notation (·|·) to indicate column-wise concatenation. In particular, to present

Bext
3 we split it into a pair of 4×2 matrices according to Bext

3 =
(

1Bext
3 |2Bext

3
)

and similarly for Bext
4 .
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B
1

=
Ω

0 s 0

          (c
0d

0
−

1)
( x

41 0
−
x

14 0
) +

s2 0
( x

43 0
−
x

34 0
)

1 m
0

[ m
0s

2 0
( x

41 0
−
x

14 0
) −(

c 0
d 0
−

1)
( x

43 0
−
x

34 0
)]

−
m

0s
2 0x

14 0
+
x

34 0
−

c 0
d 0
x

43 0
1

m
0s

2 0

[ (c
0d

0
−

1)
( x

34 0
−
m

0s
2 0x

14 0
) −(

−
1+

c 0
d 0

+
m

0s
4 0) x

43 0
]

2( −x
34 0

+
m

0s
2 0x

41 0
−
x

14 0
+
x

04
3)

2
m

0s
2 0

[( −
1+

c 0
d 0

+
(1

+
m

0)
s2 0)( x

34 0
−
x

43 0
) −m

0s
2 0(

c 0
d 0
−

1)
( x

14 0
−
x

41 0
)]

c 0
d 0
x

34 0
+
m

0s
2 0x

41 0
−
x

43 0
1
m

s2 0

[ (c
0d

0
−

1)
( m

0s
3 0x

41 0
−
x

43 0
) +

( −1
+

c 0
d 0

+
m

0s
4 0) x

34 0
]

          
(3
.1
17
)

B
2

=

           2(
c 0

d 0
−

1)
x

33 0
+

Ω
0m

0[s
0(

c 0
d 0
−

1)
(2
x

24 0
−
x

42 0
)+

(2
−

2c
0d

0+
(m

0−
1)

s2 0)
x

44 0
]

m
0s

2 0

2 m
0
x

33 0
+

Ω
0s

0
( 2x

24 0
−
x

42 0
)

2(
c 0

d 0
−

1)
x

33 0
+

Ω
0m

0[s
0(

c 0
d 0
−

1)
(x

24 0
−

2x
42 0

)+
(2
−

2c
0d

0+
(m

0−
1)

s2 0)
x

44 0
]

m
0s

2 0

2 m
0x

33 0
+

Ω
0s

0
( x

24 0
−

2x
42 0
)

2x
33 0

+
Ω

0m
0s

0x
24 0

2(
c 0

d 0
−

1)
x

33 0
+

Ω
0m

0[s
0(

c 0
d 0
−

1)
x

24 0
−

(−
2+

2c
0d

0+
(1
−
m

0)
s2 0)

x
44 0

]
m

0s
2 0

2x
33 0
−

Ω
0m

0s
0x

42 0
2(

c 0
d 0
−

1)
x

33 0
+

Ω
0m

0[s
0(

c 0
d 0
−

1)
x

42 0
−

(−
2+

2c
0d

0+
(1
−
m

0)
s2 0)

x
44 0

]
m

0s
2 0

           
(3
.1
18
)
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1B
ex

t
3

=

          −
4x

33 0
m

0
+

2Ω
0s

0
( x

42 0
−
x

24 0
)

(s
0

+
h

Ω
0c

0d
0)
( x

42 0
−
x

24 0
)

2x
33 0

m
0s

2 0

m
0s

2 0x
24 0
−

2h
c 0

d 0
x

33 0
+

Ω
0m

0s
0c

0d
0(

2x
44 0
−
h
x

24 0
)+
h

Ω
0m

0(
−

2+
(1

+
m

0)
s2 0)

x
44 0

m
0s

3 0

−
4c

0d
0x

33 0
m

s2
2h

((1
+
m

0)
s2 0−

2 )
x

33 0
+
m

0(
s2 0c

0d
0+
h

s 0
(1
−
m

0s
4 0)

)(
x

24 0
−
x

42 0
)+

2m
Ω

0(
−

2s
0+

(1
+
m

0)
s3 0+

2h
Ω

0m
0c

0d
0)
x

44 0
m

0s
3 0

2x
33 0

m
0s

2 0

m
0s

2 0x
42 0
−

2h
c 0

d 0
x

33 0
+

Ω
0m

0s
0c

0d
0(

2x
44 0

+
h
x

42 0
)+

Ω
0m

0h
(−

2+
(1

+
m

0)
s2 0)

x
44 0

m
0s

3 0

          
(3
.1
19
a)

2B
ex

t
3

=

          

s 0
( x

24 0
−
x

42 0
)

x
33 0
m

2 0

−
x

24 0 s 0
+

2Ω
0c

0d
0x

44 0
s2 0

−
x

33 0
m

0s
2 0
−

Ω
2 0c

0x
44 0

2d
0

c 0
d 0 s

( x
42 0
−
x

24 0
) +

2Ω
0(
−

2+
(1

+
m

0)
s2 0)

x
44 0

s2 0
Ω

2 0x
44 0

+
Ω

0s
0c

0d
0

2

( x
24 0
−
x

42 0
)

x
42 0 s

+
2Ω

0c
0d

0x
44 0

s2 0
−

x
33 0

m
2 s

2 0
−

Ω
2 0c

0x
44 0

2d
0

          
(3
.1
19
b)

1B
ex

t
4

=

          

2Ω
0s

0x
43 0

[−
Ω

0h
(1
−
m

0s
4 0)

+
s 0

c 0
d 0

]x
14 0

+
(s

0−
Ω

0h
c 0

d 0
)x

41 0
+

(s3 0+
Ω

0h
s2 0c

0d
0)
x

43 0
s2 0

−
2Ω

0s
0x

34
(−

s 0
+

Ω
h

c 0
d 0

)x
14 0

+
(−

s 0
c 0

d 0
+

Ω
h
(1
−
m

0s
4 0)

)x
41 0
−

(s3 0+
Ω

0h
s2 0c

0d
0)
x

34 0
s2

−
2m

0Ω
0s

0x
14 0

m
0s

2 0(
s 0

+
Ω

0c
0d

0)
x

14 0
(s

0−
Ω

0h
c 0

d 0
)x

34 0
(s 0

c 0
d 0
−

Ω
0h

(1
−
m

0s
4 0)

)x
43 0

s2 0

2m
0Ω

0s
0x

41 0
−
m

0s
2 0(

s 0
+

Ω
0h

c 0
d 0

)x
41 0
−

(s 0
c 0

d 0
−

Ω
0h

(1
−
m

0s
4 0)

)x
34 0
−

(s
0−

Ω
h

c 0
d 0

)x
43 0

s2 0

          
(3
.1
20
a)

2B
ex

t
4

=

         −
c 0

d 0 s 0
x

14 0
−

1 s 0
x

41 0
−

s 0
x

43 0
−

Ω
0s

0c
0

d 0
x

14 0
1 s 0
x

14 0
+

sx
34 0

+
c 0

d 0 s 0
x

41 0
Ω

0s
0c

0
d 0

−
m

0s
0x

14 0
−

1 s 0
x

34 0
+

c 0
d 0 s 0
x

43 0
Ω

0s
0x

14 0
−

Ω
0s

0c
0

2d
0
x

43 0
c 0

d 0 s 0
x

34 0
+
m

0s
0x

41 0
+

1 s 0
x

43 0
Ω

0s
0c

0
2d

0
x

34 0
−

Ω
0s

0x
41 0

         
(3
.1
20
b)
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We can exploit the block structure of J̃ext in the Gauss-Jordan elimination

process. When x24
0 = x42

0 = x33
0 = x44

0 = 0, we have B2 = 04×2, B3 = 04×3, and

Bext
3 = 04×4. When x14

0 = x41
0 = x34

0 = x43
0 = 0, we have B1 = 04×2, B4 = 04×3,

and Bext
4 = 04×4. Therefore, identifying rank-deficiency conditions for the in-

dividual B-matrices can lead to rank-deficiency conditions for the Jacobian.

When x24
0 = x42

0 = x33
0 = x44

0 = 0 and one of B2, B3 is rank-deficient, the Jaco-

bian is rank-deficient, and similarly for the case x14
0 = x41

0 = x34
0 = x43

0 = 0.

By the rank-nullity theorem, we are free to work with the transposed

matrix
t
J̃ext =

 tB1
tB2

tBext
3

tBext
4

 . (3.121)

In the next section, we will completely identify the conditions under which

the blocks of the above matrix are rank-deficient. To motivate this process, we

recall the relationship between the ranks of the blocks of t
J̃ext and the Jacobian

(3.90) and the reduced Jacobian (3.111). When
(

tB1
∣∣∣ tB2

)
is rank-deficient,

the reduced Jacobian (3.111) is rank deficient. The reduced Jacobian is also

rank-deficient when the first two rows of
(

tBext
3
∣∣∣ tBext

4
)
are linearly dependent.

If the first two rows of
(

tBext
3
∣∣∣ tBext

4
)
are linearly independent, the rank of(

tBext
3
∣∣∣ tBext

4
)
must drop by two to ensure that the rank of the Jacobian drops.

3.2.1 Rank drop analysis

3.2.1.1 B1

The rank of B1 can drop in two qualitatively different ways. First, one of the

two rows of tB1 can vanish. The first row, consisting of derivatives with respect

to β, vanishes when

x41
0 = x14

0 , (3.122a)

x34
0 = x43

0 = m0x14
0

s2
0(1− c0d0) . (3.122b)
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The second row, consisting of γ-derivatives, vanishes when

x41
0 = x14

0 (3.123a)

x34
0 = x43

0 = 1− c0d0
s2
0

x14
0 . (3.123b)

Alternatively, there could be a linear relationship between two nonzero rows.

In this case, we assume that the second equalities in (3.122b) and (3.123b) do

not hold and find that we must have

x14
0 = x41

0 , x34
0 = x43

0 . (3.124)

We see that (3.122) and (3.123) are just special cases of this more general

condition.

3.2.1.2 B2

The conditions under which B2 is rank-deficient are more complicated than

those for B1. Again, the simplest mechanism for the rank to drop is when a

single row of tB2 vanishes. The first row vanishes when

x42
0 =−x24

0 , x33
0 =−Ω0m0s0

2 x24
0 , x44

0 = 2(c0d0−1)
Ω0
(
2(c0d0−1) + (1 +m0)s2

0
)x24

0

(3.125)

and the second row vanishes when

x42
0 =−x24

0 , x33
0 =−3Ω0m0s0

2 x24
0 , x44

0 = 2(c0d0−1)
Ω
(
2(c0d0 + (1 +m0)s2

0
)x24

0 .

(3.126)

The rank also drops when the rows of tB2 are nonzero scalar multiples of each

other. The general condition for this to happen is

x42
0 =−x24

0 (3.127a)

m0s4
0
(
2x33

0 + Ω0m0s0x
24
0
)(

2x33
0 + 3Ω0m0s0x

24
)

=[
(2−2c0d0)x33

0 + Ω0m0
(
(1− c0d0)x24

0 + Ω0(2c0d0−2 + (1 +m0)s2
0)x44

0
)]
×
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[
(2−2c0d0)x33

0 + Ω0m0
(
3(1− c0d0)x24

0 + Ω0(2c0d0−2 + (1 +m0)s2
0)x44

0
)]
.

(3.127b)

Similarly to the case of B1, (3.125-3.126) are contained as special cases.

3.2.1.3 B3

We recall that rkB3 ≤ 2 is a necessary condition for the corresponding bi-

Riccati equation to admit a multiparameter family of solutions. The rank of

the reduced Jacobian drops when either the first or second row of tB3 vanishes

or when there is a nonzero linear relationship between the first two rows.

Otherwise it is necessary to have rkBext
3 ≤ 2 to obtain a multiparameter family

of solutions. In either case it is required that the determinant of Bext
3 vanishes.

If the rank of Bext
3 is to drop by at least two, the determinant of Bext

3 and each

of its 3×3 minors must vanish simultaneously. There is a remarkably simple

formula for the former:

detBext
3 =2h(1−m0)

m4
0s4

0

(
x24

0 +x42
0
)[

2x33
0 + Ω0m0s0

(
x24

0 −x42
0
)]

×
[(
x33

0
)2

+ Ω0m0s0x
33
0
(
x42

0 −x24
0
)

+ Ω4
0m

3
0s4

0
(
x44

0
)2]

. (3.128)

Solutions to detBext
3 = 0 are sufficient conditions for rkBext

3 ≤ 3 and necessary

conditions for rkBext
3 ≤ 2. For each such solution we use Gauss-Jordan elimi-

nation on t
Bext

3 and observe whether or not some linear combination (with at

least one nonzero coefficient) of the first two rows is zero. If not, we use the

minors of Bext
3 to obtain conditions for rkBext

3 ≤ 2.

When the first factor, x24
0 +x42

0 , vanishes the first two rows of t
Bext

3 are

linearly independent. Therefore we seek conditions under which rkBext
3 ≤ 2.

We assume that x33
0 and x44

0 are nonzero to obtain

x42
0 =−x24

0 (3.129a)

x33
0 =x24

0 Ω0m0

[
2Ω0c0

(
s2
0−1

)(
m0s2

0−m0−1
)
x24

0 x
44
0 (3.129b)

+ s0d0

((
1 +m0−2m0s2

0
)(
x24

0
)2
−Ω2

0(1−m0)2
(
x44

0
)2)]
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×
[
d0
(
2m0s2

0−m0−1
)(
x24

0
)2

+ Ω2
0d0(1−m0)2

(
x44

0
)2]−1

and one of

x44
0 = s0

Ω0(c0 + d0)x
24
0 (3.130a)

x44
0 = s0

Ω0(c0−d0)x
24
0 (3.130b)

x44
0 =− s0

Ω0(c0 + d0)x
24
0 (3.130c)

x44
0 =− s0

Ω0(c0−d0)x
24
0 . (3.130d)

Here we actually have four distinct equations determined by the permutation

of signs chosen in the formula for x44
0 . For each of these we can substitute this

formula into that for x33
0 to obtain a formula for x33

0 in terms of x24
0 alone.

Alternatively, when x44
0 = 0, we obtain

x42
0 =−x24

0 , x33
0 =−Ω0m0s0x

24, x44
0 = 0. (3.131)

and when x33
0 = 0, we have

x24
0 = x42

0 = x33
0 = 0, x44

0 = 1. (3.132)

There is no solution when x33
0 = x44

0 = 0.

Next we consider the vanishing of the second factor:

2x33
0 + Ω0m0s0

(
x24

0 −x42
0
)

= 0. (3.133)

One solution to this equation is

x42
0 = x24

0 , x33
0 = 0. (3.134)

This condition (we emphasize that x44
0 is arbitrary) leads to the vanishing of

the first row of tB3. The first two rows of tB3 are linearly independent for all



3.2. Order-two elliptic solutions 79

other solutions to (3.133). Now looking for conditions where rkBext
3 ≤ 2, we

recover (3.130) and (3.131) but also generate a single new solution

x42
0 = x24

0 , x33
0 = 0, x44

0 = 0, (3.135)

which is just a special case of (3.134).

When the third factor,
(
x33

0
)2

+ Ω0m0s0x33
(
x42

0 −x24
0
)

+ Ω4
0m

3
0s4

0
(
x44

0
)2
,

vanishes we again obtain (3.134) as a condition for linear dependence of the

first two rows. Seeking conditions where rkBext
3 ≤ 2, we find a discrete class of

solutions where

x42
0 =−x24

0 (3.136)

and x33 and x44 is given by any one of

x33
0 = 2Ω0m2

0s5
0

(1 + c0)(1 + d0)−m0s4
0
x24

0 , x44
0 =−1 + c0 + d0 + c0d0

Ω2
0m

2
0s4

0
x33

0 (3.137a)

x33
0 = 2Ω0m2

0s5
0

(1− c0)(1−d0)−m0s4
0
x24

0 , x44
0 =−1− c0−d0 + c0d0

Ω2
0m

2
0s4

0
x33

0 (3.137b)

x33
0 = 2Ω0m2

0s5
0

(1− c0)2(1 + d0)2−m0s4
0
x24

0 , x44
0 = 1− c0 + d0− c0d0

Ω2
0m

2
0s4

0
x33

0 (3.137c)

x33
0 = 2Ω0m2

0s5
0

(1 + c0)2(1−d0)2−m0s4
0
x24

0 , x44
0 = 1 + c0−d0− c0d0

Ω2
0m

2
0s4

0
x33

0 . (3.137d)

3.2.1.4 B4

Equations associated to B4 and admitting multiparameter families of Möbius-

Jacobi solutions are obtained using the same method as before. Again we

obtain a simple expression for the relevant determinant

detBext
4 = 4hΩ3

0(1−m0)s0
(
x14

0 x
43
0 −x34

0 x
41
0
)(
x14

0 x
34
0 −x41

0 x
43
0
)
. (3.138)

Beginning with either factor involving the xij0 leads to the same results. The

first two rows of tB4 are linearly dependent when

x41
0 = x14

0 , x43
0 = x34

0 , (3.139a)
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[
s0(1 + c0d0) +h

(
m0s4

0− c0d0−1
)][(

x14
0
)2

+m0
(
x34

0
)2]

(3.139b)

+ 2m0s2
0(s0 +hΩ0c0d0)x14

0 x
34
0 = 0

or when

x41
0 =−x14

0 , x43
0 =−x34

0 , (3.140a)[
s0(c0d0−1) +h

(
m0s4

0 + c0d0−1
)][(

x14
0
)2

+m0
(
x34

0
)2]

(3.140b)

−2m0s2
0(s0 +hΩ0c0d0)x14

0 x
34
0 = 0.

Now we search for conditions where rkBext
4 ≤ 2. The first such condition is

x41
0 = x14

0 , x43
0 = x34

0 ; (3.141)

we remark that this condition is identical to (3.124) and as such also renders

B1 rank-deficient. The second condition is

x41
0 =−x14

0 , x43
0 =−x34

0 . (3.142)

We observe that (3.141) and (3.142) contain (3.139) and (3.140), respectively,

as special cases.

3.2.1.5 B1 and B2

Like its constituent matrices, the matrix resulting from concatenating tB1 and
tB2 can be rank-deficient in qualitatively distinct ways. The first way, in

which a full row of
(

tB1|tB2
)
vanishes, occurs when the same rows of tB1

and tB2 vanish simultaneously. The conditions under which this happens are

easily found from our previous results. In particular, the first row of
(

tB1|tB2
)

vanishes when

x41
0 = x14

0 , x34
0 = x43

0 = m0(1 + c0d0)x14

1 +m0−m0s2
0
,
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x42
0 =−x24

0 , x33
0 =−Ω0m0s0

2 x24
0 , x44

0 = 2(c0d0−1)
Ω0
(
−2 + 2c0d0 + (1 +m0)s2

0
)x24

0

(3.143)

and the second row vanishes when

x41
0 = x14

0 , x34
0 = x43

0 = 1− c0d0
s2
0

x14
0 ,

x42
0 =−x24

0 , x33
0 =−3Ω0m0s0

2 x24
0 , x44

0 = 2(c0d0−1)
Ω0
(
−2 + 2c0d0 + (1 +m0)s2

0
)x24

0 .

(3.144)

The rank of
(

tB1|tB2
)
also drops when there is a nonzero linear relation-

ship between its rows. If this is the case, there is a matrix R ∈ GL(2,C) so

that one of the rows of R
(

tB1|tB2
)
is identically zero. But

R
(

tB1|tB2
)

=
(
R tB1|R tB2

)
(3.145)

and the conditions (and hence the explicit R matrices) for R tB1 and R tB2 to

have vanishing second rows are known. Let R1 and R2 be, respectively, the

matrices that render the second rows of tB1 and tB2 zero and leave the first

rows unchanged. These matrices are unique up to rescaling of the second row;

we choose representatives where the (2,2) entry is unity. We have

R1 =

 1 0
(1−c0d0)x14

0 −s2
0x

34
0

m0s2
0x

14
0 −(1−c0d0)x34

0
1

 (3.146a)

R2 =

 1 0
2(1−c0d0)x33

0 +Ω0m0[s0(1−c0d0)x24
0 +Ω0((1+m0)s2

0+2c0d0−2)x44
0 ]

m0s2
0(2x33

0 +Ω0m0x24
0 ) 1

 . (3.146b)

By equating R1 and R2, we arrive at the set of conditions:

x41
0 = x14

0 , x43
0 = x34

0 , x42
0 =−x24

0 ,

m0s4
0
(
2x33

0 + Ω0m0s0x
24
0
)(

2x33
0 + 3Ω0m0s0x

24
0
)

=
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[
(2−2c0d0)x33

0 + Ω0m0
(
(1− c0d0)x24

0 + Ω0(2c0d0−2 + (1 +m0)s2
0)x44

0
)]
×[

(2−2c0d0)x33
0 + Ω0m0

(
3(1− c0d0)x24

0 + Ω0(2c0d0−2 + (1 +m0)s2
0)x44

0
)]
,

(3.147)

together with

(1− c0d0)x14
0 − s2

0x
34
0

m0s2
0x

14
0 − (1− c0d0)x34

0
=

2(1− c0d0)x33
0 + Ω0m0

[
s0(1− c0d0)x24

0 + Ω0
(
(1 +m0)s2

0 + 2c0d0−2
)
x44

0
]

m0s2
0
(
2x33

0 + Ω0m0x24
0
) .

(3.148)

3.2.1.6 B3 and B4

As was done for B1 and B2, we first seek conditions under which there is a

linear relationship between the first two rows of the matrix
(

tB3|tB4
)
. We

recall from previous analysis that there is a single instance where the first two

rows of B3 are linearly dependent (3.134)—in this case the first row of B3 is

zero. There are a pair of conditions (3.139,3.140) where the first two rows

of B4 are linearly dependent, but neither of these result in the vanishing of

the first row of B4. We conclude there is no condition leading to the linear

dependence of the first two rows of
(

tB3|tB4
)
.

We seek conditions under which the rank of
(

tB3|tB4
)

drops by two.

We recall that there are several ways ((3.129-3.130), (3.131), (3.132), (3.135),

(3.136-3.137)) whereby the rank of B3 drops by two, but only a pair of ways

((3.141) and (3.142)) in which the rank of B4 drops by two. There are ten

cases in all to consider, each of which can be analyzed by a method analogous

to that for
(

tB3|tB4
)
. Each condition for the rank of B3 or B4 to drop by

two is associated with a sequence of elementary row operations R. For each

pair of conditions (one for B3 and one for B4), we can equate these matrices.

Unfortunately, there are no nontrivial solutions to any of these equations.
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3.2.2 Equations and solutions

In the previous section, we identified some conditions under which the rank

of the Jacobian drops, a necessary condition for the corresponding equation

to admit a multiparameter family of solutions. Accordingly, not all of the

rank-deficiency conditions must lead to equations with the desired solution

structure. Each condition can be substituted into the system of equations

(3.85, 3.87), where we seek a nontrivial solution with at least one extra degree of

freedom (in addition to the freedom in z0). In total, we identify five equations

resulting from particular combinations of parameters xij0 appearing in (3.1)

and (3.72).

Case I: x14
0 = x41

0 , x34
0 = x43

0 , x14
0 = x41

0 = x34
0 = x43

0 = 0

This condition (3.124) causes the rank of both B1 and B4 (3.141) to drop. The

matrix corresponding to the condition is

x14
0
(
X1

0 +X5
0
)

+x34
0
(
X3

0 +X7
0
)

=

Ω0
s0



0 −(1 + c0d0)x14
0 − s2

0x
34
0 0 s0

Ω0
x14

0

(1 + c0d0)x14
0 + s2

0x
34
0 0 −m0s2

0x
14
0 − Ω0

s0
(1 + c0d0)x34

0 0

0 m0s2
0x

14
0 + (1 + c0d0)x34

0 0 s0
Ω0
x34

0
s0
Ω0
x14

0 0 s0
Ω0
x34

0 0


,

(3.149)

leading to the equation

x14
0
(
u′+u′

)
+x34

0
(
u2u′+u′u2

)
=Ω0

s0

[
(1 + c0d0)x14

0 + s2
0x

34
0
]
(u−u)

+Ω0
s0

[
m0s2

0x
14
0 + (1 + c0d0)x34

0
](
uu2−u2u

)
.

(3.150)

With the redefinition of parameters

a1 = x14
0 , a2 = x34

0 ,
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b1 = Ω0
s0

[
a1(1 + c0d0) +a2s2

0
]
, b2 = Ω0

s0

[
a1m0s2

0 +a2(1 + c0d0)
]
, (3.151)

we obtain the equation

a1
(
u′+u′

)
+a2

(
u2u′+u′u2

)
= b1(u−u) + b2

(
uu2−u2u

)
. (3.152)

Rather than demonstrate that the mapping (3.151) is surjective, we will show

that (3.152), which is at least as general as (3.150), admits a multiparameter

family of elliptic solutions (under a technical assumption). The solution to

(3.152) is

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (3.153)

subject to the conditions

s(αβb2 +γδb1) = 2Ω(αβa2 +γδa1) (3.154a)
s
Ω
(
β2b2 + δ2b1

)
= s2

(
α2a2 +γ2a1

)
+ cd

(
β2a2 + δ2a1

)
+β2a2 + δ2a1 (3.154b)

s
Ω
(
α2b2 +γ2b1

)
=ms2

(
β2a2 + δ2a1

)
+ cd

(
α2a2 +γ2a1

)
+α2a2 +γ2a1.

(3.154c)

These conditions are too complicated for us to work with: it is difficult to

determine under what conditions they have a solution. However, if we seek

solutions with β = γ = 0 and δ = 1, only two of the conditions (3.154) survive:

b1 = Ω
s
[
a1(1 + cd) +a2α

2s2
]

(3.155a)

b2α
2 = Ω

s
[
a1ms2 +a2α

2(1 + cd)
]
. (3.155b)

We assume now that a1, a2, b1, and b2 are given. We suppose first that a2 = 0.

Then the first condition (3.155a) is independent of α. Assuming h ∈ C\{0} is
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fixed, we choose m ∈ C\{0,1} so that

f(Ω) = a1Ωns(Ωh|m)[1 + cn(Ωh|m)dn(Ωh|m)] (3.156)

is a nonconstant meromorphic function of Ω when a1 6= 0 (when a1 = 0 we must

also have b1 = b2 = 0 correpsonding to a trivial equation). Such a function has

at most two omitted values (f(Ω) =w has a solution for all but two w ∈C∪∞).

Then we may solve f(Ω) = b1 for Ω provided that b1 is not an omitted value of

f . The result may then be substituted into (3.155b) and α can be determined.

Now we assume a2 6= 0, so that we may solve for α2 in (3.155a). Doing so

and substituting the result into (3.155b) leads to (3.163b) leads to

b1b2s
2− (a1b2 +a2b1)Ω(cd−1) + 2a1a2Ω2(1 +m)s2 = 0. (3.157)

We fix m ∈C\{0,1}. The LHS of (3.157) is a nonconstant meromorphic func-

tion of Ω. Provided that 0 is not an omitted value of this function, (3.157)

may be solved for Ω. The result may then be substituted into (3.155b) and

α can be determined. We conclude that, subject to technical assumptions

on the range of certain meromorphic functions, (3.152) generically admits a

two-parameter family of order-two elliptic solutions.

Case II: x41
0 =−x14

0 , x43
0 =−x34

0 , x14
0 = x41

0 = x34
0 = x43

0 = 0

This condition (3.142) leads to the matrix

x14
0
(
X1

0 −X5
0
)

+x34
0
(
X3

0 −X7
0
)

=

Ω0
s0



0 (c0d0−1)x14
0 − s2

0x
34
0 0 − s0

Ω0
x14

0

(c0d0−1)x14
0 − s2

0x
34
0 0 m0s2

0x
14
0 − (c0d0−1)x34

0 0

0 m0s2
0x

14
0 − (c0d0−1)x34

0 0 − s0
Ω0
x34

0
s0
Ω0
x14

0 0 s0
Ω0
x34

0 0


(3.158)
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and the equation

x14
0
(
u′−u′

)
+x34

0
(
u′u2−u2u′

)
=Ω0

s0

[
−(c0d0−1)x14

0 + s2
0x

34
0
]
(u+u)

+Ω0
s0

[
−m0s2

0x
14
0 + (c0d0−1)x34

0
](
u2u+uu2

)
.

(3.159)

This equation is very similar to the previous one (3.150). Again we redefine

parameters

a1 = x14
0 , a2 = x34

0 ,

b1 = Ω0
s0

[
a1(c0d0−1)−a2s2

0
]
, b2 = Ω0

s0

[
a1m0s2

0−a2(c0d0−1)
]

(3.160)

to obtain

a1
(
u′−u′

)
+a2

(
u′u2−u2u′

)
+ b1(u+u) + b2

(
u2u+uu2

)
= 0. (3.161)

Rather than demonstrate (3.159) and (3.161) are equivalent, we will show that

the latter, which is not less general than the former, admits an multiparameter

family of order-two elliptic solutions. Despite its similarity to (3.152), (3.161)

does not possess full Möbius-Jacobi solutions (3.153) but only solutions

u(z) = α sn(Ωz+ z0|m), (3.162)

subject to

b1 = Ω
s
[
a1(cd−1)−a2α

2s2
]

(3.163a)

b2α
2 = Ω

s
[
a1ms2−a2α

2(cd−1)
]
. (3.163b)

Assume first that a2 = 0. Then the condition (3.163a) is independent of α.
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Assuming h ∈ C\{0} is given, we choose m ∈ C\{0,1}. Then

f(Ω) = a1Ωns(Ωh|m)[1− cn(Ωh|m)dn(Ωh|m)] (3.164)

is a nonconstant meromorphic function of Ω when a1 6= 0 (when a1 = 0 we

must also have b1 = b2 = 0 corresponding to a trivial equation). We may solve

f(Ω) = b1 for Ω provided that b1 is not one of the omitted values of f . The

result may then be substituted into (3.155) and α can be determined.

Now we assume a2 6= 0, so that we may solve for α2 in (3.163a). Doing so

and substituting the result into (3.163b) leads to

b1b2s
2− (a1b2 +a2b1)Ω(cd−1)−a1a2Ω2(c + d)2 = 0. (3.165)

We fix m ∈C\{0,1}. The LHS of (3.165) is a nonconstant meromorphic func-

tion of Ω. Provided that 0 is not an omitted value of this function, (3.165)

may be solved for Ω. The result may then be substituted into (3.155) and α

can be determined. Again we conclude that, subject to technical assumptions

on the range of certain meromorphic functions, (3.161) generically admits a

two-parameter family of order-two elliptic solutions.

The remaining equations arise from the rank of B3 dropping.

Case III: x42
0 −x24

0 , x33
0 =−Ω0m0s0x24

0 , x44
0 = x14

0 = x41
0 = x34

0 = x43
0 = 0

This condition (3.131), is associated with the matrix

X0
0 +X2

0 −X6
0 =



−Ω0s0 0 0 0

0 0 0 −1

0 0 Ω0m0s0 0

0 1 0 0


(3.166)

and corresponds to the equation

u′u−uu′ = Ω0s0
(
1−m0u

2u2
)
. (3.167)
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We make a redefinition of the parameters:

b1 = Ω0s0, b2 =−Ω0m0s0, (3.168)

after which (3.167) becomes

u′u−uu′ = b1 + b2u
2u2. (3.169)

To show that (3.169) with arbitrary b1 and b2 is equivalent to (3.167) we

would need to demonstrate that the equations (3.168) can be solved for Ω0

and m0, for any b1 and b2. We will instead take the approach that (3.169) is

at least as general as (3.167) and demonstrate directly that (3.169) admits a

multiparameter family of order-two elliptic solutions. (3.169) is solved by

u(z) = α sn(Ωz+ z0|m) (3.170)

when the parameters satisfy

b1−2α2Ωs− b2α
4

m
= 0 (3.171a)

b2α
2 + Ωms = 0. (3.171b)

We first assume that b2 = 0. Then we have Ωms = 0, which in all cases leads

to trivial solutions. When b2 is nonzero, we can solve (3.171b) for α2 and

substitute the result into (3.171a) to obtain:

Ω2ms2 =−b1b2. (3.172)

The LHS of (3.172),

f(Ω) = Ω2msn2(Ωh|m), (3.173)

is a non-constant elliptic function when h ∈ C\{0} and m ∈ C are fixed. Pro-

vided that b1b2 is not an omitted value of f , (3.172) can be solved for Ω.
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The result, together with the fixed value of h and chosen value of m, can be

substituted into (3.171b) and a value for α may be obtained. We see that

(3.171) possesses a two-parameter family of solutions (3.170-3.171), subject to

our assumption on b1b2 and (3.173).

Case IV: x42
0 = x24

0 , x33
0 = x44

0 = x14
0 = x41

0 = x34
0 = x43

0 = 0

Another equation is obtained from (3.135) with matrix

X2
0 +X6

0 =



0 0 −Ω0
s0

0

0 0 0 1
Ω0
s0

0 0 0

0 1 0 0


. (3.174)

The equation,

u′u+uu′ = Ω0
s0

(
u2−u2

)
, (3.175)

has a scaling symmetry leading to a second degree of freedom besides z0 in the

solution. We make the replacement b= Ω0/s0 in (3.175) and obtain

u′u+uu′ = b
(
u2−u2

)
. (3.176)

This equation is solved by

u(z) = α sn(Ωz+ z0|m0), (3.177)

when the constraint
Ω
s = b (3.178)

is satisfied. The LHS of (3.178),

f(Ω) = Ωns(Ωh|m), (3.179)

is a non-constant meromorphic function of Ω when m ∈ C and h ∈ C\{0} are
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fixed. Under these conditions, there are at most two values of b ∈C such that

f(Ω) = b has no solution in C. Assuming b is not one of these values, (3.178)

can be solved for Ω and (3.177-3.178) is a three-parameter family of solutions

to (3.176).

Case V: x42
0 = x24

0 , x33
0 = x14

0 = x41
0 = x34

0 = x43
0 = 0

Lastly, we consider the condition (3.134) to obtain a generalization of the pre-

vious equation (3.175) (where x44
0 is not zero, but arbitrary). The associated

matrix is

x24
0
(
X2

0 +X6
0
)

+x44
0 X

4
0 =

0 0 −Ω0
s0
x24

0 −
Ω2

0c0d0
s2
0

x44
0 0

0 Ω2
0(2−s2

0−m0s2
0)

s2
0

x44
0 0 x24

0
Ω0
s0
x24

0 −
Ω2

0c0d0
s2
0

x44
0 0 0 0

0 x24
0 0 x44

0


(3.180)

so the equation becomes

x24
0
(
u′u+uu′

)
+x44

0 u
′u′ =Ω0

s0
x24

0
(
u2−u2

)
+ Ω2

0c0d0
s2
0

x44
0
(
u2 +u2

)

−
Ω2

0
(
2− s2

0−m0s2
0
)

s2
0

x44
0 uu. (3.181)

As in the case of (3.175), there is a scaling symmetry. Let us redefine param-

eters according to

a1 = x24
0 , a2 = x44

0 ,

b1 = a1
Ω0
s0
, b2 = a2

Ω2
0c0d0
s2
0

, b3 =−a2
Ω2

0
(
c2

0 + d2
0
)

s2
0

, (3.182)

so as to obtain

a1
(
u′u+uu′

)
+a2u

′u′ = b1
(
u2−u2

)
+ b2

(
u2 +u2

)
+ b3uu. (3.183)
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The parameters in appearing in (3.183) are not independent. An algebraic

relationship between the parameters may be established as follows. Using the

identities c2
0 = 1− s2

0 and d2
0 = 1−m0s2

0 we can derive algebraic relationships

between b1 and b2, b1 and b3, and b2 and b3:

Ω2
0a

4
1b

2
2 =

(
b21−Ω2

0a
2
1
)(
b21−Ω2

0m0a
2
1
)

(3.184a)

a2
1 =−a2

[
2b21−Ω2

0(1 +m0)a2
1
]

(3.184b)

4a2b2 = Ω2
0

[(
Ω2

0(1 +m0)a2− b3
)2
−4Ω2

0a
2
2

][(
Ω2

0(1 +m0)a2− b3
)2
−4Ω2

0m0a
2
2

]
.

(3.184c)

Using (3.184a) and (3.184b), we can obtain expressions for Ω0 and m0 in terms

of only a1, a2, b1, and b2 (the former involves a square root). In principle we

can substitute these expressions into (3.184c) and, after manipulation, obtain

a algebraic relationship between the parameters appearing in (3.183) that is

independent of Ω0 and m0 (and s0, c0, and d0). There are two issues if we wish

to parameterize the equation (3.181) in terms of the new parameters (3.182).

The first is that that the algebraic relation is too complicated (and for this

reason we do not include it here) to be of practical use. The second is that

the process of obtaining the algebraic relation introduces spurious solutions:

(3.183), even when subject to the algebraic relation, is more general than

(3.181). For these reasons, we will work with equation (3.181) directly. Its

solution is

u(z) = α sn(Ω0z+ z0|m0) (3.185)

with parameters as in (3.181). This is a two-parameter family of solutions: α

and z0 are free.

3.3 Examples
In this section, we consider a number of known delay-differential and

differential-difference equations. Some of these equations were recovered in

our rank drop analysis in the previous section, possibly after a Möbius trans-



3.3. Examples 92

formation. Other known models do not admit order-two elliptic solutions. We

show this, and construct other solutions for these equations when appropriate.

3.3.1 Grammaticos-Ramani-Moreira equations

A total of eight equations were identified in [32]; four of these are autonomous:

u′+u′ = u2−u2 + b1(u+u) + b2 (3.186)

u′u−uu′ =−u2u2 + b(u+u) (3.187)

u′u−uu′ = b1u+ b2u+ b3u
2u+ b4uu

2 (3.188)

u′u+uu′ = b1u+ b2u+ b3u
2u+ b4uu

2 + b5, (3.189)

while the remaining four are non-autonomous:

u′+u′ = (u−u)2 + b1(u+u) + b2 + b3e
2b1z (3.190)

u′+u′ = (u−u)2 + b1(u+u) + b2 + b3z (3.191)

u′u+uu′ = eωz
(
b1u

2 + b2u
2
)

(3.192)

u′u−uu′ = eωz
(
b1 + b2u

2u2
)
. (3.193)

The autonomous forms of these equations are obtained by setting z to a con-

stant wherever it appears explicitly. Without loss of generality, we set z = 0

and redefine parameters to obtain

u′+u′ = (u−u)2 + b1(u+u) + b2 (3.194)

u′u+uu′ = b1u
2 + b2u

2 (3.195)

u′u−uu′ = b1 + b2u
2u2 (3.196)

Note that (3.194) is the autonomous limit of both (3.190) and (3.191). The

final two equations are closely related to equations we have identified.



3.3. Examples 93

We begin with (3.195), for which the corresponding matrix is

X =



0 0 −b2 0

0 0 0 1

−b1 0 0 0

0 1 0 0


. (3.197)

When b1 =−b2 =−b, this is precisely (3.176) in our classification. The solution

in this case is given by (3.177-3.178). In fact (3.195) only admits order-two

elliptic solutions when it reduces to (3.176), as is seen by solving the system

of equations
tMXM =

7∑
n=0

λnXn (3.198)

for the λn, the Möbius parameters, and the elliptic parameters; (3.198) has a

nontrivial solution if and only if b1 =−b2. In doing so, we obtain the solution

(3.177-3.178) and also the solution

u(z) = β ns(Ωz+ z0|m), (3.199)

which is subject to (3.178). This solution was not previously found because it

is associated with a Möbius transformation that is not identity-connected.

Now we turn to (3.196), which is identical to (3.169). The solution to this

equation is (3.170-3.171). No additional solutions for this equation are found

from (3.198) with X as in (3.166)

The remaining equations identified in [32] (in their autonomous forms)

were not isolated in our classification. Nevertheless they may be Möbius-

equivalent to our identified equations. It suffices to say that this is not the

case for (3.187), while for (3.188-3.189) this happens only when the parameters

pi satisfy complicated conditions. We will discuss the remaining equations in

greater detail.



3.3. Examples 94

The equation (3.186) is associated with the matrix

X =



−b2 −b1 1 1

−b1 0 0 0

−1 0 0 0

1 0 0 0


. (3.200)

Solving (3.198) withX, as above, we find that (3.186) admits a multiparameter

family of order-two elliptic solutions if and only if b1 = b2 = 0, in which case

(3.200) is equivalent via a constant Möbius transformation to X1 +X7, i.e. a

special case of (3.161). The solution to (3.186) with b1 = b2 = 0 is given by

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + 1 (3.201)

with

(αδ+βγ)s + 2Ωγδ = 0 (3.202a)

2βδs +γ2Ωs2 + δ2Ω(1 + cd) = 0 (3.202b)

2αγs + δ2Ωms2 +γ2Ω(1 + cd) = 0. (3.202c)

In principle, a multiparameter (subject to the usual caveat regarding omitted

values) solution to (3.186) could also be constructed from the solution (3.162-

3.163) of (3.161). We will not pursue this as the solution can be represented

in a simpler way in terms of the Weierstrass ζ-function. A similar result was

obtained in [10]. Taking

x1 = Ωz+ z0, x2 =−Ωz−Ωh− z0, x3 = Ωh (3.203)

in (A.29) and using properties of the ζ-function, we find that

[ζ(Ωz+ Ωh+ z0;g2,g3)− ζ(Ωz+ 2Ωh+ z0;g2,g3) + ζ(Ωh;g2,g3)]2

− [ζ(Ωz+ z0;g2,g3)− ζ(Ωz+ Ωh+ z0;g2,g3) + ζ(Ωh;g2,g3)]2
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−ζ ′(Ωz+ z0;g2,g3)− ζ ′(Ωz+ 2Ωh+ z0;g2,g3) = 0. (3.204)

It follows that

u(z) = Ω[ζ(Ωz+ z0;g2,g3)− ζ(Ωz+ Ωh+ z0;g2,g3) + ζ(Ωh;g2,g3)] (3.205)

solves (3.186) with p1 = p2 = 0. Using the scaling properties of the ζ-function

(A.31), we are able to write this solution in the standard form (3.4)

u(z) = ζ(z+ z0;g′2,g′3)− ζ(z+h+ z0;g′2,g′3) + ζ(h;g′2,g′3), (3.206)

where g′2 = Ω4g2 and g′3 = Ω6g3. In (3.206), the parameters z0, g′2, and g′3

are free. By means of (A.27) and (3.62) we find that (3.202) and (3.206) are

equivalent.

We lastly consider the equation (3.194). This equation admits no order-

two elliptic solutions, but a special case does admit solutions in terms of the

Weierstrass ζ-function. We consider the case b1 = 0, so the equation becomes

u′+u′ = (u−u)2 + b2. (3.207)

Note that this equation is invariant under a translation of the dependent vari-

able. Again starting from (A.29) and (3.203), we find that

[ζ(Ωz+ z0;g2,g3)− ζ(Ωz+ Ωh+ z0;g2,g3) + ζ(Ωh;g2,g3)]2 =

−ζ ′(Ωz+ z0;g2,g3)− ζ ′(Ωz+ Ωh+ z0;g2,g3)− ζ ′(Ωh;g2,g3). (3.208)

It follows that

u(z) =−Ωζ(Ωz+ z0;g2,g3) +β (3.209)

solves (3.207) provided that the constraints

ζ(Ωh;g2,g3) = 0, ℘(Ωh;g2,g3) = b2 (3.210)
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are satisfied. Note that this solution is not elliptic.

3.3.2 Sine-Gordon type equations

Four of the equations we have identified are related to a semidiscrete sine-

Gordon equation studied by Orfanidis [61]. This equation is essentially the

spatial part of the Bäcklund transformation (2.91a). We redefine the parame-

ters in (2.91a) to achieve the form given in [9]:

θ′n+1− θ′n = 4λsin θn+ θn+1
2 , (3.211)

where φn = φn(t) and ′ = d/dt. By introducing a new dependent variable

wn = aexp iθn
2 , (3.212)

and redefining the parameter λ according to

a2λ= pb1,
λ

a2 =−pb2, (3.213)

we arrive at

w′nwn+1−wnw′n+1 = p
(
b1 + b2w

2
nw

2
n+1

)
. (3.214)

Now taking a traveling wave reduction

wn(t) = u(z), z = nh+pt+ z0, (3.215)

we obtain precisely (3.169) or (3.196). Making use of the solution (3.170-3.171),

we find that

wn(t) = α sn(Ω(nh+pt) + z0|m) (3.216)

solves (3.214) when the parameters satisfy (3.171) and

θn(t) =−2i log
[
α

a
sn(Ω(nh+pt) + z0|m)

]
(3.217)

solves (3.211) when the parameters satisfy (3.171) and (3.213).
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A special case of (3.159) may also be obtained from (3.211). Under the

change of variables

θn =±4arctan
√b2

b1
wn

 , (3.218)

(3.211) becomes

b1
(
w′n+1−w′n

)
+ b2

(
w′nw

2
n+1−w2

nw
′
n+1

)
=

2λ
[
b1(wn+wn+1) + b2

(
wnw

2
n+1 +w2

nwn+1
)]
. (3.219)

Using the same traveling wave reduction (3.215), we obtain

b1
(
u′−u′

)
+ b2

(
u′u2−u2u′

)
= 2λ

p

[
b1(u+u) + b2

(
uu2 +u2u

)]
. (3.220)

While this equation is not as general as (3.161), we may use previous results

to obtain a solution:

u(z) = α sn(Ωz+ z0|m), (3.221)

subject to

2λb1
p

= Ω
s
[
b1(cd−1)− b2α2s2

]
(3.222a)

2λb2α2

p
= Ω

s
[
b1ms2− b2α2(cd−1)

]
. (3.222b)

The argument that this is generically a two-parameter family of solutions is es-

sentially identical to that in the context of (3.161). The corresponding solution

to (3.219) is

wn(t) = α sn(Ω(nh+ t) + z0|m), (3.223)

also subject to (3.222). We finally obtain a solution to (3.211):

θn(t) =±4arctan
α
√
b2
b1

sn(Ω(nh+ t) + z0|m)
 , (3.224)

where the parameters satisfy (3.222).
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Now we consider the temporal part of the Bäcklund transformation:

(2.91b). Redefining parameters, we obtain

θ′n+1 + θ′n = 4λsin θn+1− θn
2 , (3.225)

in analogy with (3.211). The change of variables

wn = exp iθn
2 (3.226)

leads to

w′nwn+1 +wnw
′
n+1 = λ

(
w2
n+1−w2

n

)
, (3.227)

which precisely (2.95). Taking the traveling wave reduction (3.215), we arrive

at the delay-differential equation

u′u+uu′ = λ

p

(
u2−u2

)
, (3.228)

which is equivalent to (3.175) and is a special case of (3.195). We thus obtain

the solutions

wn(t) = α sn(Ω(nh+ qt) + z0|m) (3.229)

wn(t) = β ns(Ω(nh+ qt) + z0|m) (3.230)

to (2.95) and

θn(t) =−2i log [α sn(Ω(nh+ qt) + z0|m)] (3.231)

θn(t) =−2i log [β ns(Ω(nh+ qt) + z0|m)] (3.232)

to (3.225), where α and β are free and the remaining parameters satisfy

Ω
s = λ

p
. (3.233)
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Now applying the change of variables (3.218) to (3.225), we obtain

b1(w′n+w′n+1) + b2
(
w′nw

2
n+1 +w2

nw
′
n+1

)
= (3.234)

2λ
[
b1(wn+1−wn) + b2

(
wnw

2
n+1−w2

nwn+1
)]

(3.235)

and a traveling wave reduction (3.215) leads to

b1(u′+u′) + b2
(
u′u2 +u2u′

)
= 2λ

p

[
b1(u−u) + b2

(
uu2−u2u

)]
, (3.236)

a special case of (3.152). The solution to (3.236) is

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (3.237)

subject to

λs(αβb2 +γδb1) = pΩ(αβb2 +γδb1) (3.238a)
2λs
pΩ

(
β2b2 + δ2b1

)
= s2

(
α2b2 +γ2b1

)
+ cd

(
β2b2 + δ2b1

)
+β2b2 + δ2b1

(3.238b)
2λs
pΩ

(
α2b2 +γ2b1

)
=ms2

(
β2b2 + δ2b1

)
+ cd

(
α2b2 +γ2b1

)
+α2b2 +γ2b1.

(3.238c)

The corresponding solutions to (3.235) and (3.225) are, respectively,

wn(t) = α sn(Ω(nh+pt) + z0|m) +β

γ sn(Ω(nh+pt) + z0|m) + δ
, (3.239)

and

θn(t) =±4arctan
√b2

b1

α sn(Ω(nh+pt) + z0|m) +β

γ sn(Ω(nh+pt) + z0|m) + δ

 , (3.240)

both subject to (3.238).
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3.3.3 Korteweg-de Vries type equations

In this section we consider order-two elliptic solutions of semidiscrete KdV

type equations (2.94-2.96). In fact, we have already discussed one of these, the

lattice pmKdV equation (2.95), in the previous section. We begin with (2.94),

for which a traveling wave reduction (3.215) leads to

u′+u′ = λ

p
+ 1
p

(u−u)2 (3.241)

after a relabeling of parameter. This equation admits no order-two elliptic

solutions. However, when λ = 0 it is equivalent to (3.207). In this case, we

obtain the solution

u(z) = Ωζ(Ωz+ z0;g2,g3) +β (3.242)

to (3.241) and

wn(t) = Ωζ[Ω(nh+ qt) + z0;g2,g3] +β (3.243)

to (2.94), where the parameters in each satisfy

ζ(Ωh;g2,g3) = 0, ℘(Ωh;g2,g3) = 1
p
. (3.244)

We next turn to a Schwarzian KdV equation (2.96). The corresponding

delay-differential equation under (3.215) is

u′u′ = λ

p
(u−u)2, (3.245)

which has the matrix representation

X =



0 0 −λp 0

0 2λp 0 0

−λp 0 0 0

0 0 0 1


. (3.246)



3.3. Examples 101

The solution is found to be

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (3.247)

where αδ−βγ 6= 0 and

λs2−pΩ2cd = 0 (3.248a)

2λs2−pΩ2
[
2− (1 +m)s2

]
= 0. (3.248b)

Substituting the second condition into the first and using standard identities,

we find that c = d. One solution to this transcendental equation is m = 1, in

which case the solution becomes

u(z) = α sechΩz+β

γ sechΩz+ δ
, (3.249)

subject to αδ−βγ = 0 (we have absorbed the translational freedom represented

by z0 into the Möbius parameters) and

λsinh2Ωh= pΩ2. (3.250)

By the Schwarzian nature of (3.245), this solution can be written as

u(z) = αexpΩz+β

γ expΩz+ δ
; (3.251)

the corresponding solution to (2.96) is

wn(t) = αexpΩ(nh+pt) +β

γ expΩ(nh+pt) + δ
. (3.252)

Both of these are subject to the nondegeneracy condition αδ−βγ 6= 0 and the

constraint (3.250). This simple example illustrates how our method can be

used to obtain elementary solutions to bi-Riccati equations.



Chapter 4

Three-point equations

In this chapter we study a class of three-point delay-differential equations:

tUXV = 0, U =
t(

1,u,u2,u′
)
, V =

t(
1, u+u

2 ,uu,
u−u

2

)
, X : C→ C4×4.

(4.1)

Unlike the bi-Riccati class (3.1), this particular class of equations has not been

studied before, though it contains several well-known examples. These include

the McMillan map, traveling wave reductions of the Wadati lattice, and a

Painlevé-I type delay-differential equation obtained by Quispel, Capel, and

Sahadevan [68]. One particular feature of (4.1) is that it contains a subclass

of the QRT map (2.34), namely all symmetric QRT maps (2.38) in which the

degree in u of each fi is at most two.

The results on the relationship between singularity sequences and elliptic

solutions in the previous chapter apply directly to equations in the class (4.1).

However, there has been no systematic study of (4.1) from the perspective

of singularity confinement, and there are very few examples to which we can

apply the singularity structure results of the previous chapter. We are aware

of only two such examples: singularity confinement in the sense of [72] has

been applied to a Painlevé-I type delay-differential equation in [68] and the

symmetric QRT map, whose degree-two subclass is contained in (4.1), has

been studied from the usual singularity confinement perspective. It is actually

more natural to relate our results to these examples from other directions. We
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will show that the Painlevé-I type equation in [68] is an extension of a one

of the equations we identify in this chapter. QRT maps in the class (4.1) are

also discussed for their direct relation to equations we isolate in what follows.

For these reasons, we will not discuss singularity structure any further in this

chapter.

The structure of this chapter follows that of the previous chapter very

closely. The main result is again a list of families of equations in the class

(4.1) that admit multiparameter families of order-two elliptic solutions. The

process of obtaining this list is analogous to that in the last chapter. We first

identify the vector subspace of C4×4 corresponding to equations (4.1) admit-

ting order-two elliptic solutions with at least one degree of parametric freedom.

As in the case of bi-Riccati equations, the dimension of this subspace is eight,

corresponding to a seven-parameter family of three-point equations (4.1). Us-

ing the same methods introduced and applied to bi-Riccati equations in the

previous chapter, we isolate five families of equations within (4.1) that admit

order-two elliptic solutions with at least two degrees of parametric freedom.

Our results are then applied to a number of examples.

4.1 Order-two elliptic solutions

As in the case of bi-Riccati equations, we will identify all autononmous equa-

tions in the class (4.1) that admit order-two elliptic solutions. The solutions

are again sought in the form (3.59). Our chosen class of equations has the de-

sirable property of being Möbius equivalent; in fact it transforms identically to

the bi-Riccati class under a general fractional linear transformation. Therefore

we perform our classification up to Möbius equivalence. Applying the same

methods as before, we find that an equation

tUXV = 0, U =
t(

1,u,u2,u′
)
, V =

t(
1, u+u

2 ,uu,
u−u

2

)
, X ∈ C4×4

(4.2)
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is solved by u= sn(Ωz+ z0|m) if and only if

X ∈ span
{
X1,X2,X3,X4,X5,X6,X7,X8

}
, (4.3)

where

X1 =



0 0 0 −Ω
s

0 0 0 0

0 0 0 Ωms

1 0 0 0


(4.4a)

X2 =



0 0 0 0

0 0 0 Ωcd
s

0 0 0 0

0 1 0 0


(4.4b)

X3 =



0 0 0 Ωs

0 0 0 0

0 0 0 Ωs−1

0 0 1 0


(4.4c)

X4 =



Ωs(c2+d2)
ms4−1 0 Ωc2d2

s(ms4−1) 0

0 0 0 0
Ω
s 0 0 0

0 0 0 1


(4.4d)

X5 =



− s2cd
ms4−1 0 cd

ms4−1 0

0 1 0 0

0 0 0 0

0 0 0 0


(4.4e)

X6 =



0 ms4−1
ms2cd 0 0

1
ms2 0 1 0

0 0 0 0

0 0 0 0


(4.4f)
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X7 =



0 − 1
ms2 0 0

cd
ms2 0 0 0

0 1 0 0

0 0 0 0


(4.4g)

X8 =



− 1
m 0 − 1

ms2 0

0 0 0 0
1
ms2 0 1 0

0 0 0 0


. (4.4h)

It follows immediately that an equation in the class (4.2) is solved by (3.59) if

and only if

tMXM ∈ span
{
X1,X2,X3,X4,X5,X6,X7,X8

}
. (4.5)

A generic element of the span of (4.4) can be written as

8∑
i=1

λiXi =


Ωs(c2+d2)λ4+cds2λ5

ms4−1 − 1
mλ

8 ms4−1
mcds2 λ

6− 1
ms2λ

7 Ωc2d2

s(ms4−1)λ
4 + cd

ms4−1λ
5− 1

ms2λ
8 −Ω

s λ
1 + Ωsλ3

1
ms2λ

6 + cd
ms2λ

7 λ5 λ6 −Ωcd
s λ2

Ω
s λ

4 + 1
ms2λ

8 λ7 λ8 Ωmsλ1− Ω
s λ

3

λ1 λ2 λ3 λ4


;

(4.6)

from this we construct the function φ, with components

φ1 =x14 + Ω
s x

41−Ωsx43 (4.7a)

φ2 =x24 + Ωcd
s x42 (4.7b)

φ3 =x34−Ωmsx41 + Ω
s x

43 (4.7c)

φ4 =x31− Ω
msx

44− cd
ms2x

33 (4.7d)
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φ5 =x11−
Ωs
(
c2 + d2

)
ms4−1 x44− cds2

ms4−1x
22 + 1

m
x33 (4.7e)

φ6 =x13− Ωc2d2

s(ms4−1)x
44− cd

ms4−1x
22 + 1

ms2x
33 (4.7f)

φ7 =x12−ms4−1
mcds2 x

23 + 1
ms2x

32 (4.7g)

φ8 =x21− 1
ms2x

23− cd
ms2x

32. (4.7h)

We again work with an extended Jacobian matrix, defined as before as

J̃ext =
t[
D
(

tCtJ
)]
, (4.8)

where J as in (3.90) with φ as in (4.7), C as in (3.113), and

D =


I4 04×2

02×4
1−Ξ ∂

∂Ξ 0

0 ∂
∂Ξ

 . (4.9)

The resulting matrix has the block structure

J̃ext =

A
B

 , B =

B1 B3

B2 B4

 . (4.10)

Here A is a 3× 6 matrix with dependence on x41
0 , x42

0 , and x43
0 , B1 is a 3× 2

matrix with dependence on x23
0 and x32

0 , B2 is a 2×2 matrix with dependence

on x22
0 , x33

0 , and x44
0 , B3 is a 3× 4 matrix with dependence on x23

0 and x32
0 ,

and B4 is a 2×4 matrix with dependence on x22
0 , x33

0 , and x44
0 .
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t A
=

                 

Ω
0(

1−
c 0

d 0
)

s 0
x

42 0
2Ω

0m
0s

0x
41 0

+
2Ω

0(
c 0

d 0
−

1)
s 0

x
43 0

−
Ω

0m
0s

0x
42 0

−
Ω

0s
0x

42 0
2(

c 0
d 0
−

1)
s 0

x
41 0

+
2Ω

0s
0x

43 0
Ω

0(
1−

c 0
d 0

)
s 0

−
Ω

0s
0x

43 0
0

2Ω
0m

0x
41 0

s 0
−
h

Ω
0c

0d
0

s2 0
x

41 0
+

(s
0

+
h

Ω
c 0

d 0
)x

43 0
s 0

c 0
d 0

+
h

Ω
0(
m

0s
4 0−

1 )
s2 0

x
42 0

−
m

0(
s 0

+
h

Ω
0c

0d
0)
x

41 0
+

s 0
−
h

Ω
0c

0d
0

s2 0
x

43 0

−
1 s 0
x

41 0
+

s 0
x

42 0
−

c 0
d 0 s 0
x

42 0
m

0s
0x

41 0
−

1 s 0
x

43 0

0
−

Ω
0s

0c
0

d 0
x

42 0
−

Ω
0s

0x
41 0

                 
(4
.1
1)

B
1

=

       
x

32 0
c 0

d 0
−

1
m

0s
2 0
x

32 0
[ c 0

d 0
−

1+
m

0s
4 0

m
0s

2 0c
0d

0
−

2c
0d

0s
4 0

s2 0(
m

0s
4 0−

1 )

] x
23 0

(1
−

2c
0d

0−
m

0s
4 0)
x

23 0
−

[1−
2c

0d
0(

c 0
d 0
−

1)
−
m

0s
4 0]x

32 0
m

0(
m

0s
4 0−

1 )
( 1−

2c
0d

0
m

0s
4 0−

1) x
23 0
−

2c
0d

0
m

0s
4 0−

1x
32 0

(1
+

2c
0d

0−
m

0s
4 0)

(1
−

c 0
d 0

+
m

0s
4 0)
x

23 0
+

2(
c 0

d 0
−

1)
c2 0d

2 0x
32 0

m
0c

0d
0s

2 0(
m

0s
4 0−

1 )

       
(4
.1
2)

B
2

=

   1−
2c

0d
−
m

0s
4 0

s 0
(m

0s
4 0−

1 )
x

22 0
+

2 [1
+
m

0s
4 0(
m

0s
4 0−

2 )
]

m
0s

2 0c
0d

0(
m

0s
4 0−

1 )
x

33 0
−

2Ω
0c

2 0d
2 0

s 0
(m

0s
4 0−

1 )
x

44 0
(B

2)
12

x
22 0
−

2c
0d

0
m

s2 0
x

33 0
+

Ω
0 s 0
x

44 0
c 0

d 0
−

1
m

0s
2 0
x

22 0
+

2 (
1−

c 0
d 0
−
m

0s
4 0)

m
2 0s

4 0
x

33 0
+

2Ω
0(

1−
c 0

d 0
−

(1
+
m

0)
s2 0)

m
0s

3 0
x

44 0

    (4
.1
3)

(B
2)

12
=
[ m 0s

2 0(
c 0

d 0
−

1)
+
m

2 0s
6 0(

2+
c 0

d 0
[2

c 0
d 0
−

1]
)m

3 0s
10 0

)] x2
2 0

+
[ 2−

2c
0d

0
+

4m
0s

4 0(
c 0

d 0
−

1)
−

2m
2 0s

8 0(
c 0

d 0
−

1)
] x33 0

m
2 0s

4 0c
0d

0
( m 0

s4 0
−

1)
+
[ −2Ω

0m
0s

0
( s2 0

+
c 0

d 0
−

1) 2Ω
0m

3 0s
7 0
( s2 0

+
c 0

d 0
−

1) −
2Ω

0m
2 0s

3 0
( 1−

s4 0
+

s2 0c
0d

0
[ s2 0
−

3]) Ω
0)
] x44 0

m
2 0s

4 0c
0d

0
( m 0

s4 0
−

1)
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t B
3

=

           

−
2x

33 0
m

0s
2 0

4 (
Ω

0m
0s

4 0−
1 )
x

33 0
+

2Ω
0m

0s
2 0c

0d
0x

22 0
−

2Ω
0m

0s
0[2
−

(1
+
m

0s
2 0)

]
m

0(
m

0s
4 0−

1 )
x

44 0

2x
33 0

m
0s

2 0
2h

c 0
d 0
x

33 0
+
m

0s
0(
h

Ω
0c

0d
0−

s 0
)x

44 0
m

0s
3 0

(B
3)

22
(B

3)
32

x
44 0 s 0

s 0
[2−

(1
+
m

0)
s2 0]x

44 0
m

0s
4 0−

1
c2 0d

2 0x
44 0

s 0
(m

0s
4 0−

1 )
x

33 0
m

2 0s
2 0

(B
3)

24
(B

3)
34

           
(4
.1
4)

(B
3)

22
=
h

s 0
[ −2

+
3(

1+
m

0)
s2 0
−

6m
0s

4 0
+
m

0(
1+

m
0)

s6 0] x22 0
( m 0

s4 0
−

1) 2
+
[ s 0
( −2

+
(1

+
m

0)
s2 0)( m

0s
4 0
−

1) −
h

c 0
d 0

(−
2+

3(
1+

m
0)

s2 0
−

6m
0s

4 0
+
m

0(
1+

m
0)

s6 0)
] x44 0

( m 0
s4 0
−

1) 2
(B

3)
32

=
h

s 0
[ −1

+
m

0
( −1

+
6s

2 0
−

3[
1+

m
0]

s4 0
+

2m
0s

6 0)] x2
2 0

( m 0
s4 0
−

1) 2
−

2h
c 0

d 0
[ 1+

m
0s

4 0
( −2

+
m

0s
4 0)] x3

3 0

m
0s

3 0
( m 0

s4 0
−

1) 2
+
[ −m

0s
2 0c

2 0d
2 0(
−

1+
m

0s
4 0)

+
h

Ω
0m

0s
0c

0d
0
( −1
−

[1
+
m

0]
s2 0

+
8m

0s
4 0
−

3m
0[

1+
m

0]
s6 0

+
m

2 0s
8 0)]

m
0s

3 0
( m 0

s4 0
−

1) 2
(B

3)
24

=
s4 0c

0
( 1−

2s
2 0

+
m

0s
4 0) x22 0

2d
0
( m 0

s4 0
−

1) 2
−
x

33 0
m

0
−

Ω
0s

3 0c
4 0

( m 0
s4 0
−

1) 2
(B

3)
34

=
−

s2 0c
0
( 1−

2s
2 0

+
m

0s
4 0) x22 0

2d
0
( m 0

s4 0
−

1) 2
−

x
33 0

m
2 0s

2 0
+

Ω
0s

0c
4 0

( m 0
s4 0
−

1) 2

t B
4

=

          

2 (
1−
m

0s
4 0)
x

23 0
+

2c
0d

0x
32 0

m
0s

2 0c
0d

0
−

2x
23 0

+
2c

0d
0x

32 0
m

0s
2 0

h
[−

2+
3(

1+
m

0s
2 0−

6m
0s

4 0+
m

0(
1+
m

0)
s6 0]x

23 0
−

2h
c3 0d

3 0x
32 0

m
0s

3 0c
2 0d

2 0

2h
c 0

d 0
x

23 0
+

[2−
(1

+
m

0)
s2 0]x

32 0
m

0s
3 0

0
0

−
2+
m

0s
2 0(
m

0s
4 0−

3 )
2m

2 0s
2 0c

0d
3 0

x
23 0
−

x
32 0

m
2 0s

2 0

2c
0d
x

23 0
+

c2 0(
2−
m

0s
2 0)
x

32 0
2m

0s
2 0c

0d
0

          
(4
.1
5)
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4.1.1 Rank drop analysis
We now seek conditions under which the rank of the Jacobian drops. As before,

we look for conditions where the first four columns of J̃ext are rank-deficient or

the rank of J̃ext drops by two. We first observe that if x23
0 = x32

0 = x22
0 = x33

0 =

x44
0 , then B = 05×6 and the rank of the Jacobian is at most three. Therefore no

analysis on the matrix A is required. On the other hand, if x41
0 = x42

0 = x43
0 = 0,

we have A = 03×6 which is not sufficient to cause the rank of the Jacobian to

drop. Therefore a detailed analysis of the submatrices of the matrix B is

required to determine conditions under which the rank drops.

4.1.1.1 B1

The matrix B1 has a maximal rank of 2. Either row of tB1 vanishes if and

only if x23
0 = x32

0 = 0. We now analyze the 2× 2 minors of B1. The first two

minors have homogenous linear factors in x23
0 and x32

0 = 0 with only the trivial

solution. We conclude that B1 has full rank unless x23
0 = x32

0 = 0, in which

case the rank is zero.

4.1.1.2 B2

The first row of B2 vanishes when1

x22
0 =1, x33

0 =
m0

[
2− c0d0− (1 +m0)s2

0
][

2−2c0d0− (1 +m0)s2
0
]

2
[
2− (1 +m0)s2

0
][

1 +m0
(
2s2

0−1
)] ,

x44
0 =

m0s2
0
[
c0d0−1 + 2(1 + c0d0)m0s4

0−2m0(1 +m0)s6
0 +m2

0s8
0
]

2Ω0m0s0
[
c0d0−1 + (1 +m0)s2

0−3m0s4
0c0d0 +m0(1 +m0)(c0d0−1)s6

0 +m2
0s8

0
]

−
2(c0d0−1)

(
m0s4

0−1
)2
x33

0

2Ω0m0s0
[
c0d0−1 + (1 +m0)s2

0−3m0s4
0c0d0 +m0(1 +m0)(c0d0−1)s6

0 +m2
0s8

0
]

(4.16)

and the second row vanishes when

x22
0 = 1, x33

0 =
m0c0d0

[
−2 + 2c0d0 + (1 +m0)s2

0
]

2Ω0
[
2− (1 +m0)s2

0
][

1−m0
(
2s2

0−1
)] ,

1The condition is written implicitly to simplify the presentation.
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x44
0 =

2c3
0d3

0−
[
2− (1 +m0)s2

0
](
m0s4

0
)

2s0
[
2− (1 +m0)s2

0
][

1−m0
(
2s2

0−1
)] . (4.17)

More generally, the two rows are linearly dependent when detB2 = 0. The

resulting quadratic equation does not simplify; it suffices to say that the van-

ishing of the quadratic does not lead to any equations with multiparameter

order-two elliptic solutions.

4.1.1.3 B3

The first row of tB3 vanishes when

x22
0 =−Ω0(c2

0 + d2
0)

s0c0d0
, x33

0 = 0, x44
0 = 1, (4.18)

and the second row of tB3 only when x22
0 = x33

0 = x44
0 = 0. More generally the

first two rows of tB3 are linearly dependent when the x22
0 , x33

0 and x44
0 satisfy a

complicated quadratic equation. However, the only solution of interest to this

equation is (4.18).

If the first two rows of tB3 are linearly independent ,we search for condi-

tions under which rkB3 ≤ 2. For this to happen, all 3×3 minors of tB3 must

vanish. The 3×3 minor corresponding to the last three columns of B3 factors

into a product of linear homogenous terms, leading to the condition

x44
0
[
m2

0s2
0c3

0d0x
22
0 +

(
m0s4

0−1
)(

2m0s2
0−m0−1

)
x33

0 + Ω0m
2
0s0c2

0
(
c2

0 + d2
0
)
x44

0
]

×
[
m0s2

0
(
1 +m0s4

0−2s2
0
)
x22

0 + 2c0d0
(
1−m0s4

0
)
x33

0 + 2Ω0m0s0c3
0d0x

44
0
]

= 0.

(4.19)

The vanishing of the first factor causes the other minors to vanish; the rank of

the Jacobian drops when

x44
0 = 0 (4.20)

and x22
0 and x33

0 are arbitrary. The vanishing of the second factor does not

lead to the vanishing of the other minors. From the third factor we obtain the
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condition

x22
0 =−2Ω0c0d0

s0
, x33

0 = Ω0m0s3
0d2

0
m0s4

0−1 , x44
0 = 1 (4.21)

that causes all minors to vanish and the rank of the Jacobian to drop.

4.1.1.4 B4

No analysis of B4 is required because the rank of the Jacobian drops generi-

cally when all xij0 but those appearing in B4 (and B1) vanish. We see in the

next section that for arbitrary x23
0 and x32

0 , this leads to an equation with a

multiparameter family of order-two elliptic solutions.

4.1.2 Equations and solutions

From the results in the previous section, we obtain five equations that admit

multiparameter families of Möbius-Jacobi solutions. As in the previous chap-

ter, we consider five cases of the parameters appearing in the matrix X0.

Case I: x23
0 = x32

0 = x22
0 = x33

0 = x44
0 = 0

The first case is associated with the matrix A; when all xij0 are zero besides

those appearing in A, we obtain

x41
0 X

1
0 +x42

0 X
2
0 +x43

0 X
3
0 =



0 0 0 −Ω0
s0
x41

0 + Ω0s0x43
0

0 0 0 −Ω0c0d0
s0

x42
0

0 0 0 Ω0m0s0x41
0 − Ω0

s0
x43

0

x41
0 x42

0 x43
0 0


(4.22)

with associated equation (after relabeling x41
0 → a1, x42

0 → a3, x43
0 → a3)

u′

u−u
=

Ω0
s0
a1 + Ω0s0a2 +uΩ0c0d0

s0
a2−u2

(
Ω0m0s0a1− Ω0

s0
a2
)

2a1 +a2(u−u) + 2a3uu
. (4.23)

This equation has the solution

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
(4.24)
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when the parameters satisfy

Ωs
(
γ2a1 +αγa2 +α2a3

)
− Ω

s
(
δ2a1 +βδa2 +β2a3

)
=

Ω0
s0

[
β2
(
m0s2

0a1−a2
)
−βδc0d0a2− δ2

(
a1− s2

0a2
)]

(4.25a)

Ωcd
s (2γδa1 + (αδ+βγ)a2 + 2αβa3) =

Ω0
s0

[
2
(
γδ−αβm0s2

0
)
a1 + (αδ+βγ)c0d0a2 + 2

(
αβ−γδs2

0
)]

(4.25b)

Ω
s
[(
δ2ms2−γ2

)
a1 +

(
βδms2−αγ

)
a2 +

(
β2ms2−α2

)
a3
]

=

Ω0s0
(
α2m0x

41
0 +γ2a3

)
+ Ω0

s0

(
γ2a1 +αγc0d0a2 +α2a3

)
. (4.25c)

It is difficult to parameterize this function in terms of arbitrary complex co-

efficients, subject to algebraic relationships, for the same reasons discussed in

the context of (3.181). Moreover, by imposing β = γ = 0, δ = 1, we do not

reduce the number of equations, as happens in the case of (3.152). For these

reasons, we are not able to establish that the solution (4.24-4.25) generically

possesses two or more degrees of parameteric freedom. However, we are able

to establish the existence of such solutions in particular special cases of (4.23)

explored in the subsequent examples section.

Case II: x22
0 = x33

0 = x44
0 = x41

0 = x42
0 = x43

0 = 0

The rank of the Jacobian vanishes when all but the xij0 appearing in B4 (and

B1) are zero. This leads to the matrix

x23
0 X

6
0 +x32

0 X
7
0 =



0 x23
0

m0s4
0−1

m0s2
0c0d0

−x32
0

1
m0s2

0
0 0

x23
0

1
m0s2

0
+x32

0
c0d0
m0s2

0
0 x23

0 0

0 x32
0 0 0

0 0 0 0


(4.26)
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and discrete equation

(
x23

0
1

m0s2
0

+x32
0

c0d0
m0s2

0

)
u+ 1

2

(
x23

0
m0s4

0−1
m0s2

0c0d0
−x32

0
1

m0s2
0

)
(u+u) (4.27)

+1
2x

32
0 u

2(u+u) +x23
0 uuu= 0.

We redefine parameters:

b1 = 1
2

(
x23

0
m0s4

0−1
m0s2

0c0d0
−x32

0
1

m0s2
0

)
(u+u), b2 =−1

2

(
x23

0
m0s4

0−1
m0s2

0c0d0
x32

0
1

m0s2
0

)

b3 =−1
2x

32
0 , b4 = x23

0 , (4.28)

to obtain

b1u−
(
b2 + b3u

2
)

(u+u) + b4uuu= 0. (4.29)

Rather than demonstrate that this transformation of parameters is surjective,

we will work with (4.29), which is at least as general as (4.27), and show that

it admits a multiparameter family of order-two elliptic solutions. The solution

of (4.29) is

u(z) = α sn(Ωz+ z0|m), (4.30)

together with the constraints

b1mcds2 = α2
[
2b3

(
1−ms4

)
− b4cd

]
(4.31a)

2b2ms2 = α2(2b3− b4cd). (4.31b)

Let us first assume that one of the coefficients of α2 appearing in (4.31) is

zero. If the coefficient of α2 in (4.31a) is zero, we must have b1 = 0. We

choose m ∈ C\{0,1} so that f(Ω) = 2b3
(
1−ms4

)
− b4cd is a non-constant

elliptic function of Ω when b3 and b4 are not simultaneously zero. In this

case f(Ω) = 0 can be solved for Ω. Inserting our chosen m into (4.31b) leads

to possible values for α. In the case where instead 2b3− b4cd = 0, a nearly

identical argument applies and provides a solution when b2 = 0.
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Now assume that neither coefficient of α2 in (4.31) is zero. Then we may

solve each equation for α2 and equate the results to obtain:

b1mcds2

2b3 (1−ms4)− b4cd −
2b2ms2

2b3− b4cd = 0. (4.32)

If we choose m ∈C\{0,1}, the RHS of (4.32) is again an elliptic function of Ω

for suitable values of b1 and b2 and so may be solved for Ω. This value, along

with our chosen value for m, may be substituted into either condition in (4.31)

so that α may be determined.

Two discrete equations with multiparameter families of elliptic solutions

are obtained when (4.20) is satisfied (and other xij0 are zero).

Case III: x23
0 = x32

0 = x33
0 = x44

0 = x41
0 = x42

0 = x43
0 = 0

Here, x22
0 is arbitrary and all other parameters are zero. This leads to

X5
0 =



s2
0c0d0

m0s4
0−1 0 c0d0

m0s4
0−1 0

0 1 0 0

0 0 0 0

0 0 0 0


, (4.33)

and
s2
0c0d0

m0s4
0−1 + 1

2u(u+u) + c0d0
m0s4

0−1uu= 0. (4.34)

We multiply this equation by two and make the redefinitions

b1 = 2s2
0c0d0

m0s4
0−1 , b2 = 2c0d0

m0s4
0−1 (4.35)

to obtain

b1 +u(u+u) + b2uu= 0. (4.36)

The solution of this equation is

u(z) = α sn(Ωz+ z0|m), (4.37)
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subject to

b1 = α2s2cd
ms4−1 (4.38a)

b2 = cd
ms4−1 . (4.38b)

Given b2, we fix m∈C\{0,1} so that the RHS of (4.38b) is an elliptic function

of Ω. Thus it may be solved for Ω. The result may then be substituted into

(4.38a) to determine α. Thus, (4.37-4.38) generically provides a two-parameter

family of solutions to (4.36).

Case IV: x23
0 = x32

0 = x22
0 = x44

0 = x41
0 = x42

0 = x43
0 = 0

The second discrete equation arising from (4.20) has arbitrary x33
0 and other

parameters zero:

X8
0 =



1
m0

0 − 1
m0s2

0
0

0 0 0 0
1

m0s2
0

0 1 0

0 0 0 0


, (4.39)

or
1
m0

+ u2

ms2
0

+
(
u2− 1

m0s2
0

)
uu= 0. (4.40)

Making the redefinitions

b1 = 1
m0

, b2 = 1
m0s2

0
, (4.41)

we arrive at

b1 + b2u
2 +

(
u2− b2

)
uu= 0. (4.42)

The solution of this equation is

u(z) = α sn(Ωz+ z0|m), (4.43)
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subject to

b1 =−α
4

m
(4.44a)

b2 = α2

ms2 . (4.44b)

Suppose b1 and b2 are nonzero, and that m∈C\{0,1} is given. Then α may be

determined from (4.44a) and the result can be substituted into (4.44b). The

RHS of (4.44b) is an elliptic function of Ω and may be solved for any value of

b2. We conclude that (4.43-4.44) generically provides a multiparameter family

of solutions to (4.42).

Case V: x22
0 =−Ω0(c2

0+d2
0)

s0c0d0
, x44

0 = 1, x23
0 = x32

0 = x41
0 = x42

0 = x43
0 = 0

Lastly, we find a genuine delay-differential equation when (4.18) is satisfied.

Here, we have

X1
0 −

Ω0
(
c2

0 + d2
0
)

s0c0d0
X5

0 =



0 0 Ω0
s0

0

0 −Ω0(c2
0+d2

0)
s0c0d0

0 0
Ω0
s0

0 0 0

0 0 0 1


(4.45)

and

u′(u−u) = Ω0
s0

[
−2u2 + c2

0 + d2
0

c0d0
u(u+u)−2uu

]
. (4.46)

This equation is very similar to the bi-Riccati equation (3.181) and will be

treated similarly. The equation (4.46) possesses an obvious scaling freedom.

If we redefine parameters according to

b1 =−2Ω0
s0
, b2 = Ω0

s0

c2
0 + d2

0
c0d0

, (4.47)

we obtain the equation

u′(u−u) = b1
(
u2 +uu

)
+ b2u(u+u). (4.48)
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From (4.47) it follows that

b22
(
b21−4Ω2

0
)(
b21−4Ω2

0m0
)

= b21
[
b21−2Ω2

0(1 +m0)
]2
. (4.49)

Given b1 and b2, (4.49) yields an algebraic relationship between Ω0 and m0.

Demanding that this relationship is consistent with (4.47) leads, in principle,

to explicit values for Ω0 and m0. The solution of (4.48) is then

u(z) = α sn(Ω0z+ z0|m0) (4.50)

where Ω0 and m0 are determined from (4.47) and (4.49) and α and z0 are free.

Alternatively, starting from (4.46) with known Ω0 and m0 we obtain the same

solution.

4.2 Examples
Similarly to the previous chapter, we known consider the relationship between

the equations we have identified and a number of known equations. In partic-

ular, we construct a number of new solutions to known models.

4.2.1 Korteweg-de Vries type equations
We again begin with the lattice potential mKdV equation in this setting:

w′n
wn

= λ
wn+1−wn−1
wn−1 +wn+1

. (4.51)

From here, we take a traveling wave reduction to obtain

p
u′

u
= λ

u−u
u+u

(4.52)

with associated matrix

X =



0 0 0 0

0 0 0 −λp
0 0 0 0

0 1 0 0


(4.53)



4.2. Examples 118

and we observe that X =X2
0 when

λ

p
=−Ω0c0d0

s0
. (4.54)

From (4.24-4.25), we find that

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
(4.55)

solves (4.52) when the parameters satisfy

(αδ+βγ)(pΩcd−λs) = 0 (4.56a)

pΩ(βδ−αγs2)−λβδs = 0 (4.56b)

λαγs−pΩ
(
αγ−βδms2

)
= 0. (4.56c)

It is worth remarking that the equation (4.52) is easily obtained from the

addition law (A.58a). Setting x1 = Ωz+ z0 and x2 = Ωh we find that

sn(Ωz+ Ωh+ z0|m)− sn(Ωz−Ωh+ z0|m)
sn(Ωz−Ωh+ z0|m) + sn(Ωz+ Ωh+ z0|m) = scn(Ωz+ z0|m)dn(Ωz+ z0|m)

cdsn(Ωz+ z0|m) ;

(4.57)

it follows that

u(z) = α sn(Ωz+ z0|m) (4.58)

solves (4.52) when the parameters satisfy

pΩcd−λs = 0. (4.59)

In fact, by taking β = γ = 0 and δ = 1 in (4.56) we obtain the same solution.

Clearly, (4.58-4.59) is a multiparameter family of solutions to (4.52): α and z0

are free while the remaining parameters are subject to (4.59). By arguments

similar to before, there will generically be a third free parameter.
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A Schwarzian KdV equation in our class of equations is

w′n(wn+1−wn−1) = λ
[
wn(wn−1 +wn+1)−w2

n−wn−1wn+1
]

(4.60)

with traveling wave reduction

pu′(u−u) = λ
[
u(u+u)−u2−uu

]
. (4.61)

The matrix corresponding to this equation is

X =



0 0 λ
p 0

0 −2λ
p 0 0

λ
p 0 0 0

0 0 0 1


, (4.62)

and we see that X is equivalent to (4.45) when

λ

p
= Ω0

s0
=

Ω0
[
c2

0d2
0−

(
c2

0 + d2
0
)]

s0
(
m0s4

0−1
) =

Ω0
(
c2

0 + d2
0
)

2s0c0d0
. (4.63)

Thus, we obtain the solution (because (4.61) is Schwarzian)

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (4.64)

subject to

λs−pΩ = 0 (4.65a)

2λcds−pΩ
(
c2 + d2

)
= 0 (4.65b)

λs
(
1−2cd−ms4

)
+pΩc2d2 = 0. (4.65c)

As in the bi-Riccati case, these conditions lead to a degenerate solution. Sub-

stituting the first condition into the second and third, we obtain c = d (twice)

and consequently m = 1. Therefore, following the same logic as before, the
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corresponding solution to (4.60) is

u(z) = α expΩ(nh+pt+ z0) +β

γ expΩ(nh+pt+ z0) + δ
(4.66)

subject to

Ωsinh2Ωh= λ

p
. (4.67)

We lastly consider a semidiscrete KdV equation

λw′n−w′n(wn+1−wn−1) = wn+1−wn−1, (4.68)

which becomes

λpu′−pu′(u−u) = u−u (4.69)

under a traveling wave reduction. This equation does not admit order-two

elliptic solutions. However, like its bi-Riccati counterpart (3.241), it does have

a solution in terms of the Weierstrass ζ-function. From the addition law for

this function (A.27), we compute

ζ(Ωz+ Ωh+ z0;g2,g3)− ζ(Ωz−Ωh+ z0;g2,g3) =

2ζ(Ωh+ z0;g2,g3)− ζ ′′(Ωh;g2,g3)
ζ ′(Ωz+ z0;g2,g3)− ζ ′(Ωh;g2,g3) . (4.70)

from which it follows (observing the translational freedom in the dependent

variables in (2.99) and (4.69)) that

u(z) = ζ(Ωz+ z0;g2,g3) +β (4.71)

solves (4.69) and

wn(t) = ζ(Ω(nh+pt) + z0;g2,g3) +β (4.72)
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solves (4.68), both subject to

Ωζ(Ωh;g2,g3) =−1
p

(4.73a)

2ζ(Ωh;g2,g3)
Ωζ ′(Ωh;g2,g3) =−λp (4.73b)

2ζ(Ωh;g2,g3)ζ ′(Ωh;g2,g3)− ζ ′′(Ωh;g2,g3) = 0. (4.73c)

Generically, there are no free parameters beyond z0 and β (and p) in the

solutions (4.71-4.72). We remark that there is a Miura transformation from

(4.68) to the equation

v′n = λv2
n(vn+1−vn−1); (4.74)

if wn solves (4.68) , then

vn =− 1
λ+wn−1−wn+1

(4.75)

solves (4.74) [45]. Solutions to (4.74) are constructed directly in the subsequent

section. However, from (4.72), we obtain an order-two elliptic solution:

vn(t) =− 1
λ+ ζ(Ω[(n+ 1)h+pt] + z0;g2,g3)− ζ(Ω[(n−1)h+pt] + z0;g2,g3) ,

(4.76)

or, in standard form (3.4) (with g′2 := Ω4g2 and g′3 := Ω6g3):

vn(t) = Ω
λΩ + 2ζ(h;g′2,g′3)

×
[

℘′(h;g′2,g′3)
[λΩ + 2ζ(h;g′2,g′3)][℘(nh+pt+ z0;g′2,g′3)−℘(h;g′2,g′3)]−℘′(Ωh;g′2,g′3) −1

]
,

(4.77)

either subject to (4.73). This solution is, however, less general than one (4.100-

4.101 with p= λ−1) constructed subsequently.
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4.2.2 Wadati lattice solutions

Wadati introduced the equation

w′n =
(
a0 +a1wn+a2w

2
n

)
(wn+1−wn−1) (4.78)

in his study of Miura-type transformations between differential-difference sys-

tems [80]. Sometimes (4.78) is referred to as the hybrid lattice equation; it

contains the Volterra lattice (a0 = a2 = 0) [47, 53], the self-dual nonlinear net-

work equation (a1 = 0) [41], and the semidiscrete KdV equation (a0 = a1 = 0)

[42]. Some examples of Jacobi elliptic solutions to the Wadati lattice (4.78)

were found in [15, 74]. Here we will show that if a1 and a2 are not both zero

(i.e. the equation is nonlinear), then (4.78) admits an order-two elliptic solu-

tion (the form of which depends on the parameters) with at least two degrees

of parametric freedom. We proceed by cases, making use of the discriminant

of the quadratic appearing in (4.78):

∆ = a2
1−4a0a2. (4.79)

We begin with the fully nondegenerate case.

Case I: a2 6= 0 and ∆ 6= 0

Under the first assumption, (4.78) can be written as

w′n =
[
a2

(
wn+ a1

2a2

)2
− ∆

4a2

]
(wn+1−wn−1) . (4.80)

Adding the second assumption, we see that the change of variables

wn(t) = 1
2a2

[−b1±vn(T )] , T =− ∆
4a2

t (4.81)

is well-defined and renders (4.80) equivalent to a self-dual nonlinear network

equation:

v′n =
(
1−∆−1v2

n

)
(vn+1−vn−1) . (4.82)
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We take a traveling wave reduction

vn(T ) = u(z), z = nh+pT + z0, (4.83)

to arrive at a differential-delay equation

pw′ =
(
1−∆−1w2

)
(w−w) . (4.84)

The matrix representation of this equation is

X =



0 0 0 −2
p

0 0 0 0

0 0 0 2
p∆

1 0 0 0


(4.85)

and X =X5
0 if the conditions

p= 2s0
Ω0

, ∆ = 1
m0s2

0
(4.86)

are satisfied. Substituting these conditions and a1 = 0, a2 = a3 = 0 into (4.25),

we see that the solution of (4.84) is

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
(4.87)

subject to

2s
(
δ2∆−β2

)
+p∆Ω

(
γ2s2− δ2

)
= 0 (4.88a)

2s(αβ−γδ∆) +p∆γcd = 0 (4.88b)

2s
(
γ2∆−α2

)
+p∆Ω

(
γ2− δ2ms2

)
= 0. (4.88c)
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These conditions reduce considerably when β = γ = 0:

Ω
s = 2

p
, (4.89a)

Ωms = 2α2

p∆ , (4.89b)

leading to the solution

u(z) =±
√

∆mssn(Ωz|m), (4.90)

subject to (4.89a). It is clear that this solution generically possesses two degrees

of parametric freedom: upon fixing m ∈C\{0,1}, the LHS of (4.89a) is a non-

constant meromorphic function of Ω and thus (4.89a) may be solved for Ω for

all but at most two values of p. The solution (4.89a-4.90) can also be obtained

simply using only the addition law for the Jacobi sine function; setting x= Ωz

and y = Ωh in (A.58a) we compute

sn(Ωz+ Ωh|m)− sn(Ωz−Ωh|m) = 2scn(Ωz|m)dn(Ωz|m)
1−ms2sn2(Ωz|m) , (4.91)

at which point it is clear that (4.90) solves (4.84) when (4.89a) holds.

We now return to (4.80), for which the solution corresponding to (4.87) is

wn(t) = 1
2a2

−b1 +±
α sn

(
Ω
(
nh− c∆

4p2
t
)

+ z0
∣∣∣m)+β

γ sn
(
Ω
(
nh− c∆

4p2
t
)

+ z0
∣∣∣m)+ 1

 , (4.92)

subject to (4.88). We remark that this solution, which generically has at least

two degrees of parametric freedom, is more general that that given in [15, 74].

In fact, even when β = γ = 0, the solution is more general; we have

wn(t) =− a1
2a2
±
√

∆mssn
(
hΩn− s∆

2a2
t+ z0

∣∣∣∣∣m
)
, (4.93)

where z0 is free and Ω and m are constrained by (4.89a). Starting from either

(4.92) or (4.93), analogues (again with additional parametric freedom) of the
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other 11 Jacobian elliptic solutions given in [74] can be obtained simply using

argument-modulus transformations between the twelve Jacobi functions [84].

Case II: a2 6= 0 and ∆ = 0

This first degenerate case takes the form

w′n = a2

(
wn+ a1

2a2

)2
(wn+1−wn−1) . (4.94)

Under the change of dependent variable

wn =± 1
√
a2

(
vn−

a1
2

)
, (4.95)

we recover Hirota’s discrete KdV equation:

v′n = v2
n (vn+1−vn−1) , (4.96)

from which a traveling wave reduction

vn(t) = u(z), z = nh+pt+ z0, (4.97)

leads to the delay-differential equation

pu′ = u2(u−u). (4.98)

The matrix corresponding to this equation is

X =



0 0 0 0

0 0 0 0

0 0 0 2
p

1 0 0 0


; (4.99)
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we find the solution of (4.98) is

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (4.100)

subject to

2β2s−pΩ
(
γ2s2− δ2

)
= 0 (4.101a)

2αβs−γδpΩcd = 0 (4.101b)

2α2s−pΩ
(
γ2− δ2ms2

)
= 0. (4.101c)

A subfamily of the order-two elliptic solutions of (4.98) can be obtained simply

from the addition law for the Weierstrass ℘-function (A.26): we take x= z and

y = h to obtain

℘(z+h;g2,g3)−℘(z−h;g2,g3) =− ℘′(z;g2,g3)℘′(h;g2,g3)
[℘(z;g2,g3)−℘(h;g2,g3)]2 , (4.102)

which shows that

u(z) =±
√

−p
℘′(h;g2,g3) [℘(z+ z0;g2,g3)−℘(h;g2,g3)] (4.103)

satisfies (5.26) without constraints on the parameters. This family of solutions

is a proper subclass of (4.100-4.101); in particular, (4.103) posseses only double

poles while (4.100) may have either only simple poles or only double poles, de-

pending on the Möbius parameters. It follows that (4.100-4.101) is generically

a multiparameter family of solutions to (4.98). Applying these results, we find

that

vn(t) = α sn(Ω(nh+ ct) + z0|m) +β

γ sn(Ω(nh+ qt)z+ z0|m) + δ
(4.104)

satisfies (4.96) and

wn(t) =± 1
2√a2

(2α−a1) sn(Ω(nh+pt) + z0|m) + 2β−a1
γ sn(Ω(nh+pt)z+ z0|m) + δ

(4.105)
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satisfies (4.94). In both cases the parameters are subject to (4.101).

Case III: a2 = 0 and a1 6= 0

In this second degenerate case the assumptions reduce (4.78) to

w′n = (a0 +a1wn)(wn+1−wn−1) . (4.106)

and by changing the dependent variable

wn = 1
a1

(vn−a0), (4.107)

we arrive at the Volterra lattice

v′n = vn (vn+1−vn−1) . (4.108)

Taking the same reduction (4.97) as before, we have a differential-delay form

of the Volterra lattice:

pu′ = u(u−u) , (4.109)

corresponding to the matrix

X =



0 0 0 0

0 0 0 −2
p

0 0 0 0

1 0 0 0


. (4.110)

The solution of (4.108) is

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (4.111)

subject to

2αγs +pΩ
(
δ2ms2−γ2

)
= 0 (4.112a)
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2βδs +pΩ
(
γ2s2− δ2

)
= 0 (4.112b)

(αδ+βγ)s−pγδΩcd = 0. (4.112c)

It is clear that (4.111-4.112) represents, generically, a three parameter family

of solutions. Choosing p∈C, Ω∈C\{0}, m∈C\{0,1}, and δ ∈ {0,1}, (4.112a)

and can be sequentially solved for α and β, respectively. The results can be

substituted into to give a cubic equation for γ. Back-substitution into 4.112a-

4.112b) yields values for α and β.

The corresponding solutions to (4.108) and (4.106) are, respectively,

vn(t) = α sn(Ω(nh+pt) + z0|m) +β

γ sn(Ω(nh+pt) + z0|m) + δ
(4.113)

and

wn(t) = 1
a1

(α−γa0)sn(Ω(nh+pt) + z0|m) +β−a0
γ sn(Ω(nh+pt) + z0|m) + δ

, (4.114)

both subject to (4.112).

We can construct higher-order elliptic solutions to (4.108), and conse-

quently (4.106), by means of Miura transformations. In [13], Chandre com-

pares two mKdV-type equations

φ′n =
(
1 +φ2

n

)
(φn+1−φn−1) (4.115a)

φ′n =(1 +φn)2 (φn+1−φn−1) (4.115b)

and provides continuum limits, Lax pairs, and Miura transformations to

(4.108) for each. Using results from above, we can easily write down order-two

elliptic solutions to both equations in (4.115). In particular, (4.115a) is equiva-

lent to (4.78) with a1 = 0, a0 = a2 = 1. Because we have a nonzero discriminant

∆ =−4, the solution is given by (4.92):

φn(t) =±1
2
α sn(Ω (nh+pt) + z0|m) +β

γ sn(Ω (nh+pt) + z0|m) + δ
(4.116)

if the parameters satisfy (4.88) with ∆ =−4. On the other hand, (4.115b) has
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a vanishing discriminant and so is equivalent to (4.94) with a1 = 2 and a2 = 1.

Using (4.105) we obtain

φn(t) =±(α−1) sn(Ω(nh+pt) + z0|m) +β−1
γ sn(Ω(nh+pt) + z0|m) + δ

, (4.117)

subject to (4.101).

The relevant Miura transformations are

wn =(1 + iφn)(1− iφn+1) (4.118a)

wn =(1 +φn)(1 +φn+1) , (4.118b)

which map solutions of (4.115a) and (4.115b), respectively, into solutions of

(4.108). Applying the first Miura transformation to (4.116), we obtain

wn(t) =
[
1± i

2
α sn(Ω (nh+pt) + z0|m) +β

γ sn(Ω (nh+ qt) + z0|m) + δ

]

×
[
1∓ i

2
α sn(Ω [(n+ 1)h+pt] + z0|m) +β

γ sn(Ω [(n+ 1)h+pt] + z0|m) + δ

]
, (4.119)

subject to (4.88), as a solution to (4.108). Similarly, applying (4.118b) to

(4.117) leads to

wn(t) =
[
1± (α−1) sn(Ω(nh+pt) + z0|m) +β−1

γ sn(Ω(nh+pt) + z0|m) + δ

]

×
[
1± (α−1) sn(Ω[(n+ 1)h+pt] + z0|m) +β−1

γ sn(Ω[(n+ 1)h+pt] + z0|m) + δ

]
, (4.120)

subject to (4.101). (4.119) and (4.120) are order-four elliptic solutions; each of

the factors in each of the solutions is an order-two elliptic function, and both

factors within a single solution have identical lattices. Regardless of whether or

not h ∈ Λ, it follows that the solutions have four poles (counting multiplicity)

within each period parallelogram. The corresponding order-four solutions to



4.2. Examples 130

(4.106) are

wn(t) =− a0
a1

+ 1
a1

[
1± i

2
α sn(Ω (nh+ qt) + z0|m) +β

γ sn(Ω (nh+ qt) + z0|m) + δ

]

×
[
1∓ i

2
α sn(Ω [(n+ 1)h+pt] + z0|m) +β

γ sn(Ω [(n+ 1)h+pt] + z0|m) + δ

]
, (4.121)

and

wn(t) =− a0
a1

+ 1
a1

[
1± (α−1) sn(Ω(nh+pt) + z0|m) +β−1

γ sn(Ω(nh+pt) + z0|m) + δ

]

×
[
1± (α−1) sn(Ω[(n+ 1)h+pt] + z0|m) +β−1

γ sn(Ω[(n+ 1)h+pt] + z0|m) + δ

]
, (4.122)

subject to (4.88) and (4.101), respectively. To summarize, we have shown

by explicit construction of solutions that any nonlinear Wadati lattice can be

solved in terms of order-two elliptic functions. We have also shown that the

case a2 = 0 admits higher-order elliptic solutions.

4.2.3 Toda lattice solutions

In this section, we will construct some new explicit solutions to the Toda

lattice (2.107). To do this, it will be convenient for us to use modifed Flaschka

variables

un =exp(wn−1−wn) (4.123a)

vn =−Q′n−1 (4.123b)

so that the resulting first-order system that is separately linear in each depen-

dent variable:

u′n =un (vn+1−vn) (4.124a)

v′n =un−un−1. (4.124b)

This form has the advantage of possessing a simple (absent of branching) Miura

transformation from the Volterra lattice (4.108). We will construct solutions
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to the Toda lattice in this form by means of the Miura map given in [25].

Given a solution φn = φn(t) of the Volterra lattice, (4.108),

un =φ2nφ2n+1 (4.125a)

vn =φ2n−1 +φ2n (4.125b)

provides a solution to (4.124). Thus, using (4.119) and (4.120), we obtain,

respectively,

un(t) =
[
1± i

2
α sn(Ω (2nh+pt) + z0|m) +β

γ sn(Ω (2nh+pt) + z0|m) + δ

]

×

1 + 1
4

(
α sn(Ω [(2n+ 1)h+pt] + z0|m) +β

γ sn(Ω [(2n+ 1)h+pt] + z0|m) + 1

)2
×
[
1∓ i

2
α sn(Ω [(2n+ 2)h+pt] + z0|m) +β

γ sn(Ω [(2n+ 2)h+pt] + z0|m) + δ

]
(4.126a)

vn(t) =
[
1± i

2
α sn(Ω [(2n−1)h+pt] + z0|m) +β

γ sn(Ω [(2n−1)h+pt] + z0|m) + δ

]

×
[
1± i

2
α sn(Ω (2nh+pt) + z0|m) +β

γ sn(Ω (2nh+pt) + z0|m) + δ

]

+
[
1± i

2
α sn(Ω (2nh+pt) + z0|m) +β

γ sn(Ω (2nh+pt) + z0|m) + δ

]

×
[
1± i

2
α sn(Ω [(2n+ 1)h+pt] + z0|m) +β

γ sn(Ω [(2n+ 1)h+ qt] + z0|m) + δ

]
(4.126b)

and

un(t) =
[
1± (α−1) sn(Ω(2nh+pt) + z0|m) +β−1

γ sn(Ω(2nh+pt) + z0|m) + δ

]

×
[
1± (α−1) sn(Ω[(2n+ 1)h+pt] + z0|m) +β−1

γ sn(Ω[(2n+ 1)h+pt] + z0|m) + δ

]2

×
[
1± (α−1) sn(Ω[(2n+ 2)h+pt] + z0|m) +β−1

γ sn(Ω[(2n+ 2)h+pt] + z0|m) + δ

]
(4.127a)

vn(t) =
[
1± (α−1) sn(Ω[(2n−1)h+pt] + z0|m) +β−1

γ sn(Ω(2nh+pt) + z0|m) + δ

]

×
[
1± (α−1) sn(Ω(2nh+pt) + z0|m) +β−1

γ sn(Ω(2nh+pt) + z0|m) + δ

]
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+
[
1± (α−1) sn(Ω(2nh+pt) + z0|m) +β−1

γ sn(Ω(2nh+pt) + z0|m) + δ

]

×
[
1± (α−1) sn(Ω[(2n+ 1)h+pt] + z0|m) +β−1

γ sn(Ω[(2n+ 1)h+pt] + z0|m) + δ

]
. (4.127b)

4.2.4 Quispel-Roberts-Thompson maps

In this section we relate discrete equations we have identified to special cases

of the (symmetric) Quispel-Roberts-Thompson maps. We recall that three

discrete equations were identified in the previous section:

b1u−
(
b2 + b3u

2
)

(u+u) + b4uuu= 0 (4.128)

b1 +u(u+u) + b2uu= 0 (4.129)

b1 + b2u
2 +

(
u2− b2

)
uu= 0. (4.130)

None of these equations fit directly into the symmetric QRT class of maps

(2.38), but they can be embedded if we multiply the equations by particular

polynomials in u. The first equation (4.128) has previously been obtained in

[40] as a discretization of the differential equation for an anharmonic oscillator.

A biquadratic conserved quantity was computed:

I(u,u) =
(b1b3− b2b4)u2u2 + b1b2

(
u2 +u2

)
− b21uu

b24u
2u2− b1b4

(
u2 +u2

)
+ b21

. (4.131)

From this invariant, one constructs a symmetric QRT mapping equivalent to

(4.128):

A1 =


b3δ0−b4γ0

b1
0 γ0

0 δ0 0

γ0 0 − b2δ0−b1γ0
b1

 , A1 =


b3δ1−b4γ1

b1
0 γ1

0 δ1 0

γ1 0 − b2δ1−b1γ1
b1

 ,
(4.132)
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where γ0, γ1, δ0, and δ1 are arbitrary complex parameters, together with (2.34).

We have found the QRT matrices for the remaining equations:

A1 =


δ0−γ0b2

b1
0 γ0

0 δ0 0

γ0 0 −γ0b1
b2

 , A1 =


δ1−γ1b2

b1
0 γ1

0 δ1 0

γ1 0 −γ1b1
b2

 (4.133)

for (4.129) and

A0 =


α0 0 −α0b2

0 δ0 0

−α0b2 0 −α0b1

 , A1 =


α1 0 −α1b2

0 δ1 0

−α1b2 0 −α1b1

 (4.134)

for (4.130). Again these matrices contain arbitrary complex parameters.



Chapter 5

Equations from Bäcklund

transformations

In this short chapter we will, starting from auto-Bäcklund transformations

for the classical Painlevé equations, identify a number of delay-differential

equations with continuum limits to the first Painlevé equation. Our approach

here is very similar to that of Fokas, Grammaticos, and Ramani [28], who

obtained discrete Painlevé equations from the same starting point. An example

of their method is described in the second chapter of this thesis.

There is no general algorithm for deriving a delay-differential equation

from a Painlevé auto-Bäcklund transformation. The approach we use here

is, apparently, only applicable to two different auto-Bäcklund transformations

for (special cases of) PIII (2.17c). Interestingly, we obtain delay-differential

equations in both of the classes we have studied in this thesis: bi-Riccati

equations (3.1) and three-point equations (4.1).

5.1 Bi-Riccati equations
We recall, from the second chapter of this thesis, that the equation1

w′′ = (w′)2

w
− w

′

x
+ b−w2

x
− 1
w

(5.1)

1We have relabeled the variables in (2.22) and (2.23) (u→ w and z → x) so that the
delay-differential equations we obtain have dependent variable u and independent variable
z, which is consistent with the notation throughout the thesis.



5.1. Bi-Riccati equations 135

admits the auto-Bäcklund transformations

w(x;b+ 2) = x [1 +w′(x;b)]
w(x;b)2 − b+ 1

w(x;b) (5.2a)

w(x;b−2) = x [1−w′(x;b)]
w(x;b)2 − b−1

w(x;b) . (5.2b)

If we make the replacement b→ b+ 2 in (5.2b) we obtain

w(x;b) = x [1−w′(x;b+ 2)]
w(x;b+ 2)2 − b+ 1

w(x;b+ 2) . (5.3)

Then from (5.2a) and (5.3) we obtain

w(x;b)w(x;b+ 2) = x[1 +w′(x;b)]
w(x;b) −β−1 (5.4a)

w(x;b)w(x;b+ 2) = x[1−w′(x;b+ 2)]
w(x;b+ 2) −β−1. (5.4b)

Equating (5.4a) and (5.4b) leads to

w′(x;b)w(x;b+ 2) +w(x;b)w′(x;b+ 2) +w(x;b+ 2)−w(x;b) = 0. (5.5)

Viewing this as a differential-difference equation we take a reduction

w(x;b) = q

2xu(z), z = bh

2 + 2p
q

(5.6)

and obtain a differential-delay equation:

p
(
u′u+uu′

)
+ quu+u−u= 0. (5.7)

This equation has a continuum limit to a differentiated first Painlevé equation:

under the transformations

u(z) =− h

2p + h3

2py(z) +O
(
h4
)
,

q

p
= 1

6h
4 +O

(
h5
)

(5.8)
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we obtain

y′′′ = 12yy′+ 1 (5.9)

in the limit h→ 0. Integrating, we obtain a translated PI (2.17a) equation

y′′ = 6y2 + z+ z0. (5.10)

Because (5.7) has a continuum limit to PI, it cannot generally be solved in

terms of elementary transcendents. However, when q = 0, the equation has a

family of order-two elliptic solutions. Together with (3.1), the equation (5.7)

with q = 0 can be expressed as

X =



0 1
p 0 0

−1
p 0 0 1

0 0 0 0

0 1 0 0


, (5.11)

which is Möbius equivalent to X2
0 +X6

0 in (3.72). The solution of (5.7) with

q = 0 is

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (5.12)

subject to

γδs +pΩ(αδ+βγ) = 0 (5.13a)

pαγΩs2 +pβδΩ(1 + cd) + δ2s = 0 (5.13b)

γ2s +pαγΩ(1 + cd) +pβδΩms2 = 0. (5.13c)

We now recall the second auto-Bäcklund transformation given in the sec-

ond chapter. This transformation applies to

w′′ = 1
w

(
w′
)2
− 1
x
w′+ aw2 + b

x
+w3− 1

w
; (5.14)
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it is given by

w(x;−a,−b) =−w(x;a,b) (5.15a)

w(x;−b,−a) = 1
w(x;a,b) (5.15b)

w(x;−b−2,−a−2) =

w(x;a,b) + (2 +a+ b)w(x;a,b)2

x [w′(x;a,b) +w(x;a,b)2 + 1]− (1 + b)w(x;a,b) . (5.15c)

Using (5.15a) and (5.15b) to compute w(x;a+ 2, b+ 2) in (5.15c) leads to

w′(x;a+ 2, b+ 2)
w(x;a+ 2, b+ 2) + w′(x;a,b)

w(x;a,b) =

w(x;a+ 2, b+ 2)−w(x;a,b) + 1
w(x;a+ 2, b+ 2) −

1
w(x;a,b) . (5.16)

Again, we view this as a differential-difference equation (now with two discrete

variables a and b) and take the reduction

w(x;a,b) = u(z), z = (a+ b)h
4 −px. (5.17)

The result is the delay-differential equation

p
(
u′u+uu′

)
+ (uu−1)(u−u) = 0. (5.18)

Its corresponding matrix,

X =



0 −1 0 0

1 0 1 p

0 −1 0 0

0 p 0 0


, (5.19)

is also Möbius equivalent to X2
0 +X6

0 (and so is equivalent to (5.7) with q = 0).
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The equation (5.1) is solved by

u(z) = α sn(Ωz+ z0|m) +β

γ sn(Ωz+ z0|m) + δ
, (5.20)

together with

(
β2− δ2

)
s +pαγΩs2 +pβδΩ(1 + cd) = 0 (5.21a)(

α2−γ2
)

s +pβδΩms2 +pαγΩ(1 + cd) = 0 (5.21b)

(αβ−γδ)s +pΩ(αδ+βγ) = 0. (5.21c)

5.2 Three-point equations

We are able to manipulate (5.2) to obtain a three-point delay-differential equa-

tion, in addition to the bi-Riccati equation obtained in the previous section.

We simply take the difference of (5.2a) and (5.2b) to obtain

w(x;b+ 2)−w(x;b−2) = 2xw′(x;b)
w(x;b)2 −

2
w(x;b) . (5.22)

Again, we view this as a differential-difference equation and take a reduction

w(x;b) =±
√

2
q
u(z), z = bh

2 + p

q
logx (5.23)

to obtain a delay-differential equation:

pu′− qu= u2(u−u). (5.24)

This is a known equation, first obtained in [35], where a continuum limit to a

differentiated PI (2.17a) equation is given. Under the transformation

u(z) = h−1−hy(z), p= 2, q = h4 (5.25)
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we again obtain (5.9) and consequently (5.10). Because (5.24) has a continuum

limit to the first Painlevé equation, it does not admit solutions in terms of

elementary transcendents. However, in the case q = 0, we obtain

pu′ = u2(u−u). (5.26)

We have studied this equation previously. It was obtained in the previous

chapter as a special case of the Wadati lattice (4.78). It admits a multipa-

rameter family of order-two elliptic solutions whose precise form is given by

(4.100-4.101).



Chapter 6

General Conclusions

This thesis considers two classes of delay-differential equations: two-point bi-

Riccati equations (3.1) and a class of three-point equations (4.1) that extends

the McMillan family of discrete maps (2.50). Within each of these classes,

we have identified analogues of symmetric QRT maps and classical Painlevé

equations. This chapter serves to summarize and contextualize these results.

6.1 Bi-Riccati equations
We have identified five equations within the bi-Riccati class that admit multi-

parameter families of order-two elliptic solutions. They are:

a1
(
u′+u′

)
+a2

(
u2u′+u′u2

)
= b1(u−u) + b2

(
uu2−u2u

)
(6.1)

a1
(
u′−u′

)
+a2

(
u′u2−u2u′

)
= b1(u+u) + b2

(
u2u+uu2

)
(6.2)

u′u−uu′ = b1 + b2u
2u2 (6.3)

u′u+uu′ = b
(
u2−u2

)
(6.4)

a1
(
u′u+uu′

)
+a2u

′u′ = Ω0
s0
a1
(
u2−u2

)
+ Ω2

0c0d0
s2
0

a2
(
u2 +u2

)
(6.5)

−
Ω2

0
(
2− s2

0−m0s2
0
)

s2
0

a2uu.

The first four equations (6.1-6.4) are related to the sine-Gordon equation (2.90)

through its Bäcklund transformation (2.91). This relationship is discussed

extensively in the third chapter of this thesis, where new elliptic solutions
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to semidiscrete sine-Gordon equations are constructed. The fifth equation

we identify (6.5) differs from the first four in two principal ways. Firstly, the

parameters appearing in the equations are themselves parameterized by elliptic

functions (and it does not appear possible to reparametrize this equation in

a simpler way, as discussed in the third chapter). Secondly, the solution of

(6.5) does not involve constraints between Möbius parameters and internal

elliptic parameters (Ω, m), as in the case of the symmetric QRT map and the

other equations we have identified. The two degrees of parametric freedom in

the solution to (6.5) are obvious from the equation: a scaling freedom as the

equation is homogenous in u, u′, u, u′ and a translational freedom because the

equation is autonomous. For these reasons, we do not anticipate that (6.5) is

an important equation relative to (6.1-6.4).

We have also identified a Painlevé type equation in the bi-Riccati class

through a Bäcklund transformation for the third classical Painlevë equation:

a
(
u′u+uu′

)
= buu+u−u. (6.6)

When b = 0, the equation is Möbius equivalent to (6.4), and so possesses a

multiparameter family of elliptic solutions.

6.2 Three-point equations
Within the three-point class, we also identified five equations with multipa-

rameter order-two elliptic solutions. However, only two of these are delay-

differential equations:

u′

u−u
=

Ω0
s0
b1 + Ω0s0b2 +uΩ0c0d0

s0
b2−u2

(
Ω0m0s0b1− Ω0

s0
b2
)

2b1 + b2(u−u) + 2b3uu
. (6.7)

and

u′(u−u) = b1
(
u2 +uu

)
+ b2u(u+u). (6.8)

The first of these (6.7) generalizes the Wadati lattice, which always admits

order-two elliptic solutions (as shown in chapter 4). Despite the difficulty in
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parameterizing (6.7) without elliptic functions, we regard it as an important

equation since it reduces to known equations in particular cases. The second

equation we identified (6.8) is similar to (6.5) in that the free parameters in the

solution are somewhat trivial: the scaling and translational freedoms follow

from the equation while the internal elliptic parameters are fixed. For this

reason, we regard (6.8) as less interesting that (6.7). We also identified three

(4.128-4.130) discrete equations and showed that each can be embedded into

the symmetric QRT map (2.38). This underscores the efficacy of our approach

in identifying interesting equations, even though we have not achieved a full

classification of equations with order-two elliptic solutions.

As in the bi-Riccati class, we have found a Painlevé type equation from a

Bäcklund transformation for the classical third Painlevé equation:

au′ = bu+u2(u−u). (6.9)

This equation is not new, but we have been able to solve it in a particular limit

(b = 0) and relate it to our results. In particular, (6.9) with b = 0 is a special

case of the Wadati lattice (4.78) and is Möbius-equivalent to a special case of

(6.7), and so admits order-two elliptic solutions (4.100-4.101).

6.3 Future directions
This work reported in this thesis was motivated by a desire to understand

the structure of delay-differential Painlevé equations from the perspective of

discrete integrable systems. We have identified a number of symmetric QRT

analogues and Painlevé type equations in two large classes of delay-differential

equations. Our results are expected to be useful in constructing further

Painlevé type delay-differential equations. This can be done by considering

singularity structure (in the sense of [32]) generalizations of the QRT ana-

logues (6.1-6.4,6.7-6.8) we have identified with continuum limits to classical

Painlevé equations.



Appendix A

Elliptic functions

In this appendix we collect the essential results and formulae from the theory of

elliptic functions. There are a number of number of ways to define the standard

classes of elliptic functions; elliptic integrals, the defining differential equations,

or elliptic curves are all suitable starting points. Here we take a constructive

approach, defining the Weierstrass ℘ function as a sum over a lattice in the

complex plane. From the Weierstrass functions and their properties, the Jacobi

elliptic functions can be constructed by means of the Halphen elliptic functions.

Elliptic integrals are briefly considered at the conclusion of this appendix. We

begin with the definition of an elliptic function.

Definition A.0.1 (Elliptic function). A function f : C→ C∪{∞} is called

elliptic if f is meromorphic and there exist complex numbers ω1 and ω2, where

Imω1
ω2
6= 0 (A.1)

and

f(z+mω1 +nω2) = f(z), z ∈ C, (m,n) ∈ Z2. (A.2)

Any elliptic function is naturally associated with a lattice

Λ =
{
mω1 +nω2 : (m,n) ∈ Z2

}
. (A.3)

Given the generators of the lattice and a point z ∈ C we can construct the
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period parallelogram

P (z) = {z+ t1ω1 + t2ω2 : 0≤ t1, t2 < 1}. (A.4)

Specification of the values of the elliptic function on the any period parallelo-

gram defines the elliptic function on the entire complex plane through (A.2).

We now state a number of important results for elliptic functions.

Theorem A.0.1. If an elliptic function has no poles, it is a constant.

Theorem A.0.2. If f is an elliptic function, the sum of the residues of f or

1/f in any period parallelogram is zero.

Theorem A.0.3. If f is a nonconstant elliptic function and c ∈ C∪ {∞},

the number of solutions, counting multiplicity, to the equation f(z) = c in any

period parallelogram is a constant.

The number of solutions, counting multiplicity, to f(z) = c within a period

parallelogram is called the order of f . From (A.0.2) it follows that the order

of any nonconstant elliptic function is at least two. We will now look at an

example of an order-two elliptic function.

A.1 Weierstrass functions
Given a lattice Λ ⊂ C with generators satisfying (A.1), the Weierstrass ℘-

function is defined as

℘(z|Λ) = 1
z2 +

∑
ω∈Λ\{0}

[
1

(z+ω)2 −
1
ω2

]
. (A.5)

It can be shown that this sum converges uniformly on any compact set. The

resulting function is even with a single double pole at z = 0 mod Λ in each

period parallelogram. The function is commonly denoted by

℘(z;g2,g3) = ℘(z|Λ) (A.6)
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where

g2 = 60
∑

ω∈Λ\{0}

1
ω4 , g3 = 140

∑
ω∈Λ\{0}

1
ω6 (A.7)

are called lattice invariants. Up to translation in z, ℘(z;g2,g3) is the unique

solution of the differential equation

(
u′
)2

= 4u3−g2u−g3. (A.8)

From here it is possible to generate series expansions for ℘. About any z0 ∈ Λ

we have the Laurent series

℘(z;g2,g3) = 1
(z− z0)2 + g2

20(z− z0)2 + g3
28(z− z0)4 +O

(
(z− z0)6

)
, (A.9)

valid in a punctured disk of radius

r = min{|ω− z0| : ω ∈ Λ\{z0}}. (A.10)

About a regular point z0 /∈ Λ, we find

℘(z;g2,g3) =℘(z0;g2,g3) +℘′(z0;g2,g3)(z− z0)

+
[
3℘(z0;g2,g3)2− g2

4

]
(z− z0)2 +O

(
(z− z0)3

)
, (A.11)

valid in a disk centered at z0 with radius

r = min{|ω− z0| : ω ∈ Λ}. (A.12)

Useful information about the zeros of ℘ can be extracted from (A.11). Suppose

℘(z0;g2,g3) = 0. Then from (A.8) it follows that ℘′(z0;g2,g3) = ±√−g3, i.e.

the Weierstrass ℘-function has two simple zeros with the same coefficients up

to a sign, unless g3 = 0. In this case we have a double zero with coefficient

−g2/4.

The derivative of the Weierstrass ℘-function, appearing in (A.11), is and
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odd elliptic function of order three. In this thesis we will not find much use for

this function (in solutions to delay-differential equations), but it does appear

in a number of formulas associated with the ℘-function. On the other hand, we

will make extensive use of the Weierstrass ζ-function. This function is defined

by

ζ ′(z;g2,g3) =−℘(z;g2,g3) (A.13)

together with the condition

lim
z→0

[
ζ(z;g2,g3)− 1

z

]
= 0 (A.14)

so that ζ is odd with respect to its first argument. Term by term integration

of (A.5) yields

ζ(z;g2,g3) = 1
z

+
∑

ω∈Λ\{0}

[ 1
z−ω

+ 1
ω

+ z

ω2

]
. (A.15)

From here, we see that the ζ-function possesses only simple poles of residue

one, and so by (A.0.2) it cannot be an elliptic function. The function is only

quasi-periodic, satisfying

ζ(z+ω;g2,g3) = ζ(z;g2,g3) + 2ζ(ω;g2,g3), ω ∈ Λ. (A.16)

About z = 0 we have the Laurent series

ζ(z;g2,g3) = 1
z
− g2

60z
2− g3

140z
5 +O

(
z7
)
, (A.17)

convergent in an origin-centered punctured disk of radius (A.10). Expansions

about other lattice points follow from (A.15). About a regular point z0 /∈ Λ

we have the expansion

ζ(z;g2,g3) =ζ(z0;g2,g3)−℘(z0;g2,g3)(z− z0)− 1
2℘
′(z0;g2,g3)(z− z0)2

+O
(
(z− z0)3

)
, (A.18)
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convergent in a disk of radius (A.12) centered at z0.

An order-two elliptic function is easily constructed from the difference of

ζ-functions:

η(z,w;g2,g3) := ζ(z;g2,g3)− ζ(z−w;g2,g3); (A.19)

for any w /∈ Λ, the above function is order-two elliptic with two simple poles

of opposite unit residue in each period parallelogram. In particular, if z0 ∈ Λ

we have

η(z,w;g2,g3) = 1
z− z0

+ ζ(w;g2,g3) +℘(w;g2,g3)(z− z0)

−1
2℘
′(w;g2,g3)(z− z0)2 +O

(
(z− z0)3

)
(A.20)

in a punctured disk of radius

r = min{|ω− z0| : ω ∈ Λ∪ (w+ Λ)\{z0}} (A.21)

centered at z0, and if instead z0 is an element of the coset w+ Λ, we have

η(z,w;g2,g3) =− 1
z− z0

− ζ(w;g2,g3)−℘(w;g2,g3)(z− z0)

− 1
2℘
′(w;g2,g3)(z− z0)2 +O

(
(z− z0)3

)
(A.22)

in a punctured disk of radius (A.21) centered at z0. Lastly, about a regular

point z0 /∈ Λ∪ (w+ Λ),

η(z,w;g2,g3) =ζ(z0;g2,g3)− ζ(z0−w;g2,g3)

−[℘(z0;g2,g3)−℘(z0−w;g2,g3)](z− z0)

+O
(
(z− z0)2

)
, (A.23)

which converges in a disk of radius

r = min{|ω− z0| : ω ∈ Λ∪ (w+ Λ)} (A.24)
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centered at z0. In turns out that, up to affine transformations of the dependent

variable and translations of the independent variable, ℘ and η are the only

possibilities for order-two elliptic functions. This is an immediate corollary of

the following theorem [6].

Theorem A.1.1. Any elliptic function possessing poles at {a1, . . . ,aN} with

corresponding orders {M1, . . . ,MN} in a period parallelogram can be repre-

sented as:

f(z) = A0
0 +

N∑
n=1

A1
nζ(z−an;g2,g3) +

N∑
n=1

Mn∑
m=2

Amn ℘
(m−2)(z−an;g2,g3), (A.25)

for some choice of coefficients Amn .

Here we list a number of identities for the Weierstrass functions introduced

in the previous section. Of particular importance are the so-called addition

theorems for the Weierstrass functions, which relate values of a function and

its upshift. Proofs of these properties rely on the differential equation (A.8)

and are found in any standard reference on elliptic functions.

The addition laws for the Weierstass ℘ and ζ functions are, respectively,

℘(x1±x2;g2,g3) = 1
4

[
℘′(x1;g2,g3)∓℘′(x2;g2,g3)
℘(x1;g2,g3)−℘(x2;g2,g3)

]2
−℘(x1;g2,g3)−℘(x2;g2,g3)

(A.26)

and

ζ(z1 + z2;g2,g3) = ζ(z1;g2;g3) + ζ(z2;g2,g3) + 1
2
ζ ′′(z1;g2,g3)− ζ ′′(z2;g2,g3)
ζ ′(z1;g2,g3)− ζ ′(z2;g2,g3) ,

(A.27)

for any x1,x2 ∈ C. There are also three point identities for these functions.

When x1,x2,x3 ∈ C satsify x1 +x2 +x3 = 0, we have

det


1 1 1

℘(x1,g2,g3) ℘(x2,g2,g3) ℘(x3,g2,g3)

℘′(x1,g2,g3) ℘′(x2,g2,g3) ℘′(x3,g2,g3)

= 0 (A.28)
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and

[ζ(x1;g2,g3) + ζ(x2;g2,g3) + ζ(x3;g2,g3)]2

+ζ ′(x1;g2,g3) + ζ ′(x1;g2,g3) + ζ ′(x1;g2,g3) = 0. (A.29)

It is sometimes convenient to write (A.27) and (A.29) in terms of the ℘-function

according to ζ ′(z;g2,g3) =−℘(z;g2,g3) and ζ ′′(z;g2,g3) =−℘′(z;g2,g3).

We find occasional use for the following scaling properties of the Weier-

strass functions:

℘
(
λz;λ−4g2,λ

−6g3
)

= λ−2℘(z;g2,g3) (A.30)

ζ
(
λz;λ−4g2,λ

−6g3
)

= λ−1ζ(z;g2,g3). (A.31)

These properties follow directly from the definition (A.5) and (A.7).

A.2 Halphen functions
We begin with the differential equation for the Weierstrass ℘-function (A.8),

which can be written as

(
℘′
)2

= 4(℘− e1)(℘− e2)(℘− e3) (A.32)

where

2
(
e2

1 + e2
2 + e2

3
)

= g2, 4e1e2e3 = g3, (A.33)

and

e1 + e2 + e3 = 0. (A.34)

We see then that the zeroes of the cubic polynomial appearing in (A.32) cor-

respond to zeroes of ℘′, which we will now characterize. Exploiting the parity

and periodicity of ℘′, we have

℘′(z;g2,g3) =−℘′(ω− z;g2,g3), ω ∈ Λ, (A.35)
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and we see that ℘′(z;g2,g3) = 0 when

z ∈
(
ω1
2 + Λ

)
∪
(
ω2
2 + Λ

)
∪
(
ω1 +ω2

2 + Λ
)
. (A.36)

In particular,

℘′
(
ω1
2 ;g2,g3

)
= ℘′

(
ω2
2 ;g2,g3

)
= ℘′

(
ω3
2 ;g2,g3

)
(A.37)

where

ω3 :=−ω1−ω2 (A.38)

and thus

ei = ℘
(
ωi
2 ;g2,g3

)
, i= 1,2,3. (A.39)

We will now construct a new set of functions by appealing to the following

theorem [23].

Theorem A.2.1. Suppose f is a meromorphic function on a simple connected,

open set Ω ⊂ C. If the order of each zero and pole of f in Ω is even, there

exists a meromorphic function g : Ω→C∪{∞} satisfying g(z)2 = f(z) for each

z ∈ Ω.

We can apply this theorem to the set of functions defined by

Hi(z;e1, e2)2 = ℘(z;g2,g3)− ei, i= 1,2,3, (A.40)

where the Hi are known as Halphen functions. Clearly the RHS of (A.40)

possesses only double poles. From (A.11) and (A.39) all zeroes are double as

well. Therefore the theorem (A.2.1) applies; we choose the square root so that

lim
z→0

zHi(z;e1, e2) = 1, i= 1,2,3. (A.41)

From here and (A.40), it follows that the Halphen functions are odd functions
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of their first argument. Then using the periodicity of ℘, it is easily seen that

Hi(z+ωi;e1, e2) =Hi(z,e1, e2) (A.42)

and

Hi(z+ωj ;e1, e2) =−Hi(z,e1, e2), i 6= j, (A.43)

i.e. the Halphen functions are elliptic with associated lattices

Λ1 = 〈{ω1,2ω2}〉, Λ2 = 〈{2ω1,ω2}〉, Λ3 = 〈{2ω1,2ω2}〉. (A.44)

We can now establish a number of properties for the Halphen functions.

In particular, these will be useful in establishing analogous properties for the

Jacobi functions. Directly from the definition (A.40) we obtain differential

relations between the Halphen functions:

H ′i(z;e1, e2) =−Hj(z;e1, e2)Hk(z;e1, e2), i 6= j 6= k. (A.45)

and also the algebraic relations between the functions:

Hi(z;e1, e2)2 + ei =Hj(z;e1, e2)2 + ej . (A.46)

Combining (A.45) and (A.46) leads to the differential equations

H ′i(z;e1, e2)2 =
[
Hi(z;e1, e2)2 + ej− ei

][
Hi(z;e1, e2)2 + ej− ek

]
, i 6= j 6= k.

(A.47)

A.3 Jacobi functions

The Jacobian functions are constructed in terms of the Halphen function with

a change of independent variable:

sn(x|m) =
√
e1− e2

H2(z;e1, e2) (A.48)
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cn(x|m) =H1(z;e1, e2)
H3(z;e1, e2) (A.49)

dn(x|m) =H3(z;e1, e2)
H2(z;e1, e2) , (A.50)

where

x=
√
e1− e2 z, m= e3− e2

e1− e2
. (A.51)

Often these functions are written with an auxiliary parameter k, called the

elliptic modulus. We will instead use the auxiliary parameter m= k2 because

this simplifies some formulae for these functions.

The functions (A.48-A.50) are elliptic with associated lattices

Λsn =
〈{

4K,2iK ′
}〉
, Λcn =

〈{
4K,2K+ 2iK ′

}〉
, Λdn =

〈{
2K,4iK ′

}〉
.

(A.52)

where

2K =
√
e1− e2ω1, 2iK ′ =

√
e1− e2ω2. (A.53)

The analogues of (A.45) are

sn′(x|m) =cn(x|m)cn(x|m) (A.54a)

cn′(x|m) =− sn(x|m)dn(x|m) (A.54b)

dn′(x|m) =−msn(x|m)cn(x|m) (A.54c)

and the analogues of (A.46) are

sn2(x|m) + cn2(x|m) = 1 (A.55a)

msn2(x|m) + dn2(x|m) = 1 (A.55b)

mcn2(x|m)−dn2(x|m) =m−1. (A.55c)

Then (A.55-A.54) imply the following differential equations:

sn′(x|m)2 =
[
1− sn(x|m)2

][
1−msn(x|m)2

]
(A.56a)
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cn′(x|m)2 =
[
1− cn(x|m)2

][
1−m+mcn(x|m)2

]
(A.56b)

dn′(x|m)2 =
[
dn(x|m)2−1

][
1−m−dn(x|m)2

]
. (A.56c)

The differentiated forms of these equations are occasionally useful:

sn′′(x|m) =− (1 +m)sn(x|m) + 2msn(x|m)3 (A.57a)

cn′′(x|m) =− (1−2m)cn(x|m)−2mcn(x|m)3 (A.57b)

dn′′(x|m) =(2−m)dn(x|m)−2dn(x|m)3. (A.57c)

Like the Weierstrass and Halphen elliptic functions, the Jacobi elliptic func-

tions obey addition laws:

sn(x1±x2|m) =sn(x1|m)cn(x2|m)dn(x2|m)± sn(x2|m)cn(x1|m)dn(x1|m)
1−msn2(x1|m)sn2(x2|m)

(A.58a)

cn(x1±x2|m) =cn(x1|m)cn(x2|m)± sn(x1|m)dn(x1|m)cn(x2|m)dn(x2|m)
1−msn2(x1|m)sn2(x2|m)

(A.58b)

dn(x1±x2|m) =dn(x1|m)dn(x2|m)±msn(x1|m)cn(x1|m)sn(x2|m)cn(x2|m)
1−msn2(x1|m)sn2(x2|m) .

(A.58c)

An important property of the Jacobian elliptic functions is that they de-

generate to trigonometric functions in simple limiting cases. In particular, we

have

lim
m→0

sn(z|m) = sinz, lim
m→0

cn(z|m) = cosz, lim
m→0

dn(z|m) = 1 (A.59)

and

lim
m→1

sn(z|m) = tanhz, lim
m→1

cn(z|m) = sechz, lim
m→1

dn(z|m) = sechz (A.60)

as can be seen from the differential equations (A.56) or (A.57).
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We remark that further order-two elliptic functions can be constructed

using the three basic Jacobi functions (A.48-A.50) as a starting point. More

specifically, inversions of and ratios between the basic Jacobi functions are

elliptic and their properties can be easily deduced from the preceding discus-

sion. We list these functions below, noting that only the first of these finds

application in this thesis:

ns(z|m) = 1
sn(z|m) , nc(z|m) = 1

cn(z|m) , nd(z|m) = 1
dn(z|m) , (A.61)

sc(z|m) = sn(z|m)
cn(z|m) , cs(z|m) = cn(z|m)

sn(z|m) , sd(z|m) = sn(z|m)
dn(z|m) , (A.62)

ds(z|m) = dn(z|m)
sn(z|m) , cd(z|m) = cn(z|m)

dn(z|m) , dc(z|m) = dn(z|m)
cn(z|m) . (A.63)

A.4 Elliptic integrals

The Jacobian elliptic functions can be constructed as the inverse functions of

particular elliptic integrals. While we have not constructed the Jacobi func-

tions in this way, some essential identities associated with these functions in-

volve elliptic integrals. For sake of completeness we begin with a definition.

Definition A.4.1 (Elliptic integral). An integral

∫
R(z;P (z))dz (A.64)

is called an elliptic integral if R is rational in its arguments and P (z)2 is either

a cubic or quartic polynomial in z.

There are a number of canonical forms for elliptic integrals. We will only

require the first two of these. The elliptic integral of the first kind is

F (φ|m) =
φ∫

0

dθ√
1−msin2 θ

(A.65)
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and the elliptic integral of the second kind is

E(φ|m) =
φ∫

0

√
1−msin2 θdθ. (A.66)

When the integration limit φ has the value π/2, these elliptic integrals are

called complete. In particular, the complete elliptic integral of the first kind is

K(m) = F
(
π

2

∣∣∣∣m) (A.67)

and the complete elliptic integral of the second kind is

E(m) = E
(
π

2

∣∣∣∣m) . (A.68)

The simplest appearance of an elliptic integral in the context of Jacobi

elliptic functions is as formulas for the periods. In particular, in (A.52) we

have K =K(m) as in (A.67) and

K ′ =K(1−m) = F
(
π

2

∣∣∣∣1−m) . (A.69)

Elliptic integrals also appear in formulas involving some auxiliary Jacobian

functions. The Jacobi E-function is defined as

E(z|m) =
z∫

0
dn2(x|m)dx. (A.70)

This function obeys the addition law

E(z1 +z2|m) = E(z1|m)+E(z2|m)−msn(z1|m)sn(z2|m)sn(z1 +z2|m); (A.71)

when z2 =K, this reduces to

E(z+ 2K|m) = E(z|m) + 2E(m). (A.72)
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The Jacobi Z-function is defined as

Z(z|m) = E(z|m)− E(m)
K(m)z. (A.73)

This function satisfies the same addition law as E(z|m) (A.71), but in the

special case z2 = 2K, we have

Z(z+ 2K|m) = Z(z|m). (A.74)
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