
Econometric Analysis of Network
Formation Models

Cristina Gualdani

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Economics

University College London



2

I, Cristina Gualdani, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

This dissertation addresses topics in the econometrics of network formation models.

Chapter 1 provides a review of the literature. Statistical models focus on the speci-

fication of the probability distribution of the network. Examples include models in

which nodes are born sequentially and meet existing vertices according to random

meetings and network-based meetings. Within this group of models, special atten-

tion is reserved to the milestone work by Jackson and Rogers (2007): after having

discussed and replicated the main results of the paper, an extension of the original

model is examined and fitted to a dataset of Google Plus users.

Even if statistical models can reproduce relatively well the main characteristics

of real networks, they usually lack of microfundation, essential for counterfactual

analysis. The chapter hence moves to considering the econometrics of economic

models of network formation, where agents form links in order to maximise a payoff

function. Within this framework, Chapter 2 studies identification of the parameters

governing agents’ preferences in a static game of network formation, where links

represent asymmetric relations between players. After having shown existence of

an equilibrium, partial identification arguments are provided without restrictions

on equilibrium selection. The usual computational difficulties are attenuated by

restricting the attention to some local games of the network formation game and

giving up on sharpness.

Chapter 3 applies the methodology developed in Chapter 2 to empirically in-

vestigate which preferences are behind firms’ decisions to appoint competitors’ di-

rectors as executives. Using data on Italian companies, it is found that a firm i

prefers its executives sitting on the board of a rival j when executives of other com-
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petitors are hosted too, possibly because it enables i to engage with them in “cheap

talk” communications, besides having the opportunity to learn about j’s decision

making process.
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General introduction

There is a successful literature showing that the structure of relations (network of

links) between individuals or organizations affects several outcomes of economic

interest, such as academic achievement (Sacerdote, 2001, 2011; Zimmerman, 2003;

Calvó-Armengol, Patacchini and Zenou, 2009), job search (Topa, 2001; Calvó-

Armengol and Jackson, 2004; Bayer, Ross and Topa, 2008), smoking decisions

(Gaviria and Raphael, 2001; Nakajima, 2007; Bisin, Moro and Topa, 2011), crim-

inal actions (Calvó-Armengol and Zenou, 2004), technology adoption (Bandiera

and Rasul, 2006; Conley and Udry, 2010), executives’ compensation (Hallock,

1997; Core, Holthausen and Larcker, 1999; Patnam, 2013; Gayle, Golan and Miller,

2015), and firms’ performance (Uzzi, 1996; McDonald and Westphal, 2003). This

recognition has fuelled a growing attention for estimating models explaining how

the networks themselves arise (network formation models). Indeed, understanding

network genesis is crucial to evaluate policies that might improve some relevant

network features, or to investigate which agents to target in order to affect, in turn,

behaviours on networks. On the other hand, estimating network formation models

is challenging because agents’ decisions for links are often interdependent, with

resulting identification and computational issues when attempting to conduct infer-

ence on underlying incentives.

Chapter 1 provides a summary of the relevant literature on the econometrics of

network formation models. It starts with discussing statistical models of network

formation, which are characterised by a focus on the probability distribution of the

network as the direct object of interest. Examples include the Erdös-Rényi model,

the Poisson random graph model, and the class of exponential random graph mod-



els. As exponential random graph models have been extensively used because they

can easily combine several types of interdependencies among links, available tech-

niques to estimate them are analysed. Moreover, when fitting the Poisson random

graph model to data, one may fail to reproduce several features of real networks.

This has led researchers to develop statistical models of network formation where

nodes are born sequentially and create connections more or less randomly, with the

purpose of matching the main characteristics of observed networks. In this context,

special attention is reserved to the milestone work by Jackson and Rogers (2007):

after having discussed and replicated the main results of the paper, an extension of

the original model is examined and fitted to a dataset of Google Plus users.

Even if statistical models can reproduce relatively well the main characteristics

of real networks, they usually lack of microfundation, essential for counterfactual

analysis. The chapter hence moves to considering the econometrics of economic

models of network formation, where heterogenous agents create links according to

specific rules, an explicit equilibrium concept, and payoffs depending on players’

characteristics, and, possibly, actions (also called externalities).

Chapter 2 studies identification of the parameters governing agents’ prefer-

ences in a static game of network formation, where links represent asymmetric re-

lations between players, e.g., the sharing of directors across firms (firm with an

executive sitting on the board of another company vs such a company), trading con-

nections (buyer vs seller), and advice ties (advisor vs advisee). Agents have com-

plete information and play pure strategy Nash equilibrium if link creation can be

unilaterally established, or pure strategy pairwise Nash equilibrium in the bilateral

case. Payoffs are non-transferable. Link decisions are interdependent, as the payoff

that player i receives from linking to player j is affected by the number of additional

players doing the same. For example, when examining firms’ decisions to have their

executives sitting on the board of other companies, the number of additional firms

having an executive appointed on the board of company j may encourage firm i to

join j’s board too for exploiting “cheap talk”1 opportunities with them. Likewise,

1Costless, informal, and unverifiable discussions about prior or planned choices (Farrell and
Rabin, 1996).
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in the analysis of trading connections, the number of additional agents buying from

agent j may negatively affect agent i’s power to bargain with j. Similarly, when

considering advice ties, e.g., individuals nominating who they would ask for ad-

vice on the adoption of a technology, the number of additional people designating

person j as adviser might proxy, in the eyes of individual i, j’s time availability to

offer proper explanations, or, if agents benefit from coordinating their subsequent

advised choices, j’s recommendations sharing level.

In order to show existence of an equilibrium, the network formation game is

decomposed in some local games2, which are similar in structure to entry games,

and are such that the network formation game has an equilibrium if and only if each

local game has an equilibrium. In turn, existence of an equilibrium in each local

game is proved by combining Tarski’s fixed point theorem with the constructive

proof that Berry (1992) designs to verify existence of an equilibrium in an entry

game with substitution effects.

The network formation game admits multiple equilibria. Thus, assuming that

the researcher observes a large sample of equilibrium networks, partial identifica-

tion arguments for the parameters of the model are developed avoiding restrictions

on equilibrium selection mechanism. After having represented the sharp identified

set by bounding the empirical probability distribution of the entire network, it is no-

ticed that, when there are four or more players, such a characterisation of the sharp

identified set comprises a prohibitively enormous quantity of moment inequalities.

To attenuate the computational difficulties, it is proposed to restrict the atten-

tion to the local games mentioned earlier and derive moment inequalities by bound-

ing the empirical probability distribution of the outcomes of the local games, rather

than of the network formation game. After having derived some sufficient condi-

tions under which focusing on the local games preserves sharpness, it is noticed that,

despite the procedure notably diminishes the number of moment inequalities to con-

sider, the reduction is not enough and chasing sharpness remains unfeasible when

there are ten or more players. It is then suggested to use a specific computationally

2A local game of the network formation game is intended as a game whose sets of players and
strategy profiles are subsets of the network formation game’s.
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convenient sub-collection of the original list of moment inequalities involving the

outcomes of the local games.

When estimating the characterised outer set, one gets computational gains from

two sources, under general assumptions. Firstly, the list of moment inequalities to

consider is substantially shorten. Secondly, checking the violation in the data of

those moment inequalities is easy. Specifically, when obtaining by simulation the

bounding terms, one can avoid verifying whether each of all possible outcomes

of a local game is an equilibrium for every drawn value of preference shocks, an

extremely demanding routine even for a moderate number of players. Indeed, by

applying Tarski’s fixed point theorem and reinterpreting for the local games the

result from Berry (1992) on the fixed number of entrants in an entry game with sub-

stitution effects, the amount of outcomes which can strive for being an equilibrium

is considerably reduced. Overall, Monte Carlo exercises reveal that conducting in-

ference on the suggested outer set is computationally manageable with relatively

limited computational resources when there are up to twenty players.

In Chapter 3 an empirical illustration shows that the methodology developed

in Chapter 2 can deliver economically meaningful estimates. Specifically, the pro-

cedure is used to investigate firms’ incentives for having executives sitting on the

board of competitors (also called primary horizontal board interlocks3).

Most organisations are governed by a board of directors composed of exec-

utives and non-executives. The former lead the decision making process, the lat-

ter are involved in the supervision and advising of executives. Primary horizontal

board interlocks are a common arrangement of firms’ governance structure in sev-

eral European countries4. Deeply analysed by corporate governance experts, they

also draw the attention of economists because they may help firms to exchange

information, and, in turn, reduce strategic uncertainty, transmit tacit knowledge,

3The adjective “horizontal” denotes the fact that firms are competitors (Carrington, 1981); the
adjective “primary” denotes the fact firms share directors with executive roles (Stokman, Van Der
Knoop and Wasseur, 1988).

4Legislation on primary horizontal board interlocks is not uniform across countries. For ex-
ample, in the U.S., primary horizontal board interlocks are illegal under the Clayton Act of 1914
and subsequent ancillary legislation. By contrast, European countries do not impose any clear and
general prohibition.
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increase transparency, or encourage coordination. In such a scenario, interdepen-

dence among companies’ decisions for forming primary horizontal board interlocks

becomes crucial because it allows them to expand and radiate the flow of informa-

tion. Indeed, firm i could find extremely attractive to have one of its executives

sitting on the board of rival j when executives of other competitors are hosted too,

as it would enable i to engage with them in “cheap talking” about past of future

choices, besides having the opportunity to learn about j’s decision making process.

At the same time, such interdependence causes endogeneity, and, thus, pre-

vents the possibility of using standard econometric techniques to conduct inference

on firms’ preferences behind primary horizontal board interlocks. Applying the

methodology illustrated in Chapter 2 represents an alternative. In particular, a 95%

confidence region for the suggested outer set is constructed using Italian data. In

line with the intuition above, results reveal that firms prefer to have their executives

sitting on the board of a rival when executives of other competitors are appointed

too.

14



Chapter 1

A review of the literature

1.1 Introduction

The chapter summarises the relevant literature on the econometric analysis of net-

work formation models. Detailed reviews are in Graham (2015), Chandrasekhar

(2016), and de Paula (2016). After a sketch of the main tools from network theory

that will be used throughout the dissertation (Section 1.2), Section 1.3 considers sta-

tistical models of network formation. These models are characterised by a focus on

the probability distribution of the network as the direct object of interest. Examples

include the Erdös-Rényi model, the Poisson random graph model, and and the class

of exponential random graph models (hereafter ERGMs). As ERGMs have been

extensively used because they can easily combine several types of interdependen-

cies among links, available techniques to estimate them are discussed. Moreover,

when fitting the Poisson random graph model to data, one may fail to reproduce

several features of real networks. This has led researchers to develop statistical

models of network formation where nodes are born sequentially and create connec-

tions more or less randomly, with the purpose of matching the main characteristics

of real networks. In this context, special attention is reserved to the milestone work

by Jackson and Rogers (2007) (hereafter JR): after having discussed and replicated

the main results of the paper, an extension of the original model is examined and

fitted to a dataset of Google Plus users.

Statistical models of network formation are usually lacking micro-fundation.



Conversely, in economic models of network formation, heterogenous agents create

links according to specific rules (decisions can be made simultaneously or sequen-

tially, unilaterally or bilaterally; information can be complete or incomplete), an ex-

plicit equilibrium concept (e.g., Nash equilibrium, Nash stability, pairwise stability,

pure strategy pairwise Nash equilibrium, Bayesian Nash equilibrium), and payoffs

(transferable or nontransferable) depending on players’ actions and characteristics.

Estimating economic models of network formation can help to analyse the drivers

of link creation and, thus, which policies might improve the network features of

interest. Empirically understanding the forces and incentives determining the shape

of real networks is also crucial to investigate which agents to target in order to af-

fect, in turn, their behaviours on networks. Lastly, accounting for the endogeneity

of link formation may be important to pin down peer effects spreading through ties.

Available strategies to identify and estimate economic models of network formation

are illustrated in Section 1.4, with a particular focus on the econometric challenges

encountered in static games of network formation displaying multiple equilibria.

1.2 Useful tools from network theory
A network of size N can be graphically represented by a collection of N nodes (or

vertices) controlled by agents, some of them connected by links (or edges, ties).

Nodes are labelled by the integers in N := {1,2, ...,N}. The link from node i to

node j is denominated link i j. The set of links is denoted by E and it has cardinality

E. Alternatively, a network of size N can be represented by an N×N matrix GGG with

i jth component

Gi j :=

1 if the link i j exists

0 otherwise

A network is undirected when links do not have directions (links are undirected),

i.e., Gi j = G ji ∀i, j ∈N . Undirected networks are used to represent symmetric rela-

tions between agents, such as friendships5, coauthorships, risk sharing, and spatial

5The interpretation of friendship relations is controversial in the empirical literature on net-
works: some papers (e.g., Christakis, et al., 2010; de Paula, Richards-Shubik and Tamer, 2016;
Miyauchi, 2016; Sheng, 2016) represent friendship networks as undirected networks, hence, con-
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proximity. Viceversa, a network is directed when links have direction (links are

directed), i.e., Gi j is allowed to be different from G ji for any i, j ∈N . Directed net-

works are appropriate to handle asymmetric relations between agents, such as sup-

ply chain links, firms having their executives sitting on other companies’ boards6,

advice patterns, trust connections, citations, hyperlinks, and communication ties7.

As an example, Figure 1.1 reports a directed network of size 3.

When a network is directed, node i’s direct neighbourhood is the set { j ∈

N|Gi j = 1}. Links from node i to other nodes are i’s outgoing links. Vice versa,

links from any other node to node i are i’s incoming links. Node i’s in-degree (out-

degree) is the number of i’s incoming (outgoing) links and is denoted by di (d̃i).

A network can be described using summary statistics, such as the maximum

distance between any pair of nodes (diameter), the tendency of linked nodes to have

common neighbours (clustering coefficient), the ratio of the number of links to the

number of possible links (density), the average degree of nodes, the percentage of

isolated nodes, and the total number of links8.

Figure 1.1: Example of a directed network of size 3, with GGG =

0 1 1
1 0 0
0 0 0

.

sidering the formation of links as a bilateral process. Other papers (e.g., JR; Badev, 2014; Boucher,
2016; Mele, 2017) interpret friendships “as a mean to transmit influence, i.e., [...] as role models.”
(Badev, 2014, p.9) and picture friendship networks as directed networks formed through an unilat-
eral process, also motivated by the fact that a considerable portion of friendship nominations in the
AddHealth survey is not reciprocal (see e.g., Calvó-Armengol, Patacchini, Zenou, 2009 for more
details).

6More details are in Chapter 3.
7Also some online social networks can be represented as undirected networks (e.g., Facebook)

or directed networks (e.g., Twitter and GooglePlus).
8More on summary statistics is e.g., in Jackson (2009).
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1.3 Statistical models of network formation

Statistical models of network formation are characterised by a focus on the proba-

bility distribution of the network as the direct object of interest. Unless differently

specified, this section considers undirected networks.

The Erdós-Rényi model The Erdós-Rényi model imposes a uniform probability on

the class of networks with a given number of nodes and edges (Erdós and Rényi,

1959; 1960). Hence, each network with N nodes and E edges has probability

1

∑

1
2 N(N−1)
k=1

( 1
2 N(N−1)

k

)(k
E

)
to arise.

The Poisson random graph model The Poisson random graph model assumes

independent and identical probability p ∈ (0,1) of link formation for each pair

of nodes (Solomonoff and Rapoport, 1951; Gilbert, 1959; Erdós and Rényi,

1960). Given N nodes, it follows that node i’s probability to have degree di is(N−1
di

)
pdi(1− p)N−1−di . Moreover, its expected degree is

N−1

∑
d=0

d
(

N−1
d

)
pd(1− p)N−1−d = (N−1)p

In fact, by the binomial theorem,

(p+q)N−1 =
N−1

∑
d=0

(
N−1

d

)
pdqN−1−d

Then, differentiating both sides with respect to p, one gets

(N−1)(p+q)N−2 =
N−1

∑
d=0

(
N−1

d

)
d

pd

p
qN−1−d

and, imposing q = 1− p, the result is established. Lastly, keeping the expected

degree constant as N → ∞, the probability distribution of node i’s degree can be

approximated in large networks by a Poisson distribution with parameter γ = (N−

18



1)p, hence the name Poisson random graph model9.

ERGMs The class of the ERGMs (Frank and Strauss, 1986; Frank, 1991; Wasser-

man and Pattison, 1996) is a generalisation of the Poisson random graph model. In

more details, given N nodes, let the network GGG be a random matrix with support

G := {0,1}
N(N−1)

2 , defined on the probability space (Ω,F ,P). Let R1(GGG), ...,RK(GGG)

denotes a collection of observable features of the network GGG, such as number of

edges, degree sequence, and diameter. In ERGMs one assumes that

P(GGG = ggg) =
e∑

K
k=1 θkRk(ggg)

Z(θ1, ...,θK)
(1.1)

for any ggg ∈ G, where Z(θ1, ...,θK) is a normalisation constant obtained from impos-

ing

∑
ggg∈G

P(GGG = ggg) = ∑
ggg∈G

e∑
K
k=1 θkRk(ggg)

Z(θ1, ...,θK)
= 1

and (θ1, ...,θK) ∈ Θ ⊆ RK . The probability distribution (1.1) belongs to the

exponential family and the vector (R1(GGG), ...,RK(GGG)) is a sufficient statistic for

(θ1, ...,θK)
10.

It can be shown that the Poisson random graph model with parameter p is

the ERGM where the number of edges E(GGG) is the only feature considered and

θ := log
(

p
1−p

)
. Indeed, in that case

Z(θ) := ∑
ggg∈G

eθE(ggg) = ∑
ggg∈G

eθ ∑
N
i=1 ∑

N
j=i+1 gi j = ∑

ggg∈G

N

∏
i=1

N

∏
j=i+1

eθgi j =

=
N

∏
i=1

N

∏
j=i+1

∑
gi j∈{0,1}

eθgi j =
N

∏
i=1

N

∏
j=i+1

(1+ eθ ) = (1+ eθ )(
N
2)

9Extensions of the Poisson random graph model are proposed e.g., by Zheng, Salganik and
Gelman (2006) and Hong and Xu (2015).

10Extensions of ERGMs are proposed e.g., by Pattison and Wasserman (1999), Robins, Pattison
and Wasserman (1999), and Chandrasekhar and Jackson (2014). Chandrasekhar and Jackson (2014)
also show that their model is micro-funded.
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and the expected value of E(GGG) is

Eθ (E(GGG)) := ∑
ggg∈G

E(ggg)P(GGG = ggg) =
1

Z(θ) ∑
ggg∈G

E(ggg)eθE(ggg) =
1

Z(θ)
∂

∂θ
∑

ggg∈G
eθE(ggg) =

=
1

Z(θ)
∂Z(θ)

∂θ
=

(
N
2

)
eθ

1+ eθ

(1.2)

Consider now the Poisson random graph model with parameter p, where

Ep(E(GGG)) =

(
N
2

)
p (1.3)

Then, (1.3) is equivalent to (1.2) when

p :=
eθ

1+ eθ
⇔ θ := log

( p
1− p

)
Estimating ERGMs ERGMs have been extensively used because they can easily

combine several types of interdependencies among links. Moreover, recent papers

providing their microfundation, e.g., Mele (2017)11, have made these models even

more attractive. However, estimating their parameters may be difficult. In fact,

assuming that one large network sampled from (1.1) is observed and some regular-

ity conditions are satisfied, one may attempt to compute the maximum likelihood

estimator of (θ1, ...,θK) as

(θ̂ ML
1 , ..., θ̂ ML

K ) := argmax(θ̃1,...,θ̃K)∈Θ

K

∑
k=1

θ̃kRk(GGG)− log(Z(θ̃1, ..., θ̃K))

with corresponding first order conditions

E(θ̂ ML
1 ,...,θ̂ ML

K )(Rk(GGG)) = Rk(GGG) k = 1, ...,K

as it can be shown that

∂ log(Z(θ̃1, ..., θ̃K))

θ̃k
= E(θ̃1,...,θ̃K)

(Rk(GGG)) k = 1, ...,K

11See the discussion of Mele (2017) in Section 1.4.

20



by following standard derivations for the exponential family of probability distribu-

tions. Nonetheless, in most of the cases, the normalisation constant Z(θ̃1, ..., θ̃K) can

not be analytically computed and should be obtained by summing over all 2
N(N−1)

2

possible networks, a task rarely possible even for moderate N, which makes the

standard likelihood-based approach infeasible.

Three alternative procedures have been developed in the literature to overcome

this issue. The most popular consists in Markov Chain Monte Carlo (hereafter

MCMC) estimation methods (Snijders, 2002; Kolaczyk, 2009) which are based on

the simulation of the probability distribution (1.1) through a sampling algorithm

to avoid the direct computation of Z(θ̃1, ..., θ̃K). However, as argued by Snijders

(2002), designing a sampling algorithm that converges to the target distribution is

not an obvious task and requires careful investigation when there are parameter

values for which the function (1.1) has a multimodal shape. Additionally “Given the

huge set of networks to sample, any MCMC procedure can visit only an infinitesimal

portion of the set [...]. Unfortunately, important recent papers have shown that for

broad classes of ERGMs standard MCMC procedures will take exponential time to

mix unless the links in the network are approximately independent [...]. Of course,

if links are approximately independent then there is no real need for an ERGM

specification to begin with, and so in cases where ERGMs are really needed they

cannot be accurately estimated by such MCMC techniques.” (Chandrasekhar and

Jackson, 2014, p.2-3)12.

The second strategy is to maximise the pseudo-likelihood, obtained by con-

sidering the probability that each link is formed conditional on the remaining sec-

tion of the network (Besag, 1975; Strauss and Ikeda, 1990; Frank, 1991; Wasser-

man and Pattison, 1996). The properties of the resulting estimator are unclear and

simulation-based comparisons with the classical maximum likelihood estimators

are provided e.g., by Robins, Snijders, Wang, Handcock, and Pattison (2007). When

links are assumed to be independent among each other, the pseudo-likelihood co-

incides with the original likelihood. As the likelihood for this last case can be de-

12Similar considerations are made e.g., by Rinaldo, Fienberg, and Zhou (2009) and Mele (2017).
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rived from the equilibrium conditions in an economic model of network formation

(dyadic models), its discussion is postponed to Section 1.4.

The third avenue is the use of variational principles which allow to represent

Z(θ̃1, ..., θ̃K) as the solution of an optimisation problem. More details are e.g., in

Jordan (2004), Jordan and Wainwright (2008), Braun and McAuliffe (2010), and

Chatterjee and Diaconis (2013).

Finally, even if the estimation of ERGMs is made possible, identification of

parameters and consistency of estimates are not guaranteed. As pointed out by

Chandrasekhar and Jackson (2014) at p.3: “Given that data in many settings con-

sist of a single network or a handful of networks, we are interested in asymptotics

where the number of nodes in a network grows. However, it may be the case that

increasing the number of nodes does not increase the information [...]. With non-

trivial interdependencies between links, standard asymptotic results do not apply.

This does not mean that consistency is precluded, (just as it is not precluded in

time series or spatial settings) as there is still a lot of information that can be dis-

cerned from the observation of a single large network. Nonetheless, it does mean

that asymptotic analyses must account for potentially complex interdependencies in

link formation.” .

Sequential models When fitting the Poisson random graph model to data, one may

fail to reproduce the following features of real networks: (i) the degree probability

distribution has fat tails, revealing the presence of more nodes with high and low

degree and fewer nodes with medium degree than in Poisson random graph models;

(ii) small diameter; (iii) high clustering coefficient; (iv) inverse relation between

the degree of a node and its neighbourhood’s clustering coefficient13; (v) positive

assortativity14 (JR). Hence, researchers have begun to develop statistical models of

network formation where nodes are born sequentially and create connections more

or less randomly, with the purpose of matching the main characteristics of observed

networks.
13The neighbours of a higher degree node are less likely to be linked to each other compared to

the neighbours of a lower degree node.
14High degree nodes are more likely to be linked to other high degree nodes, and low degree

nodes are more likely to be linked to other low degree nodes.
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In this direction, Barabási and Albert (1999) are the firsts to show that, by in-

troducing the so called preferential attachment, i.e., new born nodes are more likely

to link with existing vertices featuring high degrees, the resulting degree proba-

bility distribution has fat tails, and, more specifically, is power law. Pennock, et al

(2002) observe that the degree probability distribution in several real networks is not

purely power law but shows more complicated shapes, which the authors replicate

by adding random link formation to the framework of Barabási and Albert (1999).

JR design a sequential model of network formation with homogeneous nodes and

directed links that combines random meetings, i.e., new born nodes meet at random

some of the existing nodes, and network-based meetings, i.e., new born nodes meet

at random some of the neighbours of the found incumbents. Network-based meet-

ings give to the process a preferential attachment flavour, as neighbours with a high

in-degree are more likely to be found. Additionally, the simultaneous combination

with random meetings allows to reproduce all of the five features listed above.

More recently, the literature has focused on extending the model in JR. For ex-

ample, to understand homophily15 patterns over time, Bramoullé and Rogers (2010)

and Bramoullé, et al. (2012), distinguish nodes among different types. Atalay

(2013) gives vertices a different rate of expectation of attracting links, drawn from

a certain parametric distribution for each age group, which allows to reproduce the

empirically observed weak correlation between nodes’ age and in-degree. Chaney

(2014) proposes a geographical reinterpretation to explain the heterogeneous ability

of firms to access foreign markets.

Given the importance of the work by JR, the next section discusses and repli-

cates some of the main results. Moreover, an extension of the original model is

examined and fitted to a dataset of Google Plus users.

1.3.1 Jackson and Rogers (2007)

Consider a discrete time process with periods {1, ...,T}. For any period t ∈

{1, ...,T}, the network GGGt is derived from the network GGGt−1 as follows. In period

t a new node joins the set of existing nodes Nt−1. The new born node meets mr

15The term homophily refers to the tendency of linked agents to have similar characteristics.
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nodes, called parents, uniformly randomly drawn without replacement from Nt−1

(random meetings). A link pointing to a parent is formed by the new born node if

the marginal utility that the new born node receives from the relation is positive,

which happens with probability pr independent of GGGt−1. The new born node meets

also mn nodes uniformly randomly drawn without replacement from the unified set

of parents’ direct neighbourhoods (network-based meetings). A link pointing to one

of these nodes is formed if the marginal utility that the new born node receives from

the relation is positive, which happens with probability pn independent of GGGt−1.

The parameters of the model are mr, pr,mn, pn. m = prmr + pnmn is the ex-

pected number of outgoing links formed by a new born node16. r = prmr
pnmn

is the

ratio between the expected number of outgoing links formed by a new born node

through random meeting and those formed through network-based meeting, and it

represents the randomness of the meeting process.

The model implies that the probability for node i to attract a new link in period

t is roughly17

pr

( mr

t−1

)
+ pn

(di,t−1mr

t−1
mn

mr(mr pr +mn pn)

)
=

prmr

t−1
+

pnmndi,t−1

(t−1)m

(equation 2 in JR) and coincides with the expected number of additional incoming

links formed by i. The first component of the sum is probability that i is found by a

new born node through random meetings and linked to. The second component of

the sum is the probability that i is found by a new born node through network-based

meetings and linked to. The second component reveals the preferential attachment

flavour of the model in JR: the higher i’s in-degree, the more i is likely to be found

through network-based meetings and linked to.

To derive the stationary cumulative distribution function of nodes’ in-degree,

16The expected number of a node’s outgoing links is fixed across nodes. The number of a node’s
outgoing links does not vary over time. The expected number of incoming links differs across nodes
depending on their age because of the network-based meetings. The number of a node’s incoming
links increases over time.

17Sampling of nodes happens without replacement. Moreover, some parents can be in other
parents’ neighbourhoods and the union of parents’ neighbourhoods can have cardinality less than
mn. However, such approximation is close to the truth when t is large and mn is small.
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the authors use a mean-field approximation assuming that (a) any node i determin-

istically gains prmr
t−1 +

pnmndi,t−1
(t−1)m incoming links in each period t ∈ {1, ...,T}, and (b)

the evolution of nodes’ in-degree is a continuous function of time and in-degree18.

Specifically, Theorem 1 in JR states that the stationary cumulative distribution func-

tion of nodes’ in-degree in each period t ∈ {1, ...,T} is

Ft(d) = 1−
(

d0 + rm
d + rm

)(1+r)

(1.4)

when pnmn 6= 0, and

Ft(d) = 1− exp(d0−d)/(prmr) (1.5)

when pnmn = 0, where d0 ≥ 0 is the initial in-degree of a new born node19 and

d ≥ d0. By taking the logarithm of both sides, one gets

log(1−Ft(d)) = (1+ r)[log(d0 + rm)− log(d + rm)] (1.6)

when pnmn 6= 0, and

log(1−Ft(d)) =
d0−d
prmr

(1.7)

when pnmn = 0.

Notice that when pn = 1 and pr = 0, i.e., all links are network-based20, it

follows that r = 0 and m = mn. Hence,

1−Ft(d) = d0d−1

which leads to a power law probability distribution. Viceversa, when pn = 0 and

pr = 121, i.e, all links are network-based, it follows that r = ∞ and m = mr. Hence,

1−Ft(d) = exp(d0−d)/m

18The exact in-degree probability distribution is calculated by Atalay (2013) using a result from
Dorogovtsek, Mendes, and Samukhin (2000).

19d0 > 0 when pr = 0 otherwise no links are formed.
20Also called pure preferential attachment case.
21Also called uniformly random network.
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which leads to an exponential probability distribution.

To check the goodness of the mean-field approximation, the authors simulate

the model and compare the empirical cumulative distribution function of nodes’

in-degree with the predicted one. Figure 1.2 replicates Figure 1 in JR . The three

panels are obtained by setting T = 25,000, mr = mn = 10, d0 = 1, and an arbitrary

initial number of nodes m0 ≥ mr + mn + 1, as indicated in the paper. The blue

line is the prediction from (1.6) or (1.7), the magenta line is the logarithm of the

complementary empirical cumulative distribution function of nodes’ in-degree in

the simulated network. Panel (a) is obtained by imposing pr = 0 and pn = 1. Panel

(b) is obtained by imposing pr = pn = 1. Panel (c) is obtained by imposing pr = 1

and pn = 0. In all cases, it can be noticed that the predicted in-degree probability

distribution well approximates the empirical one. Moreover, as expected, the decay

accelerates across panels.
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Figure 1.2: This figure replicates Figure 1 in JR. The three panels are obtained by setting T = 25,000, mr = mn = 10, d0 = 1, and an arbitrary initial
number of nodes m0 ≥ mr +mn + 1, as indicated in the paper. The blue line is the prediction from (1.6) or (1.7), the magenta line is
the logarithm of the complementary empirical cumulative distribution function of nodes’ in-degree in the simulated network. Panel (a) is
obtained by imposing pr = 0 and pn = 1. Panel (b) is obtained by imposing pr = pn = 1. Panel (c) is obtained by imposing pr = 1 and
pn = 0.
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In addition to the study of the stationary cumulative distribution function of

nodes’ in-degree, the authors derive the closed form solution for the clustering co-

efficient (Theorem 2) and the diameter (Theorem 3) of the network under the mean-

field approximation. Specifically, with respect to the clustering coefficient, they

show how its approximated value tends to zero when pn = 0 or pr = 0. This con-

trasts with the empirical evidence suggesting, instead, that large decentralised net-

works have positive clustering. Viceversa, the hybrid case with pn > 0 and pr > 0 is

able to generate a positive clustering coefficient. Positive assortativity is produced

by the temporal development of the model, that causes a direct relation between the

age and the in-degree of a vertex (Theorem 4). The negative clustering-degree rela-

tionship is a direct consequence of the combination between network-based meet-

ings and a fixed number of outgoing links per node (Theorem 5).

To show its flexibility and capacity of matching the main features of real net-

works, the authors fit the model to six datasets: “the links among Web sites at Notre

Dame University, the network of coauthorship relations among economists pub-

lishing in journals listed by EconLit in the 1990s, a citation network of research

articles stemming from Milgram’s 1960 paper [...], a friendship network among 67

prison inmates in the 1950s, a network of ham radio calls during a one-month pe-

riod, and, finally, a network of romantic relationships among high school students.”

(JR, p.900). The results obtained for the citation network are now replicated22. In

the network each node represents a research article that contains the words “small

world” or a reference to Milgram (1967), for a total of 396 nodes. The link i j exists

when the author of paper j cites article i. The dataset is organised in two columns.

For each row, it reports an in-degree value (in ascending order from zero to 147)

and the number of nodes characterised by that in-degree value.

Following the procedure outlined in JR, the expected out-degree m is obtained

by taking the average of nodes’ in-degree values. After having imposed d0 = 0, r is

estimated from (1.6) through an iterative least square procedure. Specifically, let r0

be an initial guess for r. A linear regression of log(1−Ft(d)) on 1 and log(d+r0m)

22The dataset can be found at http://www.stanford.edu/˜jacksonm/Data.html.
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gives the parameter value β̂ 1. r is updated by setting r1 =−1− β̂ 1. The procedure is

repeated until convergence. Bounds for the diameter are derived using the estimates

of r and m. After having imposed pr = pn = p, the average clustering coefficient

Cavg is computed as a function of p via the mean-field approximation from Theorem

223. Lastly, p is obtained by setting Cavg equal to the empirical average clustering

coefficient24.

The results are reported in Table 1.1 and coincide with those in JR. Specifically,

the average in-degree m is equal to 5.02. The estimate of r is 0.63 and tells that

the network is formed mainly through network-based meetings. As expected, this is

due to the fact that often references are found because mentioned in other previously

discovered articles. The estimate of p is 0.33 and reveals that the fraction of formed

links tends to less than one half of the meetings.

Table 1.1: Parameter estimates of the citation network in JR.

Number of nodes 396
m 5.02

r from fit 0.63
p from fit 0.33

Figure 1.3 replicates the panel in Figure 2 of JR referred to the citation network. The

red curve is the logarithm of the complementary empirical cumulative distribution

function of nodes’ in-degree; the black curve is the prediction from (1.6). It can

be noticed that the predicted in-degree probability distribution well approximates

the empirical one. Moreover, r close to zero produces a roughly linear shape, as

anticipated by panel (a) of Figure 1.2.

23As observed by the authors, the parameter p is not identified from the cumulative distribution
function of nodes’ in-degree.

24The empirical average clustering coefficient can not be computed from the dataset as nodes’
labels are unknown. Its value is taken from Garfield (2006).
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Figure 1.3: This figure replicates the panel of Figure 2 in JR referred to the citation net-
work. The red curve is the logarithm of the complementary empirical cumula-
tive distribution function of nodes’ in-degree; the black curve is the prediction
from (1.6).

To test further the capacity of the model in JR to reproduce the cumulative

distribution function of nodes’ in-degree in modern social networks, the next part

of this section fits it also to a dataset of Google Plus users25. More precisely, a

Google Plus user profile is a public visible account of a Google user. It includes

basic social networking services like a profile photo, previous work and education

history, interests, and placed lived. Through the circle function, a Google Plus user

can decide to share her private content with other users. This enables to build a

network where each node represents a Google Plus user and the link i j exists when

the Google Plus user j shares her private content with Google Plus user i. The

dataset is organised in two columns. For each row, it reports the labels of two nodes

connected by a link from the first to the second. The resulting network is composed

of 107,596 nodes and 60,989,732 links.

Following the procedure outlined by JR, the expected out-degree m is com-

puted by taking the average of nodes’ in-degree values and it is equal to 283.42.

Then, after having imposed d0 = 0, r is estimated from (1.6) using the iterative least

25The dataset can be found at https://snap.stanford.edu/data/
egonets-Gplus.html.
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square procedure discussed above. The resulting r is 1.5326.

Figure 1.4 compares the empirical probability distribution of nodes’ in-degree

with the predicted one. The red curve is the logarithm of the complementary em-

pirical cumulative distribution function of nodes’ in-degree; the black curve is the

prediction from (1.6). It can be noticed that the predicted probability distribution

does not well approximate the empirical one. In particular, it seems to underesti-

mate the preferential attachment flavour of the real process. This becomes clearer

in the detail reported by Figure 1.5, where the red curve, representing a section of

the complementary empirical cumulative distribution function of nodes’ in-degree,

shows fatter tails than the black curve, representing the same section as predicted

by (1.4).

Figure 1.4: This figure reports the results obtained by fitting the model in JR to the dataset
of Google Plus users described in Section 1.3. The red curve is the logarithm
of the complementary empirical cumulative distribution function of nodes’ in-
degree; the black curve is the prediction from (1.6).

26The empirical average clustering coefficient is 0.49 as reported at https://snap.
stanford.edu/data/egonets-Gplus.html. When equalising Cavg to the empirical av-
erage clustering coefficient to derive pr = pn = p, as suggested in JR, no value of p between 0 and
1 seems to represent a solution.
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Figure 1.5: The red curve represents a detail of the complementary empirical cumulative
distribution function of nodes’ in-degree; the black curve represents the same
detail as predicted by (1.4).

Given these considerations, a way to improve fitting precision could be to mag-

nify the preferential attachment inclination of the original model in JR, by assuming

that the probability for new born node i to form a link pointing to node j, found

through network-based meetings, is increasing with j’s in-degree. Specifically, fol-

lowing an extension suggested by the authors at the end of the paper, let the marginal

utility that new born node i gets from linking to node j found through network-based

meetings be Ui j := Ũi jd j−c where Ũi j ∼U([0,u]) and 0< c< u is a cost parameter.

Hence that the probability for new born node i to form the link i j is

Pr(Ui j ≥ 0) = Pr(Ũi jd j− c≥ 0) = Pr(Ũi j ≥
c
d j
) = 1−P(Ũi j ≤

c
d j
) = 1− c

d ju

which is increasing with d j. Notice that d j ≥ 1 since node j is found through

network-based meetings. It follows that the probability for node i to attract a new
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link in period t is roughly

pr

( mr

t−1

)
+
(

1− c
di,t−1u

)(di,t−1mr

t−1
mn

mrmt

)
=

prmr

t−1
+
(

1− c
di,t−1u

) mndi,t−1

(t−1)mt−1

where mt−1 is the expected number of outgoing links formed by a node j having a

link pointing to node i and, therefore, it depends on node i’s in-degree at the time

when node j entered the network.

Let m be the limit of mt for t large. By applying Lemma 1 in JR, the stationary

cumulative distribution function of nodes’ in-degree in each period t ∈ {1, ...,T} is

Ft(d) = 1−

(
d0 + pr

mr
mn

m− c
u

d + pr
mr
mn

m− c
u

)(m/mn)

(1.8)

when mn 6= 0, and

Ft(d) = 1− exp(d0−d)/(prmr) (1.9)

when mn = 0. By taking the logarithm of both sides, one gets

log(1−Ft(d)) =
m
mn

[
log
(

d0 + pr
mr

mn
m− c

u

)
− log

(
d + pr

mr

mn
m− c

u

)]
(1.10)

when mn 6= 0, and

log(1−Ft(d)) =
d0−d
prmr

(1.11)

when mn = 0.

Results from simulations of the extended model are reported in Figure 1.6.

The blue line is the prediction from (1.10), the magenta line is the logarithm of the

complementary empirical cumulative distribution function of nodes’ in-degree in

the simulated network. Both panels are obtained by setting T = 300,000, mr =mn =

10, u = 3, c = 2, d0 = 1, and an arbitrary initial number of nodes m0 ≥mr +mn+1.

Panel (a) of Figure 1.6 is obtained by imposing pr = 0. Panel (b) of Figure 1.6

is obtained by imposing pr = 1. In all cases, the predicted in-degree probability

distribution well approximates the empirical one. Moreover, the decay accelerates

across the two panels. Lastly, by comparing panels (a) and (b) respectively with
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panels (a) and (b) of Figure 1.2, it can be noticed that the degree distribution for the

extended model shows a lower decay, hence resulting in fatter tails.
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Figure 1.6: Both panels are obtained by setting T = 300,000, mr = mn = 10, u = 3, c = 2, d0 = 1, and an arbitrary initial number of nodes m0 ≥
mr +mn + 1. The blue line is the prediction from (1.10), the magenta line is the logarithm of the complementary empirical cumulative
distribution function of nodes’ in-degree in the simulated network. Panel (a) is obtained by imposing pr = 0. Panel (b) is obtained by
imposing pr = 1.
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It is also made a first rough attempt to fit the extended model to the same dataset

of Google Plus users. For simplicity, let u = 1, c = 0, d0 = 0. Let m0
mn,0

and pr,0mr,0

be initial guesses respectively for m
mn

and prmr. A linear regression of log(1−

Ft(d)) on 1 and log(d + pr0mr,0
m0

mn,0
) gives the parameter value β̂ 1. m

mn
is updated

by setting m1
mn,1

= −β̂ 1. Then mn,1 is isolated by using the average of nodes’ in-

degree as an estimate for m1. Lastly, pr,1mr,1 is derived from m1 = pr,1mr,1+mn,1
27.

The procedure is repeated until convergence. Figure 1.7 compares the empirical

probability distribution of nodes’ in-degree with the predicted one. The red curve

is the logarithm of the complementary empirical cumulative distribution function

of nodes’ in-degree; the black curve is the prediction from (1.10). As expected,

it can be noticed that the predicted in-degree probability distribution approximates

the empirical one better than in Figure 1.4 because it shows fatter tails. Further

investigations are left to future research.

Figure 1.7: This figure reports the results obtained by fitting the extended model in JR to
the dataset of Google Plus users described in Section 1.3. The red curve is the
logarithm of the complementary empirical cumulative distribution function of
nodes’ in-degree; the black curve is the prediction from (1.10).

27Simulations reveal that m≈ prmr +mn.
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1.4 Econometric analysis of economic models of net-

work formation

In economic models of network formation agents create links according to specific

rules (decisions can be made simultaneously or sequentially, unilaterally or bilater-

ally; information can be complete or incomplete), an explicit equilibrium concept

(e.g., Nash equilibrium, Bayesian Nash Equilibrium, Nash stability28, pairwise sta-

bility29, pure strategy pairwise Nash equilibrium30), and a payoff (transferable or

non-transferable) depending on players’ actions and characteristics.

1.4.1 Dyadic models

Dyadic models focus separately on each pair of nodes (dyad) and the link between

them. For example, Fafchamps and Gubert (2007) consider the creation of a risk

sharing network among N households residing in four villages of Northern Philip-

pines. Each node represents a household and there is a link from node i to node j if

household i cites household j as source of assistance in case of need (directed net-

work). The formation process is as follows: households simultaneously announce

the desired outgoing links31 under complete information and each household i gets

as payoff

Ui :=
N

∑
j=1

Gi j×
[
θ
′Xi j + εi j

]
where Xi j is an L×1 vector with the lth component representing a measure of dis-

tance between households i and j (possibly asymmetric), εi j is a scalar collecting

the residual variables affecting the net benefit that household i receives from the for-

mation of the link i j which are unobserved by the researcher (also called preference

shock), and θ ∈ RL. Hence, the network GGG is a pure strategy Nash equilibrium if it

28Myerson (1991).
29Jackson and Wolinski (1996).
30Jackson and Wolinski (1996); Calvó-Armengol (2004); Bloch and Jackson (2006); Goyal and

Joshi (2006); Calvó-Armengol and Ilkiliç (2009).
31Household i unilaterally decides about the formation of the link i j.
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solves the system of N(N−1) equations

Gi j = 1{θ ′Xi j + εi j ≥ 0} ∀i, j ∈N , i 6= j (1.12)

Assuming that a sample of N households is randomly drawn from the popula-

tion with N large32 and all links connecting them are observed together with

{Xi j}i, j∈N ,i 6= j, a consistent maximum likelihood estimator for θ based on Logit

procedures can be obtained, after having imposed a specific structure of the error

correlations and exogeneity of observed covariates33. Specifically, Fafchamps and

Gubert (2007) allow E(εi j,εik), E(εi j,εk j), E(εi j,ε jk), and E(εi j,εki) to be different

from zero, ∀i, j,k ∈ N with i 6= j 6= k, and build on Conley (1999) to derive a a

robust expression for the covariance matrix. Comola and Fafchamps (2014) extend

the methodology to undirected networks for which discordant responses on link

existence may be reported by households.

A more recent literature attempts to include agents’ fixed effects. For example,

Graham (2016) focuses on undirected networks and assumes that

Gi j =
{

θ
′Xi j + εi j +Ai +A j ≥ 0

}
∀i, j ∈N , i 6= j (1.13)

where Ai and A j represent components varying with the unobserved agent-level at-

tributes and are possibly correlated with Xi j. Equations in (1.13) can be interpreted

as pairwise stable conditions when utility transfers are allowed and payoff func-

tions are additively separable over links. After having imposed that {εi j}i, j∈N ,i 6= j

are standard logistic random variables i.i.d. across i j conditional on {Xi j}i, j∈N ,i6= j,

the author provides two estimators and shows their consistency and asymptotic nor-

mality. In particular, the first estimator, called tetrad logit estimator, conditions on

a sufficient statistic for {Ai}N
i=1 which allows to partial out the fixed effects and by-

pass the incidental parameter problem. The second estimator, called joint maximum

likelihood estimator, considers instead {Ai}N
i=1 as parameters to be estimated, hence

32One of the beauties of dyadic models is the non-necessity of observing the entire network.
33Otherwise, covariates that are suspected to be endogenous should be instrumented, as done by

Fafchamps and Gubert (2007) in some robustness checks.
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facing a non-standard asymptotic behaviour due to a parameter space growing with

N.

Other papers allowing for fixed effects are e.g., Dzemski (2014), Candelaria

(2016), Jochmans and Weidner (2016), and Jochmans (2017).

1.4.2 Models with externalities

Dyadic models do not take into account that, in several settings of economic inter-

est, link decisions are interdependent, i.e., the presence of a link in one section of

the network may affect the payoffs from link formation in other parts of the network

(also called externalities). Indeed, “A key defining feature of strategic network for-

mation models is some form of externality that goes beyond direct links, such as the

idea that friends of friends matter.” (de Paula, Richards-Shubik and Tamer, 2016,

p.1).

Among models with externalities, sequential models assume that at each iter-

ation of a meeting protocol, a pair of perfectly informed agents is drawn at ran-

dom and determines the formation, maintenance or dissolution of a link according

to payoffs depending on the current structure of the network (myopic behaviour).

For example, Mele (2017) focuses on directed networks and considers a process in

which the payoff that agent i gets from forming the link i j34 at iteration t is

Ui j,t := u(Xi,X j;θu)+G ji,t−1×m(Xi,X j;θm)+
N

∑
k 6= i

Gk j,t−1× v(Xi,Xk;θv)+

+
N

∑
k 6= j

Gki,t−1w(Xk,X j;θw)+ εi j

where Xi is a K × 1 vector of agent i’s characteristics, u(·;θu), m(·;θm), v(·;θv),

w(·;θw) are bounded and real-valued functions know by the researcher up to the

finite dimensional parameters θu,θm,θv,θw, and {εi j}i, j∈N ,i6= j are extreme value

random variables i.i.d. across i j. u(·;θu) captures the direct payoff from the link

i j, m(·;θm) represents the payoff received if the connection with agent j is mu-

tual, v(·;θv) denotes the payoff from agent j’s links, and w(·;θw) corresponds to a

34Agent i unilaterally decides about the formation, maintenance or dissolution of the link i j.
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popularity effect. Mele (2017) shows that the process converges to an unique sta-

tionary distribution that belongs to the class of ERGMs (Theorem 1) and provides a

MCMC estimation methods that takes into account the issues described in Section

1.3. Additionally, the author provides some identification results when nodes are

homogeneous.

Badev (2014) considers a framework similar to the one in Mele (2017) but

simultaneously models behavioural choices made by the agents conditional on the

endogenous network structure. The author then applies the methodology to data on

friendship networks and smoking decisions from the AddHealth survey.

Other papers estimating sequential models with externalities are e.g., Cur-

rarini, Jackson and Pin (2009) and Christakis, et al. (2010). Lastly, there are also

works providing econometrics analysis of sequential models with forward-looking

behaviour, such as Lee and Fong (2013) who study bilateral oligopoly and buyer-

seller networks.

Conversely, in static models agents announce desired links simultaneously.

Among the papers presuming complete information, Sheng (2016) focuses on undi-

rected networks and specifies the payoff that agent i gets from participating to the

network formation game as

Ui :=
N

∑
j=1

Gi j×
[
u(Xi,X j;β )+

γ1

N−2

N

∑
k 6= i

G jk +
γ2

N−2

N

∑
k 6= i, j

GikG jk + ε
i
i j

]

where, for any potential friend j, the parameters γ1 and γ2 capture the impact on i’s

utility, respectively, from the number of j’s links, and from the number of common

links between i and j35.

The equilibrium concept used is pairwise stability: the network GGG is pairwise

stable if it is robust to unilateral one-link deletion and bilateral one-link formation,

35The normalisation by N−2 implies that the sum terms converge as N→∞, as shown by Sheng
(2016) in Corollary 4.2.
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i.e., with non-transferable payoffs,

Gi j = 1{u(Xi,X j;β )+
γ1

N−2

N

∑
k 6= i

G jk +
γ2

N−2

N

∑
k 6= i, j

GikG jk)+ ε
i
i j ≥ 0,

u(X j,Xi;β )+
γ1

N−2

N

∑
k 6= j

Gik +
γ2

N−2

N

∑
k 6= i, j

G jkGik + ε
j

i j ≥ 0} ∀i, j ∈N , i 6= j

(1.14)

and, with transferable payoffs,

Gi j = 1{u(Xi,X j;β )+u(X j,Xi;β )+
γ1

N−2
(

N

∑
k 6= i

G jk+
N

∑
k 6= j

Gik)+
2γ2

N−2

N

∑
k 6= i, j

GikG jk+

+ ε
i
i j + ε

j
i j)≥ 0} ∀i, j ∈N , i 6= j

(1.15)

When payoffs are transferable, Sheng (2016) shows existence of a pairwise stable

network for any u(·;β ), γ1, and γ2. Viceversa, when payoffs are non-transferable,

Sheng (2016) shows existence of a pairwise stable network for any u(·;β ), γ1 ≥ 0,

and γ2 ≥ 0 (Propositions 2.1 and 2.2).

Moreover, Sheng’s model admits multiple pairwise stable networks for some

values of payoff-relevant variables and parameters. When data are composed of a

large number of networks, it is possible to avoid assumptions regarding how players

select the outcome observed by the researcher from the equilibrium set predicted by

the model (hereafter equilibrium selection mechanism)36 and construct bounds for

the empirical probability distribution of the network (moment inequalities), mim-

icking the most recent empirical literature on entry games (Tamer, 2003; Ciliberto

and Tamer, 2009 -hereafter CT-; de Paula, 2013; Aradillas-Lopez and Rosen, 2016).

Consequently, the parameters of the model may be only partially identified and the

estimation of the set of all admissible parameter values (sharp identified set) can be

performed using different techniques: if unconditional moment inequalities, Cher-

36Sequentiality is an example of restriction on the equilibrium selection mechanism: “[...] pair-
wise stable networks would be rest points for link formation sequences produced via a meeting
protocol if the payoff structure does not change at each new meeting. In that case, the realised
sequence of meetings could be seen as a selection among the possible stable networks which the
approaches described below try to be agnostic about. The articles described above circumvent this
issue by introducing noise in the meeting process (as unobservables are drawn as new at each meet-
ing opportunity).” (de Paula, 2016, p.37).
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nozhukov, Hong, and Tamer (2007); Beresteanu and Molinari (2008); Romano and

Shaikh (2008; 2010); Rosen (2008); Stoye (2009); Andrews and Soares (2010) -

hereafter AS-; Bugni (2010); Canay (2010); Romano, Shaikh, and Wolf (2014);

Pakes, et al. (2015); Bugni, et al. (2016); Chernozhukov, Chetverikov and Kato

(2016); Kaido, Molinari and Stoye (2016); Bugni, Canay and Shi (2017); if con-

ditional moment inequalities: Andrews and Shi (2013); Chernozhukov, Lee, and

Rosen (2013); Lee, Song, and Whang (2013; 2014); Amstrong (2014); Chetverikov

(2017).

However, inference with multiple equilibria becomes computationally very in-

tensive as the number of players increases because of the exponential spreading of

possible networks (2
1
2 N(N−1)) and, hence, moment inequalities. These difficulties

can be attenuated by (a) restricting the attention to some local games of the network

formation game, i.e., games whose sets of players and strategy profiles are subsets

of the network formation game ones, and (b) constructing bounds for the empirical

probability distribution of the outcomes of such local games, rather than of the net-

work formation game. Indeed, “thinking locally” may entail a significant reduction

in the number of moment inequalities to consider, thanks to the fewer support points

of the bounded probability distribution. However, at the same time, ignoring “the

whole picture” may cause a loss of information about players’ preferences for links,

thus leading the researcher to conduct inference on a set of parameter values larger

than, and containing, the sharp identified set (outer set).

Different local games can be examined. For example, Sheng (2016) focuses

on the local games underlying the formation of all the subnetworks of size equal

to or smaller than a certain α37, set by the researcher according to the available

computational resources, with 2≤ α ≤ N.

In a similar spirit but with a focus on directed networks and non-transferable

payoffs, Chapter 2 considers the N local games underlying the formation of the

section 1, section 2, ..., section N of a network (respectively section 1 game, section

2 game,..., section N game), where, for any j ∈ N , the section j of a network is

37 A subnetwork of size α is defined by a subset of α vertices, Ñ ⊆ N , and a subset of links,
Ẽ ⊆ E , such that Ẽ contains all links in E connecting any two nodes in Ñ .
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intended as the network portion collecting all nodes and the links pointing to node

j.

Alternatively, Miyauchi (2016) restricts to positive externalities. The resulting

super-modularity of the game guarantees the existence of a greatest and a lowest

equilibrium by Tarski’s fixed point theorem, which, in turn, allows the author to

provide a feasible framework for inference. The model is estimated using data on

friendship networks from the AddHealth survey. Similarly (but for directed net-

works), Boucher (2016) analyses a situation in which agents get positive spillovers

from joining cliques38. However, differently from Miyauchi (2016), the author as-

sumes that agents always play the greatest equilibrium and performs inference based

on the observation of one large network.

Another paper developing econometric arguments based on the observation

of one or few large networks is the work by de Paula, Richards-Shubik and Tamer

(2016). Specifically, the authors characterise an outer set of parameter values (sharp

under some conditions) and propose a quadratic programming algorithm to com-

pute it, assuming that preference shocks depend on the characteristics of potential

friends and not on their identities, agents can create a limited number of links, and,

crucially, only connections up to a certain distance affect payoffs. Other papers with

asymptotics depending on N are e.g., Menzel (2016) and Leung (2015), the latter

imposing incomplete information.

Finally, identification of parameters in static game of network formation with

externalities and fixed effects is an open question in the literature. For example,

from Mele (2017) at p.4: “I abstract from unobserved heterogeneity, which can be

included in our model with substantial additional computational effort. However,

it is not clear whether it is possible to separately identify unobserved heterogeneity

from externalities using a single observation of the network [...].”. Further insights

are in Graham (2016).

38A clique in a network is a groups of individuals, each of whom is linked to all the others.
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Chapter 2

An econometric analysis of a network

formation game

2.1 Introduction

The chapter studies identification of the parameters governing agents’ preferences

in a static game of network formation, where links represent asymmetric relations

between players, e.g., the sharing of directors across firms (firm with an executive

sitting on the board of another company vs such a company), trading connections

(buyer vs seller), and advice ties (advisor vs advisee). Agents have complete infor-

mation and play pure strategy Nash equilibrium (hereafter PSNE) if link creation

can be unilaterally established, or pure strategy pairwise Nash equilibrium (here-

after PSPNE) in the bilateral case. Payoffs are non-transferable. Link decisions

are interdependent, as the payoff that player i receives from linking to player j is

affected by the number of additional players doing the same. For example, when

examining firms’ decisions to have their executives sitting on the board of other

companies, the number of additional firms having an executive appointed on the

board of company j may encourage firm i to join j’s board too for exploiting “cheap

talk” opportunities with them. Likewise, in the analysis of trading connections, the

number of additional agents buying from agent j may negatively affect agent i’s

power to bargain with j. Similarly, when considering advice ties, e.g., individuals

nominating who they would ask for advice on the adoption of a technology, the



number of additional people designating person j as adviser might proxy, in the

eyes of individual i, j’s time availability to offer proper explanations, or, if agents

benefit from coordinating their subsequent advised choices, j’s recommendations

sharing level.

In order to show existence of an equilibrium, the network formation game is

decomposed into some local games, which are similar for structure to entry games,

and are such that the network formation game has an equilibrium if and only if each

local game has an equilibrium. In turn, existence of an equilibrium in each local

game is proved by combining Tarski’s fixed point theorem with the constructive

proof that Berry (1992) designs to verify existence of an equilibrium in an entry

game with substitution effects.

The network formation game admits multiple equilibria. Thus, assuming that

the researcher observes a large sample of equilibrium networks, partial identifica-

tion arguments for the parameters of the model are developed without restrictions on

equilibrium selection, as seen in the most recent empirical literature on entry games

(Tamer, 2003; Ciliberto and Tamer, 2009 - hereafter CT; Beresteanu, Molchanov

and Molinari, 2011 - hereafter BMM; Aradillas-Lopez and Rosen, 2016). After

having represented the region of all admissible parameter values (sharp identified

set) by bounding the empirical probability distribution of the entire network as in

BMM, it is noticed that the sharp identified set is characterised by a prohibitively

enormous quantity of moment inequalities that makes inference on it impractical:

22N(N−1) − 2 moment inequalities for each value of parameters and exogenous ob-

servables, where N is the number of players.

Even if some moment inequalities can be shown to be redundant, constructing

an algorithm to check the violation in the data of the relevant ones only - or even

count them - seems unworkable to the best of the author’s knowledge. Hence, to at-

tenuate the computational difficulties more effectively, it is proposed to restrict the

attention to the local games mentioned earlier and consider the region of parameter

values cropped by bounding the empirical probability distribution of the outcomes

of the local games, rather than of the network formation game. Indeed, “thinking
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locally” may entail a significant reduction in the number of moment inequalities to

deal with, thanks to the fewer mass points of the bounded probability distribution.

However, at the same time, ignoring “the whole picture” may cause a loss of infor-

mation about players’ preferences for links, hence leading the researcher to conduct

inference on a set of parameter values larger than, and containing, the sharp iden-

tified set (outer set). After having derived some sufficient conditions under which

focusing on the local games preserves sharpness, it is noticed that, despite the local

approach notably diminishes the quantity of moment inequalities to handle, chas-

ing sharpness remains unmanageable when N ≥ 10. It is then suggested to give up

on sharpness and use a specific computationally convenient sub-collection of the

original list of moment inequalities involving the outcomes of the local games.

When estimating the characterised outer set, one gets computational gains from

two sources, under general assumptions. Firstly, the number of moment inequali-

ties to exploit is substantially shortened: from 22N(N−1) − 2 to 2N× 2N−1 moment

inequalities for each value of parameters and exogenous observables. Secondly,

checking the violation in the data of those moment inequalities is easy. Specifi-

cally, when obtaining by simulation the bounding terms, one can avoid verifying

whether each of all possible 2N−1 outcomes of the local games is an equilibrium

for every drawn value of preference shocks, an extremely demanding routine even

for moderate N. Indeed, by applying Tarski’s fixed point theorem and reinterpret-

ing a result from Berry (1992) on the number of entrants in an entry game with

substitution effects, the amount of outcomes of the local games which can strive

for being equilibria is remarkably reduced. Overall, Monte Carlo exercises show

that conducting inference on the proposed outer set is computationally feasible us-

ing relatively limited computational resources with up to 20 players. Lastly, some

advantages in terms of computational tractability and width, over the outer set that

one would obtain by applying Tamer (2003) and CT are provided.

Literature review The chapter is related to the empirical literature on entry games

with multiple equilibria and no restrictions on equilibrium selection (Tamer, 2003;

CT; BMM; de Paula, 2013; Aradillas-Lopez and Rosen, 2016). However, the tech-
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niques laid out by those works can not be directly applied to the setting considered

here due to the huge number of possible networks even for small N. Thus, the

present study aims to contribute by developing an identification methodology that

allows to conduct inference on players’ preferences for links using relatively lim-

ited computational resources up to N = 20, under general assumptions. As two side

contributions, the chapter also offers some refinements in the characterisation of

the sharp identified set with respect to BMM, and a proof for the existence of an

equilibrium in a static game of network formation where links represent asymmet-

ric relations between agents, never provided before in the literature. Some insights

could be further extended to many-to-many two-sided matching models with exter-

nalities and non-transferable utilities.

Additionally, the chapter is related to the literature on the econometrics of

economic models of network formation with interdependent link decisions (Cur-

rarini, Jackson and Pin, 2009; Christakis, et al., 2010; Badev, 2014; Leung, 2015;

2016; Boucher, 2016; de Paula, Richards-Shubik and Tamer, 2016; Menzel, 2016;

Miyauchi, 2016; Sheng, 2016; Mele, 2017). Sheng (2016) proposes a close anal-

ysis, but designed for a static game of network formation where links represent

symmetric relations between agents, payoffs are transferable or, if payoffs are non-

transferable, then the game is assumed super-modular39 in order to achieve the de-

sired computational advantages. The present work considers instead a setting where

links describe asymmetric relations between players, payoffs are non-transferable,

and neither super-modularity nor sub-modularity is imposed.

The rest of the chapter is organised as follows: Section 2.2 illustrates the

model; Section 2.3 discusses identification; Section 2.4 describes how to con-

duct inference; Section 2.5 reports some Monte Carlo experiments; Section 2.6

provides conclusions and directions for future research. All the tools from net-

work theory used throughout the chapter are defined in Section 1.2. In terms of

notation: bold case letters denote matrices; capital letters represent random vari-

ables/vector/matrices, small case letters indicate their realisations; the symbol | · |

39I.e., the parameters governing the impact on a player’s payoff of other players’ actions are
restricted to positive sign.
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stands for the cardinality of a set; given a set R, KR indicates the family of its

non-empty compact subsets.

2.2 A network formation game
There are N ∈ [3,∞) players, labelled with the integers inN := {1,2, ...,N}, simul-

taneously deciding who to link with. A link between players i and j represents an

asymmetric relation, i.e., i and j’s payoffs from linking have different functional

forms. PHBIs are an example of asymmetric relations between organizations. In-

deed, if firm i has one of its executives sitting on the board of rival j with a non-

executive role, i has the right to know about j’s decision making process, but the

converse is not true. Viceversa, i has advice duties towards j. Other examples

of asymmetric relations are trading connections (buyer vs seller), and advice ties

(advisor vs advisee).

The output of the game can be displayed as a directed network of size N with

matrix GGG.

Strategies Up to Section 2.3.8, it is assumed that the formation and deletion of the

link i j requires the consent of player i only, as for advice ties, e.g., individuals

nominating who they would ask for advice on the adoption of a technology. Section

2.3.8 then explains how the econometric methodology can be extended to events in

which the consent of both players i and j is necessary for the formation of the link

i j while deletion can be done unilaterally and payoffs are non-transferable, as for

PHBIs and trading connections.

Unilateralism of the network formation process implies that players decide on

outgoing links only. Hence, for any i ∈ N , a pure strategy vector of player i is

Gi· ∈ {0,1}N−1 collecting Gi j ∀ j 6= i ∈ N . A pure strategy profile of the game is

GGG ∈ G := {0,1}N(N−1)40.

Preferences and information Players have complete information on preferences

for links. This restriction, together with simultaneity of actions, is based on the idea

that observed networks are realisations of a long-run equilibrium. Complete in-

40|G|= 2N(N−1).
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formation in a network formation model is imposed also e.g., by Badev (2014),

de Paula, Richards-Shubik and Tamer (2016), Boucher (2016), Menzel (2016),

Miyauchi (2016), Sheng (2016), and Mele (2017).

Players’ preferences for links depend on agents’ characteristics. Moreover,

link decisions are interdependent, as the payoff that player i receives from linking

to player j is affected by the number of additional players doing the same.

Specifically, for any i ∈ N , let Xi denote a K×1 vector of player i’s observed

(to the researcher) characteristics. For any i ∈ N , j ∈ N with i 6= j, let εi j be a

scalar collecting the residual variables affecting the payoff that player i receives

from the formation of the link i j which are unobserved by the researcher (also called

preference shock). Lastly, let XXX be an N×K matrix listing Xi ∀i ∈ N , and ε be an

N(N− 1)× 1 vector collecting εi j ∀i ∈ N ,∀ j ∈ N with i 6= j. Each player i ∈ N

gets as payoff

Ui(GGG,XXX ,ε;θu) :=
N

∑
j=1

Gi j×
[
z(Xi,X j;β )+ v(

N

∑
k 6=i

Gk j;δ )+ εi j

]
(2.1)

where z(·;β ) is any function of Xi and X j known by the researcher up to a vector of

parameters β , v(·;δ ) is any function (weakly)41 monotone in ∑
N
k 6=i Gk j and known

by the researcher up to a vector of parameters δ , and θu := (β ,δ ) ∈ Θu ⊆ Rdβ+dδ ,

with dβ and dδ denoting the dimensions of β and δ .

Remark 1. (Discussion on the payoff function) Ui(·;θu) is additively separable over

player i’s outgoing links. The same assumption is in Leung (2015), Badev (2014),

and Mele (2017), and it helps to make the econometric analysis tractable. Moreover,

as the network formation process is unilateral, the net benefit that player i possibly

receives from her incoming links is ignored.

The payoff that player i gets from forming the link i j, z(Xi,X j;β ) +

v(∑N
k 6=i Gk j;δ ) + εi j, is assumed to depend on the number of additional agents

connecting to player j, through the function v(∑N
k 6=i Gk j;δ ). Such interdependence

among link decisions captures a sort of “volume effect” and arises in several set-

41Monotonicity is weakly intended throughout the chapter.
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tings of economic interest. For example, when examining PHBIs, the number of

additional rivals having an executive appointed on the board of competitor j may

encourage company i to join j’s board too for exploiting “cheap talk” opportunities

with them. Likewise, in the analysis of trading connections, the number of addi-

tional agents buying from family j may negatively affect agent i’s power to bargain

with j. Similarly, when considering advice ties, e.g., individuals nominating who

they would ask for advice on the adoption of a technology, the number of additional

people designating person j as adviser might proxy, in the eyes of individual i, j’s

time availability to offer proper explanations, or, if agents benefit from coordinating

their subsequent advised choices, j’s recommendations sharing level.

Moreover, the function v(·;δ ) is assumed to be monotone. The direction of the

monotonicity is left unrestricted because economic theory provides no clear guid-

ance on it in many empirical applications. The monotonicity requirement is used

below to show existence of an equilibrium and reduce the computational burden of

inference.

The results of the chapter also hold if one specifies the payoff that player i gets

from forming the link i j as a function of the label-specific components zi j(·;βi j) and

v j(·;δ j), provided that the direction of the monotonicity of the terms {v j(·;δ j)}∀ j∈N

is restricted to the same sign across j. However, it seems natural to proceed with

functions and parameters independent of players’ labels, as the data generating pro-

cess (hereafter DGP) illustrated by Assumption 1 below postulates that players’

identities can vary across networks and, hence, labels are assigned arbitrarily, as of-

ten is the case with data on networks, e.g., those used for the empirical illustration

in Chapter 3.

Lastly, (2.1) pretends that, when player i decides about the link i j, she does not

care about the identity, characteristics42 or links of agent k with a link pointing to

player j. Despite these effects might be attractive and reasonable in some empirical

42However, notice that if one is willing to assume that v(∑N
k 6=i Gk j;δ ) is monotone increas-

ing, then the identification results of the chapter also hold if v(∑N
k 6=i Gk j;δ ) is replaced by

v(∑N
k 6=i Gk j,(Xk)∀k 6=i∈N ;δ ) provided that the random matrix XXX has positive support.
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settings43, the technical complexity of the problem urges to be less ambitious and

leave them for future research. Indeed, adding them would break some of the re-

sults discussed below - specifically, existence of an equilibrium and computational

burden reduction44. 4

Equilibrium Agents play PSNE. A network GGG is a PSNE if it is robust to multilink

deviations by each player. More formally, let GGG−{i·} be the matrix GGG with ith row

deleted.

Definition 1. (PSNE of the network formation game) GGG ∈ G is a PSNE of the

network formation game if

Ui(Gi·,GGG−{i·},XXX ,ε;θu)≥Ui(G̃i·,GGG−{i·},XXX ,ε;θu)

∀G̃i· 6= Gi· ∈ {0,1}N−1 and ∀i ∈N . ?

2.3 Identification

2.3.1 Overview

This section examines identification of the parameters governing players’ prefer-

ences for links, using data on GGG and XXX45. From a first glance to (2.1), one may

attempt to apply standard techniques developed for multivariate binary choice mod-

43 For example, when examining PHBIs, firm i could prefer to have an executive sitting on the
board of competitor j when executives of leaders in the industry have joined too, as “cheap talk”
opportunities with them would be extremely valuable. Similarly, firm i could prefer to have an
executive sitting on the board of competitor j when it hosts executives of rivals who are appointed,
in turn, on several additional boards, because they might bring precious information about other
companies operating in the sector. These effects are not considered by the present analysis.

44Sheng (2016) allows the payoff that player i gets from forming the link i j to depend also on
the number of common ties with j, hence capturing a sort of “transitivity effect”. Two remarks fol-
low. Firstly, the analysis here is complicated by the fact that links represent asymmetric relations
between players and, hence, introducing such additional component would break some of the re-
sults discussed below - specifically, existence of an equilibrium and computational burden reduction
(unless one is willing to impose super-modularity, which, however, may be inappropriate in sev-
eral contexts). Secondly, while the mentioned “transitivity effect” seems relevant in the formation
of friendship networks (individuals with friends in common are more likely to become friends), its
importance in other empirical settings, e.g., PHBIs, trading connections, advice ties, is more ques-
tionable.

45It is assumed that observed networks correspond to equilibria, as often imposed in the empirical
literature on networks.
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els. Indeed, by exploiting the additive separability of Ui(·;θu) over player i’s outgo-

ing links, it can be shown that the inequalities in Definition 1 simplify to a system

of N(N−1) equations whose solution is a PSNE of the network formation game.

Lemma 1. (Characterisation of a PSNE of the network formation game) GGG ∈ G is

a PSNE of the network formation game if and only if

Gi j = 1{z(Xi,X j;β )+ v(
N

∑
k 6=i

Gk j;δ )+ εi j ≥ 0} ∀i ∈N ,∀ j ∈N , i 6= j (2.2)

�

Unfortunately, interdependence among link decisions induced by the function

v(·;δ ) precludes using identification results for multivariate binary choice models,

as ∑
N
k 6=i Gk j may be correlated with εi j. Moreover, it makes necessary investigat-

ing whether (2.2) has at least one solution (existence of a PSNE) or more than

one solution (multiplicity of PSNE). (2.2) belongs instead to the class of simulta-

neous equation models, whose identification analysis starts with the seminal work

by Heckman (1978) who provides results for a two-equation case. The discussion

there is based on deriving the reduced form parameters so as to prove that the struc-

tural ones are identified. Mimicking that approach for (2.2) seems very hard, due

to the complicated way in which the N(N−1) equations are related. Therefore, an

alternative identification procedure is developed in what follows.

The study opens with the description of the main assumption used through-

out the section (Assumption 1). Next, in order to show existence of an equilib-

rium (Proposition 1), the network formation game is decomposed into some local

games, which are similar for structure to entry games, and are such that the network

formation game has an equilibrium if and only if each local game has an equilib-

rium (Lemma 2). In turn, existence of an equilibrium in each local game is proved

by combining Tarski’s fixed point theorem with the constructive proof that Berry

(1992) designs to verify existence of an equilibrium in an entry game with substitu-

tion effects (Lemma 3).

It is then observed that the network formation game admits multiple equilib-
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ria. Thus, assuming that the researcher observes a large sample of equilibrium

networks, partial identification arguments for the parameters of the model are de-

veloped under no restrictions on equilibrium selection, as seen in the most recent

empirical literature on entry games (Tamer, 2003; CT; BMM; Aradillas-Lopez and

Rosen, 2016)46. After having represented the region of all admissible parameter

values (sharp identified set) by bounding the empirical probability distribution of

the entire network as in BMM, it is noticed that the sharp identified set is charac-

terised by a prohibitively enormous quantity of moment inequalities, indexed by

every non-empty compact subset of the support G of GGG, that makes inference on it

impractical: 22N(N−1)−2 moment inequalities, for each value of parameters and ex-

ogenous observables. For example, with four players, one would need to check the

violation in the data of 24096−2 moment inequalities for each value of parameters

and exogenous observables, which is a number greater than the quantity of atoms

in the observed universe.

Even if some moment inequalities can be shown to be redundant by exploit-

ing Lemma 2 (Proposition 2), constructing an algorithm to check the violation in

the data of the relevant ones only - or even count them - seems unworkable to the

best of the author’s knowledge. Hence, to attenuate the computational difficulties

more effectively, it is proposed to restrict the attention to the local games mentioned

earlier and consider the region of parameter values cropped by bounding the empir-

ical probability distribution of the outcomes of the local games, rather than of the

network formation game. Indeed, “thinking locally” may entail a significant reduc-

tion in the number of moment inequalities to deal with, thanks to the fewer mass

points of the bounded probability distribution. However, at the same time, ignoring

“the whole picture” may cause a loss of information about players’ preferences for

links, hence leading the researcher to conduct inference on a set of parameter values

larger than, and containing, the sharp identified set (outer set). After having derived

46Two comments should be made. Firstly, there may be sufficient conditions ensuring point
identification even without restrictions on equilibrium selection; for example, one may attempt to
extend to the case at hand the point identification results provided by Tamer (2003) for a two-player
entry game, which, however, seems very hard for a generic N. Secondly, point identification may
fail also if one rules out multiplicity of equilibria, depending on the functional forms assigned to
z(·;β ) and v(·;δ ).
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some sufficient conditions (Assumption 2) under which focusing on the local games

preserves sharpness (Proposition 3), it is noticed that, despite the local approach no-

tably diminishes the number of moment inequalities to handle, chasing sharpness

remains unmanageable when N ≥ 10. It is then suggested to give up on sharpness

and use a sub-collection of the original list of moment inequalities involving the

outcomes of the local games. Specifically, it is proposed to conduct inference on

the outer set of parameter values such that the empirical probability of each out-

come of the local games is between the probability of such an outcome being the

unique equilibrium of the local games, and the probability of such an outcome being

a possible equilibrium of the local games, conditional on XXX .

When estimating the characterised outer set, one gets computational gains from

two sources, under Assumption 1. Firstly, the number of moment inequalities to ex-

ploit is substantially shortened: from 22N(N−1)−2 to 2N×2N−1 moment inequalities

for each value of parameters and exogenous observables. Secondly, checking the

violation in the data of those moment inequalities is easy. In particular, when ob-

taining by simulation the bounding terms, one can avoid verifying whether each of

all possible 2N−1 outcomes of the local games is an equilibrium for every drawn

value of preference shocks, an extremely demanding routine even for moderate N.

Indeed, by applying Tarski’s fixed point theorem and reinterpreting a result from

Berry (1992) on the number of entrants in an entry game with substitution effects,

the amount of outcomes of the local games which can strive for being equilibria is

notably reduced. Overall, Monte Carlo exercises show that conducting inference on

the proposed outer set is computationally feasible using relatively limited compu-

tational resources up to N = 20. Lastly, Proposition 4 highlights some advantages,

in terms of computational tractability and width, over the outer set that one would

obtain by applying Tamer (2003) and CT.

2.3.2 Main assumption

Assumption 1. (Data generating process)

(i) The data generating process (hereafter DGP) is as follows: an integer N is

drawn from N \ {1,2}. N agents are selected from a population and labelled
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1,2, ...,N. Agents are endowed with characteristics collected in XXXN and εN ,

where the subscript N highlights the dependence of matrix and vector sizes on

N47. Agents play the network formation game described in Section 2.2 and a

PSNE GGGN arises.

The procedure is repeated M times and a sample of observations

{nm,xxxnm,gggnm}M
m=1

is collected. The sampling scheme is designed such that the probability distri-

bution of GGGN conditional on N,XXXN (hereafter empirical probability distribution

of GGGN conditional on N,XXXN ) is identified48.

In order to simplify the exposition and without loss of generality, in the re-

maining of Section 2.3 it is assumed that N is a degenerate random variable

with support {n}, for n∈N\{1,2}. Moreover, the subscript N is deleted from

GGGN ,XXXN ,εN to clean up the notation.

(ii) ε is continuously distributed on Rn(n−1), independently of XXX , with cdf denoted

by F(·;θε) and known up to the vector of parameters θε ∈Θε ⊆ Rdε .

(iii) There exists θ0 :=(θ ′u,0 θ ′
ε,0)
′ ∈Θ :=(Θu∪Θε) generating the empirical prob-

ability distribution of GGG conditional on XXX . Moreover, Θ := (Θu∪Θε) 3 θ :=

(θ ′u θ ′ε)
′ is compact.

(iv) All random variables are defined on the probability space (Ω,F ,P).

•

Remark 2. (Discussion on Assumption 1) As highlighted by Assumption 1 (i), all

the identification arguments developed in Section 2.3 are based on the observation

of several equilibrium networks, as e.g., in Miyauchi (2016) and Sheng (2016). This

47Agents’ characteristics are not required to be i.i.d.
48“All that is needed is for the law of large numbers to hold.” (CT, p.1799). Instead, Epstein,

Kaido and Seo (2016) discuss inference without restricting the DGP.
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requirement is fairly stringent but necessary, together with a sampling scheme com-

patible with a law of large number, to identify the empirical probability distribution

of GGG conditional on XXX . Some papers in the literature remove such a condition and

offer procedures based on the observations of one or few large networks (Leung,

2015; 2016; de Paula, Richards-Shubik and Tamer, 2016; Menzel, 2016), at the

expense of imposing other restrictions to control for interdependence among link

decisions.

In accordance with the data used for the empirical illustration in Chapter 3,

Assumption 1 (i) allows players’ identities to vary across networks and, hence, la-

bels are assigned arbitrarily. It follows that payoffs do not depend on players’ labels

and, consequently, neither do equilibrium sets. However, all the results in Section

2.3 also hold if players are the same across networks and, thus, labels are fixed.

Assumption 1 (ii) admits correlated preference shocks and makes the model

fully parametric with the exception of the equilibrium selection mechanism. By

imposing independence between ε and XXX , it also rules out any source of unob-

served heterogeneity correlated with XXX . All the results in Section 2.3 also hold if

one works with the probability distribution of ε conditional on XXX , provided that it

belongs to a known parametric family. Some papers in the literature remove such

a requirement and include fixed effects in agents’ payoffs (Dzemski, 2014; Cande-

laria, 2016; Graham, 2016; Jochmans and Weidner, 2016; Jochmans, 2017), at the

expense of deleting interdependence among link decisions. Identification of param-

eters in a static game of network formation with interdependent link decisions and

fixed effects remains an open question in the literature.

Lastly, Assumption 1 (iii) imposes that the model is correctly specified and that

the parameter space is compact, and it is standard in the partial identification liter-

ature. In particular, the correct specification of the model can be tested following

e.g., Andrews and Soares (2010), Andrews and Shi (2013), and Bugni, Cany and

Shi (2015).

4
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2.3.3 Existence of an equilibrium

This section establishes equilibrium existence for every value of payoff-relevant

variables and parameters as follows. For any j ∈ N , the section j of a network is

defined as the network portion collecting all nodes and the links pointing to node

j. Figure 2.1 reports, as an example, the section 2 of the network in Figure 1.1.

The network formation game is then decomposed into the n local games underlying

the formation of the section 1, section 2, ..., section n (respectively called section

1 game, section 2 game,..., section n game). These local games are such that the

network formation game has a PSNE if and only if each local game has a PSNE

(Lemma 2). Existence of a PSNE in each local game is verified (Lemma 3). Hence,

the network formation game has at least one PSNE (Proposition 1).

Figure 2.1: The section 2 of the network in Figure 1.1.

More formally, for any j ∈ N , in the section j game players other than player

j simultaneously decide whether they want to link to j. For any i 6= j ∈ N , a

pure strategy of player i is Gi j ∈ {0,1}. A pure strategy profile of the game is

G· j ∈ {0,1}n−1 collecting Gi j ∀i 6= j ∈N 49. Each player i 6= j ∈N gets as payoff

U j
i (G· j,XXX ,ε· j;θu) := Gi j×

[
z(Xi,X j;β )+ v(

n

∑
k 6=i

Gk j;δ )+ εi j

]
(2.3)

where ε· j is an (n−1)×1 vector listing εi j ∀i 6= j ∈N . Agents play PSNE.

Definition 2. (PSNE of the section j game) G· j ∈{0,1}n−1 is a PSNE of the section

j game if

Gi j = 1{z(Xi,X j;β )+ v(
n

∑
k 6=i

Gk j;δ )+ εi j ≥ 0} ∀i 6= j ∈N (2.4)

49|{0,1}N−1|= 2N−1.
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?

It can be seen that, for any j ∈ N , players’ payoffs within the section j game

depend exclusively on G· j50. Moreover, by gathering G·1,G·2, ...,G·n, one uniquely

obtains GGG ∈ G. Combining these facts,

Lemma 2. (Decomposing the network formation game) GGG is a PSNE of the net-

work formation game if and only if G· j is a PSNE of the section j game ∀ j ∈N . �

Lemma 2 is important beyond the existence arguments discussed here. Indeed,

it helps to characterise further the set of PSNE of the network formation game,

by revealing that it is the Cartesian product of the set of PSNE of the local games

considered. Such a property will be exploited when defining the sharp identified set

in Section 2.3.5.

Proceeding now with the existence proof, existence of a PSNE of the section

j game when v(·;δ ) is monotone increasing is guaranteed by Tarski’s fixed point

theorem. Moreover, it can be noticed that the structure of the section j game when

v(·;δ ) is monotone decreasing is similar to the structure of an entry game with sub-

stitution effects51. Existence of a PSNE in an entry game with substitution effects

is proved in Berry (1992) by means of a constructive proof which can be easily

reinterpreted for the section j game52. Merging these results,

Lemma 3. (Existence of a PSNE of the section j game) There exists a PSNE of the

section j game ∀ j ∈N . �

Hence, combining Lemmas 2 and 3,

Proposition 1. (Existence of a PSNE of the network formation game) There exists

a PSNE of the network formation game. �

50This means that ∀ j ∈ N players’ payoffs within the section j game are not affected by play-
ers’ choices outside the section j game. Nevertheless, the outcome of the section j game can be
correlated with the outcome of the section h game through players’ characteristics and equilibrium
selection mechanisms, for any h ∈N , j ∈N , with h 6= j.

51Just by replacing player j with the entry market.
52More details are in the proof of Lemma 3 in Appendix B.
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Remark 3. (Observation on existence of a PSNE) Existence of a PSNE of the

network formation game does not require payoffs to display additive separability

of preference shocks or a parametric specification. Indeed, it holds under the more

general utility function

Ũi(GGG,XXX ,ε) :=
N

∑
j=1

Gi j×
[
r(Xi,X j,εi j)+ t(

n

∑
k 6=i

Gk j)
]

(2.5)

where r(·) is any function of Xi, X j and εi j, and t(·) is any function monotone in

∑
n
k 6=i Gk j. 4

2.3.4 Multiplicity of equilibria

By running simulations, it can be seen that the network formation game admits

multiple PSNE for some values of payoff-relevant variables and parameters. This

means that values of observed and unobserved exogenous variables do not uniquely

pin down the value of endogenous variables, or, equivalently, there is no unique

mapping from parameters and observed and unobserved exogenous variables, to en-

dogenous variables. Moreover, simulations reveal that the equilibrium set may con-

tain outcomes with a diametrically opposite economic meaning, such as the empty

network and the fully connected network.

As the equilibrium selection mechanism is unobserved by the researcher and

economic theory provides no guidance regarding its form, any assumption on it may

be inappropriate and could bias estimates. Therefore, the econometric analysis pro-

ceeds by leaving the equilibrium selection mechanism totally unrestricted, as seen

in the most recent empirical literature on entry games (Tamer, 2003; CT; BMM;

Aradillas-Lopez and Rosen, 2016).

Without restrictions on equilibrium selection, deriving sufficient conditions en-

suring point of identification of θ0 becomes hard. Therefore, the study discusses

partial identification of θ0, i.e. it allows for the possibility that there may be more

than one parameter value able to generate the empirical probability distribution of

observables under the model’s assumptions.

Before entering in the core of identification, few considerations are made. In
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principle one may want to achieve point identification of θ0 with the help of direct

or indirect assumptions on equilibrium selection53. For instance, one might restrict

the function v(·;δ ) to be monotone decreasing. As explained in Section 2.3.3, the

structure of the section j game when v(·;δ ) is monotone decreasing is similar to the

structure of an entry game with substitution effects. Berry (1992) shows that in an

entry game with substitution effects all the equilibria are characterised by the same

number of firms entering the market. Reinterpreting this result for the section j

game, it can be proved that all the PSNE of the section j game are characterised by

the same number of players linking to player j. Consequently, θ0 may be point iden-

tified by considering that number as the equilibrium outcome of interest ∀ j ∈N , as

in Berry (1992). Viceversa, one might restrict the function v(·;δ ) to be monotone

increasing, which would guarantee existence of a greatest and a lowest PSNE by

Tarski’s fixed point theorem. In turn, it could be possible to derive point identifi-

cation arguments after having postulated, e.g., that agents always play the greatest

PSNE (Boucher, 2016). However, all these assumptions may bias estimates unless

the researcher has a strong prior supporting them.

In the same spirit, another possibility might be imposing that the outcome ob-

served by the researcher is chosen by players at random from the equilibrium set

(Bjorn and Vuong, 1984; Kooreman, 1994). However, such a strategy would hardly

be justifiable within this framework and may produce biased empirical results.

Alternatively, one could re-design the network formation game as a sequential

model, where, at each iteration of a meeting protocol, a pair of players is drawn at

random and determines the formation, maintenance or dissolution of a link (Chris-

takis, et al., 2010; Badev, 2014; Mele, 2017). However, a potentially unattractive

feature of this approach is that the realised sequence of meetings (in absence of

noise in the meeting process) is contained in the set of equilibria predicted by the

underlying static game, acting as an indirect restriction on the equilibrium selection

mechanism that may bias estimates.

53However, as discussed in footnote 46, assumptions on equilibrium selection may not be suffi-
cient to guarantee point identification of θ0, which depends also on the functional forms assigned to
z(·;β ) and v(·;δ ).

60



A fourth option could be assigning a parametric form to the equilibrium selec-

tion mechanism, as in the entry game of Bajari, Hong and Ryan (2010). However,

when applied to this framework, such a strategy could bias empirical results because

economic theory provides no guidance on which parametric form to choose.

Given the inappropriateness of those four approaches, remaining agnostic as

to equilibrium selection offers an alternative. The present work adopts this last

strategy and discusses partial identification of θ0 in what follows.

2.3.5 The sharp identified set under Assumption 1

In the language of BMM and Chesher and Rosen (2012), the set of parameter values

generating the empirical probability distribution of observables under the model’s

assumptions is denominated the sharp identified set and indicated by Θ?. Following

Berry and Tamer (2006), Θ? can be equivalently defined as the set of parameter val-

ues for which one can find an equilibrium selection mechanism that, combined with

the model’s assumptions, delivers the empirical joint probability distribution of ob-

servables. However, this representation of Θ? does not facilitate inference because

it involves the equilibrium selection mechanism which, as totally unrestricted, is

a function representing an infinite dimensional nuisance parameter. BMM offer a

powerful alternative by showing that the sharp identified set in the class of models

with convex moment predictions can be expressed as the set of parameter values

satisfying a collection of inequalities that do not contain the equilibrium selection

mechanism. Hence, after observing that under Assumption 1 this model belongs to

the class of models analysed by BMM, Θ? is characterised below adopting their ap-

proach54. Additionally, by exploiting Lemma 2 according to which the set of PSNE

of the network formation game is the Cartesian product of the set of PSNE of the

section 1 game,..., section n game, Proposition 2 shows that some of the inequalities

determining Θ? are redundant in the present setting.

More formally, let AG ⊂ KG be the collection of non-empty compact subsets

of G obtained by taking the Cartesian product of all the possible ordered n-tuples

54Following BMM, Θ? is characterised by using random sets defined in the space of observables.
One could also proceed with random sets defined in the space of unobservables (Chesher and Rosen,
2012).
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with repetition from K{0,1}n−1
55. Given any θ ∈ Θ, consider the random closed set

Sθu(XXX ,ε) : Ω→AG of PSNE of the network formation game. Notice that Sθu(XXX ,ε)

takes values in AG by Lemma 2. In order to characterise Θ?, it is possible to apply

Theorem D.2 in BMM, whose sufficient conditions are entirely satisfied by As-

sumption 1. Specifically,

Θ
? =

{
θ ∈Θ|P(GGG ∈ K|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(K) ∀K ∈ KG , ∀xxx ∈ X a.s.

}
(2.6)

where X is the support of XXX , and TSθu(XXX ,ε)|XXX=xxx : KG → [0,1] is the capac-

ity functional of Sθu(XXX ,ε) conditional on xxx, prescribed by TSθu(XXX ,ε)|XXX=xxx(K) :=

P(Sθu(XXX ,ε)∩K 6= /0|XXX = xxx) for any K ∈ KG
56. Each inequality in (2.6) is known

as Artstein’s inequality, for a total 22n(n−1) − 2 Artstein’s inequalities ∀θ ∈ Θ and

∀xxx ∈ X 57.

It is worth recognising that, despite Sθu(XXX ,ε) takes values in AG , Artstein’s

inequalities in (2.6) should be checked ∀K ∈ KG , hence including sets that are not

part of the support of Sθu(XXX ,ε). By exploring further this point, it can be shown

that some Artstein’s inequalities in (2.6) are redundant.

Proposition 2. (Redundant Artstein’s inequalities) Consider a set K ∈ KG with

|K| ∈ {1, ..., |G|−2}, where the set C := G \K is such that ∃ a non-empty set D⊂C

with {D̃∪C̃} /∈ AG ∀D̃⊆ D and ∀C̃ ⊆ {C \D}. Then, for any θ ∈Θ

P(GGG ∈ K|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(K)

is implied by

P(GGG ∈ {K∪D}|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx({K∪D})

P(GGG ∈ {K∪{C \D}}|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx({K∪{C \D}})

55|AG |= (22n−1 −1)n < |KG |= 22n(n−1) −1. Appendix B explains how to construct AG .
56The same characterisation can be derived by applying some results in Galichon and Henry

(2011).
57Despite the cardinality of KG is 22n(n−1)−1, the number of Artstein’s inequalities to consider is

22n(n−1) −2 because Artstein’s inequality arising when K = G is trivial.
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∀xxx ∈ X a.s. �

Additionally, a necessary and sufficient condition for a set K ∈ KG to satisfy

the sufficient conditions of Proposition 2 is provided by Corollary 1.

Corollary 1. (Necessary and sufficient condition for Proposition 2) Given a set

K ∈KG with |K| ∈ {1, ..., |G|−2}, the set C := G \K is such that ∃ a non-empty set

D⊂C with {D̃∪C̃} /∈ AG ∀D̃⊆ D and ∀C̃ ⊆ {C \D} if and only if all the pairs of

matrices gggD ∈ D,ggg{C\D} ∈ {C \D} differ for at least two rows. �

Example 1 helps to clarify Proposition 2 and Corollary 1.

Example 1. (Example on Proposition 2 and Corollary 1) Let n = 3 and

K := G \{

ggg1︷ ︸︸ ︷
0 1 1

1 0 1

1 1 0

,

ggg2︷ ︸︸ ︷
0 0 0

1 0 1

1 1 0

,

ggg3︷ ︸︸ ︷
0 0 0

0 0 0

0 0 0

}

K satisfies the sufficient conditions of Proposition 2. Indeed, given C := {ggg1,ggg2,ggg3},

it can be set D := {ggg3} so that {ggg1} ∪ {ggg3} /∈ AG , {ggg2} ∪ {ggg3} /∈ AG , and

{ggg1,ggg2}∪ {ggg3} /∈ AG . Furthermore, K satisfies the necessary and sufficient con-

dition of Corollary 1. Indeed, given the choice of D above, ggg1 and ggg3 have all rows

different, and ggg2 and ggg3 differ for the second and third rows. ∗

Unfortunately, providing the exact number of sets satisfying the necessary and

sufficient condition of Corollary 1 for a generic n seems an open problem in com-

binatorics to the best of the author’s knowledge. At most, one can bound such

a number by making use of some graph theory results from Brouwer and Koolen

(2009).

Corollary 2. (Bounds for Corollary 1) The number of sets K ∈ KG with |K| ∈

{1, ..., |G|− 2} such that, given the set C := G \K, ∃ a non-empty set D ⊂ C with

all pairs of matrices gggD ∈ D,ggg{C\D} ∈ {C \D} differing for at least two rows is

a ∈ {|G|, |G|+1, ...,∑
|G|−2
k=n(2n−1−1)

(2n(n−1)

k

)
}. �
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2.3.6 The sharp identified set based on local games

Conducting inference on Θ? as characterised in (2.6) is prohibitively complex. In-

deed, Artstein’s inequalities determining Θ? are obtained by bounding the empirical

probability that GGG takes value in a given compact subset of its support G, for every

possible non-empty compact subset of G, hence, generating 22n(n−1)−2 inequalities,

for each value of parameters and exogenous observables. For example, with four

players, one would need to check the violation in the data of 24096−2 inequalities

for each value of parameters and exogenous observables, which is a number greater

than the quantity of atoms in the observed universe. Moreover, even if Proposition 2

reveals that some Artstein’s inequalities in (2.6) are redundant by exploiting Lemma

2, constructing an algorithm to check the violation in the data of the relevant ones

only - or even count them - seems unworkable to the best of the author’s knowledge.

A strategy to attenuate the computational difficulties more effectively is to re-

strict the attention to some local games of the network formation game, and con-

structing bounds for the empirical probability distribution of the outcomes of the

local games, rather than of the network formation game. Indeed, “thinking locally”

may entail a significant reduction in the number of inequalities to consider, thanks to

the fewer mass points of the bounded probability distribution. However, at the same

time, ignoring “the whole picture” may cause a loss of information about players’

preferences for links, thus leading the researcher to conduct inference on an outer

set of parameter values larger than and containing the sharp identified set.

In this spirit, the section proposes to focus on the section 1 game, section 2

game,..., section n game, described earlier. In particular, it is shown that, if one is

willing to assume independence among these local games (Assumption 2), Θ? can

be equivalently characterised through Artsein’s inequalities obtained by bounding

the empirical probability that G· j takes value in a given compact subset of its support

{0,1}n−1, for every possible non-empty compact subset of {0,1}n−1, ∀ j ∈ N , and

for each value of parameters and exogenous observables (Proposition 3). This, in

turn, implies that the number of Artstein’s inequalities determining Θ? becomes

n(22n−1−2), with a notable reduction with respect to (2.6).
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Arguments are articulated as follows. By construction of AG , for any K ∈AG ,

there exists n sets, K·1 ∈ K{0,1}n−1 , ..., K·n ∈ K{0,1}n−1 , such that their Cartesian

product delivers K. Hence, one may think that verifying Artstein’s inequality for GGG

indexed by K is equivalent to verifying Artstein’s inequality for G· j indexed by K· j

∀ j ∈N . It turns out that this is true under independence among the section 1 game,

section 2 game,..., section n game. Indeed, combining this restriction with Lemma

2, Artstein’s inequality for GGG indexed by K is equal to the product across j ∈ N of

Artstein’s inequality for GGG· j indexed by K· j. As all terms are between 0 and 1, if

Artstein’s inequality for GGG· j indexed by K· j is satisfied ∀ j ∈ N , then, by taking the

product across j, Artstein’s inequality for GGG indexed K is verified too. Thus, Θ? can

be characterised by fewer inequalities than (2.6) because the cardinality ofK{0,1}n−1

is smaller than the cardinality of KG . A more formal discussion is now presented.

Consider the map Sθu,· j(XXX ,ε· j) : Ω→K{0,1}n−1 such that Sθu,· j(XXX(ω),ε· j(ω))

is the set of PSNE of the section j game, for any ω ∈Ω. Following Proposition 3.1

in BMM, under Assumption 1, Sθu,· j(XXX ,ε· j) is a random closed set almost surely

non-empty. Additionally, the following assumption is introduced.

Assumption 2. (Independence)

(i) The vectors forming the sequence (ε· j)∀ j∈N are independently distributed

across j.

(ii) The equilibrium selection mechanisms adopted by players in the section 1

game, section 2 game,..., section n game are independent of each other, i.e.

P(G·1 ∈K·1, ...,G·n ∈K·n|Sθu,·1(XXX ,ε·1), ...,Sθu,·n(XXX ,ε·n))=Π
n
j=1P(G· j ∈K· j|Sθu,· j(XXX ,ε· j))

∀K·1 ∈ K{0,1}n−1, ...,∀K·n ∈ K{0,1}n−1 , and ∀θ ∈Θ.

•

Remark 4. (Discussion on Assumption 2) Assumption 2 imposes independence

among the section 1 game, section 2 game,..., section n game, by restricting the
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correlation among preference shocks and the collection of admissible equilibrium

selection mechanisms for the section 1 game, ..., section n game.

More specifically, ∀i ∈ N , Assumption 2 (i) does not allow εi j to be corre-

lated with εik ∀ j ∈ N ,∀k ∈ N with i 6= j 6= k. Assumption 2 (i) is satisfied if,

∀i∈N and ∀ j ∈N with i 6= j, εi j = β j+ξi j, where
(
(β j)∀ j∈N ,(ξi j)∀i∈N ,∀ j∈N ,i 6= j

)
are i.i.d. (random effects across j). Instead, Assumption 2 (i) is violated if,

for some i ∈ N and for some j ∈ N with i 6= j, εi j = αi + β j + ξi j, where(
(αi)∀i∈N ,(β j)∀ j∈N ,(ξi j)∀i∈N ,∀ j∈N ,i6= j

)
are i.i.d. (random effects across i and j).

∀ j ∈N , Assumption 2 (ii) excludes that, in case of multiple equilibria, players

coordinate on a specific outcome in the equilibrium set of the section j game consid-

ering equilibrium selection rules adopted in the section h game for any h 6= j ∈ N .

For example, Assumption 2 (ii) is satisfied if, ∀ j ∈ N , the equilibrium selection

rule of the section j game assigns a uniform probability distribution over the out-

comes in the equilibrium set of the section j game. Assumption 2 (ii) is also met

if, ∀ j ∈ N , players select the outcome providing the highest total payoff from the

equilibrium set of the section j game. Instead, Assumption 2 (ii) is violated if e.g.,

players choose an outcome from the equilibrium set of the section j game with the

purpose of enhancing heterogeneity across agents creating links within the whole

network.

It can also be noticed that, by Lemma 2, ∀K·1 ∈ K{0,1}n−1, ...,∀K·n ∈ K{0,1}n−1 ,

and ∀θ ∈Θ,

P(G·1 ∈ K·1, ...,G·n ∈ K·n|Sθu,·1(XXX ,ε·1), ...,Sθu,·n(XXX ,ε·n)) = P(GGG ∈ K|Sθu(XXX ,ε))

where K is obtained by taking the Cartesian product of K·1, ...,K·n. This reveals that

Assumption 2 (ii) restricts also the collection of admissible equilibrium selection

mechanisms for the whole network formation game.

Lastly, Assumptions 1 and 2 imply the testable prediction that G·1, ...,G·n are

independent conditional on XXX , which, is, in turn, the key result used to show Propo-

sition 3 below. Indeed, ∀K·1 ∈ K{0,1}n−1 , ...,∀K·n ∈ K{0,1}n−1 , and ∀θ ∈ Θ, under
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Assumptions 1 and 2, the model states that

n

∏
j=1

P(G· j ∈ K· j|XXX ;θ) =
n

∏
j=1

∫
e· j∈Rn−1

P(G· j ∈ K· j|Sθu,· j(XXX ,e· j))dF̃· j(e· j;θε)

=
∫

e·1∈Rn−1

∫
e·2∈Rn−1

...
∫

e·n∈Rn−1

n

∏
j=1

P(G· j ∈ K· j|Sθu,· j(XXX ,e· j))dF̃· j(e· j;θε)

=
∫

e·1∈Rn−1

∫
e·2∈Rn−1

...
∫

e·n∈Rn−1

n

∏
j=1

P(G· j ∈ K· j|Sθu,· j(XXX ,e· j))
n

∏
j=1

dF̃· j(e· j;θε)

=︸︷︷︸
Ass. 2 (i)

∫
e:=(e·1,...,e·n)∈Rn(n−1)

n

∏
j=1

P(G· j ∈ K· j|Sθu,· j(XXX ,e· j))dF(e;θε)

=︸︷︷︸
Ass 2 (ii)

∫
e:=(e·1,...,e·n)∈Rn(n−1)

P(G·1 ∈ K·1, ...,G·n ∈ K·n|Sθu,·1(XXX ,e·1), ...,Sθu,·n(xxx,e·n))dF(e;θε)

= P(G·1 ∈ K·1, ...,G·n ∈ K·n|XXX ;θ)

4

Define the set

Θ
?? :=

{
θ ∈Θ|P(G· j ∈ K· j|XXX = xxx)≤ TSθu,· j(XXX ,ε· j)|XXX=xxx(K· j) ∀K· j ∈ K{0,1}n−1 , ∀ j ∈N , ∀xxx ∈ X a.s.

}
(2.7)

where TSθu,· j(XXX ,ε· j)|XXX=xxx : K{0,1}n−1 → [0,1] is the capacity functional of Sθu,· j(XXX ,ε· j)

conditioned on xxx, prescribed by TSθu,· j(XXX ,ε· j)|XXX=xxx(K· j) := P(Sθu,· j(XXX ,ε· j) ∩ K· j 6=

/0|XXX = xxx), for any K· j ∈ K{0,1}n−1 .

Proposition 3. (Sharp identified set under Assumptions 1, 2) (i) Under Assumption

1, Θ?? ⊇Θ?. (ii) Under Assumptions 1 and 2, Θ?? = Θ?. �

2.3.7 An outer set

Section 2.3.6 shows that, by considering Artstein’s inequalities for the section 1

game, section 2 game,..., section n game, Θ? can be characterised by fewer inequal-

ities. Even so, when there are 10 or more players, such a reduction is not enough

and conducting inference on Θ? remains prohibitively complex. For example, with

10 players and imposing Assumption 2, one would need to verify the violation in
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the data of 10(2512− 2) inequalities ∀θ ∈ Θ and ∀xxx ∈ X , which is a number still

greater than the quantity of atoms in the observed universe.

As anticipated earlier, a way to attenuate further the computational difficul-

ties is giving up on sharpness and selecting only some computationally convenient

Artstein’s inequalities from (2.7). Specifically, this section proposes to conduct in-

ference on the outer set of parameter values such that the empirical probability of

each realisation of G· j is between the probability of such a realisation being the

unique equilibrium of the section j game, and the probability of such a realisation

being a possible equilibrium of the section j game, conditional on XXX , ∀ j ∈N .

More formally, consider Artstein’s inequalities for G· j indexed by the compact

sets {g· j} ∈K{0,1}n−1 and {0,1}n−1\{g· j} ∈K{0,1}n−1 ∀g· j ∈ {0,1}n−1 and ∀ j ∈N .

The suggested outer set is hence

Θ
o :=

{
θ ∈Θ|P(G· j ∈ {0,1}n−1 \{g· j}|XXX = xxx)≤ TSθu,· j(XXX ,ε· j)|XXX=xxx({0,1}n−1 \{g· j})

P(G· j = g· j|XXX = xxx)≤ TSθu,· j(XXX ,ε· j)|XXX=xxx({g· j}) ∀g· j ∈ {0,1}n−1, ∀ j ∈N , ∀xxx ∈ X a.s.
}

(2.8)

It can be noticed that, under Assumption 1,Θo⊇Θ?. In fact, Θo⊇Θ?? by construc-

tion, and Θ?? ⊇Θ? by Proposition 3.

Computational gains When conducting inference on a region of parameters (sharp

or not sharp), one has to check the violation in the data of the inequalities defin-

ing the region for every possible parameter value. Computational difficulties come

from the number of inequalities to consider - as highlighted by the chapter so far

- and from the necessity of obtaining their sample analogues for every possible

parameter value - because the bounding probabilities are often very complicated

multi-dimension integrals.

In this respect, when conduction inference on Θo, one gets computational gains

from two sources, under Assumption 1. Firstly, the number of inequalities to con-

sider is notably diminished: from 22n(n−1) − 2 to 2n× 2n−1, with respect to Θ?.

Secondly, checking the violation in the data of those inequalities is easy. More
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precisely, it can be observed that, ∀g· j ∈ {0,1}n−1 and ∀ j ∈N ,

P(G· j ∈ {0,1}n−1 \{g· j}|XXX = xxx)≤ TSθu,· j(XXX ,ε· j)|XXX=xxx({0,1}n−1 \{g· j})

is equivalent to

P(G· j = g· j|XXX = xxx)≥
∫

e· j∈Rn−1 s.t. Sθu,· j(xxx,e· j)={g· j}
dF̃· j(e· j;θε) (2.9)

and

P(G· j ∈ {g· j}|XXX = xxx)≤ TSθu,· j(XXX ,ε· j)|XXX=xxx({g· j})

is equivalent to

P(G· j = g· j|XXX = xxx)≤
∫

e· j∈Rn−1 s.t. g· j∈Sθu,· j(xxx,e· j)
dF̃· j(e· j;θε) (2.10)

where F̃· j(·;θε) is ε· j’s cdf, the first multi-dimensional integral is the probability that

g· j is the unique PSNE of the section j game, and the second multi-dimensional

integral is the probability that g· j is a PSNE of the section j game. Hence, ob-

taining the sample analogues of those inequalities involves the computation of the

multi-dimensional integrals in (2.9) and (2.10) which can be done via the simple

frequency simulator proposed by McFadden (1989) and Pakes and Pollard (1989).

In principle, one would need to draw several values of preference shocks and ver-

ify whether each of all possible 2n−1 realisations of G· j is a PSNE of the section

j game for every drawn value and ∀ j ∈ N , generating an extremely demanding

routine even for moderate n. However, by exploiting some properties of the set of

PSNE of the section j game for any j ∈ N , the whole process can be significantly

sped up. Specifically, when during the inference procedure a candidate parameter

value is such that v(·;δ ) is monotone increasing, Tarski’s fixed point theorem guar-

antees existence of a greatest and lowest fixed points. These two fixed points can

be quickly obtained by implementing the algorithm in Jia (2008). It follows that

one only has to check whether the realisations of G· j lying between the greatest

69



and lowest fixed points are PSNE of the section j game58. Viceversa, when during

the inference procedure a candidate a parameter value is such that v(·;δ ) is mono-

tone decreasing, the structure of the section j game is similar to the structure of an

entry game with substitution effects, as explained in Section 2.3.3. Berry (1992)

shows that in an entry game with substitution effects all the equilibria are charac-

terised by the same number of firms entering the market. Reinterpreting this result

for the section j game, it can be proved that all the PSNE of the section j game

are characterised by the same number, n∗· j, of players linking to player j59. n∗· j can

be quickly obtained by implementing the constructive algorithm used in Section

2.3.3 to show existence of a PSNE of the section j game when v(·;δ ) is monotone

decreasing60. Thus, one only has to check whether the realisations of G· j charac-

terised by n∗· j players linking to player j are PSNE of the section j game, for a total

of (n−1)!
n∗· j!(n−1−n∗· j)!

< 2n−1 realisations.

Overall, Monte Carlo experiments reveal that conducting inference on Θo is

computationally manageable with relatively limited computational resources up to

n = 20. Though, it is important to highlight that the proposed methodology is not

applicable to very large networks, as the number of inequalities to consider, even if

remarkably diminished with respect to Θ?, still depends on n61.

Comparison with Tamer (2003) and CT Tamer (2003) and CT illustrate an en-

try game with complete information and focus on the outer set of parameter values

such that the empirical probability of each realisation of the vector of firms’ actions

is between the probability of such a realisation being the unique equilibrium of the

entry game and the probability of such a realisation being a possible equilibrium of

the entry game, conditional on players’ observed characteristics. Thus, as a direct

application of such a strategy, one might characterise an outer set, Θo
CT , collecting

58Miyauchi (2016) restricts to positive externalities and uses the same intuition to simplify the
computational burden of inference.

59See the end of the proof of Lemma 3 in Appendix B.
60See the proof of Lemma 3 in Appendix B.
61Moreover, the bounds in (2.8) vanish as n→ ∞. Hence, when n is very large, instead of the

methodology described here, it may be more appropriate to follow procedures developed for situ-
ations in which one or few large networks are observed (Leung, 2015; 2016; de Paula, Richards-
Shubik and Tamer, 2016; Menzel, 2016).
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the parameter values such that the empirical probability of each realisation of the

network is between the probability of such a realisation being the unique equilib-

rium of the network formation game and the probability of such a realisation being

a possible equilibrium of the network formation game, conditional on XXX .

More formally, consider Artstein’s inequalities for GGG indexed by the compact

sets K := {ggg} ∈ KG and K := G \{ggg} ∈ KG ∀ggg ∈ G. Let

Θ
o
CT :=

{
θ ∈Θ|P(GGG ∈ G \{ggg}|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(G \{ggg})

P(GGG ∈ {ggg}|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx({ggg}) ∀ggg ∈ G, ∀xxx ∈ X a.s.
}

(2.11)

As for Θo, the inequalities above can be rewritten by using the probability that ggg

is the unique PSNE of the network formation game and the probability that ggg is a

PSNE of the network formation game. Moreover, by (2.6), Θo
CT ⊇Θ?.

However, computational gains generated by Θo
CT may be insufficient because

conducting inference on Θo
CT requires checking the violation in the data of 2×

2n(n−1) inequalities ∀θ ∈ Θ and ∀xxx ∈ X . Instead, Θo brings greater computational

advantages by considering 2n×2n−1 inequalities ∀θ ∈Θ and ∀xxx∈X . For example,

with 15 players as in the data used for the empirical illustration in Chapter 3, Θo
CT

is defined by 3.291× 1063 inequalities, while Θo involves 491,520 inequalities,

∀θ ∈Θ and ∀xxx ∈ X .

Additionally, in terms of informativeness of bounds, Θo
CT delivers wider

bounds than Θo when independence among the section 1 game, section 2 game,...,

section n game is imposed. Indeed, if θ ∈ Θo, then all the inequalities determining

Θo
CT can be reconstructed by taking products of specific inequalities characterising

Θo. Viceversa, by summing inequalities representing Θo
CT , one obtains bounds that

are larger than those in (2.8). Specifically,

Proposition 4. (Comparison with Tamer (2003) and CT) Under Assumptions 1 and

2, Θo ⊆Θo
CT . �
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2.3.8 Extensions

All the results illustrated so far can be extended to situations in which the formation

of the link i j requires the consent of both players i and j, while deletion can be done

unilaterally, as for PHBIs and trading connections. More details on such a bilateral

game follow.

Strategies Players reveal the desired outgoing and incoming links, and only recip-

rocally announced ties are formed. For any i ∈N , a pure strategy vector of player i

is si ∈ {0,1}2(N−1) collecting si
i j and si

ji ∀ j 6= i ∈N , where si
i j is a scalar equal to 1

if player i is willing to form the link i j and 0 otherwise. A pure strategy profile of

the game is s ∈ {0,1}2N(N−1) listing si ∀i ∈ N . Mutual consent is needed to form

links, i.e., Gi j = si
i js

j
i j ∀i ∈N ,∀ j ∈N with i 6= j.

Preferences and information Assumptions on preferences and information are as

in Section 2.2. However, now each player i ∈ N can decide also on incoming links

according to the payoff

Ui(GGG,XXX ,ε;θu) :=
N

∑
j=1

G ji×
[
b(Xi,X j;γ)+ ε

i
ji

]
+

N

∑
j=1

Gi j×
[
z(Xi,X j;β )+ v(

N

∑
k 6=i

Gk j;δ )+ ε
i
i j

]
(2.12)

where ε i
ji and ε i

i j are scalars, unobserved by the researcher, listing the residual vari-

ables affecting the payoff that player i receives, respectively, from the formation of

the link ji, and of the link i j. The first term of the sum represents the net benefits

that player i gets from her incoming connections, where b(·;γ) is any function of Xi

and X j known by the researcher up to a vector of parameters γ . The second term of

the sum is as in (2.1). Payoffs are non-transferable.

Equilibrium Agents play PSPNE62, and the resulting network is a pure strategy

pairwise Nash stable (hereafter PSPNS) network. A network GGG is a PSPNS network

when it is robust to unilateral multi-link deletion and bilateral one-link formation.

More formally, let GGG’s dependence on s be indicated by GGG(s). Additionally, let s−i

be the vector s without si.

62Jackson and Wolinski (1996); Calvó-Armengol (2004); Bloch and Jackson (2006); Goyal and
Joshi (2006); Calvó-Armengol and Ilkiliç (2009).
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Definition 3. (PSPNS network) s is a PSPNE of the bilateral network formation

game if

Ui(GGG(s),XXX ,ε;θu)≥Ui(GGG(si
?,s
−i),XXX ,ε;θu)

∀si
? 6= si ∈ {0,1}2(N−1) and ∀i∈N , and there does not exist a pair of players (i, j)∈

N such that, when Gi j(s) = 0,

Ui(GGG(s)+ i j,XXX ,ε;θu)≥Ui(GGG(s),XXX ,ε;θu)

and

U j(GGG(s)+ i j,XXX ,ε;θu)≥U j(GGG(s),XXX ,ε;θu)

with strict inequality for at least one of the two players, where GGG(s)+ i j denote the

matrix GGG(s) when the link i j is added.

GGG is a PSPNS network if there exists a PSPNE s of the bilateral network formation

game such that GGG =GGG(s). ?

Remark 5. (Observations on the equilibrium concept) Alternative equilibrium con-

cepts adopted in bilateral games are pairwise stability63 and Nash stability64. Pair-

wise stable networks are robust to unilateral one-link deletion and bilateral one-link

formation. Pairwise stability is an equilibrium notion independent of any network

formation procedure and has nice computational properties. However, it only con-

siders very simple deviations and, hence, it may be too tolerant in classifying a

network as stable, especially when there are few players. On the other hand, Nash

stable networks are constructed by letting players announce desired outgoing and in-

coming links, according to PSNE, and, then, forming mutually beneficial links. Us-

ing PSNE in a bilateral game induces coordination problems because link creation

requires the consent of the two involved parties. This causes the game displaying a

multiplicity of Nash stable networks, always including the empty network, as play-

ing zero is weakly optimal even when forming a link would be profitable to both

players. In order to solve this issue, PSPNE allows players to coordinate their deci-

63Jackson and Wolinski (1996).
64Myerson (1991).
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sions, and, by not leaving aside any reciprocally beneficial link, it refines the set of

stable networks. In particular, the set of PSPNS networks is the intersection of the

set of Nash stable networks and the set of pairwise stable networks. Additionally,

within this model, the set of PSPNS networks and the set of pairwise stable net-

works coincide, by the additively separability of Ui(·;θu) over player i’s incoming

and outgoing links (Gilles and Sarangi, 2005).

Also, Definition 3 assumes that players’ payoffs are non-transferable. Adapt-

ing the results of the chapter to the case of transferable payoffs, with transfers made

between the players involved in a link or coming from outside players (Bloch and

Jackson, 2005; 2006), is not a trivial extension and, therefore, is left to future anal-

ysis. 4

Lastly, by exploiting the additive separability of Ui(·;θu) over player i’s out-

going and incoming links, Lemma 4 maintains that the inequalities in Definition 3

simplify to a system of N(N−1) equations whose solution is a PSPNS network.

Lemma 4. (Characterisation of a PSPNS network) GGG is a PSPNS network if and

only if

Gi j =1{z(Xi,X j;β )+v(
N

∑
k 6=i

Gk j;δ )+ε
i
i j≥ 0}1{b(Xi,X j;γ)+ε

j
i j≥ 0} ∀i∈N , j∈N , i 6= j

(2.13)

�

Identification Equilibrium existence for every value of payoff-relevant variables

and parameters can be shown following the steps illustrated in Section 2.3.3, after

having adapted the constructive proof in Berry (1992) to the bilateral setting con-

sidered here. More details are in Appendix A. Moreover, the game admits multiple

equilibria for some values of payoff-relevant variables and parameters. Hence, with-

out restrictions on equilibrium selection, partial identification arguments analogous

to those discussed in sections 2.3.5 and 2.3.7 can be derived, just by replacing the

equilibrium concept and imposing εi j := (ε i
i j,ε

j
i j)

65.

65Differently from the unilateral case discussed up to Section 2.3.7, it should be noticed that, in
the bilateral situation considered here, the tightness of bounds depends also on the proportion of
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2.4 Inference

After having transformed Artstein’s inequalities in (2.8) into moment inequali-

ties, inference on the outer set Θo can be performed choosing among several

available techniques: if X is finite e.g., Chernozhukov, Hong, and Tamer (2007),

Beresteanu and Molinari (2008), Romano and Shaikh (2008; 2010), Rosen (2008),

Stoye (2009), Andrews and Soares (2010), Bugni (2010), Canay (2010), Romano,

Shaikh, and Wolf (2014), Pakes, et al. (2015), Bugni, et al. (2016), Chernozhukov,

Chetverikov and Kato (2016), Kaido, Molinari and Stoye (2016), Bugni, Canay and

Shi (2017); if X is not finite e.g., Andrews and Shi (2013, 2017), Chernozhukov,

Lee, and Rosen (2013), Lee, Song, and Whang (2013, 2014), Amstrong (2014),

Chetverikov (2017).

This section briefly discusses how to construct a (1−α)% confidence region

following the generalized moment selection procedure developed by Andrews and

Soares (2010) and Andrews and Shi (2013).

Firstly, it is convenient to express Θo as

Θ
o =

{
θ ∈Θ|H l

g· j,xxx,n(θ)≤ P(G· j = g· j|XXXXXXXXX = xxx,N = n)≤ Hu
g· j,xxx,n(θ)

∀g· j ∈ {0,1}n−1, ∀ j ∈N , ∀xxx ∈ X a.s., ∀n ∈ N\{1,2}
} (2.14)

where

H l
g· j,xxx,n(θ) :=

∫
e· j∈Rn−1 s.t. S· j,θu(xxx,n,e· j)={g· j}

dF̃· j(e· j;θε) (2.15)

and

Hu
g· j,xxx,n(θ) :=

∫
e· j∈Rn−1 s.t. g· j∈S· j,θu(xxx,n,e· j)

dF̃· j(e· j;θε) (2.16)

It follows that

Θ
o =

{
θ ∈Θ|E

[
1(G· j = g· j)−H l

g· j,XXX ,N(θ)|XXX = xxx,N = n
]
≥ 0,

E
[
Hu

g· j,XXX ,N(θ)−1(G· j = g· j)|XXX = xxx,N = n
]
≥ 0

∀g· j ∈ {0,1}n−1, ∀ j ∈N , ∀xxx ∈ X a.s., ∀n ∈ N\{1,2}
} (2.17)

directed links observed in the sample.
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or, equivalently by stacking all the integrants in a vector m(GGG,XXX ,N;θ) of dimension

(2n2n−1)×1,

Θ
o =

{
θ ∈Θ|E

[
m(GGG,XXX ,N;θ)|XXX = xxx,N = n

]
≥ 0 ∀xxx ∈ X a.s., ∀n ∈ N\{1,2}

}
(2.18)

Secondly, the conditional moment inequalities in (2.18) should be transformed

into unconditional moment inequalities by considering the set

Θ
o(P) =

{
θ ∈Θ|E

[
m(GGG,XXX ,N;θ)p(XXX ,N)

]
≥ 0 ∀p ∈ P

}
(2.19)

where p ∈ P is a function (xxx,n) ∈ X ×N \ {1,2} 7→ p(xxx,n) ∈ R2n×2n−1
, and P is

chosen such that Θo = Θo(P).

For example, when X is finite,

P := {p s.t. p(xxx,n) = 1{XXX = xxx,N = n}×1112n2n−1 ∀xxx ∈ X a.s., ∀n ∈ N\{1,2}}

(2.20)

where 1112n2n−1 denotes the vector of ones with dimension (2n2n−1)×1. When X is

not finite, details on the construction of P are given by Andrews and Shi (2013),

section 9.

The researcher is now ready to construct an appropriate test statistic SM(θ)

∀θ ∈ Θ just by replacing the expectation in (2.19) with its sample analogue and

imposing a penalty for each inequality violated in the data. A (1−α)% confidence

region for each θ ∈Θo is hence

CSM :=
{

θ ∈Θ — SM(θ)≤ ĉM,1−α(θ)
}

(2.21)

where ĉM,1−α(θ) is an estimate of the 1−α quantile of the asymptotic probability

distribution of SM(θ). More details on how to compute SM(θ) and ĉM,1−α(θ) are

in Andrews and Soares (2010), Andrews and Shi (2013), and Appendix C.
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2.5 Monte Carlo simulations
This section reports the results of some Monte Carlo experiments on the outer set

Θo run assuming that X is finite and following the inference method developed by

Andrews and Soares (2010), whose main steps are illustrated in Appendix C. The

focus is on the unilateral case with the following model specification

Ui(GGG,XXX ,ε;θu) :=
N

∑
j=1

Gi j×
[
β |Xi−X j|+δ ∑

k 6=i
Gk j + εi j

]
(2.22)

where Xi ∼U([0,1]), and {εi j}∀i, j∈N ,i 6= j are i.i.d. across i j with εi j distributed as a

standard normal. Let θ := (β ,δ ).

Firstly, the behaviour of 1
M SM(θ0) is investigated for different values of N, M,

and θ0. in Figure 2.2. Panel (a) is obtained by setting N = 3, M = 200,500,800,

and θ0 = (0.4,−0.3). Panel (b) is obtained by setting N = 7, M = 200,500,800,

and θ0 = (−1.5,1.2). Panel (c) is obtained by setting N = 20, M = 200,500,800,

and θ0 = (−5,−6). For all the panels, the number of simulations to compute

the multidimensional integrals discussed in Section 2.4 is imposed equal to M
2 .

As expected, the empirical probability distribution function of 1
M SM(θ0) shrinks

around zero as M increases. Regarding the computational performance using 12

cores: when N = 3 and M = 200,500,700, the average time per iteration is, respec-

tively, 0.005,0.020,0.056 sec.; when N = 7 and M = 200,500,800, the average

time per iteration is, respectively, 0.015,0.102,0.266 sec.; when N = 20 and M =

200,500,800, the average time per iteration is, respectively, 0.613,4.413,35.033

sec.
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Figure 2.2: The figure reports the estimated probability distribution function of 1
M SM(θ0)

for different values of N, M, and θ0. Panel (a) is obtained by setting N = 3,
M = 200,500,800, and θ0 = (0.4,−0.3). Panel (b) is obtained by setting N =
7, M = 200,500,800, and θ0 = (−1.5,1.2). Panel (c) is obtained by setting
N = 20, M = 200,500,800, and θ0 = (−5,−6). For all the panels, the number
of simulations to compute the multidimensional integrals discussed in Section
2.4 is imposed equal to M
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Secondly, the coverage probability of θ0 by the 95% confidence region, con-

structed as discussed in Section 2.4, is examined. Specifically, Table 2.1 reports the

fraction of Monte Carlo experiments such that θ0 belongs to the 95% confidence re-

gion over 500 replications, for different values of N, M, and θ0. As expected, such

a fraction is equal to or greater than 0.95. The number of simulations to compute

the multidimensional integrals and the number of bootstrapped samples to obtain

the critical values are set respectively equal to 50 and 100.

Table 2.1: Fraction of Monte Carlo experiments such that θ0 belongs to the 95% confidence
region over 500 replications.

M = 100 M=400
N = 3,θ0 = (0.4,−0.3) 1 1
N = 7,θ0 = (−1.5,1.2) 0.96 0.98
N = 20,θ0 = (−5,−6) 0.95 0.95
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2.6 Conclusions

The chapter studies identification of the parameters governing agents’ preferences

in a static game of network formation, where links represent asymmetric relations

between players. Agents have complete information and play PSNE if link forma-

tion can be unilaterally established, or PSPNE in the bilateral case. Payoffs are non-

transferable. Link decisions are interdependent, as the payoff that player i receives

from linking to player j is affected by the number of additional players doing the

same. After having shown existence of an equilibrium and assuming that several

equilibrium networks are observed, partial identification arguments are provided

without restrictions on equilibrium selection in the presence of multiple equilibria.

The identification methodology attenuates the usual computational difficulties aris-

ing at the inference stage - due to the large number of possible sets of equilibria -

by giving up on sharpness and restricting the attention to some local games of the

network formation game. Overall, Monte Carlo exercises show that constructing

a confidence region for the suggested identified region of parameters is computa-

tionally manageable using relatively limited computational resources, with up to 20

players. As an empirical illustration of the methodology, the chapter investigates

firms’ incentives for having executives sitting on the board of competitors, using

data on Italian joint stock companies. It is found that firm i prefers its executives

sitting on the board of rival j when executives of other competitors are hosted too,

possibly because it enables i to engage with them in “cheap talking” about past or

future choices, besides having the opportunity to learn about j’s decision making

process.

There are some avenues of future research. Specifically, there could be other

interdependencies among link decisions to consider. For example, player i’s payoff

from linking to player j may also depend on the i’s connections, or on the identity,

links and characteristics of the additional agents connecting to j. It may be worth

enriching players’ payoffs in this direction and investigating how the identification

results proposed here can be extended to such more complicated settings. Another

idea could be to examine how the identification analysis changes if one removes the
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monotonicity of v(·;δ ) - e.g., one may wonder how to adjust bounds when v(·;δ )

has a “U” shape -, or the additive separability over outgoing and incoming links

characterising payoffs.
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Chapter 3

An empirical application to board

interlocks66

3.1 Introduction
The chapter shows that that the methodology developed in Chapter 3 can deliver

economically meaningful estimates. Specifically, the procedure is used to investi-

gate firms’ incentives for having executives sitting on the board of competitors (also

called primary horizontal board interlocks, hereafter PHBIs).

Most organisations are governed by a board of directors composed of exec-

utives and non-executives. The former lead the decision making process, the lat-

ter are involved in the supervision and advising of executives. PHBIs are a com-

mon arrangement of firms’ governance structure in several European countries.

Deeply analysed by corporate governance experts, they also draw the attention of

economists because they may help firms to exchange information, and, in turn, re-

duce strategic uncertainty, transmit tacit knowledge, increase transparency, or en-

courage coordination. In such a scenario, interdependence among companies’ de-

cisions for forming PHBIs becomes crucial because it allows them to expand and

radiate the flow of information. Indeed, firm i could find extremely attractive to

have one of its executives sitting on the board of rival j when executives of other

competitors are hosted too, as it would enable i to engage with them in “cheap talk-

66The views expressed in this chapter are those of the author and do not necessarily reflect those
of the Bank of Italy.



ing” about past of future choices, besides having the opportunity to learn about j’s

decision making process.

At the same time, such interdependence causes endogeneity, and, thus, pre-

vents the possibility of using standard econometric techniques to conduct inference

on firms’ preferences behind PHBIs. Applying the methodology illustrated in Chap-

ter 2 represents an alternative. In particular, a 95% confidence region for the sug-

gested outer set is constructed using Italian data. In line with the intuition above,

results reveal that firms prefer to have their executives sitting on the board of a rival

when executives of other competitors are appointed too. For the aim of simplifica-

tion, firms’ characteristics are discretised and the inference method developed by

Andrews and Soares (2010) is followed, as illustrated in Appendix C67.

Literature review The exercise falls within the study of inter-organisational ties,

e.g., board interlocks, cross-ownerships, joint ventures, or supply and distribution

channels. More specifically, the corporate governance literature on the topic is di-

vided into two groups. According to the inter-organizational linkage perspective,

embraced by this chapter, companies are entities that possess interests. In pur-

suit of them, they form relations with other firms. For example, they share board

members as an attempt to transfer information, and, consequently, decrease invest-

ment uncertainty, anticipate disturbances, promote coordination, or convey exper-

tise (Thompson and McEwen, 1958; Dooley, 1969; Allen, 1974; Pfeffer and Salan-

cik, 1978; Aldrich, 1979), especially when happening with competitors (Carring-

ton, 1981; Leslie, 2004; Gabrielsen, Hjelmeng, and Sørgard, 2011; Waller, 2011)68

and through the exchange of executives (Mintz and Schwartz, 1981; Mizruchi and

Bunting, 1981; Stokman, Wasseur and Elsas, 1985; Stokman, Van Der Knoop and

Wasseur, 1988; Mizruchi and Stearns, 1994). Conversely, according to the class

alliance view, directors are actors with career and reputation goals. To achieve

67One could also proceed without discretising firms’ characteristics and apply the inference pro-
cedure developed by Andrews and Shi (2013; 2017). However, when N is not small, these method-
ologies become computationally burdensome as the dimension of the conditioning variable is equal
to 3N.

68Also some policy reports, e.g., OECD (2008; 2010), debate on information exchanges between
competitors through board interlocks.
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them, they establish connections with other peers, for example by sitting on multi-

ple boards (Zeitlin, 1976; Zajac, 1988)69.

Most of the empirical findings on board interlocks focus on the correlation

between a firm’s profitability or size, and the intensity of board interlocks (Doo-

ley, 1969; Pfeffer, 1972; Allen, 1974; Bunting, 1976; Pennings, 1980; Carrington,

1981; Burt, 1983; Meeusen and Cuyvers, 1985; Mizruchi and Stearns, 1988; Ka-

plan and Reishus, 1990; Booth and Deli, 1996). Some empirical works analyse the

impact of board interlocks (exogenously taken or instrumented) on firms’ internal

decisions, e.g., executives’ compensations (Hallock, 1997; Core, Holthausen, and

Larcker, 1999; Patnam, 2013; Gayle, Golan, and Miller, 2015), patenting and R&D

spending (Helmers, Patnam and Rau, 2015), and hiring choices (Lalanne, 2016).

The chapter aims to shade further light on the role of board interlocks as informa-

tion transmitters, by estimating, for the first time, a model in which firms’ decisions

on board interlocks are interdependent as a result of organisations’ incentives for

taking advantage of information streams.

The rest of the chapter is organised as follows: Section 3.2 summarises the

italian context; Section 3.3 illustrates the specification of the game for PHBIs; Sec-

tion 3.4 describes the data; Section 3.5 reports the results; Section 3.6 provides

conclusions and directions for future research.

3.2 The Italian context
The firms considered by the empirical illustration are Italian joint stock companies

(Societá per Azioni). Joint stock companies, i.e, business entities where sharehold-

ers’ liability is limited to the nominal value of held shares, represent the largest

organisations in Italy. They are not necessarily listed on the stock exchange and

are governed by a board of directors, which is a collegial body appointed by the

shareholders who are free to choose its size. The board of directors can delegate its

executive duties to one or more of its members. If the mandate is conferred, then ex-

ecutives have to report to the board with a frequency determined by the company’s

69Detailed reviews on the two approaches are e.g., in Palmer (1983), Ornstein (1984), and
Mizruchi (1996).
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statute, and, in any case, at least every six months. Moreover, delegators can ask

executives to provide the board with any information related to the management of

the company and have advice duties over executives’ conduct on the basis of the

information received70.

The sharing of board members between joint stock companies is a distinguish

feature of Italian capitalism since the end of the nineteenth century (Luzzatto Fegiz,

1928; Bianco and Pagnoni, 1997; Barbi, 2000; Rinaldi and Vasta, 2005; Bertoni and

Randone, 2006; Ciocca, 2007; Santella, et al., 2009), with relatively stable dynam-

ics over time (Vasta and Baccini, 1997; Rinaldi and Vasta, 2005; 2012; Santella,

Drago and Polo, 2009; Bellenzier and Grassi, 2014). Additionally, the Italian law

system does not impose any clear and general prohibition on such a practice, or on

the number of different appointments that a director can hold. The only exception is

the Law 214 of the year 2011, which forbids organisations to share of board mem-

bers with companies or groups operating in the banking, insurance and financial

services sectors.

3.3 Applying the network formation game to board

interlocks
There are N ∈ [3,∞) firms operating in the same industry and simultaneously de-

ciding which links to form according to the rules of the game described in Section

2.3.8. The link i j exists when firm i has one of its executives sitting on the board

of firm j, and it represents an asymmetric exchange of information between i and

j. Indeed, i has the right to know about j’s decision making process, because, by

the Italian corporate law, j should truthfully report to i of any past or future ac-

tion, during board meetings held on a regular basis. Moreover, when executives of

other competitors are appointed on the board of j too, i may engage with them in

“cheap talking”, i.e., costless, informal, and unverifiable discussions, about prior

or planned choices71. Viceversa, i has advice duties towards j. Thus, j receives

70Articles 2381, 2392, and 2393 of the Italian Civil Code.
71Farrell and Rabin (1996).
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suggestions and recommendations from i, potentially including “cheap talk” confi-

dences. Such asymmetry is reflected in the structure of the payoff function (2.12)

and is highlighted also e.g., by Warner and Unwalla (1967), Mizruchi and Bunting

(1981), Palmer (1983), and Richardson (1987).

Remark 6. (Observations on the payoff function)

Suppose the links i j, k j, and ik are formed. It turns out that firm k’s “cheap

talk” announcements during firm j’s board meetings are verifiable by firm i, through

the attendance of k’s board meetings. Still, (2.12) assumes that i takes into account

the opportunity for seeing k at j’s assembly. The intuition behind is that i sustains

costs in order to check k’s “cheap talk” announcements made during j’s board meet-

ings, e.g., reserving time for k’s board meetings. Hence, any occasion for unofficial

conversations with k outside k’s assembly is valuable to i.

Suppose now the links i j, k j, ih, kh are formed. (2.12) pretends that firms i and

h take into account twice the possibility of seeing each other. The intuition behind

is that both opportunities are equally relevant to the eyes of i and h because they

may give rise to “cheap talk” discussions different for content or quality.

Also, as mentioned in Remark 1, (2.12) postulates that, when firm i decides

about the link i j, it does not care about identity, characteristics and existing links

of firm k with an executive sitting on company j’s board. Despite all these effects

might be attractive and reasonable72, the technical complexity of the problem urges

to leave them for future research. Indeed, they would all break the proof for the

existence of a PSPNS network and nullify the computational gains brought by the

outer set of parameter values Θo.

Moreover, the Italian law does not impose any restriction on board size. This,

combined with the fact that the industry size in the data used is at most 15, seems to

suggest that there is no need to add cost functions or constraints depending on the

number of links in firms’ payoffs.

Lastly, it seems reasonable to assume that firms’ payoffs are non-transferable,

as the net benefits that companies receive from information flows spreading through

72See footnote 43 for examples.
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links are hardly comparable73. 4

As an example, Figure 3.1 pictures a network arising in an industry composed

by four firms. ∀i ∈ {1, ...,4}, the board composition of firm i is indicated by two

sets of letters. Each letter denotes an individual. The first set of letters is the set of

executives. The second set of letters is the set of non-executives.

Figure 3.1: Example of a directed network arising in an industry composed by four firms.
For every i ∈ {1, ...,4}, the board composition of firm i is indicated by two sets
of letters. Each letter denotes an individual. The first set of letters is the set of
executives. The second set of letters is the set of non-executives.

Remark 7. (Observations on the construction of networks) Three considerations

follow. Firstly, directors’ identities are ignored. In fact, according to the Italian le-

gal framework, firms are the ultimate arbiters of link decisions, as a director needs

her original board’s approval to join the board of a competitor74. Nevertheless, there

may be contexts in which a link decision between two competitors is motivated by

the outstanding and exogenous capacities of an individual, rather than for transfer-

ring information. These situations are excluded by the present work to preserve the

tractability of the analysis75.

Secondly, and related to the first point, executives are identified with their com-

panies. For example, consider director F in Figure 3.1. Despite she sits on the

boards of firms 2 and 4, she does not create any link between them because she acts

73In reality, there are money transfers from firms to directors. However, as explained in Remark
7, the present analysis ignores directors’ identities to preserve tractability.

74Article 2390 of the Italian Civil Code.
75I.e., it is assumed that any link is motivated by the will of transferring information between

firms, independently of the characteristics of the shared directors.
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on both boards as a representative of firm 3 where she has executive duties. On top

of that, every circumstances in which companies share directors lacking executive

roles at all the companies in a given industry are omitted, as, most of the times,

these individuals sit on multiple boards because of their technical skills rather than

in order to transfer information across firms. In support of this argument, several

works in the corporate governance literature sustain that only ties involving exec-

utive powers can represent long term economic and institutional relations between

companies (Mizruchi and Bunting, 1981; Stokman, Wasseur and Elsas, 1985; Stok-

man, Van Der Knoop and Wasseur, 1988). Moreover, consider director A in Figure

3.1 with executive duties in firms 1 and 2. The analysis here pretends that, during

firm 2’s board meetings, A participates to “cheap talk” discussions with director F

speaking in the name of firm 176.

Lastly, cases in which firms share board members with companies in other in-

dustries are not taken into account. In fact, before the year 2011 (after it is forbidden

by law), these events are mostly driven by connections with financial institutions,

possibly arising because experts in the financial industry are useful to firms oper-

ating in other industries, or because lending banks want to be represented on and

control the boards of debtors. As these incentives could follow patterns different

from the information exchange arguments illustrated earlier, their study may re-

quire a payoff structure more sophisticated than (2.12) and is postponed to future

research. Additionally, the majority of the policy debate today is focused on the in-

centives behind the existence of ties within industries, rather than across industries,

given the potential impact on competition.

4

3.4 Data
The sources of data are the Registro Imprese and the Cerved databases, whose ac-

cess has been provided by the Bank of Italy. The Registro Imprese is a database in

which all Italian companies are required to enrol through the Chamber of Commerce

76Notice also that, during firm 2’s board meetings, director A cannot participate to “cheap talk”
discussions with director F speaking in the name of company 2.
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in their territorial province and is the primary source of certification of their con-

stituent data. It offers detailed and updated information on individual firms (e.g.,

legal status, year of registration, composition of governance bodies, geographical

location, principle line of activity) and on important changes related to their ex-

istence (e.g., termination, liquidation, bankruptcy, mergers and acquisitions). The

Cerved database contains information useful for measuring the credit risk of Italian

limited companies77, and, among other data, provides balance sheet details.

The considered sample collects all the Italian joint stock companies with a

governance organised under the Articles 2380/2409-septies of the Italian Civil Code

(Societá per Azioni con sistema tradizionale) and whose data for the year 2010 were

available78, i.e., 2599 firms operating in 386 industries.

The board composition, together with the role of each director (executive or

non-executive), are extracted from the Registro Imprese database. Industries are

constructed considering firms’ principal lines of activity provided by the ATECO

2002 code from the Registro Imprese database. The ATECO 2002 code is similar to

the SIC code in the UK and U.S. It is an alpha-numeric code with varying degrees of

detail - the letters indicate the macroeconomic sector while the numbers represent

subsectors. It is developed in five levels: sections (letter), subsections (two letters,

optional), divisions (2 digits), groups (3 digits), classes (4 digits) and categories (5

77Joint stock companies are a category of limited companies.
78The Italian law system offers several ways to organise the governance of a joint stock com-

pany. The sistema tradizionale is the default rule, adopted by the majority of joint stock companies.
Identifying from the Registro Imprese database joint stock companies with a governance organised
differently from the sistema tradizionale is a delicate task, that requires careful investigation of the
power relations among governance bodies and is beyond the scope of the present work.
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digits)79,80.

In line with some empirical studies on board interlocks, e.g., Dooley (1969),

Pfeffer (1972), Allen (1974), Bunting (1976), Pennings (1980), and Carrington

(1981), firms’ dimensions and profitabilities, together with industry sizes, are set

as exogenous variables influencing link decisions.

As per Dooley (1969), Allen (1974) and Mizruchi and Stearns (1988; 1994), a

firm’s dimension is measured using total assets (hereafter TA)81, extracted from the

Cerved database. As per Baysinger and Butler (1985) and Fligstein and Brantley

(1992), a firm’s profitability is measured using return on equity (hereafter ROE)82,

extracted from the Cerved database. Lastly, in order to apply the inference method

proposed by AS and discussed in Section 2.4, TA and ROE are discretised into ten

separate bins, according to their 10, 20, ..., 90th quantiles. Consequently, TA and

ROE take values in {1,2, ...,10}. Additional data cleaning steps are in Appendix

D.1.

Some descriptive statistics for industry size, TA and ROE are in Table 3.1.

Some network summary statistics (averaged over industries) are in Table 3.2. Over-

79For example:

• A: Agriculture, hunting and fishing

• 01: Agriculture, hunting and related service activities

• 01.1: Crops

• 01.11: Growing of cereals and other arable crops

• 01.11.1: Growing of cereals (rice included)

• 01.11.2: Growing of oil seeds

• ...

80In 2008 the ATECO 2002 code was replaced by the ATECO 2007 code, whose structure pre-
serves the same general characteristics. However, this chapter uses the ATECO 2002 code as its data
quality is remarkably higher for the year 2010.

81Pfeffer (1972) measures a firm’s size using total sales. Booth and Deli (1996) propose the
natural log of the sum of the market value of the firm equity plus the book value of preferred stock.

82Alternative measures of a firm’s profitability include: price-cost margins (Collins and Preston,
1969; Carrington, 1981); market value, price-earnings ratio and debt-equity ratio (Fligstein and
Brantley, 1992); return on sales (Mizruchi and Stearns, 1988; Fligstein and Brantley, 1992); return
on assets (Richardson, 1987; Mizruchi and Stearns, 1988; Fligstein and Brantley, 1992); return on
shareholders’ investment and net interest on assets (Bernstein, 1978; Pennings, 1980; Richardson,
1987); dividend cuts (Kaplan and Reishus, 1990); return on invested capital (Bunting, 1976); average
Tobin’s q (Hermalin and Weisbach, 1991).
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all, networks look disconnected with several isolated nodes. Furthermore, the re-

ported network summary statistics seem relatively stable over the years 2005-2010

(Tables 3.3), which legitimates modelling the formation of PHBIs as a static game

with complete information. More comments are in Appendix D.2.
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Table 3.1: Descriptive statistics for industry size, TA, ROE

Mean St.dev Min Max [0.25;0.50;0.75] Skewness Kurtosis Total number of firms Total number of industries
N 6.733 3.483 3 15 [4;6;9] 0.812 2.645 2599 386

TA (×106 AC) 117.281 1,567.453 0.067 73,916.239 [6.998;15.653;39.984] 41.471 1,903.552 X X
ROE (%) 1.267 24.589 −128.410 69.820 [−2.382;2.360;11.402] −1.600 9.071 X X

Table 3.2: Some network summary statistics. Definitions are in Appendix D.2.

Mean St.dev Min Max [0.25;0.50;0.75] quantiles Skewness Kurtosis
Density 0.005 0.026 0 0.333 [0;0;0] 8.462 88.322

Average degree 0.023 0.096 0 1 [0;0;0] 5.905 45.181
% Isolated nodes 97.666 8.758 33.333 100 [100;100;100] −4.299 22.587
Number of links 0.163 0.617 0 6 [0;0;0] 4.859 32.750

Table 3.3: Mean values for some network summary statistics across the years 2005-2010

Year Density Average degree % Isolated nodes Number of links
2005 0.006 0.025 97.604 0.167
2006 0.007 0.023 97.641 0.135
2007 0.009 0.028 96.974 0.159
2008 0.006 0.028 97.027 0.208
2009 0.005 0.027 97.206 0.208
2010 0.005 0.023 97.666 0.163
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3.5 Results

Inference is conducted on the following model specification first

Gi j = 1{β0 +β1(TA j−TAi)+β2(ROE j−ROEi)+δ

N

∑
k 6=i

Gk j + ε
i
i j ≥ 0}×

1{γ0 + γ1(TA j−TAi)+ γ2(ROE j−ROEi)+ ε
j

i j ≥ 0}
(3.1)

∀i, j ∈ N , i 6= j. According to (3.1), firms i and j decide about the link i j consid-

ering their differences in size and profitability which affect payoffs in a linear way.

Moreover, i takes into account the number of additional companies with an exec-

utive sitting on the board of j, as a measure of “cheap talk” opportunities for the

reasons discussed earlier. To simplify inference, {εi j}i, j∈N ,i6= j are assumed i.i.d.

across i j, with εi j := (ε i
i j,ε

j
i j) distributed as a standard bivariate normal.

Table 3.4 reports the hypercube that contains the 95% confidence region for

each parameter value in Θo. The sign of various effects, as measured by projec-

tions of this hypercube, is analysed first. The projection for the parameter δ is

[2.129, 20.909]. The positive sign reveals that, all else equal, firm i’s payoff from

appointing as executive a board member of firm j increases with the number of ad-

ditional competitors doing the same. Such a result confirms the intuition that i finds

attractive to have one of its executives sitting on the board of j when executives

of other competitors are hosted too, as it enables i to engage with them in “cheap

talk” communications, besides having the opportunity to learn about j’s decision

making process. The projections for the parameters β1 and β2 are, respectively,

[0.022, 8.381] and [0.012, 7.486], and indicate that, all else equal, firm i prefers its

executives sitting on the board of firm j when j is larger and more profitable than i.

Indeed, it may be that firms prefer their executives sitting on the board of larger and

more profitable competitors because these represent major sources of tacit knowl-

edge or strategic uncertainty, and, therefore their decision making process is more

worth to be observed. Conversely, the projections for the parameters γ1 and γ2 are,

respectively, [−4.327, − 0.004] and [−9.655, − 0.016], and indicate that, all else

equal, firm j prefers hosting on its board executives of firm i when j is smaller
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and less profitable than i. Indeed, it may be that smaller and less profitable firms

are not considered capable of offering precious advice, or that their “cheap talk”

confidentialities are not valuable enough.

Table 3.4: Projections of the 95% confidence region for each θ ∈ Θo according to specifi-
cation (3.1).

β0 [−15.399, −0.783]
β1 [0.022, 8.381]
β2 [0.012, 7.486]
δ [2.129, 20.909]
γ0 [−0.469, 37.490]
γ1 [−4.327, −0.004]
γ2 [−9.655, −0.016]

One idea to discuss the magnitude of results is considering the ratio between

the change induced by a given unit increase in one variable relative to the change

induced by a one unit increase in another. In this sense, it can be seen that, to keep

the payoff that firm i receives from the link i j constant when a link pointing to firm

j is added, one would need to reduce (ROE j−ROEi) of approximatively 2 bins at

least, or reduce (TA j−TAi) of approximatively 3 bins at least.

Differences in size and profitability may affect firms’ payoffs non-linearly. In

order to study such potential non-linearities, the following model specification is

additionally considered

Gi j =1{β0 +β11{−9≤ TA j−TAi ≤−5}+β21{−4≤ TA j−TAi ≤ 0}+β31{1≤ TA j−TAi ≤ 5}+

+β41{−9≤ ROE j−ROEi ≤−5}+β51{−4≤ ROE j−ROEi ≤ 0}+β61{1≤ ROE j−ROEi ≤ 5}+

+δ ∑
k 6=i

Gk j + ε
i
i j ≥ 0}×

1{γ0 + γ11{−9≤ TA j−TAi ≤−5}+ γ21{−4≤ TA j−TAi ≤ 0}+ γ31{1≤ TA j−TAi ≤ 5}+

+ γ41{−9≤ ROE j−ROEi ≤−5}+ γ51{−4≤ ROE j−ROEi ≤ 0}+ γ61{1≤ ROE j−ROEi ≤ 5}+

+ ε
j

i j ≥ 0}
(3.2)

∀i, j ∈ N , i 6= j. As earlier, {εi j}i, j∈N ,i 6= j are assumed i.i.d. across i j, with εi j

distributed as a standard bivariate normal.
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Table 3.5 reports the hypercube that contains the 95% confidence region for

each θ ∈ Θo. Consider first the sign of various effects as measured by projections

of this hypercube. The projection for the parameter δ is [31.523, 35.902] and has a

positive sign, as for specification (3.1). The interpretation of the indicator function

parameters is slightly more complicated and done as follows. Let the base group be

TA j−TAi and ROE j−ROEi both between 6 and 9. Table 3.6 reports the confidence

intervals for sum of pairs of parameters via projections relative to other combina-

tions of realisations of TA j − TAi and ROE j −ROEi. Overall, the base group is

always favoured by firm i, i.e., i prefers its executives sitting on the board of firm

j when j is significantly larger and more profitable than i. An exception is repre-

sented by the projection for β2 +β6 that includes both positive and negative values.

This means that the corresponding indicator functions may have a positive or a neg-

ative effect on payoffs. Conversely, the base group is never favoured by firm j, i.e.,

j prefers hosting on its board executives of firm i when j is not significantly larger

and more profitable than i. An exception is when TA j−TAi is between −9 and −5

and ROE j−ROEi is between −4 and 0, which is less favoured by j than the base

group, possibly because j sees itself excessively vulnerable and exposed in front

of i. Moreover, the projections for γ1 + γ4 and γ2 + γ5 include both positive and

negative values.

95



Table 3.5: Projections of the 95% confidence region for each θ ∈ Θo according to specifi-
cation (3.2).

β0 [−7.120, −3.431]
β1 [−2.006×103, −1.998×103]
β2 [6.977, 12.562]
β3 [0.202, 2.629]
β4 [−23.251, −15.473]
β5 [−25.678, −22.059]
β6 [−14.954, −9.652]
δ [31.523, 35.902]
γ0 [0.845, 2.679]
γ1 [−12.762, −7.030]
γ2 [−7.958, −4.965]
γ3 [−0.723, 1.785]
γ4 [7.290, 11.360]
γ5 [4.584, 7.291]
γ6 [13.156, 16.360]

Table 3.6: Projections of sums for interpreting signs according to specification (3.2).

β1 +β4 [−2.029×103, −2.013×103]

β1 +β5 [−2.029×103, −2.022×103]

β1 +β6 [−2.017×103, −2.010×103]
β2 +β4 [−14.348, −5.527]
β2 +β5 [−17.541, −10.957]
β2 +β6 [−6.401, 1.372]
β3 +β4 [−22.973, −14.692]
β3 +β5 [−25.097, −20.983]
β3 +β6 [−14.112, −7.810]
γ1 + γ4 [−3.776, 1.016]
γ1 + γ5 [−6.954, −2.445]
γ1 + γ6 [2.224, 8.544]
γ2 + γ4 [1.266, 5.295]
γ2 + γ5 [−1.449, 0.111]
γ2 + γ6 [7.057, 10.608]
γ3 + γ4 [7.096, 13.145]
γ3 + γ5 [4.403, 7.670]
γ3 + γ6 [13.162, 17.150]
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To comment the magnitude of results, the strategy used earlier can not be ap-

plied to specification (3.2) due to non-linearities. An alternative is studying how

bounds on density, average degree, percentage of isolated nodes and number of

links vary as a consequence of changes in TA or ROE. Various experiments are

possible. As an example, Table 3.7 reports the outcome of the following proce-

dure: for each industry and value of parameters in the 95% confidence region, the

discretised amount of total assets of the smallest firms is equalised to the discre-

tised amount of total assets of the biggest firms, hence reducing size heterogene-

ity within industries; several realisations of preference shocks are drawn; for each

drawn realisation, PSPNS networks are found; the density, the average degree, the

percentage of isolated nodes and the total number of links in each PSPNS network

are computed, and their minimum and maximum values across PSPNS networks

are recorded; bounds are then averaged across drawn realisations and industries;

finally, the smallest lower bound and largest upper bounds across values of parame-

ters are reported in the second and third columns of Table 3.7. The same experiment

is repeated keeping the amount of total assets within each industry at the observed

values and results are reported in the fourth and sixth columns of Table 3.7. Lastly,

observed empirical values are in the fifth column of Table 3.7. As a consequence

of the simulated shift, the upper bounds on density, average degree and number of

links decrease. The lower bound on the percentage of isolated nodes decreases.

Hence, by reducing heterogeneity in firms’ size, networks can have more isolated

nodes and can become more disconnected.

Table 3.7: Bounds on some network summary statistics according to specification (3.2)
when the following experiment is run: within each industry, the discretised
amount of total assets of the smallest firms is equalised to the discretised amount
of total assets of the biggest firms.

New New Old Empirical Old
lower bound upper bound lower bound value upper bound

Density 0 0.800 0 0.005 0.886
Average Degree 0 4.640 0 0.022 5.153
% Isolated nodes 0.063 100 0.139 97.666 100
Number of links 0 41.096 0 0.163 45.808
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3.6 Conclusions
The chapter provides an illustration of the methodology developed in Chapter 2

to empirically investigate which preferences are behind firms’ decisions to appoint

competitors’ directors as executives, using data on Italian joint stock companies. It

is found that a firm i prefers its executives sitting on the board of a rival j when ex-

ecutives of other competitors are hosted too, possibly because it enables i to engage

with them in “cheap talk” communications, besides having the opportunity to learn

about j’s decision making process.

There are some avenues of future research. Firstly, companies can be con-

nected also through cross-ownerships. It could be worth investigating whether and

how these ties relate to PHBIs. Moreover, the chapter postulates that executives

act as representatives of their companies’ will. In reality, principal-agent issues are

pervasive and one possibility would be to consider a more sophisticated structural

model including them, together with board members’ identities. Furthermore, the

study takes a firm’s entrance in an industry as an exogenous event. One option to

remove such assumption might be to build an unique model of entrance and PHBIs

formation. Lastly, from a policy perspective, what is the impact of a potential infor-

mation exchange happening through PHBIs on market structures remains an open

question: from one hand, it may help to develop or sustain collusive behaviours;

from the other it could improve competition by increasing transparency. Provid-

ing an answer requires a richer model and more data, a direction which might be

valuable to explore.
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General conclusions

This dissertation addresses topics in the econometrics of network formation models.

Chapter 1 provides a review of the literature. Statistical models focus on the speci-

fication of the probability distribution of the network. Examples include models in

which nodes are born sequentially and meet existing vertices according to random

meetings and network-based meetings. Within this group of models, special atten-

tion is reserved to the milestone work by Jackson and Rogers (2007): after having

discussed and replicated the main results of the paper, an extension of the original

model is examined and fitted to a dataset of Google Plus users.

Even if statistical models can reproduce relatively well the main characteristics

of real networks, they usually lack of microfundation, essential for counterfactual

analysis. The chapter hence moves to considering the econometrics of economic

models of network formation, where agents form links in order to maximise a payoff

function. Within this framework, Chapter 2 studies identification of the parameters

governing agents’ preferences in a static game of network formation, where links

represent asymmetric relations between players. Agents have complete information

and play PSNE when link formation is unilaterally decided, or PSPNE in the bilat-

eral case. Payoffs are non-transferable. Link decisions are interdependent, as the

payoff that player i receives from linking to player j is assumed to be monotonically

affected by the number of additional players doing the same. After having shown

existence of an equilibrium, partial identification arguments are provided without

restrictions on equilibrium selection. The usual computational difficulties are at-

tenuated by restricting the attention to some local games of the network formation

game and giving up on sharpness. Overall, Monte Carlo exercises show that con-



ducting inference on the suggested outer set is computationally manageable using

relatively limited computational resources, with up to 20 players. The chapter offers

some avenues of future research. Specifically, there could be other interdependen-

cies among link decisions to consider. For example, player i’s payoff from linking

to player j may also be affected on the number of connections already formed by i,

or on the links and characteristics of the additional agents connecting to j. It may

be worth enriching players’ payoffs in this direction and investigating whether the

identification results proposed here can be extended to such more complicated set-

tings. Another option could be to examine how the identification analysis changes

if one removes the additive separability over outgoing and incoming links charac-

terising payoffs. For example, one may wonder how to adjust bounds when v(·;δ )

has a “U” shape.

Chapter 3 applies the methodology developed in Chapter 2 to empirically in-

vestigate which preferences are behind firms’ decisions to appoint competitors’ di-

rectors as executives. Using data on Italian companies, it is found that a firm i

prefers its executives sitting on the board of a rival j when executives of other com-

petitors are hosted too, possibly because it enables i to engage with them in “cheap

talk” communications, besides having the opportunity to learn about j’s decision

making process. Extensions are possible. Firstly, companies may be connected also

through ownership participations. It may be worth investigating whether and how

these ties relate to PHBIs. Secondly, the chapter postulates that firms are identified

with their executives. In reality, principal-agent issues might be pervasive and one

possibility would be to consider a more sophisticated structural model including

them, together with board members’ identities. Thirdly, the study takes a firm’s en-

trance in an industry as an exogenous event. One option to remove such assumption

might be to build an unique model of entrance and PHBIs formation. Lastly, from a

policy perspective, the impact of the information exchange happening through PH-

BIs on market structures remains an open question: from one hand, it may help to

develop or sustain collusive behaviours; from the other it could improve competi-

tion by increasing transparency. Providing an answer requires a richer model and
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more data, a direction which might be valuable to explore.
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Appendix A

Existence of a PSPNS network

Existence of a PSPNS network for every value of payoff-relevant variables and

parameters can be shown following the strategy adopted for the unilateral case in

section 2.3.3. Specifically, for any j ∈ N , in the bilateral section j game players

other than player j simultaneously reveal whether they want to form a link pointing

to j, j replies and only mutually announced links are created. A pure strategy

vector of player j is s j
· j ∈ {0,1}n−1 collecting s j

i j ∀i 6= j ∈ N . For any i 6= j ∈ N ,

a pure strategy of player i is si
i j ∈ {0,1}. A pure strategy profile of the game is

s· j ∈ {0,1}2(n−1) listing si
i j ∀i 6= j ∈ N and s j

· j. Each player i 6= j ∈ N gets as

payoff

U j
i (G· j,XXX ,ε i

· j;θu) := Gi j×
[
z(Xi,X j;β )+ v(

n

∑
k 6=i

Gk j;δ )+ ε
i
i j

]

Player j gets as payoff

U j
j (G· j;XXX ,ε

j
· j;θu) :=

n

∑
i=1

Gi j×
[
b(Xi,X j;γ)+ ε

j
i j

]
Agents play PSPNE and the resulting section j is a PSPNS section j. Definitions

are now given. Let the dependence of G· j on s· j be denoted by G· j(s· j).

Definition 4. (PSPNS section j) s· j is a PSPNE of the section j game if

si
i j = 1{z(Xi,X j;β )+ v(

n

∑
k 6=i

Gk j(s· j);δ )+ ε
i
i j ≥ 0}



and

s j
i j = 1{b(Xi,X j;γ)+ ε

j
i j ≥ 0}

∀i 6= j ∈ N . G· j is a PSPNS section j if there exists a PSPNE s· j of the section j

game such that G· j = G· j(s· j), i.e.,

Gi j = 1{z(Xi,X j;β )+ v(
n

∑
k 6=i

Gk j;δ )+ ε
i
i j ≥ 0}1{b(Xi,X j;γ)+ ε

j
i j ≥ 0} ∀i 6= j ∈N

?

As for the unilateral case,

Lemma 5. (Decomposing the bilateral network formation game) GGG is a PSPNS

network if and only if G· j is a PSPNS section j ∀ j ∈N . �

Moreover, using Tarski’s fixed point theorem when v(·;δ ) is monotone increas-

ing and a bilateral game reinterpretation of the constructive proof in Berry (1992)

when v(·;δ ) is monotone decreasing, it can be shown that

Lemma 6. (Existence of a PSPNS section j) There exists a PSPNS section j ∀ j ∈

N . �

Hence, by Lemmas 5 and 6,

Proposition 5. (Existence of a PSPNS network) There exists a PSPNS network. �

Proofs of Lemmas 5, 6 and Proposition 5 are in Appendix B.
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Appendix B

Proofs

Proof of Lemma 1 (Lemma 4). Before starting the proof, notice that

Gi j = 1{z(Xi,X j;β )+ v(
N

∑
k 6=i

Gk j;δ )+ εi j ≥ 0} ∀i ∈N ,∀ j ∈N , i 6= j

is equivalent to

Ui(Gi j,GGG−{i j},XXX ,ε;θu)≥Ui(G̃i j,GGG−{i j},XXX ,ε;θu) for G̃i j 6= Gi j ∈ {0,1}, ∀i ∈N ,∀ j ∈N , i 6= j

(B.1)

where GGG−{i j} is the matrix GGG with i jth element deleted.

It is firstly proved that if GGG is a PSNE of the network formation game, then

(B.1) is satisfied. For any i ∈ N , j ∈ N with i 6= j, let Gi·−{i j} be the vector

Gi· with i jth element removed. By setting G̃i· = (G̃i j,Gi·−{i j}) with G̃i j 6= Gi j

in Ui(Gi·,GGG−{i·},XXX ,ε;θu) ≥Ui(G̃i·,GGG−{i·},XXX ,ε;θu) of Definition 1, it follows that

Ui(Gi j,GGG−{i j}XXX ,ε;θu)≥Ui(G̃i j,GGG−{i j}XXX ,ε;θu) and this is verified ∀i ∈N ,∀ j ∈N

with i 6= j.

Conversely, it is proved that if (B.1) holds, then GGG is a PSNE of the network for-

mation game. For any i ∈ N , if Ui(Gi j,GGG−{i j},XXX ,ε;θu) ≥Ui(G̃i j,GGG−{i j},XXX ,ε;θu),

then, by the additive separability of Ui(·;θu) over player i’s outgoing links,

Ui(Gi·,GGG−{i·},XXX ,ε;θu)≥Ui(G̃i·,GGG−{i·},XXX ,ε;θu) ∀G̃i· 6= Gi· ∈ {0,1}N−1 and this is

verified ∀i ∈N .

Lemma 4 can be shown analogously.



Proof of Lemma 2 (Lemma 5). It is firstly proved that if GGG is a PSNE of the net-

work formation game, then G· j is a PSNE of the section j game ∀ j ∈N . By Lemma

1, if GGG is a PSNE of the network formation game, then Gi j = 1{z(Xi,X j;β ) +

v(∑n
k 6=i Gk j;δ )+ εi j ≥ 0} ∀i ∈ N ,∀ j ∈ N with i 6= j. This set of conditions also

includes those defining G· j as a PSNE of the section j game ∀ j ∈ N . Therefore,

G· j is a PSNE of the section j game ∀ j ∈N .

Conversely, it is proved that if G· j is a PSNE of the section j game ∀ j ∈ N ,

then GGG is a PSNE of the network formation game. ∀ j ∈ N , if G· j is a PSNE of the

section j game, then, by Definition 2, Gi j = 1{z(Xi,X j;β )+ v(∑n
k 6=i Gk j;δ )+ εi j ≥

0} ∀i 6= j ∈N . Hence, the conditions of Lemma 1 are satisfied and GGG is a PSNE of

the network formation game.

Lemma 5 can be shown analogously.

Theorem 1. (Tarski’s fixed point theorem) Let F(x) be a monotone increasing func-

tion from a non-empty complete lattice X into X . Then,

(i) the set of fixed points of F(x) in X is non-empty, where supx({x ∈ X ,x ≤

F(x)}) and infx({x ∈ X ,x ≥ F(x)}) denote, respectively, the greatest and the

least fixed points;

(ii) the set of fixed points of F(x) in X is a non-empty complete lattice.

�

Proof of Lemma 3 (Lemma 6). Consider any j ∈N . It is firstly discussed the case

in which v(∑n
k 6=i Gk j;δ ) is monotone increasing. Let

hi j(G· j) := 1{z(Xi,X j;β )+ v(
n

∑
k 6=i

Gk j;δ )+ εi j ≥ 0} ∀i 6= j ∈N
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and

h(G· j) :=



h1 j(G· j)

h2 j(G· j)
...

h j−1 j(G· j)

h j+1 j(G· j)
...

hn j(G· j)


Hence, h : {0,1}n−1→{0,1}n−1. It is possible to show that the function h satisfies

the sufficient conditions of Theorem 1 when v(∑n
k 6=i Gk j;δ ) is monotone increas-

ing, which, in turn, guarantees existence of a PSNE of the section j game when

v(∑n
k 6=i Gk j;δ ) is monotone increasing. Indeed, let the comparison between vectors

be coordinate-wise, i.e., for any G· j ∈ {0,1}n−1,G′· j ∈ {0,1}n−1

G· j ≥ G′· j⇔ Gi j ≥ G′i j ∀i 6= j ∈N

Thus, G· j =G′· j if and only if G· j≥G′· j and G· j≤G′· j. Moreover, G· j and G′· j are un-

ordered if and only if neither G· j ≥ G′· j nor G· j ≤ G′· j. Therefore, {0,1}n−1 is a lat-

tice, i.e, a set with a partial order. As {0,1}n−1 is a finite lattice, it is complete. Fur-

thermore, if v(∑n
k 6=i Gk j;δ ) is monotone increasing, then h is a monotone increasing

function. In fact, consider two vectors G· j ≥ G′· j. Since Gi j ≥ G′i j ∀i 6= j ∈N , then

z(Xi,X j;β )+ v(∑n
k 6=i Gk j;δ )+ εi j ≥ z(Xi,X j;β )+ v(∑n

k 6=i G′k j;δ )+ εi j ∀i 6= j ∈ N .

Hence, h(G· j)≥ h(G′· j) and the sufficient conditions of the theorem are met.

Now, the case in which v(∑n
k 6=i Gk j;δ ) is monotone decreasing is considered.

As explained in section 2.3.3, it can be noticed that the structure of the section j

game when v(·;δ ) is monotone decreasing is similar to the structure of an entry

game with substitution effects. Existence of a PSNE in an entry game with substi-

tution effects is proved by Berry (1992) by means of a constructive proof which can

be reinterpreted for the section j game as follows. Let Yi j := z(Xi,X j;β )+ εi j. The

elements (Yi j)∀i 6= j∈N are ordered from largest to smallest. Let k ∈ {1, ...,n−1} de-

note the position of Yi j in the ordered list and let π be a function such that π(i j) = k,
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∀i 6= j ∈N . By replacing the subscript i j with k, the ordered sequence is

Y1 ≥ Y2 ≥ ... ≥ Yk ≥ ... ≥ Yn−1

Let Y0 := max{Y1,−v(−1;δ )}. n∗· j is defined as the largest element of the set of

integers {0,1, ... ,k, ... ,n−1} satisfying Yn∗· j + v(n∗· j−1;δ )≥ 0, i.e.

n∗· j := max{k ∈ {0, ...,n−1}|Yk + v(k−1;δ )≥ 0}

Consider G· j with Gi j = 1 if π(i j) ≤ n∗· j and Gi j = 0 otherwise. One can see that

G· j is a PSNE of the section j game. In fact choosing n∗· j according to the previous

criterion means that
Y0 + v(−1;δ )≥ 0 (a)

Y1 + v(0;δ )≥ 0 (b)

...

Yn∗· j + v(n∗· j−1;δ )≥ 0 (c)

Yn∗· j+1 + v(n∗· j;δ )< 0 (d)

Yn∗· j+2 + v(n∗· j +1;δ )< 0 (e)

...

Yn−1 + v(n−2;δ )< 0 (f)

For G· j being a PSNE of the section j game, the following inequalities should be
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satisfied
Y1 + v(n∗· j−1;δ )≥ 0 (g)

Y2 + v(n∗· j−1;δ )≥ 0 (h)

...

Yn∗· j + v(n∗· j−1;δ )≥ 0 (i)

Yn∗· j+1 + v(n∗· j;δ )< 0 (l)

Yn∗· j+2 + v(n∗· j;δ )< 0 (m)

...

Yn−1 + v(n∗· j;δ )< 0 (n)

By observing that inequalities (g), (h), ... ,(i) are implied by inequality (c) and all

the other inequalities follow from inequality (d), it can be concluded that G· j is a

PSNE of the section j game.

Lemma 6 can be proved analogously after having replaced PSNE with PSPNE

and imposed

Yi j :=

z(Xi,X j;β )+ ε i
i j if b(Xi,X j;γ)+ ε

j
i j ≥ 0

−∞ otherwise

Moreover, Berry (1992) shows that in an entry game with substitution effects

all the equilibria are characterised by the same number of firms entering the market.

Reinterpreting this result for the section j game, it can be proved that all the PSNE

of the section j game are characterised by the same number, n∗· j, of players linking

to player j.

In fact, suppose there is some equilibrium with k∗ > n∗· j edges. None of the

players whom inequalities (l), (m),..., (n) above are referred to is willing to form a
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link pointing to player j, as inequalities (l), (m),..., (n) imply that

Yn∗· j+1 + v(k∗−1;δ )< 0 (l’)

Yn∗· j+2 + v(k∗−1;δ )< 0 (m’)

...

Yn−1 + v(k∗−1;δ )< 0 (n’)

It follows that there cannot be some equilibrium with k∗ > n∗· j edges.

Viceversa, suppose there is some equilibrium with k∗ < n∗· j edges. All of the

players whom inequalities (g), (h),..., (i) above are referred to are willing to form a

link pointing to player j, as inequalities (g), (h),..., (i) imply that

Y1 + v(k∗;δ )≥ 0 (g’)

Y2 + v(k∗;δ )≥ 0 (h’)

...

Yn∗· j + v(k∗;δ )≥ 0 (i’)

It follows that there cannot be some equilibrium with k∗ < n∗· j edges.

Proof of Proposition 1 (Proposition 5). By Lemma 3, there exists a PSNE of the

section j game ∀ j ∈ N . By Lemma 2, if G· j is a PSNE of the section j game

∀ j ∈ N , then GGG is a PSNE of the network formation game. Thus, the network

formation game has a PSNE.

Proposition 5 can be shown analogously.

Construction ofAGAGAG Consider the sets K·1 ∈K{0,1}n−1, ...,K·n ∈K{0,1}n−1 . Construct

the set BK·1,...,K·n :=×n
j=1 K· j. Hence, BK·1,...,K·n is a collection of L :=Πn

j=1|K· j| sets

and it can be written as {Bl}L
l=1. Any set Bl ∈ BK·1,...,K·n is composed by n vectors

of dimension (n− 1)× 1. Hence, Bl := {bl,1, ...,bl,n} with bl,h := (b1
l,h ... bn−1

l,h )′
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∀h ∈ {1, ...,n}, ∀l ∈ {1, ...,L}. Create the n×n matrix

Cl :=



0 b1
l,2 b1

l,3 ... b1
l,n

b1
l,1 0 b2

l,3 ... b2
l,n

b2
l,1 b2

l,2 0 ... b3
l,n

...
...

...
...
...
...

...

bn−2
l,1 bn−2

l,2 bn−2
l,3 ... bn−1

l,n

bn−1
l,1 bn−1

l,2 bn−1
l,3 ... 0


∀l ∈ {1, ...,L}. Let A := {C1, ...,CL}. Repeat the procedure for all possible ordered

n-tuples with repetition of K{0,1}n−1 and denominate the family of sets A’s as AG .

Notice that |AG |= (22n−1−1)n < |KG |= 22n(n−1)−1.

For example, suppose n = 3. Hence,

{0,1}2 := {

1

1

 ,

1

0

 ,

0

1

 ,

0

0

}
with |{0,1}2|= 4,

K{0,1}2 :=
{
{

1

1

},{
1

0

},{
0

1

},{
0

0

},
{

1

1

 ,

1

0

},{
1

1

 ,

0

1

},{
1

1

 ,

0

0

},{
1

0

 ,

0

1

},{
1

0

 ,

0

0

},{
0

1

 ,

0

0

},
{

1

1

 ,

1

0

 ,

0

1

},{
1

1

 ,

1

0

 ,

0

0

},{
1

1

 ,

0

1

 ,

0

0

},{
1

0

 ,

0

1

 ,

0

0

},
{

1

1

 ,

1

0

 ,

0

1

 ,

0

0

}}
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with |K{0,1}2|= 15 and

KG :=
{
{


0 1 1

1 0 1

1 1 0

}, ...}

with |KG |= 264−1.
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Let K·1 := {

1

1

 ,

0

1

}, K·2 := {0,1}2, K·3 := {0,1}2. Hence,

BK·1,K·2,K·3 := {

1

1

 ,

0

1

}×{0,1}2×{0,1}2

= {

1

1

 ,

0

1

}×{
1

1

 ,

1

0

 ,

0

1

 ,

0

0

}×{
1

1

 ,

1

0

 ,

0

1

 ,

0

0

}
=
{
{

1

1

 ,

1

1

 ,

1

1

},{
1

1

 ,

1

0

 ,

1

1

},{
1

1

 ,

0

1

 ,

1

1

},{
1

1

 ,

0

0

 ,

1

1

},
{

1

1

 ,

1

1

 ,

1

0

},{
1

1

 ,

1

0

 ,

1

0

},{
1

1

 ,

0

1

 ,

1

0

},{
1

1

 ,

0

0

 ,

1

0

},
{

1

1

 ,

1

1

 ,

0

1

},{
1

1

 ,

1

0

 ,

0

1

},{
1

1

 ,

0

1

 ,

0

1

},{
1

1

 ,

0

0

 ,

0

1

},
{

1

1

 ,

1

1

 ,

0

0

},{
1

1

 ,

1

0

 ,

0

0

},{
1

1

 ,

0

1

 ,

0

0

},{
1

1

 ,

0

0

 ,

0

0

},
{

0

1

 ,

1

1

 ,

1

1

},{
0

1

 ,

1

0

 ,

1

1

},{
0

1

 ,

0

1

 ,

1

1

},{
0

1

 ,

0

0

 ,

1

1

},
{

0

1

 ,

1

1

 ,

1

0

},{
0

1

 ,

1

0

 ,

1

0

},{
0

1

 ,

0

1

 ,

1

0

},{
0

1

 ,

0

0

 ,

1

0

},
{

0

1

 ,

1

1

 ,

0

1

},{
0

1

 ,

1

0

 ,

0

1

},{
0

1

 ,

0

1

 ,

0

1

},{
0

1

 ,

0

0

 ,

0

1

},
{

0

1

 ,

1

1

 ,

0

0

},{
0

1

 ,

1

0

 ,

0

0

},{
0

1

 ,

0

1

 ,

0

0

},{
0

1

 ,

0

0

 ,

0

0

}}
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with cardinality L = 32. Therefore,

A := {


0 1 1

1 0 1

1 1 0

 ,


0 1 1

1 0 1

1 0 0

 ,


0 0 1

1 0 1

1 1 0

 ,


0 0 1

1 0 1

1 0 0

 ,


0 1 1

1 0 0

1 1 0

 ,


0 1 1

1 0 0

1 0 0

 ,


0 0 1

1 0 0

1 1 0

 ,


0 0 1

1 0 0

1 0 0

 ,


0 1 0

1 0 1

1 1 0

 ,


0 1 0

1 0 1

1 0 0

 ,


0 0 0

1 0 1

1 1 0

 ,


0 0 0

1 0 1

1 0 0

 ,


0 1 0

1 0 0

1 1 0

 ,


0 1 0

1 0 0

1 0 0

 ,


0 0 0

1 0 0

1 1 0

 ,


0 0 0

1 0 0

1 0 0

 ,


0 1 1

0 0 1

1 1 0

 ,


0 1 1

0 0 1

1 0 0

 ,


0 0 1

0 0 1

1 1 0

 ,


0 0 1

0 0 1

1 0 0

 ,


0 1 1

0 0 0

1 1 0

 ,


0 1 1

0 0 0

1 0 0

 ,


0 0 1

0 0 0

1 1 0

 ,


0 0 1

0 0 0

1 0 0

 ,


0 1 0

0 0 1

1 1 0

 ,


0 1 0

0 0 1

1 0 0

 ,


0 0 0

0 0 1

1 1 0

 ,


0 0 0

0 0 1

1 0 0

 ,


0 1 0

0 0 0

1 1 0

 ,


0 1 0

0 0 0

1 0 0

 ,


0 0 0

0 0 0

1 1 0

 ,


0 0 0

0 0 0

1 0 0

}

with |A|= L.

Proof of Proposition 2. The proof is articulated as follows: in step 1, any set K ∈
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KG with |K| ∈ {1, ..., |G|− 2} satisfying the sufficient conditions of Proposition 2

is considered; in steps 2 and 3, Artstein’s inequalities for the sets {K ∪D} and

{C \D} are rewritten in equivalent, but useful, ways; by combining steps 2 and 3

with Artstein’s inequality for the set G (trivial Artstein’s inequality) in step 4, it

follows that

P(G ∈ K|XXX = xxx)≤ P(Sθu(XXX ,ε)∩K 6= /0|XXX = xxx) (B.2)

∀xxx ∈ X a.s.

Step 1 Consider a set K ∈KG with |K| ∈ {1, ..., |G|−2}, where the set C := G \K is

such that ∃ a non-empty set D⊂C with {D̃∪C̃} /∈AG ∀D̃⊆D and ∀C̃⊆ {C\D}83.

Assume that Artstein’s inequality for the set {K∪D}

P(GGG ∈ {K∪D}|XXX = xxx)≤ P(Sθu(XXX ,ε)∩{K∪D} 6= /0|XXX = xxx) (B.3)

and for the set {K∪{C \D}}

P(GGG ∈ {K∪{C \D}}|XXX = xxx)≤ P(Sθu(XXX ,ε)∩{K∪{C \D}} 6= /0|XXX = xxx) (B.4)

are satisfied, ∀xxx ∈ X a.s.

Step 2 (B.3) is equivalent to

1−P(GGG ∈ {K∪D}|XXX = xxx)≥ 1−P(Sθu(XXX ,ε)∩{K∪D} 6= /0|XXX = xxx) (B.5)

∀xxx ∈ X a.s., which is equivalent to

P(GGG ∈ {C \D}|XXX = xxx)≥ P(Sθu(XXX ,ε) hits {C \D} only |XXX = xxx)] (B.6)

∀xxx ∈ X a.s.

83Notice that |K| ≤ |G|−2 because D = /0 for |K| ∈ {|G|−1, |G|}.
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Step 3 (B.4) is equivalent to

1−P(GGG ∈ {K∪{C \D}}|XXX = xxx)≥ 1−P(Sθu(XXX ,ε)∩{K∪{C \D}} 6= /0|XXX = xxx)

(B.7)

∀xxx ∈ X a.s., which is equivalent to

P(GGG ∈ D|XXX = xxx)≥ P(Sθu(XXX ,ε) hits D only |XXX = xxx)] (B.8)

∀xxx ∈ X a.s.

Step 4 Moreover, consider Artstein’s inequality for the set G

1 =P(G ∈ K|XXX = xxx)+P(G ∈ {C \D}XXX = xxx)+P(G ∈ D|XXX = xxx) =

P(Sθu(XXX ,ε)∩K 6= /0|XXX = xxx)+P(Sθu(XXX ,ε) hits {C \D} only |XXX = xxx)+

P(Sθu(XXX ,ε) hits D only |XXX = xxx)+P(Sθu(XXX ,ε) hits both {C \D},D|XXX = xxx)︸ ︷︷ ︸
=0 by construction

(B.9)

∀xxx ∈ X a.s.

Hence, if (B.6), (B.8), and (B.9) hold ∀xxx∈X a.s., then (B.2) should be satisfied

∀xxx ∈ X a.s.

Proof of Corollary 1. The proof is articulated as follows: step 1 shows the suffi-

ciency of the condition provided by Corollary 1 by considering the construction of

AG ; step 2 shows its necessity by contradiction.

Step 1 It is shown that if, given a set K ∈ KG with |K| ∈ {1, ..., |G| − 2}, the set

C := G \K is such that ∃ a non-empty D ⊂ C with all the pairs of matrices gggD ∈

D,ggg{C\D} ∈ {C\D} differing for at least two rows, then {D̃∪C̃} /∈AG ∀D̃⊆D and

∀C̃ ⊆ {C \D}.

This comes from the fact that, by construction, any set K ∈AG cannot be parti-

tioned into two non-empty subsets K1,K2 with all pairs of matrices gggK1 ∈ K1,gggK2 ∈

K2 differing for two rows at least.
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Step 2 It is shown that if, given a set K ∈ KG with |K| ∈ {1, ..., |G| − 1}, the set

C := G \K is such that ∃ a non-empty D ⊂ C with {D̃∪ C̃} /∈ AG ∀D̃ ⊆ D and

∀C̃ ⊆ {C \D}, then all the pairs of matrices gggD ∈ D,ggg{C\D} ∈ {C \D} differ for at

least two rows.

By contradiction: suppose that there is a pair of matrices gggD ∈D,ggg{C\D} ∈ {C\

D} differing for one row only. Then, the set {gggD,ggg{C\D}} ∈ AG which contradicts

the assumptions.

Proof of Corollary 2. The proof is articulated as follows: step 1 represents the ma-

trices in the set G as a graph which is shown to be distance-regular; step 2 introduces

a result about the vertex connectivity of such a graph; step 3 shows that, by step 2,

if a set K ∈ KG has cardinality strictly less than n(2n−1), then the necessary and

sufficient condition of Corollary 1 is violated; step 4 uses step 3 to derive an up-

per bound on the number of sets satisfying the necessary and sufficient condition

of Corollary 1; step 5 provides a lower bound on the number of sets satisfying the

necessary and sufficient condition of Corollary 1.

Step 1 Consider the graphW of size |G| where the nodes represent the matrices in

the set G and there is a link (undirected) between two nodes if the corresponding

matrices differ for one row only. It can be noticed that the graph W is distance-

regular, meaning that: (i) it is connected, i.e., there is a path84 between every pair of

nodes; (ii) each node has the same degree; (iii) for every two nodes ggg1 ∈ G,ggg2 ∈ G

the number of vertices at distance85 d1 from ggg1 and at distance d2 from ggg2 depends

only upon d1, d2, and the distance between ggg1 and ggg2.

While (i) holds by construction, (ii) comes from the fact that, for any matrix

ggg ∈ G, 2n−1−1 is the number of possible variations of a given row of ggg and n is the

number of rows of ggg. Hence, each node has degree n(2n−1−1). In the remaining of

step 1, (iii) is shown.

84A path of length k is a sequence of k links which connect a sequence of k nodes.
85The distance between two nodes is the length of the shortest path connecting them.
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Step 1.1 Let d̄ be the diameter86 of the graphW . As stated in Brouwer, Cohen, and

Neumaier (1989), (iii) is equivalent to say that there are constants ai,bi,ci such that,

∀i∈ {0, ..., d̄} and for all nodes ggg1 ∈G,ggg2 ∈G at distance i, there are ci neighbours87

of ggg2 at distance i− 1 from ggg1, bi neighbours of ggg2 at distance i+ 1 from ggg1, and

ai neighbours of ggg2 at distance i from ggg1. The next steps show that such constants

ai,bi,ci exist.

Step 1.2 It can be observed that the graph W has diameter n because any two

matrices ggg1 ∈ G,ggg2 ∈ G can differ for at most n rows. Moreover if two nodes

ggg1 ∈ G,ggg2 ∈ G are at distance i ∈ {0, ...,n}, then they differ for i rows.

Step 1.3 Consider any two nodes ggg1 ∈G,ggg2 ∈G at distance i. Let the node ggg3 ∈G be

a neighbour of ggg2. If ggg3 is at distance i−1 to ggg1, then the matrix ggg3 should coincide

with the matrix ggg2 except for one row, among the i rows at which ggg1 differs from

ggg2, where it is, instead, equal to ggg1. Hence, the number of admissible matrices ggg3 is

equivalent to the number of rows in which the matrix ggg1 is different from the matrix

ggg2, i.e., i. Let ci := i.

If ggg3 is at distance i to ggg1, then the matrix ggg3 should coincide with the matrix

ggg2 except for one row, among the i rows at which ggg1 differs from ggg2, where it also

differs from ggg1. Hence, the number of admissible matrices ggg3 is equivalent to the

number of rows in which the matrix ggg1 is different from the matrix ggg2, i.e., i, times

the number of values that a given row can take different from the value of the same

rows in ggg1 and ggg2, i.e., 2n−1−2. Let ai := i(2n−1−2).

If ggg3 is at distance i+ 1 to ggg1, then the matrix ggg3 should coincide with the

matrix ggg2 except for one row that is not among the i rows at which ggg1 differs from

ggg2. Hence, the number of admissible matrices ggg3 is equivalent to the number of rows

in which the matrix ggg1 is equivalent to the matrix ggg2, i.e., n− i, times the number

of values that a given row can take different from the value of the same rows in ggg2,

i.e., 2n−1−1. Let bi := (n− i)(2n−1−1).

Therefore, there are constants ai,bi,ci such that, ∀i∈{0, ..., d̄} and for all nodes

ggg1 ∈ G,ggg2 ∈ G at distance i, there are ci neighbours of ggg2 at distance i−1 from ggg1,

86The diameter is the maximum distance between all pairs of nodes.
87A vertex’s neighbour is a node at distance 1 from that vertex.
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bi neighbours of ggg2 at distance i+ 1 from ggg1, and ai neighbours of ggg2 at distance i

from ggg1.

Step 2 The first part of Theorem in Brouwer and Koolen (2009) states that in a

distance-regular graph the vertex connectivity, i.e., the minimum number of nodes

whose deletion disconnects the graph, equals the vertex degree. This suggests that

one can split the graph W in at least 2 separate components by deleting at least

n(2n−1−1) nodes.

Step 3 Consider a set K ∈ KG with |K| ∈ {1, ..., |G|−2}. If 1≤ |K|< n(2n−1−1),

or, equivalently, if the set C := G \K is such that |C| ∈ {|G|−n(2n−1−1), ..., |G|−

1}, then, by step 2, there exists no non-empty set D⊂C with all the pairs of matrices

gggD ∈ D,ggg{C\D} ∈ {C \D} differing for at least two rows. Indeed, C corresponds

to deleting less than n(2n−1− 1) vertices from the graph W which delivers still a

connected graph by step 2. Hence, it should be n(2n−1− 1) ≤ |K| ≤ |G|− 2, or,

equivalently, 2≤ |C| ≤ |G|−n(2n−1−1).

Step 4 The number of sets K ∈ KG with cardinality |K| ∈ {n(2n−1−1), ..., |G|−2}

is ∑
|G|−2
k=n(2n−1−1)

(2n(n−1)

k

)
.

Hence, combining steps 3 and 4, it can be concluded that the number of sets

K ∈KG with |K| ∈ {1, ..., |G|−2} such that, given the set C := G \K, ∃ a non-empty

set D ⊂C with all pairs of matrices gggD ∈ D,ggg{C\D} ∈ {C \D} differing for at least

two rows is a≤ ∑
|G|−2
k=n(2n−1−1)

(2n(n−1)

k

)
.

Step 5 The second part of Theorem in Brouwer and Koolen (2009) states that in a

distance-regular graph the only disconnecting sets of vertices with size equal to the

vertex degree are the nodes’ neighbourhoods88. Hence, in the graph W , there are

|G| possible ways to delete n(2n−1− 1) vertices, one for each vertex89. Therefore,

it can be concluded that a≥ |G|.

Proof of Proposition 3. The proof is articulated as follows: step 1 shows that, un-

der Assumption 1, Θ?? ⊇ Θ? by considering Artsteins’ inequalities ∀K ∈ AG ; step

88The neighbourhood of a vertex is the set of its neighbours.
89Notice that, since n > 2, there is no pair of nodes inW with the same neighbourhood.
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2 shows that, under Assumptions 1 and 2, Θ?? = Θ? and it is divided into two

sub-steps; step 2.1 shows that, under Assumptions 1 and 2, if Arstein’s inequalities

involving the outcomes of the local games are satisfied, then Arstein’s inequalities

∀K ∈AG are satisfied; step 2.2 shows that, under Assumptions 1 and 2, if Arstein’s

inequalities involving the outcomes of the local games are satisfied, then Arstein’s

inequalities ∀K ∈ KG \AG are satisfied.

Step 1 It is shown that, under Assumption 1, Θ?? ⊇ Θ?. Specifically, it is proved

that, under Assumption 1, if a θ ∈Θ is such that

P(GGG ∈ K|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(K) ∀K ∈ KG , ∀xxx ∈ X a.s. (B.10)

then

P(G· j ∈ K· j|XXX = xxx)≤ TSθu,· j(XXX ,ε· j)|XXX=xxx(K· j) ∀K· j ∈ K{0,1}n−1 , ∀ j ∈N , ∀xxx ∈ X a.s.

(B.11)

For any j ∈N and K· j ∈ K{0,1}n−1 , take K ∈ AG corresponding to

{0,1}n−1×...×{0,1}n−1︸ ︷︷ ︸
j−1 times

×K· j×{0,1}n−1×...×{0,1}n−1︸ ︷︷ ︸
n− j times

Consider a θ ∈Θ such that (B.10) holds. Hence,

P(GGG ∈ K|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(K)

∀xxx ∈ X a.s., which is equivalent, by Lemma 2, to

P(G·1 ∈ {0,1}n−1, ...,G· j−1 ∈ {0,1}n−1,G· j ∈ K· j,G· j+1 ∈ {0,1}n−1, ...,G·n ∈ {0,1}n−1|XXX = xxx)

≤ P(Sθu,·1(XXX ,ε·1)∩{0,1}n−1 6= /0, ...,Sθu,· j−1(XXX ,ε· j−1)∩{0,1}n−1 6= /0,Sθu,· j(XXX ,ε· j)∩K· j 6= /0,

Sθu,· j+1(XXX ,ε· j+1)∩{0,1}n−1 6= /0, ...,Sθu,·n(XXX ,ε·n)∩{0,1}n−1 6= /0|XXX = xxx)

∀xxx ∈ X a.s., which is equivalent to

P(G· j ∈ K· j|XXX = xxx)≤ P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0|XXX = xxx)

119



∀xxx ∈ X a.s. By repeating the same arguments ∀K· j ∈ K{0,1}n−1 and ∀ j ∈ N , all the

inequalities in (B.11) are obtained.

Step 2 It is shown that, under Assumptions 1 and 2, Θ?? = Θ?. As discussed in step

1, under Assumption 1, if θ ∈Θ?, then θ ∈Θ??. Hence, in what follows it is proved

that, under Assumptions 1 and Assumptions 2, if θ ∈ Θ??, then θ ∈ Θ?. This is

equivalent to show that, if a θ ∈Θ is such that (B.11) holds, then (B.10) is satisfied.

Step 2.1 It is shown that if a θ ∈Θ is such that (B.11) holds, then

P(GGG ∈ K|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(K) ∀K ∈ AG , ∀xxx ∈ X a.s. (B.12)

Consider any K ∈ AG , which corresponds, by definition of AG , to some

K·1×...×K·n with K· j ∈ K{0,1}n−1 ∀ j ∈ N . Take a θ ∈ Θ such that (B.11) holds.

This implies that



P(G·1 ∈ K·1|XXX = xxx)≤ P(Sθu,·1(XXX ,ε·1)∩K·1 6= /0|XXX = xxx)

P(G·1 ∈ K·2|XXX = xxx)≤ P(Sθu,·2(XXX ,ε·2)∩K·2 6= /0|XXX = xxx)

...

P(G·n ∈ K·n|XXX = xxx)≤ P(Sθu,·n(XXX ,ε·n)∩K·n 6= /0|XXX = xxx)

∀xxx ∈ X a.s. By taking the product, it follows that

n

∏
j=1

P(G· j ∈ K· j|XXX = xxx)≤
n

∏
j=1

P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0|XXX = xxx) (B.13)

∀xxx ∈ X . Moreover, ∀θ ∈Θ, under Assumptions 1 and 2, it holds that

n

∏
j=1

P(G· j ∈ K· j|XXX = xxx;θ) = P(GGG ∈ K|XXX = xxx;θ) (B.14)
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∀xxx ∈ X a.s. Indeed, the model predicts

n

∏
j=1

P(G· j ∈ K· j|XXX = xxx;θ) =
n

∏
j=1

∫
e· j∈Rn−1

P(G· j ∈ K· j|Sθu,· j(xxx,e· j))dF̃· j(e· j;θε)

=
∫

e·1∈Rn−1

∫
e·2∈Rn−1

...
∫

e·n∈Rn−1

n

∏
j=1

P(G· j ∈ K· j|Sθu,· j(xxx,e· j))dF̃· j(e· j;θε)

=
∫

e·1∈Rn−1

∫
e·2∈Rn−1

...
∫

e·n∈Rn−1

n

∏
j=1

P(G· j ∈ K· j|Sθu,· j(xxx,e· j))
n

∏
j=1

dF̃· j(e· j;θε)

=︸︷︷︸
Ass. 2 (i) and

Fubini’s Theorem

∫
e:=(e·1,...,e·n)∈Rn(n−1)

n

∏
j=1

P(G· j ∈ K· j|Sθu,· j(xxx,e· j))dF(e;θε)

=︸︷︷︸
Ass 2 (ii)

∫
e:=(e·1,...,e·n)∈Rn(n−1)

P(G·1 ∈ K·1, ...,G·n ∈ K·n|Sθu,·1(xxx,e·1), ...,Sθu,·n(xxx,e·n))dF(e;θε)

=︸︷︷︸
Lemma 2

∫
e:=(e·1,...,e·n)∈Rn(n−1)

P(GGG ∈
n×

j=1
K· j|Sθu(xxx,e))dF(e;θε)

= P(GGG ∈ K|XXX = xxx;θ)

∀xxx ∈ X a.s. Furthermore, ∀θ ∈Θ, under Assumptions 1 and 2, it holds that

n

∏
j=1

P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0|XXX = xxx) = P(Sθu(XXX ,ε)∩K 6= /0|XXX = xxx) (B.15)

∀xxx ∈ X a.s. Indeed, the model predicts

n

∏
j=1

P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0|XXX = xxx) =︸︷︷︸
Ass. 1 (ii)

n

∏
j=1

P(Sθu,· j(xxx,ε· j)∩K· j 6= /0)

=︸︷︷︸
Ass. 2 (i)

P(Sθu,·1(xxx,ε·1)∩K·1 6= /0, ...,Sθu,·n(xxx,ε·n)∩K·n 6= /0) =︸︷︷︸
Lemma 2

P(Sθu(xxx,ε)∩K 6= /0)

=︸︷︷︸
Ass. 1 (ii)

P(Sθu(XXX ,ε)∩K 6= /0|XXX = xxx)

∀xxx ∈ X a.s. Therefore, inserting (B.14) and (B.15) in (B.13) after having replaced

the probabilities predicted by the model with their empirical counterparts, under

Assumption 1 and 2, it holds that

P(GGG ∈ K|XXX = xxx)≤ P(Sθu(XXX ,ε)∩K 6= /0|XXX = xxx)
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∀xxx∈X a.s. By repeating the same arguments ∀K ∈AG , all the inequalities in (B.12)

are obtained.

Step 2.2 It is shown that if a θ ∈Θ is such that (B.11) holds, then

P(GGG ∈ K|XXX = xxx)≤ TSθu(XXX ,ε)|XXX=xxx(K) ∀K ∈ KG \AG , ∀xxx ∈ X a.s. (B.16)

where KG \AG is the collection of sets not included in AG obtained by taking the

union of elements of AG .

Proof of Proposition 4. The proof is articulated as follows: step 1 shows that, un-

der Assumptions 1 and 2, if θ ∈ Θo, then θ ∈ Θo
CT ; step 2 shows that, under As-

sumptions 1 and 2, the converse does not necessarily hold; it follows that, under

Assumptions 1 and 2, Θo ⊆Θo
CT .

Step 1 It is shown that, under Assumptions 1 and 2, if θ ∈ Θo, then θ ∈ Θo
CT . This

comes from step 2.1 in the proof of Proposition 3 with K· j := {g· j} and K· j :=

{0,1}n−1 \{g· j} ∀g· j ∈ {0,1}n−1 and ∀ j ∈N .

Step 2 It is shown that, under Assumptions 1 and 2, if θ ∈ Θo
CT , then it does not

necessarily follow that θ ∈Θo. Consider any θ ∈Θo
CT , i.e.,

∫
e∈Rn(n−1) s.t. Sθu(xxx,e)={ggg}

dF(e;θε)≤P(GGG=ggg|XXX =xxx)≤
∫

e∈Rn(n−1) s.t. ggg∈Sθu(xxx,e)
dF(e;θε) ∀ggg ∈ G, ∀xxx ∈ X a.s.

(B.17)

Let GGG−{· j} be the matrix GGG with jth column deleted. By integrating out GGG−{· j},

(B.17) implies that

∑
ggg−{· j}

∫
e∈Rn(n−1) s.t. Sθu(xxx,e)={ggg}

dF(e;θε)≤ P(G· j = ggg· j|XXX = xxx)≤ ∑
ggg−{· j}

∫
e∈Rn(n−1) s.t. ggg∈Sθu(xxx,e)

dF(e;θε)

∀g· j ∈ {0,1}n−1, ∀ j ∈N , ∀xxx ∈ X a.s.
(B.18)
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which is equivalent to

P(∃ggg−{· j} s.t. (g· j,ggg−{· j}) is the unique equilibrium;θ)≤ P(G· j ∈ {ggg· j}|XXX = xxx)

≤ ∑
ggg−{· j}

P((g· j,ggg−{· j}) is an equilibrium;θ) ∀g· j ∈ {0,1}n−1, ∀ j ∈N , ∀xxx ∈ X a.s.

(B.19)

It can be noticed that

P(∃ggg−{· j} s.t. (g· j,ggg−{· j}) is the unique equilibrium;θ)≤
∫

e· j∈Rn−1 s.t. Sθu,· j(xxx,e· j)={g· j}
dF̃· j(e· j;θε)

(B.20)

and

∑
ggg−{· j}

P((g· j,ggg−{· j}) is an equilibrium;θ)≥ P(∃ggg−{· j} s.t. (g· j,ggg−{· j}) is an equilibrium;θ)

=︸︷︷︸
Lemma 2

∫
e· j∈Rn−1 s.t. g· j∈Sθu,· j(xxx,e· j)

dF̃· j(e· j;θε)

(B.21)

∀g· j ∈ {0,1}n−1, ∀ j ∈ N , and ∀xxx ∈ X , i.e., Θo
CT implies wider bounds for P(G· j =

ggg· j|XXX = xxx) than those imposed by Θo ∀g· j ∈ {0,1}n−1, ∀ j ∈ N , and ∀xxx ∈ X a.s.

Moreover, Assumption 2 does not help to refine expressions (B.20) and (B.21).

Hence, θ ∈Θo
CT does not signify that θ ∈Θo.
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Appendix C

Inference when X is finite

This section discusses how to construct a 95% confidence region for the outer set Θo

when X is finite and observations are i.i.d., following the method of Andrews and

Soares (2010). In order to simplify the exposition and without loss of generality, in

the remaining of the section it is assumed that N is a degenerate random variable

with support {n}, for n ∈ N\{1,2}.

From (2.19) combined with (2.20),

Θ
o =

{
θ ∈Θ|H̃ l

g· j,xxx(θ)≤ P(G· j = g· j,XXXXXXXXX = xxx)≤ H̃u
g· j,xxx(θ) ∀g· j ∈ {0,1}

n−1, ∀ j ∈N , ∀xxx ∈ X
}

(C.1)

where

H̃ l
g· j,xxx(θ) :=

∫
e· j∈Rn−1 s.t. S· j,θu(xxx,e· j)={g· j}

dF̃· j(e· j;θε)P(XXXXXXXXX = xxx) (C.2)

and

H̃u
g· j,xxx(θ) :=

∫
e· j∈Rn−1 s.t. g· j∈S· j,θu(xxx,e· j)

dF̃· j(e· j;θε)P(XXXXXXXXX = xxx) (C.3)

A preliminary step needed to conduct inference on Θo is estimation of P(G· j =

g· j,XXXXXXXXX =xxx) ∀g· j ∈{0,1}n−1, ∀ j∈N , and ∀xxx∈X . Moreover, the inference algorithm

requires computation of H̃ l
g· j,xxx(θ) and H̃u

g· j,xxx(θ) ∀g· j ∈ {0,1}
n−1, ∀ j ∈ N , ∀xxx ∈ X ,

and ∀θ ∈Θ.

Estimating P(G· j = g· j,XXXXXXXXX = xxx), for example via a frequency estimator, is com-

plicated by the fact that, under Assumption 1 (i), players’ identities vary across net-

works. Indeed, when X is finite, within each network, there may be observationally



identical players which could be labelled arbitrarily by the researcher, hence pro-

ducing different estimates of P(G· j = g· j,XXXXXXXXX = xxx)90. A similar problem arises when

computing H̃ l
g· j,xxx(θ) and H̃u

g· j,xxx(θ). To solve this issue one possibility is adopting

the strategy proposed by Sheng (2016) that relies on joint exchangeability of net-

works91, as to ensure that labelling loses any relevance. The procedure is described

below in 4 steps.

Step 1 This step imposes sufficient conditions for joint exchangeability of networks

as in Sheng (2016).

Assumption 3. (Exchangeability)

(i) The finite sequence of random variables (εi j)∀i∈N ,∀ j∈N ,i 6= j is jointly ex-

changeable.

(ii) The finite sequence of random variables (Xi)∀i∈N is exchangeable92.

(iii) The equilibrium selection mechanisms adopted by players in the network for-

mation game is independent of players’ labels, i.e., for every permutation ϕ of

the labels in N , ∀K ∈ KG , and ∀θ ∈Θ,

P(GGG ∈ K|Sθu(xxx,e)) = P(GGG ∈ Kϕ |Sθu(xxx
ϕ ,eϕ))

∀xxx ∈ X and ∀e ∈ Rn(n−1), where Kϕ and eϕ are obtained by applying ϕ re-

spectively to K and e.

•

Remark 8. (Discussion on Assumption 3) Assumption 3 restricts the correlation

among players’ characteristics and the set of admissible equilibrium selection mech-

anisms for the network formation game.

More specifically, Assumption 3 (i) is satisfied if, ∀i ∈ N and ∀ j ∈ N with

i 6= j, εi j = αi +β j +ξi j, where
(
(αi)∀i∈N ,(β j)∀ j∈N ,(ξi j)∀i∈N ,∀ j∈N ,i 6= j

)
are i.i.d.

90When players’ observed characteristics are continuous this problem does not arise, as observing
identical players is a zero probability event.

91Joint exchangeability is defined e.g., by Kallengberg (2005).
92Exchangeability is defined e.g., by Schervish (1995).
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(random effects across i and j). Instead, Assumption 3 (i) is violated if the ran-

dom variables forming the sequence (εi j)∀i∈N ,∀ j∈N ,i6= j are identically distributed

across i j but their joint probability distribution is not invariant to labelling. Similar

considerations can be made for Assumption 3 (ii).

Assumption 3 (iii) excludes that, in case the network formation game admits

multiple equilibria, players coordinate on a specific outcome in the equilibrium set

considering agents’ labels. For example, Assumption 3 (ii) is satisfied if the equi-

librium selection rule of the network formation game assigns a uniform probability

distribution over the outcomes in the equilibrium set. Assumption 3 (ii) is also met

if players select the outcome providing the highest total payoff from the equilibrium

set. Instead, Assumption 3 (ii) is violated if players choose the outcome generating

the highest payoff for agent 1 from the equilibrium set .

Assumptions 1 and 3 imply the testable prediction that networks are jointly

exchangeable93. Indeed, for every permutation ϕ of the labels in N , ∀K ∈ KG ,

∀xxx ∈ X , and ∀θ ∈Θ, under Assumptions 1 and 3, the model states that

P(GGG ∈ K,XXX = xxx;θ) = P(GGG ∈ K|XXX = xxx;θ)P(XXX = xxx) =
∫

e∈Rn(n−1)
P(GGG ∈ K|Sθu(xxx,e))dF(e;θε)P(XXX = xxx)

=
∫

eϕ∈Rn(n−1)
P(GGG ∈ Kϕ |Sθu(x

ϕxϕxϕ ,eϕ))︸ ︷︷ ︸
Ass. 3 (iii)

dF(eϕ ;θε)︸ ︷︷ ︸
Ass. 3 (i)

P(XXX = xxxϕ)︸ ︷︷ ︸
Ass. 3 (ii)

= P(GGG ∈ Kϕ |XXX = xϕxϕxϕ ;θ)P(XXX = xxxϕ) = P(GGG ∈ Kϕ ,XXX = xxxϕ ;θ)

Lastly, under Assumptions 1 and 3, also the section 1, ..., section n are jointly

exchangeable, i.e., ∀ j ∈ N , for every permutation ϕ of the labels in N , ∀K· j ∈

K{0,1}n−1 , ∀xxx ∈ X , and ∀θ ∈Θ, under Assumptions 1 and 3, the model predicts

P(G· j ∈ K· j,XXX = xxx;θ) = P(G·ϕ( j) ∈ Kϕ

·ϕ( j),XXX = xϕxϕxϕ ;θ) (C.4)

where Kϕ

·ϕ( j) is obtained by applying ϕ to K· j94.

93This, in turn, suggests that, under Assumptions 1 and 3, networks are dense by Aldous-Hoover
Representation Theorem (Orbanz and Roy, 2015).

94Notice that, under Assumption 3 (i), ∀ j ∈ N , the finite sequence of random variables
(εi j)∀i∈N ,i 6= j is jointly exchangeable, because any finite subsequence of the finite sequence of ran-
dom variables (εi j)∀i∈N ,∀ j∈N ,i6= j is jointly exchangeable (Proposition 1.12 in Schervish, 1995)
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4

Step 2 This step shows that, under Assumptions 1 and 3, it is sufficient to focus on

the section j game for a j ∈ N , rather than ∀ j ∈ N . Specifically, it is proved that,

under Assumptions 1 and 3, Θo = Θo
· j ∀ j ∈N , where

Θ
o
· j :=

{
θ ∈Θ|H̃ l

g· j,xxx(θ)≤ P(G· j = g· j,XXXXXXXXX = xxx)≤ H̃u
g· j,xxx(θ) ∀g· j ∈ {0,1}

n−1, ∀xxx ∈ X
}

(C.5)

Proof. It can be seen that if θ ∈ Θo, then θ ∈ Θo
· j ∀ j ∈ N . Hence, in what follows

it is proved that, ∀ j ∈ N , if θ ∈ Θo
· j, then θ ∈ Θo. This is the same as showing that

∀θ ∈Θ and ∀ j ∈N , if

H̃ l
g· j,xxx(θ)≤ P(G· j = g· j,XXXXXXXXX = xxx)≤ H̃u

g· j,xxx(θ) ∀g· j ∈ {0,1}
n−1, ∀xxx ∈ X (C.6)

then

H̃ l
g·h,xxx(θ)≤ P(G·h = g·h,XXXXXXXXX = xxx)≤ H̃u

g·h,xxx(θ) ∀g·h ∈ {0,1}
n−1, ∀h 6= j ∈N , ∀xxx ∈ X

(C.7)

Firstly, ∀θ ∈ Θ, ∀ j ∈ N , ∀g· j ∈ {0,1}n−1, ∀xxx ∈ X , and for every permutation

ϕ of the labels in N such that ϕ( j) 6= j, under Assumptions 1 and 3, it holds that

P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0,XXX = xxx) = P(Sθu,·ϕ( j)(XXX ,ε·ϕ( j))∩Kϕ

·ϕ( j) 6= /0,XXX = xϕxϕxϕ)

(C.8)

when K· j := {g· j} and K· j := {0,1}n−1 \{g· j}. Indeed,

P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0,XXX = xxx) = P(Sθu,· j(XXX ,ε· j)∩K· j 6= /0|XXX = xxx)P(XXX = xxx)

=︸︷︷︸
Ass. 1 (ii)

P(Sθu,· j(xxx,ε· j)∩K· j 6= /0)P(XXX = xxx) = P(Sθu,·ϕ( j)(x
ϕxϕxϕ ,ε·ϕ( j))∩Kϕ

·ϕ( j) 6= /0)︸ ︷︷ ︸
Ass. 1 (i), Ass. 3 (i)

P(XXX = xϕxϕxϕ)︸ ︷︷ ︸
Ass. 3 (ii)

=︸︷︷︸
Ass. 1 (ii)

P(Sθu,·ϕ( j)(XXX ,ε·ϕ( j))∩Kϕ

·ϕ( j) 6= /0|XXX = xϕxϕxϕ)P(XXX = xϕxϕxϕ) = P(Sθu,·ϕ( j)(XXX ,ε·ϕ( j))∩Kϕ

·ϕ( j) 6= /0,XXX = xϕxϕxϕ)

Therefore, combining (C.4) with (C.8) ∀θ ∈Θ, ∀ j∈N , ∀K· j ∈K{0,1}n−1 , and ∀

permutation of labels ϕ such that ϕ( j) 6= j, and replacing the probabilities predicted
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by the model with their empirical counterparts, it holds that (C.6) is equivalent to

(C.7), under Assumptions 1 and 3.

Step 3 Moreover, under Assumptions 1 and 3, the inequalities in (C.5) indexed by

realisations of G· j,XXX that are equivalent up to a permutation of the labels inN other

than label j are identical.

Proof. It is now shown that, some inequalities in (C.6) are redundant. This comes

from the fact that, by (C.4) and (C.8), for every permutation ϕ of the labels in N

such that ϕ( j) = j,

H̃ l
g· j,xxx(θ)≤ P(G· j = g· j,XXXXXXXXX = xxx)≤ H̃u

g· j,xxx(θ)

is equivalent to

H̃ l
gϕ

· j,x
ϕxϕxϕ (θ)≤ P(G· j = gϕ

· j,XXXXXXXXX = xϕxϕxϕ)≤ H̃u
gϕ

· j,x
ϕxϕxϕ (θ)

∀θ ∈Θ, ∀g· j ∈ {0,1}n−1, and ∀xxx ∈ X .

Step 4 By steps 2 and 3, under Assumptions 1 and 3, conducting inference on Θo is

equivalent to conducting inference on

Θ
o
·3 =

{
θ ∈Θ|H̃ l

g·3,xxx(θ)≤ P(G·3 = g·3,XXXXXXXXX = xxx)≤ H̃u
g·3,xxx(θ) ∀(g·3,xxx) ∈W

}
(C.9)

where the subscript j is fixed to 3 without loss of generality, and W ⊆

{0,1}n−1×X denotes the collection of realisations of (G·3,XXX) left over after

having deleted those generating redundant inequalities when applying all the per-

mutations ϕ of the labels in N with ϕ(3) = 3 as explained in step 3. Appendix

C.1 illustrates an algorithm to constructW . It should be noticed that the setW is

not unique because one is free to keep any of the realisations of (G·3,XXX) producing

identical inequalities.

Let Cg·3,xxx ⊂ {0,1}n−1×X be the collection of realisations of (G·3,XXX) giving

rise to inequalities identical to the inequalities indexed by (g·3,xxx) when applying all
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the permutations ϕ of the labels inN with ϕ(3) = 395. Sheng (2016) observes that,

under Assumptions 1 and 3, (C.9) can be rewritten as

Θ
o
·3 =

{
θ ∈Θ|H̃ l

Cg·3,xxx
(θ)≤ P((G·3,XXX) ∈Cg·3,xxx)≤ H̃u

Cg·3,xxx
(θ) ∀(g·3,xxx) ∈W

}
(C.10)

where H̃ l
Cg·3,xxx

(θ) is the probability that every PSNE of the section 3 game combined

with XXX falls in Cg·3,xxx and H̃u
Cg·3,xxx

(θ) is the probability that at least one PSNE of

the section 3 game combined with XXX falls in Cg·3,xxx, given θ ∈ Θ. A proof of the

equivalence between (C.9) and (C.10) is given in Appendix C.2.

It can be noticed that (C.10) is a convenient way of rewriting Θo
·3 as estimates

of P((G·3,XXX) ∈Cg·3,xxx) do not depend on how players are labelled by the researcher.

Similarly, the computation of H̃ l
Cg·3,xxx

(θ) and H̃u
Cg·3,xxx

(θ) is not affected by assigned

labels.

Let P̂Cg·3,xxx
denote an unbiased estimator of P((G·3,XXX) ∈Cg·3,xxx). Appendix C.3

describes a procedure to estimate P((G·3,XXX) ∈ Cg·3,xxx). Moreover, Appendix C.4

provides a procedure to compute H̃ l
Cg·3,xxx

(θ) and H̃u
Cg·3,xxx

(θ).

By unbiasedness of P̂Cg·3,xxx
,

Θ
o
·3 =

{
θ ∈Θ|E(P̂Cg·3,xxx

− H̃ l
Cg·3,xxx

(θ))≥ 0, E(H̃u
Cg·3,xxx

(θ)− P̂Cg·3,xxx
)≥ 0 ∀(g·3,xxx) ∈W

}
(C.11)

Reintroducing the subscript m and collecting the lhs of all inequalities in E[bm(θ)],

Θ
o
·3 =

{
θ ∈Θ|E[bm(θ)]≥ 0

}
(C.12)

Assumption 1, combined with an i.i.d. sampling scheme and other regular-

ity conditions listed by Andrews and Soares (2010), imply that a valid (1−α)%

confidence region for each θ ∈ Θo
·3 can be constructed as follows. Let b̄M(θ) :=

95In network theory, all realisations of (G·3,XXX) in Cg·3,xxx are called isomorphic and Cg·3,xxx is an
equivalence class for (G·3,XXX).
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1
M ∑

M
m=1 bm(θ) and b̄k,M(θ) denote its kth element. Let

SM(θ) := ∑
k

(
min

{√Mb̄k,M(θ)

σ̃k,M(θ)
,0
})2

where σ̃k,M(θ) is a consistent estimator of the asymptotic standard deviation of
√

Mb̄k,M(θ). A (1−α)% confidence region for each θ ∈Θo
·3 is

CSM :=
{

θ ∈Θ — SM(θ)≤ ĉM,1−α(θ)
}

(C.13)

where ĉM,1−α(θ) is an estimate of the 1−α quantile of the asymptotic probabil-

ity distribution of SM(θ), obtainable following the bootstrap procedure with hard

threshold in Andrews and Soares (2010). More details on the construction of SM(θ)

and ĉM,1−α(θ) are in Appendix C.5.

C.1 Construction ofW
This section illustrates a way to construct the setW .

1. Rewrite each realisation (g·3,xxx) of (G·3,XXX) ∈ {0,1}n−1×X by listing in a

row vector

(i) x3;

(ii) gi3 ∀i 6= 3 ∈ N such that gi3 = 1, disposing them with respect to xi in

ascending order; if there are i,k∈N with i 6= k 6= 3 such that gi3 = gk3 =

1 and xi = xk, any order is allowed;

(iii) gi3 ∀i 6= 3 ∈ N such that gi3 = 0, disposing them with respect to xi in

ascending order; if there are i,k∈N with i 6= k 6= 3 such that gi3 = gk3 =

0 and xi = xk, any order is allowed;

(iv) xi ∀i 6= 3 ∈ N according to the disposition of players adopted in the

previous steps.

2. For each row that is repeated once or more, delete all duplications from the

second.
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3. Collect the saved rows and rearrange each of them in its original order. The

resulting set isW .

As an example, assume n= 3 andX := {0,1}. The set {0,1}2×X is represented in

Table C.1. The realisations of (G·3,XXX) giving rise to equivalent inequalities have a

symbol of the same colour. Table C.2 reports in blue the rows of Table C.1 reordered

according to step 1. above. It can be noticed that the algorithm described in step

1. detects all the realisations of (G·3,XXX) associated to the same colour in Table C.1.

Lastly, Table C.3 lists the elements of the setW .

Table C.1: Representation of {0,1}2×X .

G13 G23 X1 X2 X3
1 1 1 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 0 0
1 1 0 1 1
1 1 0 0 1
1 1 0 1 0
1 1 0 0 0
1 0 1 1 1
1 0 1 0 1
1 0 1 1 0
0 0 1 0 0
1 0 0 1 1
1 0 0 0 1
1 0 0 1 0
1 0 0 0 0
0 1 1 1 1
0 1 1 0 1
0 1 1 1 0
0 1 1 0 0
0 1 0 1 1
0 1 0 0 1
1 0 0 0 1
0 1 0 0 0
0 0 1 1 1
0 0 1 0 1
0 0 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1
0 0 0 1 0
0 0 0 0 0

131



Table C.2: Reordering the rows of Table C.1.

G13 G23 X1 X2 X3
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 0
1 1 1 1 0 0 1 1 1 1
1 1 1 0 0 0 1 1 1 0
1 1 0 1 1 1 1 1 1 0
1 1 0 0 1 1 1 1 0 0
1 1 0 1 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 0
1 0 1 1 1 1 1 0 1 1
1 0 1 0 1 1 1 0 1 0
1 0 1 1 0 0 1 0 1 1
1 0 1 0 0 0 1 0 1 0
1 0 0 1 1 1 1 0 0 1
1 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 0 1
0 1 1 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 0 1
0 1 0 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0 0 0
0 1 0 1 0 0 1 0 1 0
0 1 0 0 0 0 1 0 0 0
0 0 1 1 1 1 0 0 1 1
0 0 1 0 1 1 0 0 1 0
0 0 1 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 1 0
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

Table C.3: Representation ofW .

G13 G23 X1 X2 X3
1 1 1 1 1
1 1 1 1 0
0 1 1 1 1
0 1 1 1 0
1 1 1 0 0
0 1 1 0 0
1 1 0 1 1
1 1 0 1 0
0 1 0 1 1
0 1 0 1 0
1 1 0 0 1
1 1 0 0 0
0 1 0 0 1
0 1 0 0 0
1 0 0 1 1
1 0 0 1 0
0 0 0 1 1
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
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C.2 Equivalence between (C.9) and (C.10)

As seen in (C.4) and after having replaced the probabilities predicted by the model

with their empirical counterparts, under Assumptions 1 and 3,

P(G·i = g·i,XXXXXXXXX = xxx) = P(G·ϕ(i) = gϕ

·ϕ(i),XXXXXXXXX = xϕxϕxϕ) (C.14)

∀i ∈N , for every permutation ϕ of the labels in N , and ∀(g·i,xxx) ∈ {0,1}n−1×X .

By (C.14) applied for every permutation ϕ of the labels inN such that ϕ(3) =

3,

P((G·3,XXX) ∈Cg·3,xxx) = |Cg·3,xxx|×P(G·3 = g·3,XXXXXXXXX = xxx) (C.15)

In a similar way, H̃ l
Cg·3,xxx

(θ) and H̃u
Cg·3,xxx

(θ) can be shown being, respectively,

equivalent to |Cg·3,xxx|× H̃ l
g·3,xxx and |Cg·3,xxx|× H̃u

g·3,xxx.

Hence,

{
θ ∈Θ|H̃ l

Cg·3,xxx
(θ)≤ P((G·3,XXX) ∈Cg·3,xxx)≤ H̃u

Cg·3,xxx
(θ) ∀(g·3,xxx) ∈W

}
=︸︷︷︸

(C.15)

{
θ ∈Θ||Cg·3,xxx|× H̃ l

g·3,xxx(θ)≤ |Cg·3,xxx|×P(G·3 = g·3,XXXXXXXXX = xxx)≤ |Cg·3,xxx|× H̃u
g·3,xxx(θ)∀(g·3,xxx) ∈W

}
= Θ

o
·3

C.3 Computation of P̂Cg·3,xxx
P̂Cg·3,xxx
P̂Cg·3,xxx

Consider any i ∈N and (g̃·i, x̃̃x̃x) ∈ {0,1}n−1×X such that ∃ a permutation ϕ of the

labels in N with ϕ(i) = 3 generating (g̃ϕ

·ϕ(i), x̃̃x̃x
ϕ) = (g·3,xxx). By (C.14),

P(G·i = g̃·i,XXX = x̃̃x̃x) = P(G·3 = g·3,XXXXXXXXX = xxx) (C.16)

Consider Cg̃·i,x̃̃x̃x ⊆ {0,1}n−1×X . By (C.14) applied for every permutation ϕ of the

labels in N with ϕ(i) = i,

P((G·i,XXX) ∈Cg̃·i,x̃̃x̃x) = |Cg̃·i,x̃̃x̃x|×P(G·i = g̃·i,XXX = x̃̃x̃x) (C.17)
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Hence,

P((G·i,XXX) ∈Cg̃·i,x̃̃x̃x) =︸︷︷︸
(C.17)

|Cg̃·i,x̃̃x̃x|×P(G·i = g̃·i,XXX = x̃̃x̃x) =︸︷︷︸
(C.16)

|Cg̃·i,x̃̃x̃x|×P(G·3 = g·3,XXXXXXXXX = xxx)

=︸︷︷︸
|Cg̃·i,x̃̃x̃x|=|Cg·3,xxx|

|Cg·3,xxx|×P(G·3 = g·3,XXXXXXXXX = xxx) =︸︷︷︸
(C.15)

P((G·3,XXX) ∈Cg·3,xxx)

(C.18)

Let

P̂Cg·3,xxx
:=

1
n

n

∑
i=1

1((G·i,XXX) ∈Cg̃·i,x̃̃x̃x) (C.19)

From (C.18), P̂Cg·3,xxx
is an unbiased estimator for |Cg·3,xxx| ×P(G·3 = g·3,XXXXXXXXX = xxx) =

P((G·3,XXX) ∈Cg·3,xxx) and does not depend on assigned labels.

An algorithm to compute P̂Cg·3,xxx
is the following:

1. Rewrite (g·3,xxx) by listing

(i) x3;

(ii) gh3 ∀h 6= 3 ∈ N such that gh3 = 1, disposing them with respect to xh in

ascending order; if there are h,k ∈ N with h 6= k 6= 3 such that gh3 =

gk3 = 1 and xh = xk, any order is allowed;

(iii) gh3 ∀h 6= 3 ∈ N such that gh3 = 0, disposing them with respect to xh in

ascending order; if there are h,k ∈ N with h 6= k 6= 3 such that gh3 =

gk3 = 0 and xh = xk, any order is allowed;

(iv) xh ∀h 6= 3 ∈ N according to the disposition adopted in the previous

steps.

2. Call A3 the obtained row of values.

3. ∀i ∈N in the dataset, list

(i) xi;

(ii) ghi ∀h 6= i ∈ N such that ghi = 1, disposing them with respect to xh in

ascending order; if there are h,k ∈ N with h 6= k 6= i such that ghi =

gki = 1 and xh = xk, any order is allowed;
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(iii) ghi ∀h 6= i ∈ N such that ghi = 0, disposing them with respect to xh in

ascending order; if there are h,k ∈ N with h 6= k 6= i such that ghi =

gki = 0 and xh = xk, any order is allowed;

(iv) xh ∀h 6= i∈N according to the disposition adopted in the previous steps.

4. Call Ai the obtained row of values ∀i ∈N .

Hence,

P̂Cg·3,xxx
:=

1
n

n

∑
i=1

1{Ai = A3}

C.4 Computation of H̃ l
Cg·3,xxx

(θ)H̃ l
Cg·3,xxx

(θ)H̃ l
Cg·3,xxx

(θ) and H̃u
Cg·3,xxx

(θ)H̃u
Cg·3,xxx

(θ)H̃u
Cg·3,xxx

(θ)

The computation of H̃ l
Cg·3,xxx

(θ) and H̃u
Cg·3,xxx

(θ) can be done via the simple frequency

simulator proposed by McFadden (1989) and Pakes and Pollard (1989). Specifi-

cally, ∀i ∈N , RM
96 realisations of ε·i are randomly drawn from its distribution. Let

ε·i,r denote the random vector for the rth draw ∀i ∈N . Hence,

Ĥ l
Cg·3,xxx

(θ) :=
1

RM×n

RM

∑
r=1

n

∑
i=1

1(all outcomes of the section i game fall in Cg̃·i,x̃̃x̃x)

(C.20)

and

Ĥ l
Cg·3,xxx

(θ) :=
1

RM×n

RT

∑
r=1

n

∑
i=1

1(at least one outcome of the section i game falls in Cg̃·i,x̃̃x̃x)

(C.21)

In the empirical application, RM = 100. In order to establish the value of the indica-

tors function the algorithm illustrated in Appendix C.3 can be employed, combined

with the the simplifications described in section 2.3.7 in order to reduce the number

of potential equilibria to evaluate at each iteration.

C.5 Steps to construct a confidence region
This section illustrates how to obtain the test statistic SM(θ) and the critical value

ĉM,1−α(θ) when constructing a (1−α)% confidence region for each θ ∈Θo
·3. After

96The subscript M reminds that R should increase to infinity with sample size to avoid not van-
ishing simulations errors (CT).

135



having designed a grid of candidate parameter values97, for each θ in the grid:

(i) Compute bm(θ) ∀m ∈ {1, ...,M}.

(ii) Compute b̄M(θ) := 1
M ∑

M
m=1 bm(θ). Let b̄k,M(θ) denote its kth element

and σ̃k,M(θ) a consistent estimator of the asymptotic standard deviation of
√

Mb̄k,M(θ). Specifically,

σ̃k,M(θ) :=

√
1
M

M

∑
m=1

(bk,m(θ)− b̄k,M(θ))2

(iii) Compute the test statistic SM(θ) := ∑k

(
min

{√
Mb̄k,M(θ)

σ̃k,M(θ) ,0
})2

.

(iv) For each k, compute ξk,M(θ) := 1√
log(M)

√
M b̄k,t(θ)

σ̃k,M(θ) .

(v) For each k, choose the hard threshold ζk,M(θ) :=

0 if ξk,M(θ)≤ 1

∞ otherwise

(vi) Draw with replacement R bootstrap samples i.i.d. over r. In the empirical

application, R = 120.

(vii) For r = 1, ...,R

(a) Repeat steps (i) and (ii) and obtain b̄?k,M,r(θ) and σ̃?
k,M,r(θ) for each k.

(b) Compute LM,r(θ) := ∑k

(
min

{√M(b̄?k,M,r(θ)−b̄k,M(θ))

σ̃?
k,M,r(θ)

+ζk,M(θ),0
})2

.

(viii) Take the GMS critical value, ĉM,1−α(θ), as the (1−α) sample quantile of

{LM,r(θ)}R
r=1.

(ix) Reject if SM(θ)> ĉM,1−α(θ).

Hence, the (1−α)% confidence region for each θ ∈Θo
·3 is

CSM = {θ ∈Θ such that SM(θ)≤ ĉM,1−α(θ)}
97See Appendix C.6.
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C.6 Construction of the initial grid of parameters
One difficulty with conducting inference on sets is scanning over a multi-

dimensional parameter space. In practice, what the researcher can do is exploring

the parameter space around the global minimum of SM(θ) in some rational way.

For the empirical application, the slice sampling method used by Kline and Tamer

(2016) is employed to construct the initial grid of parameter values. The procedure

is as follows:

(i) List many starting values for θ , one of which has all entries equal to zero,

others are constructed using the results of simple probits.

(ii) From each starting value, minimise SM(θ) running a global optimisation al-

gorithm in Matlab; specifically, a pattern search algorithm (psearch) with dif-

ferent polling strategies and a genetic algorithm (ga) were used.

(iii) Let s be the global minimum of SM(θ).

(iv) Save one vector of parameters solving SM(θ) = s and call it θs.

(v) Run the pre-implemented slice sampling routine in Matlab (slicesample) set-

ting 1{SM(θ) = s} as the un-normalized density and θs as the starting value;

save the results of each iteration in the course of the algorithm.

(vi) Look at the parameter values encountered in the course of the algorithm and

draw a random sample of 500 points. This sample is the initial grid of param-

eters.

To guarantee a better exploration of all relevant regions of the parameter space, steps

(iv), (v) and (vi) were repeated for each vector of parameters found in step (ii) and

solving SM(θ) = s, and the grids obtained from step (vi) were merged. Moreover,

robustness checks on the number of random draws from the un-normalised density

were conducted.

Alternative procedures are the simulated annealing method proposed by CT

and the differential evolution algorithm described by BMM.
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Appendix D

Empirical application

D.1 Data construction and cleaning
In order to extract and merge the information from the Registro Imprese database,

each firm is uniquely identified by combining its (i) Chamber of Commerce’s terri-

torial province, (ii) R.E.A98 code, and (iii) tax code. The R.E.A. code is a number

assigned to each company when enrolling at the Registro Imprese database. The tax

code is a numeric code of 16 digits.

Each board member is uniquely identified by her tax code, which is an al-

phanumeric code of 16 characters, similar to the Social Security Number in the

United States or the National Insurance Number in the United Kingdom.

In order to merge the information from the Registro Imprese database with that

from the Cerved database, firms’ tax codes are used.

Moreover, industries composed of 1 or 2 firms (because N≥ 3) and the industry

Holdings (because atypical as composed by firms not involved in the production or

exchange of goods or services but only owning owns other companies’ stock)99 are

dropped.

D.2 Some network summary statistics
For the purpose of measuring the degree of cohesion, the density of a network GGG is

the fraction between the total number of links in the network and the total number

98R.E.A. stands for Repertorio Economico Amministrativo.
99ATECO 2002 code: 74.15.0.



of possible links
∑i∈N , j∈N ,i6= j Gi j

N(N−1)
∈ [0,1]

A higher density denotes tighter relations between firms. It can be observed from

Table 3.2 that the density varies between 0 and 0.333 and has an average value

across industries of 0.005.

The average degree of a node tells how many links a node has on average

1
N ∑

i∈N , j∈N
Gi j ∈ [0,N−1]

It can be observed from Table 3.2 that it varies between 0 and 1 and has an aver-

age value (approximated to the nearest integer) across industries of 0. Such a low

average value is in line with the low average density commented above.

The percentage of isolated nodes is computed as

100× 1
N ∑

i∈N
1{Gi j = G ji = 0 ∀ j 6= i ∈N} ∈ [0%,100%]

It can be observed from Table 3.2 that it varies between 33.333% and 100% with an

average value across industries of 97.665%.

Lastly, the total number of links is obtained as

∑
i∈N , j∈N ,i 6= j

Gi j ∈ [0,N(N−1)]

It can be observed from Table 3.2 that it varies between 0 and 6 with an average

value (approximated to the nearest integer) across industries of 0.
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