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Quantifying Retail Agglomeration 
using Diverse Spatial Data
Duccio Piovani1, Vassilis Zachariadis2 & Michael Batty1

Newly available data on the spatial distribution of retail activities in cities makes it possible to build 
models formalized at the level of the single retailer. Current models tackle consumer location choices 
at an aggregate level and the opportunity new data offers for modeling at the retail unit level lacks an 
appropriate theoretical framework. The model we present here helps to address these issues. Based 
on random utility theory, we have built it around the idea of quantifying the role of floor-space and 
agglomeration in retail location choice. We test this model on the inner area of Greater London. The 
results are consistent with a super linear scaling of a retailer’s attractiveness with its floorspace, and 
with an agglomeration effect approximated as the total retail floorspace within a 300 m radius from 
each shop. Our model illustrates many of the issues involved in testing and validating urban simulation 
models involving spatial data and its aggregation to different spatial scales.

Our approach to understanding and studying cities has radically changed in the last two decades1, 2. Advances in 
spatial network theory3, 4, dramatic increases in the volume and type of available data5 and insightful approaches 
based on out-of-equilibrium concepts6, 7 have contributed to the formation of a new, highly interdisciplinary 
science of cities. It is common knowledge that a fundamental role in the urbanization process is played by retail 
activity and indeed a city’s social life and physical shape is greatly influenced by such activities. There is contin-
ual motion in cities as people move to work and play, in restaurants, bars, grocery shops, shopping malls and so 
on. Understanding and describing the mechanisms that govern these activities and the processes that lead to 
their agglomeration is not only intriguing, but crucial to an understanding of how a city works. For this reason 
modeling retail location has been a pillar of urban simulation for a long time8. Researchers have attempted dif-
ferent types of approaches to characterize this phenomenon, from entropy maximizing models9, 10, to random 
utility models11–13 to agent based approaches14, 15. However, retail location and consumer location choice theory 
continue to draw heavily from fundamental ideas16, 17 in central place theory18, 19 and bid-rent theory20. Since 
the late 1990s, advances in the new economic geography21, 22 have reinvigorated the field and reorganized it, by 
considering economies of scale, cross-dependencies in markets (e.g. between labour, retail and housing) and 
forms of imperfect competition between firms23. However, apart from notable exceptions24–26, fresh approaches 
have been slow in informing state-of-the-art modelling and engaging with mainstream location choice modelling 
based on discrete choice and random utility theory, one of the cornerstones of consumer preference theory within 
economics developed over the last 40 years. Here we present such a model of consumer location choice based on 
random utility theory designed to capture both internal and external economies of scale at the individual retailer 
level. This means that we will consider single retailers, rather than retail centres which is usually the case when 
applying this type of approach, and describe how their economic properties depend both on personal character-
istics (internal economies) and on the interaction with the other neighbouring retailers (external economies). In 
order to formalise both internal and external economies we need to quantify how the rent paid by a single retailer 
is affected by its floor-space (its surface are measured in m2), and by its proximity to other retailers. Measuring 
this second effect will allow us to define an interaction range between individual retailers and understand the role 
played by retail agglomeration in consumer choice.

In the following discussion, we will examine the model’s theoretical foundations, and propose an implemen-
tation strategy which takes advantage of unconventional data sources that have recently become available for 
calibration and validation. We then review the model’s output predictions. Our study focuses on central London 
and the data gives us information on the spatial distribution of the population and work places (from the 2011 
Population Census), on work to retail and home to retail trips (from the London Travel Demand Survey 2012) 
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which is be used to calibrate the cost function of our model, and on the position, size and paid rent of single 
retailers (from the Valuation Office Agency 2010 data) which we use to quantify the effect of internal and external 
economies. Finally we use data from Foursquare, a website where users keep track and comment places they have 
been to, to validate the results. A richer description of the datasets we use is found below in the Methods section. 
As we will see, this work shows the central role retail agglomeration plays in consumer choice, and how this is 
created by local interactions at the microscopic level of the single retailer. In our model, consumers are evaluating 
the attractiveness of each shop by considering its size and the retail activity with a 325 m perimeter around it. This 
is in line with observations reported in literature on the average length of walking trips.

Results
The Model.  Using as input the spatial distribution of population and individual retailer locations in London, 
our goal is to build a model of consumer choice capable of predicting the success of a retailer to a high level of 
accuracy. This will be measured by the expected number of people that will visit the retail store, or in other words, 
by the fraction of the distribution of trips that the model predicts will flow towards each single retailer. As implied 
in the introduction we have considered the retail activities found in the VOA dataset, and have treated them 
with no distinction of category. Under this simplifying assumption all retailers interact among each other in the 
same way (see supplementary material section 1, for an in depth analysis of the data and the retail categories we 
have included in our analysis). In order to build our model we only consider a retailer’s location in the city, and 
its floor-space, i.e. the area of its surface or its size. We start by defining the utility of consumer i shopping for 
product p from retailer r as

ω= − − +u u p c d( ) (1)ir p r ir ir

where up is the utility that comes by acquiring the product, pr the price at which the product is sold by retailer r, 
c(dir) a generalised cost of traveling between r and i and where ωir is a random element that reflects the personal 
tastes of the consumer for location and product variation. As one can see eq. 1 is a random utility function.

As one can see eq. (1) is a random utility function. The standard way of solving such an equation is by assum-
ing the random element ωir to be i.i.d. (independently and identically distributed) Gumble distributed. The choice 
of the distribution is given because of its closed form, which allows us to calculate the probability of i choosing r 
over all other r′ possibilities. Details of the derivation of the equation are found in the supplementary material 
section 2. For now one only needs to understand that we define the probability of consumer i shopping in r as the 
probability of its utility being the greatest over all other alternatives >
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where βi is the inverse of the standard deviation of the distribution of ωir. If we now consider βi = β for every 
consumer, eq. (2) will depend only on the location of consumer i and retailer r.

Eq. (2) implies that each retailer r offers one, and only one, type of product p. Therefore, each consumer i 
associates only one random utility component ωir with each retailer, reflecting the fit between this sole product 
variation and the preferences of the consumer. This assumption is quite unrealistic; typically retailers will stock 
several types of products. It is reasonable to assume that larger shops will stock larger varieties. Therefore, variety 
can be expressed as a function of floor-space. Following the work of Daly and Zachary27 and of Ben-Akiva and 
Lerman in ref. 28, and assuming that the price is constant for every retailer in the system, namely pr = p = cost, the 
probability of consumer i shopping with retailer r is
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where fr is the floor-space of retailer r and the exponent α quantifies the correlation between the stochastic com-
ponents and the product variation. The model in eq. (3) is very similar to the multinomial logit model presented 
by McFadden29, 30 and to the entropy maximising equation introduced by Wilson9. Macroscopically, this suggests 
that the utility that consumer i gets from buying from retailer r is either a sub-linear (α < 1), linear (α = 1), or 
super-linear (α > 1) function of the floor-space of retail unit r. These internal economies (or dis-economies) of 
scale emerge from the application of a transparent utility-based approach and reflect perceived opportunities at 
the level of the individual retailer. Eq. (3) captures the potential impact of size at the individual shop level. As such 
it is sufficient in describing flow patterns and activity distribution associated with shop-size variations. But as 
we will see in the following section, it fails to account for the concentration of retail activity in clusters (markets/
shopping centers). In other words, eq. (3) cannot explain agglomeration effects in the spatial distribution of retail 
activity.

In order to explicitly introduce agglomeration into the model, we start by defining the attractiveness of a 
retailer as

∑ γ= + −α α

′
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where drr′ is the distance between retailers, and γ is parameter that weights the role of the retailer’s neighborhood 
in the consumer’s perception. The perceived utility associated with a given retailer is influenced by the utility asso-
ciated with the neighboring retailers. By substituting eq. (4) into eq. (3) we finally get the form of the distribution 
to be used in our model as:
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In the location choice model presented in eq. (5), we can see how the parameter α controls the internal and γ the 
external economies of scale. Once again α tells us if the utility scales sub-, super- or linearly with the retailer’s 
floor-space, while the γ values tune the interaction range between retailers: γ → ∞ implies that the utility of vis-
iting a retailer is only a function of its own floor-space fr, while in the opposite case, when γ → 0, the utility of a 
retailer is equally shaped by all shops in its vicinity. Note that for α = 1 and γ → ∞, we derive the multinomial 
logit model. The model in eq. (5) is a particular case of the Cross-Nested Logit model (CNL)31, 32 in which retailer 
r represents a nest, and the extent of the overlap between nests is controlled by γ.

Now exploiting eq. (5), we can define the modeled turnover, i.e. the fraction of consumers that will shop in a 
given destination, for each retailer r as
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where we have considered the population concentrated in centroids i,and where ni indicates their respective pop-
ulations. Therefore the term ni · pi→r tells us the fraction of the population of centroid i that will travel to retailer 
r, and depends both on the attractiveness Ar of the retailer and on the distance between the two points. It will 
then be possible to compare the results yielded by eq. (6) with the actual rents paid by retailers. Quantifying the 
two parameters α and γ provides us with insight into the economical relationships between retailers which is the 
main objective of this paper. To do this we have to first calibrate the cost function which expresses how consumers 
perceive costs related to the distance between their origin and a shop.

Calibration of Cost Function.  We define a cost function C(d, λ) as a Box-Cox transformation of the dis-
tance, namely

λ
λ

=
−λ

c d d( , ) 1
(7)

where d is the distance between the consumer and the retailer’s location. The Box-Cox function adds an extra 
modeling layer that maps objective costs into perceived costs. The curve of this transformation ranges from lin-
ear (λ = 1) to logarithmic (λ → 0). In the former case the marginal effect of cost travel d on trip distribution is 
exp(−β * d), while in the latter it becomes d−β. To calibrate the two parameters β and λ we use the London Travel 
Demand Survey (LTDS) database which contains 5004 home to retail and 2242 work to retail trips (see Methods 
for more details). These numbers are not sufficient to calibrate the location choice model in full; we thus cannot 
use this dataset to give value to all the parameters used in model. In fact the LTDS supplementary report (TfL 
2011) suggests that the sample size is sufficient only for an Inner/Outer London spatial classification. Therefore 
the survey is only used to calibrate distance profiles i.e. the distribution of distance traveled for shopping from 
home and work. As an input for the population distribution, we have used London Population Census data at the 
Lower Super Output Layer level (LSOA), where we have considered the population concentrated on the centroids. 
As we can see below in the Methods section, the database includes coordinates of the LSOA centroids, population 
and working population.

We start by arbitrarily assigning values to the α and γ parameters, which sets the values for the retailers’ attrac-
tiveness in eq. (4). We chose α = {0.8, 1.0, 1.8} in order to cover the 3 different scenarios of sub-linear, linear and 
super-linear scaling of attractiveness with floorspace, and γ = {0.005, 0.05, 0.5} which bearing in mind that we are 
working in meters, corresponds to a decay length of {200 m, 20 m, 2 m} respectively.

Now exploiting eq. (5) we can define the probability the model generates a trip of distance d as
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where the bd in the numerator is a conveniently defined bin. In other words eq. (8) tells us the fraction of trips that 
are of length d. To fix the β and λ values, we tune them so to maximize the likelihood equation

 ∑β λ = ⋅p d p d( , ) ( ) ln( ( ))
(9)d

e m

where d is the length of the trips and pe(d) is its observed distribution in the LTDS. We repeat this process on both 
types of trips, in Fig. (1) and for every couple (α, γ) in the previous list we obtain a couple (β, λ) that maximizes 
the likelihood. The results yielded for β and λ are robust for the different α, and γ inputs, and the variations are 
of ±0.1. As we can see from Fig. (1) there is a good agreement in both cases between the distributions observed 
in the data and those generated by the model with parameter values as βh = 0.25, λh = 0.3, βw = 0.35, λw = 0.25.

Correlation with Data.  Considering the two different types of trips, the total modeled turnover predicted 
by the model is
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and at an aggregated level this quantity can be used an indicator of the success of a retailer, with the idea that the 
more people visit a retailer the more that retailer earns. A more careful analysis should definitely take into account 
the type of goods sold by the retailer: indeed given the same number of visits, a car show room and a grocery 
corner shop yield different earnings, and a clothing shop in the vicinity of another clothing shop will have a dif-
ferent impact to that of a supermarket. These are two significant aspects that we leave for more detailed analysis 
in further research.

All the information on the retailers are found in the Valuation Office Agency database (see Methods VOA 
for more details), where we have found, among other data, information on the position, floorspace and the rat-
able value per meter for 98936 retailers in London. The rateable value represents the Valuation Office Agency’s 
estimate of the open market annual rental value of a business/non-domestic property, i.e. the rent the property 
would let for on the valuation date, if it were being offered on the open market; as such, it is considered a very 
good indicator of the property value. Our hope is that the number of visits estimated by the model in eq. (10) to 
a retailer of any type, could be a good predictor of its rent. To test this hypothesis we calculate the Pearson corre-
lation between the two quantities
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where fr is the floor-space. Not dividing by fr would result in higher levels of correlation, not generated however 
through higher accuracy of the model but because of the variable fr explicitly appearing in eq. (4), and because of 
the strong correlation between the two quantities
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looking for the values (αmax, γmax) that maximize the correlation. These parameters will be considered those that 
best describe the retail activity through internal and external economies. In Fig. (2a)a we show a heat map of the 
correlations found exploring the parameter space. The maximum correlation is Cmax = 0.48 which seems like a 
reasonable value given the level of aggregation we are working at with the parameter values (αmax, γmax) = (1.3, 
0.008). We should stress at this point that we do not consider the correlation level obtained as a validation of the 
model. These values are those normally obtained by models of this type and probably depend more on density 
effects33, 34 than on the details of our model. As we have said, our main goal is to quantify and weight of internal 
and external economies, and we will now do this characterising the values of the parameters that maximise the 
correlation. As we can see the αmax tells us that a model with a super linear scaling between the number of visitors 
and floor-space best describes the data, while the γmax value indicates that retailers benefit from their proximity to 
other retailers given a characteristic length of the decay of =

γ
m1251 .

We can see in Fig. (2a) how for increasing values of γ, which imply a faster decay and therefore a shorter inter-
action range between retailers, the correlation levels decrease. In the extreme case of γ = ∞, the attractiveness 
term in eq. (4) becomes = αA fr r  meaning that retailer attractiveness only depends on its floor-space. An Ar of 
this form is what is usually found in standard retail models such as those in ref. 9, and works well when consider-
ing retail centers. From these results it seems that for a microscopical formalization of the retail activity, this 

Figure 1.  We show the maximum likelihood modeled distributions and the observed ones. For home-retail 
trips in (a) βh = 0.25 and λh = 0.3, while for work-retail trips in (b) we have found βw = 0.35 and λw = 0.25. As 
we can see from the figures in both cases the parameters that maximize the likelihood generate a distribution 
that fits the observed one very well.
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picture fails as a satisfactory description. In Fig. (2c) we compare the correlations obtained from the model with 
interactions and with no interactions. We can see how both models exhibit the maximum for the same value of α 
and how the model with interaction has constantly higher correlation values. This means that agglomeration has 
to be included when modeling consumers’ choice at the level of the single retailer.

Another interesting scenario is the opposite case with γ = 0, where consumers perceive the neighborhood of a 
retailer in the same way for a given distance. The attractiveness term in eq. (4) becomes

∑= +α α

′ <′

A f f
(13)

r r
r d d

r
: rr o

where we have introduced a parameter do which explicitly sets the interaction range between retailers. We can now 
study the Pearson correlation for different values of the radius do and α. In Fig. (2b) we can see how the maximum 
values are found for α = 1.2 which is very similar to what has been previously found for =d 325o

max , but despite 
the correlation levels being very close Cmax = 0.45 for the model with the exponential decay, this model typically 
shows lower values. What this seems to imply is that consumers implicitly take into account the distance and 
weight closer shops more than more distant ones, instead of equally considering their proximity.

In order to better quantify the level of agglomeration predicted by the model we can now compare the results 
in Fig. (2a,b). As implied, an exponent of γ = 0.008 indicates a characteristic decay length of =

γ
m1251  for the 

interaction range. If we compare this result with the γ = 0 model, we see that = . ⋅
γ

d 2 6o
max 1 , and if we substitute 

it in the exponential, we get = .− .e 0 07d0 008 o
max

 which means that at that distance retailers loose 93% of the benefits 
of neighboring floor-space. This analysis suggests that retail activity benefits from agglomeration, and this benefit 
is spread through local interactions between single retailers, whose main effect is felt within 325 m. From the 
consumer’s point of view, we could say that when choosing the retailer to visit, consumers take into account the 
amount of floor-space or choice within a radius of around 325 m. This result is in very good agreement with sev-
eral studies on walking trips as in ref. 35 where it is shown that 65% of all walking trips are under 
. 0 25miles 400m, and in ref. 36 where the average walking distance for several types of retail activity are just 

above 500 m. We interpret these results as follows: the choice perceived when considering a specific retailer is 
quantifiable as its floor-space, and the floor-space of retailers which can be reached by foot.

Figure 2.  In this figure we present the results obtained comparing the retailer’s ratable value found in the VOA 
dataset, with the modeled turnovers Y(α, γ). In (a) we show a heat map of the correlation between the two 
quantities, we can see a clear maximum in the correlation for αmax = 1.3 and γmax = 0.008. In (b) we show the 
correlation with the model of γ = 0, which implies that the attractiveness becomes = + ∑α α

′ <′
A f fr r r d d r: rr o

, and 
we have studied the correlation for different values of do. We can see how the maximum is found in αmax = 1.2 
and dmax = 325 m which is 2.6 times the characteristic length of the decay and coincides with a dampening effect 
of 93% of the interactions. In (c) we compare the correlation in the case where γ = ∞, or with no interactions, 
which is the form used in other more aggregated models. We can see how in this microscopic formalization the 
model always correlates better with the data for finite values of γ.
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Discussion
In this section we will work through the tests we have done in order to validate the levels of agglomeration and 
the scaling law predicted by the model. We have done so by repeating the same procedure both on a randomized 
data set and on data coming from Foursquare, a web site where people check in, and comment bars restaurants 
and other retail activities (see supplementary material for more information). We have randomized the data 
both in the rents/m2, and in their locational positions. To randomize the rents/m2, we have first measured their 
distribution in the VOA dataset and then assigned a random rent to each retailer taken from the same measured 
distribution, while to randomize the position we have simply reshuffled the position of retailers taking as lower 
and upper bounds the minimum and maximum coordinates found in the data. In both cases the correlation 
between the rents and the turnovers predicted by the model disappeared completely (Cmax ≃ 10−3). This seems to 
imply that there is a clear relation between the retailers’ spatial interactions and the rents they pay, and that these 
are captured, at an aggregated level by eq. (4).

A further validation consists in testing the model on check-in data coming from Foursquare. As we can see in 
the Methods section, this data set gives us information on the number of visitors who checked in a given venue on 
the application. The dataset contains all Foursquare venues within the M25 motorway, which consists of 300 × 103 
venues, of which we have filtered just above 100 × 103 retail activity (more information on this process is in the 
Methods section). Each record contains location coordinates, number of check-ins since the venue was registered 
together with a detailed venue category. For each retailer r in the VOA dataset, we have summed the number of 
check-ins that were registered in the Foursquare dataset in a range R from the retailer. To choose the range R, we 
have studied the correlation between the Foursquare check-ins and the rent/m2 seen in the VOA dataset.

As we can see from Fig. (3a) the maximum level of correlation is obtained by fixing R = 250 m as the range to 
count check-ins. Curiously enough this is quite close to the agglomeration characteristic exponential decay 
length. In Fig. (3b) we show the correlation between the modeled turnovers and the check-ins happening in range 
R = 250 m from the retailers. We can see how the two parameters for which the correlation is maximum are (αmax, 
γmax) = (1.8, 0.01) which, considering the big difference in the data used, can be considered incredibly similar to 
what we previously obtained. The α value is still in line with a super-linear scaling between floor-space and attrac-
tiveness, and the γ implies a characteristic decay length of = .

γ
m100 01 , against the =

γ
m1251  previously pre-

dicted. Once again given the great difference between the two datasets we have used, we consider that these results 
are a reassuring sign of the robustness of our findings.

In order to understand the strength and weaknesses of our model, for each retailer we have studied and com-
pared the difference between the modeled turnover Y(αmax, γmax) and the actual VOA rent. This will allow us to 
find out for which type of retailers the model is more accurate and which will have to be the future steps to better 
shape it. The first forced step is to make the two quantities comparable. We call R the vector of the fraction of 
rents, where the ith component 

∑

R
R
i

i i
 represents the fraction of the total rent in the system that belongs to the ith 

retailer. In the same way, we define the vector of the fraction of modeled turnovers Y, with components 
∑

Y
Y

i

i i
. We 

can now define the E error vector as

=






E Y

R
log

(14)

The components of the error vector in eq. (14) will indicate an overestimation of the success of a retailer, if Ei > 0 
and an underestimation in the opposite case Ei < 0. By observing the characteristics of the retailers for which we 

Figure 3.  In the left panel in (a), we show the correlation between the rateable value of retailers in the VOA 
dataset, and the check-ins found in Foursquare around them for different radii. We can see how the correlation 
peaks at R = 250 m. In the right panel in (b) we show the correlation between the expected turnovers Y(α, γ) of 
each shop and the number of check-ins measured within a radius of R = 250 m from it. The set of parameters 
that maximize the correlation are αmax, γmax = (1.8, 0.01), which are quite similar to what we found for the VOA 
rateable values.
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underestimate and overestimate the rent, we can see how patterns emerge. In Fig. (4a) we show a ranked distribu-
tion of the errors Ei. From the asymmetry of the curve we realize how the model, in this interpretation, tends to 
underestimate a retailer’s success. Indeed for the vast majority of the retailers we analysed, we noted that the Yi is 
smaller than their Ri which implies that the overestimation errors are typically larger. We can therefore study the 
characteristics of the retailers we have overestimated, those above the red dashed line, and compare them with 
those we have underestimated, below the blue line. Observing the red curves in Fig. (4b,c), we can see how the 
model tends to overestimate retailers with a small floor-space surrounded by many neighbors, which looking at 
our definition of attractiveness in eq. (4) is predictable. On the other hand we can see how the blue curves, which 
represent the distributions of the underestimated retailers are very similar to the the distribution of the full data-
set (indicated by the black dashed line). From the figures it is clear that the model underestimates the number of 
visits to big retailers in locations with low retail activity concentration, such as supermarkets and other retailers 
that likely fall under convenience rather than comparison retail, where intra-store variety is more important than 
inter-store variety.

Outlook.  In this paper we have presented a location choice model, based on random utility theory and fol-
lowing the growing popularity of the cross-nested choice structure, we have tested this on unconventional data 
sources of different types. The novelty of the proposed model is that it simulates retailers at the individual level. 
This opens up exciting opportunities towards integrating the consumer location choice component with explicit 
retail location micro simulation models able to take full advantage of the emerging availability of detailed data 
sources while also incorporating complex behavior on price setting, network dynamics and risk management. The 
proposed model in its current form has been simplified (with no loss of generality) into assuming that all retail-
ers offer unique varieties of the same product. Moreover, it has been assumed that (i) all consumers have equal 
disposable retail budgets regardless of their location, (ii) all trips are uni-purpose (only shopping is considered), 
(iii) VOA rateable values are good indicators of floor-space rents and (iv) product prices do not vary in space. 
These assumptions mean that a considerable part of the complexity of the decision making mechanism is not rep-
resented by the model. The VOA and LTDS datasets that we are currently using have the potential to increase the 
complexity of the model significantly towards removing some of the existing simplifying assumptions, and when 
combined with passively collected social media datasets and formal datasets on economic activity (e.g. from the 
Business Structure Dataset developed by ONS), these models could offer sufficient detail to capture all the main 
dimensions of behavioral variation. Having said this, the basic model that we present in this paper remains very 
useful both as the baseline example of the proposed approach and as a benchmark; despite its simplicity, it is able 
to capture and reproduce both internal and external economies of scale very closely. Further immediate lines of 
research could consider different categories of retailers separately as well as applying the same analysis on data 
coming from other cities. Looking at the not too distant future, passively generated datasets of human presence 
promise to offer deeper insights into the dynamics of urban activities, including spatio-temporal patterns of 
shopping behavior. Having said that, the abundance of existing social media datasources and the relentless pace 
in which new data are currently being introduced, sustain the promise of accessible and highly dis-aggregated 
spatiotemporal information for anyone who manages to overcome lack of specification, representational biases 
and possibly absence of context37.

References
	 1.	 Batty, M. New ways of looking at cities. Nature 377, 574 (1995).
	 2.	 Bettencourt, L. & West, G. A unified theory of urban living. Nature 467, 912–913 (2010).
	 3.	 Barthélemy, M. Spatial networks. Physics Reports 499, 1–101 (2011).
	 4.	 Crucitti, P., Latora, V. & Porta, S. Centrality measures in spatial networks of urban streets. Physical Review E 73, 036125 (2006).
	 5.	 Batty, M. Big data, smart cities and city planning. Dialogues in Human Geography 3, 274–279 (2013).
	 6.	 Louf, R. & Barthelemy, M. Modeling the polycentric transition of cities. Physical Review Letters 111, 198702 (2013).
	 7.	 Louf, R. & Barthelemy, M. How congestion shapes cities: from mobility patterns to scaling. Scientific Reports 4 (2014).
	 8.	 Huff, D. L. A programmed solution for approximating an optimum retail location. Land Economics 42, 293–303 (1966).

Figure 4.  In this figure we present the results obtained analyzing the model’s errors in estimating the retailers’ 
success. In (a) we have ordered the errors by rank. The red and blue dashed lines indicate the thresholds we have 
used to define the subset of overestimated and underestimated retailers. In (b,c) we show that the overestimated 
retailers tend to be smaller than average with more floor-space than average in their neighborhood.



www.nature.com/scientificreports/

8Scientific Reports | 7: 5451  | DOI:10.1038/s41598-017-05304-1

	 9.	 Wilson, A. G. Entropy in urban and regional modelling (2011).
	10.	 Wilson, A. G. The use of entropy maximising models, in the theory of trip distribution, mode split and route split. Journal of 

Transport Economics and Policy 3, 108–126 (1969).
	11.	 Teller, C. & Reutterer, T. The evolving concept of retail attractiveness: What makes retail agglomerations attractive when customers 

shop at them? Journal of Retailing and Consumer Services 15, 127–143 (2008).
	12.	 Manchanda, P., Ansari, A. & Gupta, S. The “shopping basket”: A model for multicategory purchase incidence decisions. Marketing 

Science 18, 95–114 (1999).
	13.	 Williams, H. C. On the formation of travel demand models and economic evaluation measures of user benefit. Environment and 

Planning A 9, 285–344 (1977).
	14.	 Vanhaverbeke, L. & Macharis, C. An agent-based model of consumer mobility in a retail environment. Procedia-Social and 

Behavioral Sciences 20, 186–196 (2011).
	15.	 Heppenstall, A. J., Harland, K., Ross, A. N. & Olner, D. Simulating spatial dynamics and processes in a retail gasoline market: An 

agent-based modeling approach. Transactions in GIS 17, 661–682 (2013).
	16.	 von Thünen, J. H. & Hall, P. G. The Isolated State, an English edition of Der isolierte Staat (Pergamon, 1966).
	17.	 Hotelling, H. Stability in competition. In The Collected Economics Articles of Harold Hotelling, 50–63 (Springer, 1990).
	18.	 Christaller, W. Central Places in Southern Germany (Prentice-Hall, 1966).
	19.	 Dennis, C., Marsland, D. & Cockett, T. Central place practice: shopping centre attractiveness measures, hinterland boundaries and 

the uk retail hierarchy. Journal of Retailing and Consumer Services 9, 185–199 (2002).
	20.	 Alonso, W. A theory of the urban land market. Papers in Regional Science 6, 149–157 (1960).
	21.	 Krugman, P. Increasing returns and economic geography. Tech. Rep., National Bureau of Economic Research (1990).
	22.	 Krugman, P. What’s new about the new economic geography? Oxford Review of Economic Policy 14, 7–17 (1998).
	23.	 Dixit, A. K. & Stiglitz, J. E. Monopolistic competition and optimum product diversity. The American Economic Review 67, 297–308 (1977).
	24.	 Anderson, S. P., De Palma, A. & Thisse, J. F. Discrete Choice Theory of Product Differentiation (MIT Press, 1992).
	25.	 Suarez, A., del Bosque, I. R., Rodriguez-Poo, J. M. & Moral, I. Accounting for heterogeneity in shopping centre choice models. 

Journal of Retailing and Consumer Services 11, 119–129 (2004).
	26.	 Fiasconaro, A., Strano, E., Nicosia, V., Porta, S. & Latora, V. Spatio-temporal analysis of micro economic activities in rome reveals 

patterns of mixed-use urban evolution. PloS One 11, e0151681 (2016).
	27.	 Daly, A. & Zachary, S. Improved multiple choice models. Determinants of Travel Choice 335, 357 (1978).
	28.	 Ben-Akiva, M. E. & Lerman, S. R. Discrete Choice Analysis: Theory and Application to Travel Demand, vol. 9 (MIT Press, 1985).
	29.	 McFadden, D. Economic choices. The American Economic Review 91, 351–378 (2001).
	30.	 McFadden, D. Econometric models for probabilistic choice among products. Journal of Business S13–S29 (1980).
	31.	 Wen, C.-H. & Koppelman, F. S. The generalized nested logit model. Transportation Research Part B: Methodological 35, 627–641 (2001).
	32.	 Bierlaire, M. A theoretical analysis of the cross-nested logit model. Annals of Operations Research 144, 287–300 (2006).
	33.	 Um, J., Son, S.-W., Lee, S.-I., Jeong, H. & Kim, B. J. Scaling laws between population and facility densities. Proceedings of the National 

Academy of Sciences 106, 14236–14240 (2009).
	34.	 Pan, W., Ghoshal, G., Krumme, C., Cebrian, M. & Pentland, A. Urban characteristics attributable to density-driven tie formation. 

Nature communications 4 (2013).
	35.	 Yang, Y. & Diez-Roux, A. V. Walking distance by trip purpose and population subgroups. American journal of Preventive Medicine 

43, 11–19 (2012).
	36.	 Millward, H., Spinney, J. & Scott, D. Active-transport walking behavior: destinations, durations, distances. Journal of Transport 

Geography 28, 101–110 (2013).
	37.	 Zachariadis, V., Vargas-ruiz, C., Serras, J. & Ferguson, P. Decoding Retail Location: A Primer for the Age of Big Data and Social 

Media. Cupum, 2015 (2015).

Acknowledgements
All authors thank the EU FP7 for their support through the INSIGHT Project (Innovative Policy Modelling and 
Governance Tools for Sustainable Post-Crisis Urban Development) (http://www.insight-fp7.eu). M.B. wishes to 
thank the ERC for support through grant no. 249393-ERC-2009-AdG. D.P. acknowledges the support of the 
EPSRC grant RCUK EP/M023583/1 as part of the Digital Economy network and is grateful to C. Molinero and 
R. Morphet for continuous and useful discussions, and to A. Ialongo for a long and fruitful conversation on the 
analysis of the results. Authors would also like to acknowledge the contribution of C. Vargas-Ruiz, J. Serras and P. 
Ferguson in the development of the the model as described in ref. 37.

Author Contributions
D.P. and V.Z. contributed equally to the scientific research in this work. V.Z. developed the model, D.P. 
implemented it and performed the simulations, and they both analysed the results. M.B. directed the project as 
P.I. All authors were involved in the writing of the paper.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-05304-1
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-05304-1
http://creativecommons.org/licenses/by/4.0/

	Quantifying Retail Agglomeration using Diverse Spatial Data

	Results

	The Model. 
	Calibration of Cost Function. 
	Correlation with Data. 

	Discussion

	Outlook. 

	Acknowledgements

	Figure 1 We show the maximum likelihood modeled distributions and the observed ones.
	Figure 2 In this figure we present the results obtained comparing the retailer’s ratable value found in the VOA dataset, with the modeled turnovers Y(α, γ).
	Figure 3 In the left panel in (a), we show the correlation between the rateable value of retailers in the VOA dataset, and the check-ins found in Foursquare around them for different radii.
	Figure 4 In this figure we present the results obtained analyzing the model’s errors in estimating the retailers’ success.




