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Abstract 

The prevailing emphasis in developmental biology since the expansion of the molecular 

biology age has been that developmental decisions are instructive.  A cell differentiates 

to become a specific cell type because it receives a signal, whereas its neighbour, that 

does not receive the signal, adopts a different fate.  This emphasis has been generally 

accepted, largely because of the success of this view in tractable invertebrate model 

organisms, and the widespread similarities in molecular regulation to the development 

of more complex species.  An alternative emphasis, that cells make their own decisions, 

has until the past decade been conspicuously silent.  Here I trace the re-emergence of 

our appreciation of single cell decision-making in development, and how widespread 

this phenomenon is likely to be.  I will focus the discussion on the potential role of 

stochastic gene expression in generating differences between cells in the absence of 

simple instructive signals and highlight the complexity of systems proposed to involve 

this type of regulation.  Finally, I will discuss the approaches required to fully test 

hypotheses that noisy gene regulation can be extrapolated through developmental time 

to accurately specify cell fate. 

  



The excitement of the so-called Golden Age of developmental biology was in the 

unification of developmental phenomena with molecular biology. The ideas were simple 

and attractive.  The generation of form and pattern within an embryo could begin to be 

explained in terms of molecules with specific localisations and activities, either within 

cells or embryos.  A molecule localised at a particular part of an embryo would drive the 

cells near it into a specific fate.  Cells not seeing this signal would become something 

else.  In many situations, localised gene expression would match some previously 

described embryonic organiser, which was known to have the supposed activity.  The 

emergent unity between embryology and gene was satisfying to both undergraduate 

and expert scientist. 

 Much of the early momentum behind the successes of this era can be traced to 

pioneering genetic screens in relatively simple invertebrate models.  Mutants lacked 

specific structures, or had them in the wrong place.  The genes identified therefore 

determined cell identity at the correct position in the embryo.  As molecular biology 

became easier, and a multitude of homologous genes were found involved in analogous, 

and perhaps homologous processes in vertebrate development, developmental 

determinism- the view of genes providing a blueprint for pattern in an embryo- became 

real.  Putting a transcription factor into a fibroblast turns it into muscle.  Taking away 

the factor (with one of its friends) means the muscle is gone.  Disrupting another 

transcription factor can cause the loss of eyes.  Expressing it ectopically gives eyes on 

legs. 

 This was a triumphant phase in biology.  The instructive processes characterised 

are indeed widespread, and occur over multiple scales, derived from the asymmetric 

partitioning of determinants in a single cell or syncytium, through to populations of 

cells (organisers) with some predetermined signalling potential.  And as methods for 

imaging and measuring how genes pattern embryos have been greatly improved by the 

growing partnership between developmental biology and traditionally more 

quantitative sciences, the accuracy with which genes provide blueprints, and some very 

interesting mechanisms that help generate this accuracy, have been revealed.  

Simplicity and instruction are appealing.  If something controls something, we are at 

least temporarily sated.  That the something that controls also needs to be controlled, 

that it is not normally deleted or overexpressed, that a blueprint needs to deal with 

contingencies, can be dismissed, at least initially.  The view goes well beyond biology.  A 

standard history book still portrays the past as dominated by kings, queens, popes and 

their devious advisors, and not the contexts and events to which these symbols were 

completely enslaved. 

 Even during the Golden Age, the utility of the gene-centred instructive view had 

its non- and partial adherents (Nijhout, 1990).  Indeed there were some striking counter 

examples, such as observations that endoderm and mesoderm precursors arise 

stochastically in chick embryos, without any obvious positional bias (Stern and Canning, 

1990).  However, time was needed before a rebalancing of our views of development.   A 

successful concept will always require diverse and complex forms of attrition to be 

accurately contextualised, and alternative views need nourishment.   We can cite the 



lack of satisfaction emerging from years of mouse mutants with complex or minimal 

phenotypes.  However, these were and still are put down to “redundancy”, and less as a 

caveat to the gene-centric view.  More recently, as the systems biology age has gained 

momentum, there has been a growing tendency to highlight not the individual genes 

(which of course are necessary) but how they act in concert.  Sadly, there has been a 

tendency to exploit the systems label, but carry on working on genes and pathways in 

the standard way, which has retarded the incorporation of a pure systems view.  

Nevertheless, good things are often oversold in the short term, and undersold in the 

long, and the systems view has gained traction.  Over the same timeline, we have seen a 

proliferation and remarkable improvement in genome wide technologies for measuring 

gene expression, combined with methods to monitor the transcriptional and chromatin 

complexes that provide regulation.  It has understandably proven difficult to really 

comprehend the staggering complexity of these data sets without channelling our 

understanding through selected topical pathways and genes.   

These developments have occurred alongside a proliferation of studies on the 

gene expression states of individual cells.  Over the past 15 years, the widespread view 

has surfaced, combined with a broad range of new technology, that population average 

measurements do not adequately describe the gene expression of individual cells.  Gene 

expression is highly heterogeneous, in all forms of life (Balazsi et al., 2011; Eldar and 

Elowitz, 2010; Raj and van Oudenaarden, 2008). Closely related, neighbouring cells can 

have strikingly different gene expression profiles.  How can an instructive signal act 

reliably on its cellular substrate if the cellular substrate is not a constant? 

 In parallel, in part due to the strong surge in interest in stem cell biology, there 

has been a reinvigoration of the view that cell fate choices are not always instructive, 

and that many differentiation choices occur in an apparently stochastic manner, without 

clear deterministic instruction.  For example, ES cell populations differentiate into 

multiple cell types, despite uniform exposure to signals promoting differentiation (Graf 

and Stadtfeld, 2008). Inner cells of pre-implantation mammalian blastocysts become 

either embryo, or non-embryonic tissue, with no clear deterministic trigger 

(Xenopoulos et al., 2012). Other paradigms of stochastic fate choice have again come to 

the fore.  These include neural progenitor differentiation (He et al., 2012), 

haematopoiesis (Becker et al., 1963), specification of limb progenitors (Altabef et al., 

1997), lateral inhibition (Cohen et al., 2010), tissue regeneration (Krieger and Simons, 

2015), organoid differentiation (Ader and Tanaka, 2014) and Dictyostelium 

development (Weijer, 2004). 

 Two of these examples are particularly illustrative.  The generation of organ-like 

structures (organoids) from stem cells has become widespread.   Organoids can adopt 

high levels of organisation strongly reminiscent of their in vivo counterparts.  Yet this 

can happen in a relatively unstructured environment, without spatial cues to generate 

multiple fates in different parts of the cell mass.  Gut organoids can be derived from 

individual stem cells (Sato and Clevers, 2013), which indicates that all the information 

for generating the cell-type diversity and structure are contained within a single 

multipotent cell.  The environment is permissive, but the cells become different not 



because of some external signal operating on a subset of cells, but because the cells self 

pattern and self organise.  One of the purest forms of developmental self-organisation is 

Dictyostelium.  Upon starvation, these soil-dwelling amoebae assemble by chemotaxis 

into a multicellular structure.  This structure then sub-divides, by cell sorting, into the 

two major cell fates (Thompson et al., 2004).  The fates are not predetermined, and 

remain plastic and flexible until terminal differentiation.  The cells decide amongst 

themselves, without a specific localised signal telling them what to do.  How can this 

occur? 

 In this review, I will discuss the evidence that differences between cells during 

development can arise from spontaneous cellular heterogeneity in gene expression.  

Whilst this is an attractive concept, and promises to illuminate many developmental 

processes that have not been adequately understood from the perspective of 

instruction, it has remained a concept that has proven very difficult to test, and there 

are a number of caveats.  Heterogeneity may often be invoked where there is 

insufficient evidence to be confident it is a useful interpretation for causing cell fate 

divergence.  Indeed, I will draw on several examples where the embryo actively reduces 

heterogeneity to manage an otherwise instructive developmental programme.  I will 

close by suggesting experimental strategies that could be used to test for a role of 

expression heterogeneity in setting up the differences between cells during 

development. 

  

Some potential scenarios 

This will not be an exhaustive review of the single cell gene expression field, although I 

will refer to many of the current themes.  For an informed recent discussion, I refer 

readers to an excellent review by Symmons and Raj (Symmons and Raj, 2016).   

Individual cells, in otherwise uniform cell populations, can show tremendous 

spontaneous variability in their gene expression (Elowitz et al., 2002; Raj and van 

Oudenaarden, 2008; Raser and O'Shea, 2005).  This heterogeneity is proposed to arise 

from random molecular collisions in gene expression processes, and natural variation 

between cells in influences such as cell cycle state and local environment.  Levels of 

expression variability can be tuned, by intracellular (Battich et al., 2015; Gregor et al., 

2007; Lagha et al., 2013; Padovan-Merhar et al., 2015) and extracellular (Corrigan and 

Chubb, 2014) control.   

Cell fate regulators show pronounced levels of variability, from bacteria to 

mammalian cells (Losick and Desplan, 2008; Martinez Arias and Brickman, 2011).  An 

essential regulator can be very strongly expressed in one cell, while neighbours have 

negligible expression (Canham et al., 2010; Losick and Desplan, 2008; Maamar et al., 

2007; Stevense et al., 2010; Suel et al., 2007).   This means neighbouring cells may have 

very different competence during differentiation, potentially resulting in different fate 

choices.   

We can think of several simple scenarios for how this expression variability may 

be harnessed to generate the functional differences between cells occurring during 

development (Figure 1):  genes heterogeneous at the onset of development prime cells 



for specific fates (Figure 1A).  The standard mechanism inferred for this type of process 

is that there is noise in the level of some key regulator, with a specific threshold of 

expression above which a cascade of effects ensues and locks in a cell fate.  

Alternatively, expression fluctuates during development, with heterogeneity at the time 

of commitment determining fate (Figure 1B).  In this suggestion, the expression of the 

fate regulator is dynamic, and fluctuates from high to low in all cells at some point, with 

the expression level upon receipt of some additional signal locking in the effects of a 

specific expression level during development.  Another possibility is that heterogeneity 

increases during development, resolving into different fates (Figure 1C).  Finally, 

heterogeneity does not determine fate (Figure 1D), which relates to the possibility that 

cells have multiple trajectories to the same fate (Huang et al., 2005).   An alternative 

hypothesis, discussed later, proposes heterogeneity allows flexibility in fate choice.  The 

examples shown in Figure 1 are meant to be intuitive.  An attractive alternative 

representation is to think of cells as existing in multi-dimensional attractor states (or 

epigenetic valleys), with noise contributing to the magnitude and direction of a cell’s 

impetus out of one attractor and into the next (Huang et al., 2005). 

 

 
 

Figure 1. Different scenarios for how expression heterogeneity underlies cell differentiation to 
alternative fates X and Y.  Each dot represents a cell.  Green line in B and D shows time of fate 
“commitment”. See text for details. 
 

 

Early proofs of concept 

The most compelling examples of a role for spontaneous expression variability in 

determining cell fate outcome are not from multicellular eukaryotic development, but 

from bacteria.   Bacillus subtilis cells can develop competence to take up DNA from their 

environment in stationary phase.  Development of competence is driven by the 

regulator ComK.  Above a certain threshold in expression ComK activates its own 

expression, enforcing the decision to push the cell into the competent state.  ComK 

expression varies between cells, even in a well-stirred culture.  This variation means 

some cells will be below the threshold for positive feedback, and some cells will be 

above.  Artficially reducing the variation in expression of ComK, without altering its 

mean level, reduces the proportion of cells that exceed the threshold level, and so 

impairs the differentiation to competence (Maamar et al., 2007).  The essential test of 

the role of variability is the loss-of-function experiment- reduce the variability and see 



what happens.  Earlier studies had suggested that noise inversely scales with 

transcription rate, but is unaffected by the rate of translation.  Taking advantage of 

these properties of gene regulation, Maamar et al reduced expression variability by 

increasing the comK transcription rate, but by weakening the translation initiation rate 

on the comK RNA, left the mean expression of ComK in the population essentially 

unchanged.   An alternative loss-of-noise experiment was carried out by reducing the 

overall cellular noise, by inducing an absence of septation between dividing cells (Suel 

et al., 2007).  Here, variability is reduced by the mixing of cellular contents between the 

still-connected daughter cells.  The result was the same- impaired differentiation to the 

competent state.  These studies highlight the experimental approaches required to fully 

test a role for expression variability.  To date, and perhaps not surprisingly given the 

additional complexity involved in dealing with multicellular eukaryotic systems, these 

two studies have provided the most compelling evidence of a role for spontaneous gene 

expression variability as a substrate for cell fate specification.   

Perhaps the strongest example in a multicellular eukaryote is the case of the 

spineless gene in the Drosophila eye (Wernet et al., 2006).  Spineless is stochastically 

expressed in a subset of R7 photoreceptors is the developing eye.  Whether the 

ommatidia of the eye become “pale” or “yellow” depends upon whether or not their R7 

photoreceptor expresses spineless.  The stochastic expression of this gene ensures that 

pale and yellow ommatidia occur in the mosaic pattern necessary for colour vision.  

Unlike the Bacillus examples, it has not been demonstrated that the presence or absence 

of spineless expression in a cell maps onto a specific end fate, nor has the variability in 

spineless expression been subject to a loss-of-noise test.  It also represents a solution to 

symmetry breaking in an unusually highly ordered (almost crystalline) structure and is 

an example where stochasticity in gene expression generates a stochastic final pattern.  

Would an organism use stochastic gene expression to generate a more organised 

pattern in an organ critical for basic physiology?  A similar comment may be applied to 

other examples where stochastic gene expression may underlie a stochastic pattern, for 

example, in generating the cell-type specific expression of olfactory receptors in 

mammalian cells (Rodriguez, 2013), or the pigmentation on a butterfly wing (Brunetti 

et al., 2001).   However, the accusation that stochastic gene expression underlies “fate-

lite” cell decisions is not likely to matter to an insect detecting colour, or a mammal 

trying to decipher odours, or a butterfly trying to mimic a bad-tasting neighbour, and 

after more than a decade, the example of spineless remains difficult to ignore. 

 

Stem cell heterogeneity and stochastic gene expression- unrequited desire? 

In mammalian developmental biology, the view that stochastic gene expression 

underlies cell decision-making has been widespread for much of the last decade.  

Nowhere is this more prevalent than in the study of stem cell fate choices.  The fate 

choices that stem cells make can be highly unpredictable.  Unpredictable cell fate 

choices lend themselves to inferences of underlying probabilistic mechanisms.  The 

unpredictable fates can be readily observed in a culture dish of embryonic stem cells, 

where removal of factors promoting pluripotency generates a spectrum of different 



differentiation outcomes.  Even differentiation protocols optimised for a high level of 

cell type specificity generally fail to get a pure population of a specific progenitor fate.  

The diversity of fates spontaneously arising from a supposed uniform population 

supposedly underlies the potential for individual stem cells and unpatterned cell 

aggregates to develop into organ-like structures with multiple cell types, often showing 

organisation reminiscent of the native tissue (Sasai, 2013). 

 Stochastic fate choices are also a highly conserved feature of stem cell decision-

making in vivo.  The partitioning of the inner cell mass (ICM) of the mouse blastocyst 

into epiblast (prospective embryo) and primitive endoderm (PE; prospective 

extraembryonic tissue) arises independently of any clear positional cues.  The epiblast 

and PE arise in a salt and pepper manner in the ICM, before spatially segregating prior 

to implantation, reminiscent of the cell fate partitioning in Dictyostelium.   Stochastic 

fate choices have been revealed in a plethora of other stem cell populations in 

mammals.  The probabilistic nature of these choices has been demonstrated by the 

analysis of long-term lineage tracing studies (Krieger and Simons, 2015).  Based on the 

quantitative analysis of the resulting sizes of the labelled clones, models of deterministic 

asymmetric cell choices versus population asymmetric choices (stochastic, but 

governed by deterministic overall probabilities) can be distinguished.  In the majority of 

cases, in a wide range of tissue types, the choices are stochastic.  These lineage-tracing 

studies are long term, often occurring over several months, and do not report the gene 

expression choices of cells that might give rise to stochastic behaviour.  To measure the 

expression changes underlying these choices requires single cell imaging of gene 

activity- how do expression dynamics map onto the fate of a single cell?  In addressing 

this question, a considerable amount of study has been concentrated on a single 

pluripotency factor. 

 Nanog is a homeodomain transcription factor, identified by virtue of its ability to 

sustain self-renewal of mouse embryonic stem cells (mESCs)(Chambers et al., 2003).  

Deletion of Nanog predisposes mESCs to differentiation.  Nanog became the “poster-

child” of mammalian stochastic gene expression when it became clear that the protein is 

heterogeneously expressed in standard mESC culture conditions, and that high and low 

expression levels predispose mESCs to pluripotency and differentiation respectively 

(Abranches et al., 2014; Chambers et al., 2007).  The mouse blastocyst also shows 

heterogeneous Nanog expression, with Nanog marking the epiblast and not the PE 

compartment (Xenopoulos et al., 2015).  The high and low expression states, when 

separated, were shown to be able to repopulate the entire range of Nanog expression 

heterogeneity within a few days (Chambers et al., 2007).  This inter-convertability of 

expression states led to speculation that Nanog may operate as a cell fate determinant 

along the lines of the scenario in Figure 1B.  Analogous to the Bacillus competence 

response, it was proposed that Nanog shows noisy switch-like behaviour (Kalmar et al., 

2009), which promotes the pluripotent state when high and differentiation when low.   

This view was not universally held.  A counter argument proposed that Nanog 

heterogeneity was an epiphenomenon of developmental progression, with the high and 



low states trapped under culture conditions favouring self-renewal and the 

maintenance of pluripotency (Smith, 2013). 

 A recent series of quantitative long-term live cell imaging studies, using a range 

of different Nanog expression reporters has challenged simple views of the importance 

of Nanog heterogeneity in cell decision-making (Cannon et al., 2015; Filipczyk et al., 

2015; Singer et al., 2014).  These studies are all agreed that Nanog expression is highly 

stable in standard mESC culture, even accounting for the different stabilities of the 

fluorescent protein reporters used.  The rate of change in Nanog expression in culture is 

considerably slower than rates of change for other mammalian proteins (Sigal et al., 

2006), implying Nanog levels are actively stabilised, even outside the context of an 

embryo.  Contributions to this stability were shown to arise from a community effect 

phenomenon, in addition to any within-cell “epigenetic” inheritance of gene expression 

state (Cannon et al., 2015).  In other words, cells signal to their neighbours and this 

maintains Nanog expression level.  A parallel study imaging Nanog reporter expression 

in mouse blastocysts also found stable expression, with cells that initiate expression 

maintaining Nanog levels throughout blastocyst development, and only a few rare cells 

initiating expression after the initial wave of expression (Xenopoulos et al., 2015).  

Whilst the sum of these studies does not refute the idea that Nanog heterogeneity drives 

cell decision making- an early decision to express may still finalise a cell fate decision- 

the scenario illustrated in Figure 1B does not seem to apply. 

 A role for gene expression heterogeneity in providing the impetus for cell fate 

choice has also been proposed for an earlier fate choice in the mouse embryo.  At the 8 

cell stage, the cell mass undergoes compaction, resulting in the generation of inner and 

outer cells.  Cells remaining internal become ICM, with external cells becoming TE 

(prospective extra-embryonic).  A recent study argues that heterogeneous expression of 

Sox21 biases cell fate, with low Sox21 favouring extra-embryonic fates (Goolam et al., 

2016).  Although the variability in Sox21 protein expression is low, at least compared to 

Nanog in the blastocyst, and the low Sox21 cells were not tracked to their final fate, 

experimental knock-down of Sox21 at the 4 cell stage biased cells towards an extra-

embryonic fate.  A recurrent theme in approaches to test the role of expression 

heterogeneity in stochastic cell fate choice is to knock-down, or overexpress the 

candidate noisy regulator.  This of course, is creating a new cell state, not necessarily 

simply related to the endogenous situation.  Ideally one should reduce the variance 

whilst leaving the mean expression level in a population intact.  In support of the role of 

expression heterogeneity in early cell fate choices in the mouse, a parallel study (White 

et al., 2016) used a sophisticated combination of imaging and tracking approaches and 

revealed that Sox2, which operates upstream of Sox21, and is also heterogeneously 

expressed, shows more long-lived binding to chromatin in cells destined to become 

embryonic.  However, the debate about the nature and timing of early cell fate decisions 

in the mouse continues, with another recent long-term live cell tracking study clearly 

demonstrating that cell fate commitment is only observed at the 16 cell stage, and not 

especially penetrant until the 32 cell stage (Strnad et al., 2016).  To make a more 

general comment, many mESC and embryo studies on stochastic cell fate seem to make 



the implicit assumption that noisy genes provide the variance upon which cell fate 

bifurcations emerge.  After nearly a decade of searching, the evidence for this view is 

still patchy, and other models have gained support.  For example, a persistent and 

attractive alternative model for the first TE/ICM decision is not that it is driven by 

expression noise, but by the chance position of the cells relative to the inside and 

outside of the embryo after compaction (Sasaki, 2017).  Inside and outside cells, by 

default, have different signalling and mechanical environments.  It seems reasonable to 

assume that the genes are merely secondary to these influences, rather than isolated 

noise generators in their own right. 

 

The isolated noise generator 

What privilege do genes have to be the source of variation?  This is perhaps the centre 

of the argument.  Genes are regulated by signals- to transcription factors, to chromatin, 

at the many steps from the initiation of transcription through to the dynamic 

localisation, modification and degradation of the protein product.  Yet genes create the 

noise?  This argument is of course simplistic, and historically rooted in the potency 

attributed to early-characterised transcription factors, in addition to the comparative 

simplicity of measuring gene activity over most other activities in the cell.  And of 

course, for development to progress, the genes must change.  It doesn’t mean they act in 

isolation to dictate the course of differentiation.  However, the idea that any 

spontaneous variation emerges at the gene has become pervasive (Justman, 2015). 

 Although it is a concept that many papers in the single cell field include in their 

opening pitch, its origins were not intentional.  Transcription occurs in irregular bursts, 

in all forms of life (Bahar Halpern et al., 2015; Chubb et al., 2006; Golding et al., 2005; 

Raj et al., 2006; Suter et al., 2011).  These bursts have been traditionally measured by 

two approaches, by live cell detection of the dynamics of newly synthesised RNA or by 

measuring the amount of RNA (usually by single molecule RNA FISH) for a specific gene 

in each cell and fitting the data to a model of the transcriptional process (Chen and 

Larson, 2016).  Both approaches have their merits and their limitations.  Although the 

live cell approach can be used to accurately count the RNAs arising at the transcription 

site (Larson et al., 2011; Tantale et al., 2016), the intensive illumination required for 

single molecule imaging is damaging to samples over developmental timescales.  In 

practice, the need to limit photodamage reduces the quantitative potential of live cell 

RNA detection and requires that strongly expressed genes are studied.  The FISH 

approach is limited by the need to use fixed cells, and so dynamic information can only 

be inferred from the model.  The model generates the quantitative parameters 

describing transcription bursts by fitting, usually, to a two state model, where the gene 

exists in an inactive and a permissive state, with a certain frequency of switching 

between the two states (Paulsson, 2005).  According to the level of mean and variance 

in transcript counts, different bursting parameters are generated.  Therefore variance 

comes from bursts.  Genes with more variance in their expression are “bursty” (Bahar 

Halpern et al., 2015).  Genes with low variance are not (Zenklusen et al., 2008).  It 

follows that at a cursory glance transcription is responsible for variance.   



An intuitive view of how molecular noise might be incorporated into the 

transcription process would relate to the many multi-subunit complexes involved in 

generating a mature mRNA, in addition to the vagaries of the chromatin template.  With 

the likely number of proteins that need to be assembled, rapidly, again and again, there 

seems a considerable amount of room for noise to creep into the process.  Indeed the 

process of a transcription factor finding its target, even assuming the protein is 

modified and ready to go, seems baffling in its overall reliability.  However, the ability of 

some strongly expressed genes to churn out tens of RNAs in a few minutes (a small 

fraction of the lifetime of many RNAs) seems to argue that most of the steps of 

transcription do not have to be especially limiting (Corrigan et al., 2016; Garcia et al., 

2013; Stevense et al., 2010). 

 A number of recent studies fill in much-needed counterweight to the view that 

functional variability emerges at the gene (rather than at the countless other places that 

cells can be regulated).  Firstly, it is clear that transcriptional burst parameters, 

measured live or by FISH, are sensitive to a wide variety of cell and population-level 

features.  These include cell size and cell cycle time (Padovan-Merhar et al., 2015), 

strength and frequency of extracellular signalling (Cai et al., 2014; Corrigan and Chubb, 

2014; Molina et al., 2013; Senecal et al., 2014; Stevense et al., 2010), cell density 

(Corrigan and Chubb, 2014), developmental time (Ferraro et al., 2016; Muramoto et al., 

2012) and embryonic context (Bothma et al., 2014; Garcia et al., 2013; Lucas et al., 

2013), enhancer and promoter elements (Corrigan et al., 2016; Fukaya et al., 2016), 

chromatin state (Muramoto et al., 2010), DNA supercoiling (Chong et al., 2014) and not 

surprisingly, the nature of the gene itself (Muramoto et al., 2012; Suter et al., 2011).  

Indeed, a recent comprehensive FISH study on Hela cells showed that single cell 

transcript count variability could be almost entirely explained by different defined 

intra- and extracellular sources of variation, leaving very little room for variability to 

come from molecular noise (Battich et al., 2015).   This result is remarkable, especially 

given the absence of temporal information (individual cell histories) in the FISH dataset.  

It is very difficult in practice to accurately apportion variability between defined 

sources or molecular noise (Hilfinger and Paulsson, 2011), although the Battich study 

went to great pains to demonstrate causality between cellular phenotype and variation.  

It will be very interesting to see how well this result holds in more developmental 

contexts.  Along these lines, a recent live imaging study on Nanog heterogeneity, 

although not as comprehensive as the Hela study in determining sources of variation, 

revealed that even this single gene has a diverse range of interactions with multiple 

features of the cell state and local environment (Cannon et al., 2015), such as cell cycle 

duration, cell motility, local signalling and determinants inherited from the previous 

generation.   A notable feature of this study was the demonstration that a second 

pluripotency regulator, Rex1, showed both overlapping and distinct regulatory 

interactions to Nanog.  The implication of this finding is that even if stochastic gene 

expression does provide the raw variance for cell decision-making, it may not be 

prudent just to consider the variability for only a single gene, no matter how exposed it 

is in the regulatory network. 



 The potential fragility of the gene-only view is apparent in the diverse situations 

where the influences of some of the aforementioned cell and population features 

become penetrant in the cellular phenotype.  This is perhaps most clearly emphasised 

by the developmental effects of the spontaneous heterogeneity in cell cycle position and 

timing in cell populations (Pauklin and Vallier, 2013; Primmett et al., 1989; Weijer et al., 

1984).  The cycle can act as a cell autonomous timer, which coupled with some global 

trigger- such as a differentiation signal- can lock cells into a specific state, which then 

triggers other downstream events, such as the induction of neighbouring cells.   This 

would be much like the scenario in Figure 1B, placing the emphasis on a cellular 

process, rather than the single gene. 

  

Reducing noise, sharpening noise, silent noise 

In the most instructive developmental systems, we might be expected to see the least 

noise.  For a signal to be accurately perceived and interpreted, the signal itself needs to 

reliably perceptible, and the receiving cell must be consistent enough in its responses to 

generate the desired effect.  The early development of Drosophila is generally 

considered a model for patterning accuracy and reproducibility, and indeed reveals 

several mechanisms by which cells enhance their signal perception by generating 

comparatively predictable transcriptional responses.  At a first glance, the early embryo 

of the fly seems well set-up for transcriptional accuracy.  The embryo is syncytial, 

allowing spatial averaging of chance fluctuations in transcription factor concentration 

between neighbouring nuclei by diffusion (Gregor et al., 2007).  Nuclei are restricted in 

their positions, which means they are unable to sample too many strong conflicting 

signals during the laying down of global pattern.  The cell cycles are highly synchronous, 

meaning differences in cycle position are unlikely to be strongly present to bias the 

transcriptional responses of nuclei to global inducers.  Finally, the embryo is seeded 

with localised determinants derived from the mother (Petkova et al., 2014), which 

ensure the nuclei do not have much opportunity to jiggle around in multi-dimensional 

state-space waiting for some chance event to hint at a possible fate.  Overall, these 

features are manifest in the tremendous accuracy and reproducibility of developmental 

boundary formation in the early embryo.  Drosophila has also emerged as an excellent 

model for live imaging of transcription (Garcia et al., 2013; Lucas et al., 2013), allowing 

the accuracy of the transcriptional events to be visualised in real-time, and permitting 

the dissection of genetic elements that contribute to transcriptional accuracy, which 

provides us with several additional noise-reduction concepts. 

 Firstly, some genes have shadow enhancers.  These are enhancers that specify an 

overlapping temporal and spatial pattern of expression to the dominant enhancer.  This 

allows buffering of the regulatory inputs to a gene, and given the potential 

unpredictability of the transcription factor search for its binding site, will increase the 

probability that a gene is expressed at the correct place and time.  If these shadow 

enhancers are perturbed, pattern formation can be disrupted (Perry et al., 2010).  

Secondly, many early developmental genes have a promoter-proximal polymerase 

bound prior to the onset of strong expression.  Pausing is thought to provide rapid and 



reliable activation of the gene, by reducing the complexity of the transcription initiation 

process.  If paused promoters are replaced by non-paused promoters, then 

transcription becomes more noisy, and developmental defects occur (Lagha et al., 

2013).  Interpreting this effect is not necessarily simple.  Even if primed and ready to go, 

a polymerase is still awaiting the signal to start.  If this signal is noisy, then the paused 

polymerase will potentially begin a surge of unwanted transcription- more noise- unless 

the system is somehow additionally configured to buffer unwanted signal fluctuations.  

Finally, genes can show a short-term memory of their transcriptional state in the 

previous cell cycle (Ferraro et al., 2016; Muramoto et al., 2010).  Genes that were 

strongly expressed in the mother cell will be activated more readily than genes that 

were not.  This effect may drive a strong and reliable induction of transcription in the 

next cell cycle, which may be desirable if the transcription has been accurately specified 

in the first place.   

Without active suppression of the variability in transcription, many systems may 

be able to tolerate this variation- either because of redundancy in the components 

mediating a particular function, or because other aspects of the system allow buffering 

(Figure 1D).  These include adaptation in cellular signalling networks and compensation 

by gene expression processes downstream of transcription (Cote et al., 2016; Shah and 

Tyagi, 2013).  Transcriptional noise can also be dampened by the action of an oscillating 

extracellular signal (Corrigan and Chubb, 2014), at least in the context where the gene is 

responsive to the signal.  Similarly, an intracellular oscillator based on autorepression 

may act to dampen transcriptional noise during somitogenesis (Lewis, 2003).  We 

predict that secreted, diffusible signals may also tolerate a large degree of 

transcriptional noise in their expression, as their free-range protein products spatially 

mute the nuclear responses of the cell.  More generally, if the RNA and protein lifetime 

are long, then noisy transcription is less likely to be visible.  Similarly, if the timescale of 

the cell decision is considerably more than the lifetime of the variance in gene 

expression, then the variance is not likely to be particularly penetrant in the phenotype 

(Little et al., 2013).   

 Unpredictability in gene expression may also operate to regulate development in 

counter-intuitive ways.  Superficially, we think that noise would be disruptive to 

boundary formation in embryos.  However, the opposite seems to be true during 

rhombomere specification in zebrafish (Zhang et al., 2012).  Here, inaccuracies in the 

initial sub-division of the hindbrain into segments are resolved by feedback.  Cells 

perceive the inaccuracy in their initial specification and respond by changing their gene 

expression to reflect their actual position.  Modelling suggests this process may be 

dependent upon gene expression noise.  We can understand this behaviour if we allow 

that noise maintains an extended range of cellular sensitivities, so if by chance a cell 

falls on the wrong side of a segment boundary- perhaps by motility or a consequence of 

the orientation of cell division- then the expanded range of sensitivity to signals stops 

the cells getting locked into an inappropriate fate. 

 In biological and non-biological systems undergoing a critical transition, an 

increase in noise is a signature of the oncoming change (Scheffer et al., 2009).  A 



standard example is the volatility in stock markets during the prelude to a crash.  Three 

recent papers describe a similar signature in the build-up to cell fate decisions (Figure 

1C).  Two studies used single cell transcript analysis of cultured cells to study the gene 

expression diversity in cell populations prior to a cell fate bifurcation (Bargaje et al., 

2017; Richard et al., 2016), and revealed a significant increase in expression variance of 

many genes just before the split.  The third study used live tissue imaging of the 

expression of a heterogeneous cell fate regulator during Drosophila eye disc 

differentiation (Pelaez et al., 2015), with transient peak in expression variability 

observed as the cells progressed to differentiation.  The functional significance of this 

diversity is unclear, but one can use the metaphor of Waddington’s landscape for an 

intuitive explanation (Waddington, 1957).  As the ball in the valley approaches a branch 

point, the terrain transiently flattens out as the two new valleys take shape.  With the 

ball on a broad valley floor, rather than confined to a narrow channel, it is more 

sensitive to deflection. 

 

Prospects 

The early studies showing that gene expression variability provides the cell type 

diversity underlying cell fate choices, such as those on bacteria and the Drosophila eye, 

have not been effectively mirrored in large animal systems.  That does not mean that 

different mechanisms necessarily apply, and perhaps relates to how much more 

complex the regulation actually is, and how emphasis on a single gene, such as comK or 

spineless, may confound analysis.  A potential roadmap for testing the hypothesis that 

gene expression variability prescribes the direction of a cell fate choice in your favourite 

system requires: 1) The gene you wish to test is highly variable in its expression, at the 

protein level (assuming the transcript encodes a protein) 2) The ability to monitor the 

expression of the gene and preferably also its protein product over the time course of 

the developmental transition.  This requires live imaging, in the normal developmental 

context, to be able to test to what extent the expression level of your candidate 

regulator maps onto a specific cell fate outcome (Pelaez et al., 2015; Xenopoulos et al., 

2015).  3) Ideally, one should experimentally test the importance of the variability by 

reducing it, without altering the population mean expression.  This is non-trivial- the 

neat genetic tricks carried out for the competence studies in bacteria may not be 

directly transferrable to more complex developmental systems.  Large-scale promoter 

mutagenesis to generate low variance promoters provides one route (Wolf et al., 2015).  

4) Knowing that variability in your favourite gene is important is not sufficient- where 

does the variability comes from?  There may be multiple weak sources (Battich et al., 

2015; Cannon et al., 2015), which might provide robustness in cell decision-making.   5) 

Ideally the study would include some probabilistic modelling approaches, so that with 

the data in hand, one can evaluate what proportion of the functional variance in 

differentiation is contributed by the candidate gene.  The endpoints of these analyses 

will likely depend on the system, the cell population size, the timescale of the decision 

the ability of the population to correct for errors in the initial specification events and 

the proportion of the control that the cell dares to channel through a single locus. 
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