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Abstract  

Aging is the single greatest risk factor for the development of disease. 

Understanding the biological molecules and mechanisms that modulate aging 

is therefore critical for the development of health-maximizing interventions for 

older people.  The effect of fats on longevity has traditionally been 

disregarded as purely detrimental. However, new studies are starting to 

uncover the possible beneficial effects of lipids working as signaling 

molecules on health and longevity. These studies highlight the complex links 

between aging and lipid signaling. In this review we summarize accumulating 

evidence that points to changes in lipid metabolism, and in particular lipid 

signaling, as an underlying mechanism for healthy aging.  
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Aging can be modulated  

The discovery that environmental and genetic interventions can increase 

lifespan in diverse model organisms inspired a revolution in the search for the 

biological bases of aging [1]. By understanding how aging acts as the major 

risk factor for age-associated conditions such as cancer, neurodegenerative 

and metabolic diseases [2], we may learn how to prevent these conditions. 

Recently, nine different hallmarks of aging were proposed [3], providing a 

reference framework that allows a better understanding of the mechanisms 

underlying longevity and healthy aging. These hallmarks interact with each 

other, especially at the metabolic level [4], but the mechanisms that govern 

these interactions remain largely unclear. Interestingly, multiple studies have 

started to pinpoint a pivotal role for diverse lipids in lifespan-extending 

interventions, suggesting that lipid metabolism may be a key component in 

healthy aging [5,6]. This review focuses on recent data uncovering how lipid-

signaling molecules modulate life-extending interventions, particularly in the 

nematode worm Caenorhabditis elegans. Most of these lipid signals induce 

their pro-longevity transcriptional changes through nuclear receptor (NR) 

transcription factors, while others seem to re-balance lipid homeostasis. 

Finally, we discuss conservation of these lipids and their effectors, and how 

they might affect other organisms, including humans. 

 

Nuclear receptors and dauer formation in C. elegans 

The ability of organisms to respond to different environmental conditions is 

fundamental for development and longevity-assurance. Organisms integrate 

these responses by, for example, the production of hormones and the 
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regulation of NRs. NRs work as molecular switches whose transactivation 

activity is controlled by the presence of lipophilic hormones produced in 

response to diverse stimuli [7,8].  

 

Due to its short lifespan and ease for genetic manipulation, C. elegans has 

been a key model organism in the study of lifespan-extending interventions 

and the role therein of multiple NRs [9]. The best-studied NR in C. elegans is 

DAF-12 (dauer formation related gene). daf-12 and around 30 other daf genes 

control the developmental transition of L1 larvae into either a stress-resistant 

diapause state, called dauer, or reproductive development (Box 1) [10]. DAF-

12 transactivation activity is regulated by its ligands, dafrachronic acids (DA), 

which are cholesterol-derived molecules whose production is tightly controlled 

by environmental conditions [11]. In addition to dauer formation, DAF-12 

modulates lipid metabolism, developmental timing and lifespan [7]. Lifespan 

modulation by DAF-12 is complex, since it can promote or repress longevity 

under low or high temperatures, respectively. Interestingly, modulation of 

lifespan in response to temperature is independent of DA [12].  

 

Cholesterol and insulin signaling mediated longevity 

Other lifespan-extending interventions also require DAF-12 and its ligand DA. 

A prominent example is the insulin / insulin-like growth factor signaling (IIS) 

pathway, an evolutionarily conserved, nutrient-sensing network that 

modulates a plethora of biological processes, including development and 

lifespan [13]. IIS reduction extends lifespan in multiple model organisms, and 

this effect is, in part, mediated by regulating the conserved FOXO 
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transcription factors [14,15]. In C. elegans, mutation of daf-2, the homolog of 

mammalian insulin-like growth factor (IGF) and insulin receptors, yields long-

lived worms, and this longevity requires the presence of DAF-16, the worm 

FOXO homolog [14]. Interestingly, daf-2 genetically interacts with daf-12 to 

modulate lifespan [16]. This interaction is intricate, as DAF-12 acts as an anti- 

or pro-aging factor in daf-2 mutant worms in the presence or absence of DA, 

respectively [12]. This observation indicates that both DAF-12 and DA are 

fundamental for reduced IIS induced longevity (Figure 1). 

 

The association between reduced IIS and longevity is regulated not only by 

DAF-16 but also by multiple other proteins. Among these, the nematode 

sterol-binding protein 1 (NSBP-1) is especially interesting due to its ability to 

bind cholesterol, and therefore work as a cholesterol sensor [17]. NSBP-1, 

much like DAF-16, is phosphorylated under high insulin signaling by AKT, and 

thereby excluded from the nucleus. Conversely, under reduced IIS, both DAF-

16 and NSBP-1 migrate into the nucleus and interact, but only under low 

cholesterol concentrations (Figure 1). Both proteins regulate the transcription 

of a small set of genes involved in lipid metabolism and aging [17]. However, 

it is unclear whether NSBP-1 can regulate additional DAF-16-target genes 

and whether this mechanism of FOXO regulation is conserved in mammals. 

Moreover, DAF-12 and DAF-16 induce a negative feedback on DA synthesis 

upon dauer formation [18], suggesting that cholesterol levels are affected by 

their interaction, which could have implications for aging modulation, perhaps 

through NSBP-1. These studies thus show a link between cholesterol 

metabolism and lifespan. 
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The Drosophila melanogaster homolog of DAF-12, DHR96, binds cholesterol 

and modulates lipid metabolism by regulating diverse target genes [19,20]. 

DHR96 is required for the enhanced xenobiotic detoxification induced by 

lowered IIS, but not for the lifespan extension, which is unaffected by removal 

of this gene [21]. The mammalian homolog of daf-12, farnesoid X receptor 

(FXR), is also involved in cholesterol and lipid metabolism [22]. FXR 

expression decreases with age-associated endoplasmic reticulum (ER) stress 

and, as a consequence, plays a prominent role in the development of fatty 

liver [23]. However, whether FXR plays a role in mammalian lifespan 

regulation is unknown. In addition to regulating activity of diverse NRs, IIS can 

also modulate the mevalonate pathway, which in turn produces sterols and 

isoprenoids [24], adding an extra layer of complexity between IIS and its 

interaction with cholesterol.   

 

Does dietary restriction promote longevity through lipid signals? 

Activity of the IIS network is linked to dietary restriction (DR), which is the 

most robust lifespan-extending and health-promoting intervention. DR, 

broadly defined as a reduction in food intake that avoids malnutrition, was first 

reported over 80 years ago to extend the lifespan of rats [25]. DR has since 

been shown to increase health and lifespan in a plethora of organisms, 

including yeast, worms, flies, mice and even primates [25–29]. In addition, DR 

improves health and has a beneficial effect on risk factors for age-related 

disorders such as cancer, diabetes and cardiovascular disease in humans 

[30]. In C. elegans, at least nine different DR regimes exist, with differences in 
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the way that they modulate lifespan [31,32]. However, these regimes can be 

broadly classified in the three categories discussed below.   

 

Dietary restriction through eat-2 mutation  

Genetic mutation of eat-2, disturbs an acetylcholine receptor subunit in the 

pharynx of the worm and reduces pumping and therefore food intake, thereby 

mimicking DR and extending lifespan by up to 40% [33]. Interestingly, an 

RNAi screen with eat-2 mutant worms identified nhr-62, a hepatic nuclear 

factor 4α (HNF4α)-like NR homolog, as a critical factor in DR-induced 

lifespan-extension (Figure 2) [34]. Other hallmarks of DR, such as the 

decreased triglycerides and enhanced autophagy also rely, at least partially, 

on NHR-62-dependent transcriptional regulation. Moreover, NHR-62 controls 

the expression of genes involved in lipolysis and fatty acid desaturation, 

thereby implicating lipid metabolism in this form of DR-mediated lifespan 

extension [34].  

 

In addition to NHR-62, another HNF4α-like homolog, NHR-49, regulates lipid 

metabolism and lifespan in C. elegans, [35]. This NR is also required for eat-2 

lifespan extension, which is reversed by depletion of nhr-49 by RNAi. eat-2 

longevity is dependent on regulation of genes associated with β-oxidation by 

NHR-49 [36]. However, whether any lipid acts as a ligand for either NHR-49 

or NHR-62 is still unknown (Figure 2). In mice and flies, HNF-4 regulates lipid 

metabolism in response to starvation and its ligands are free fatty acids [37–

40]. Hence, it is possible that HNF-4 proteins control a gene network that 

regulates the production of “starvation signals”. These signals would in turn 



 7 

act as ligands for these NRs and be fundamental for lifespan modulation 

under DR.  

 

Dietary restriction through dilution of bacterial food 

Dilution of bacterial food (BDR) was first reported to extend lifespan of C. 

elegans lifespan almost 40 years ago [41]. BDR worms have increased 

expression of DAF-9, a critical enzyme in DA biosynthesis, and therefore 

increased levels of this hormone. Surprisingly, under these conditions, DA, 

but not its receptor DAF-12, is required for lifespan extension. Instead, DA 

relies on another NR, NHR-8, which controls cholesterol homeostasis to exert 

its beneficial effects on lifespan [42,43] (Figure 2). Further, NHR-8 acts 

upstream of let-363, the worm homolog of mTOR, a prominent metabolic 

regulator that responds to nutritional inputs [27], which in turn affects germline 

plasticity. This observation is intriguing, because DR is generally associated 

with a decrease in fertility, even though longevity and fecundity can be 

uncoupled in flies [44]. While it is still unclear whether DA binds directly to 

NHR-8, these results provide a novel link between steroid signaling, mTOR 

and lifespan under DR [42]. It is important to highlight that BDR modulates 

lifespan in a cell non-autonomous manner, by regulating the function of the 

SKN-1 transcription factor, suggesting the existence of one or more 

“starvation signals” [45]. Furthermore, NHR-62 seems to partially regulate the 

response to BDR [34], suggesting that this transcription factor is involved in at 

least two different kinds of DR, eat-2 mutation and BDR. 

 

Dietary restriction through intermittent fasting  
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An additional DR regime, called intermittent fasting (IF), requires cycles of ad 

libitum food availability and complete food deprivation. Like the previously 

described regimes, IF also extends lifespan in diverse organisms such as 

worms and mice. Intriguingly, mice on IF can consume the same or even 

more calories than ad libitum fed mice and still reap the beneficial effects of 

DR [46]. This observation suggests that IF induces some form of “starvation 

signals” that are more important than the amount of calories eaten. In C. 

elegans, an IF regime of 2 days on/2 days off food increases lifespan and this 

depends on at least two transcription factors, DAF-16 and AP-1 [32,47]. The 

regulation of IF-induced longevity by these two transcription factors seems to 

be partially explained by expression of E3 ubiquitin ligases, which in turn 

modulate proteostasis (the regulation of protein synthesis and degradation) in 

response to “starvation signals” (Figure 2) [47].  

 

Worms are unable to synthesize cholesterol, and its removal from the food 

medium prevents lifespan-extension induced by IF [48]. This is not a 

developmental effect, because withdrawal of cholesterol only during 

adulthood has similar effects. Furthermore, cholesterol deprivation 

suppresses daf-2-induced longevity, suggesting that cholesterol is required for 

both reduced IIS and IF-induced longevity [48]. As daf-2 longevity is 

dependent on DAF-16 regulation by NSBP-1, and NSBP-1 is regulated by 

cholesterol [17], it is possible that IF-induced lifespan extension is also 

dependent on the ability of NSBP-1 to bind to cholesterol and DAF-16. 

Consistent with this, RNAi against daf-16 or nsbp-1 partially suppresses the 

lifespan extension achieved by IF [32,47,48]. However, it is currently unclear 
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whether cholesterol regulates only DAF-16 subcellular localization, or also its 

transactivation activity.  

 

Dietary restriction affects lipid metabolism in mammals 

In mammals, IF and DR also extend lifespan and have profound effects on 

energy metabolism, altering fat stores and the production of various hormones 

such as growth hormone (GH), leptin and adiponectin [49–52]. These 

hormones are in turn regulated by growth-hormone releasing-hormone 

(GHRH), a hypothalamic-derived hormone. Mice that lack GHRH are long-

lived and have reduced levels of leptin and increased levels of adiponectin. 

However, the lifespan of this already long-lived GHRH-KO mouse can be 

further extended by DR, suggesting that DR does not rely on this particular 

hormone to modulate aging [53].  

 

A meta-analysis of transcriptional changes associated with DR in mice and 

rats, found that genes associated with hormone signaling and lipid 

metabolism are highly perturbed [54]. Moreover, recent studies in mice 

demonstrated that DR affects saturation and elongation of several fatty acids 

[55,56]. Interestingly, the adiposity changes associated with DR are different 

from those observed in normal aging, as aging seems to particularly affect 

phospholipid composition [55]. It is therefore possible that one of the 

underlying mechanisms modulating lifespan, at least under DR, is the 

regulation of lipid metabolism, although causality remains to be established.  
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In humans, multiple studies have established a clear connection between 

cholesterol levels and mortality [57]. Interestingly, population studies have 

shown that the offspring of long-lived individuals have healthier cholesterol 

markers [58], indicating that at least some forms of familial longevity may 

exert control over cholesterol homeostasis. In addition, short dietary 

interventions (with 12.5% - 25% caloric restriction) are sufficient to bring 

cholesterol makers to a healthier state [30,59,60]. These observations further 

highlight a prominent link between cholesterol homeostasis in longevity. Yet, 

the possible beneficial effects of cholesterol as a signaling molecule in 

mammalian aging remain unknown. 

 

Germline ablation signals and longevity 

Like DR and reduced IIS, germline ablation is a robust intervention that 

extends lifespan in a plethora of organisms including worms, flies, mice, rats 

and even humans [61–65]. Multiple studies suggest that the germline is able 

to produce signals that partially coordinate reproduction and aging, with lipid 

metabolism playing a prominent role [5,6]. In C. elegans, germline removal 

induces fat accumulation, longevity and stress resistance [61,66]. These 

phenotypes are associated with the regulation of multiple transcription factors, 

including SKN-1, TCER-1, DAF-16, and NRs DAF-12, NHR-80 and NHR-49 

(Figure 3) [61,66–68]. 

  

As with reduced IIS, lifespan extension by germline removal is abolished upon 

daf-12 mutation and is dependent on the presence of DA [12,61]. 

Consistently, mutation of daf-9 or daf-36, both of which encode enzymes 
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involved in DA biosynthesis, reduces lifespan in germline-less worms. DA 

supplementation of daf-9 or daf-36 mutant worms is in turn sufficient to 

restore germline ablation longevity [69]. This observation suggests that the 

interaction between DAF-12 and DA is fundamental for lifespan extension by 

germline removal.  

 

In addition to DAF-12, germline removal longevity also relies on DAF-16 and 

on the ability of both transcription factors to regulate target genes such as 

triglyceride lipase and acyl-CoA reductase [70]. These genes are involved in 

lipid metabolism and are proposed to generate putative lipid signals that 

would allow lifespan-extension under germline removal [70]. Furthermore, 

germline-less worms require DAF-12 in the gut for the production of a 

lipophilic signal, which in turn promotes DAF-16 nuclear localization through a 

protein called KRI-1[71].  

 

NHR-80, another NR, is a key player in germline removal mediated longevity 

[67]. NHR-80 modulates the transcription of FAT-6, a desaturase that 

produces oleic acid, a monounsaturated fatty acid, and this underpins the 

longevity phenotype [67,72]. However, it is unclear how oleic acid exerts its 

beneficial effects. Moreover, as NHR-49 and NHR-80 play key roles in DR 

and germline removal longevity, it is possible that these interventions share at 

least part of the mechanisms involved in aging modulation.  

 

It was previously shown that germline ablation promotes lipolysis by up-

regulating multiple lipases, such as LIPL-4, a homolog of the mammalian 
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lysosome associated lipase (LIPA) [73]. LIPL-4 over-expression in the gut, the 

organ where C. elegans stores fat, is sufficient to induce longevity [73]. 

However, germline-less worms have increased fat accumulation, despite the 

increase in lipid catabolism [74]. This extra accumulated fat appears to come 

from unconsumed yolk, and from here a signal is produced that activates 

SKN-1 [75]. SKN-1, homolog to mammalian Nrf2 and member of the 

cap’n’collar transcription factor family, plays a critical role in regulating genes 

involved in processes such as proteasome activity and lipid homeostasis [75]. 

Interestingly, a more recent report suggests that, upon germline ablation, not 

only lipid catabolism but also lipid anabolism is activated. Enhanced lipid 

turnover is achieved through DAF-16 and TCER-1, and both proteins are 

required for germline ablation longevity [76]. This mode of lifespan modulation 

could be evolutionarily conserved, because enhanced lipid turnover appears 

to be fundamental for DR-mediated lifespan extension in Drosophila [77,78], 

and DR also increases lipid turnover in mice [79]. It is therefore possible that 

both germline ablation and DR have, at least partially, overlapping roles 

enhancing lipid homeostasis.  

 

Use of lipids in disease treatment and lifespan extension 

In C. elegans LIPL-4 appears to also induce lifespan extension by generating 

the fatty acid oleoylethanolamide (OEA), a monounsaturated fatty acid. OEA 

works as a novel lysosomal signaling molecule by binding to the lysosomal 

lipid chaperone LBP-8, inducing its nuclear localization and activating NHR-80 

and NHR-49 [80]. The additional observation that OEA supplementation is 

sufficient to extend lifespan in worms [80] further highlights the critical role 
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lipid signaling may play in extension of lifespan. However, it is currently 

unknown whether this lipid signal works in a cell-autonomous manner, 

whether OEA regulates lifespan by modulating gene transcription downstream 

of NHR-80 and NHR-49. Since these NRs have already been associated with 

longevity under DR and germline ablation [34,67], it is not farfetched to expect 

that this mode of longevity control will turn out to be evolutionarily conserved.  

 

In addition to OEA, supplementation of other monounsaturated fatty acids 

(MUFAs), such as oleic acid and palmitoleic acid, can also extend worm 

lifespan [81], although not all oleic acid supplementation protocols seem to do 

so [67,68]. These MUFAs, but not their derived polyunsaturated fatty acids 

(PUFAs), underpin the long life of histone 3 lysine 4 trimethylation (H3K4me3) 

deficient worms [81]. Moreover, diets that are rich in MUFAs seem to protect 

against diabetes and cardiovascular disease in humans [82] Nevertheless, it 

is currently unclear how these MUFAs exert their beneficial effects. In 

contrast, ω-6 PUFAs supplementation extends worm lifespan by activating 

autophagy (Box 2) [83]. This mechanism might also be evolutionarily 

conserved, because ω-6 and other PUFAs induce autophagy in human cell 

lines [83,84]. Hence, the relationship between MUFAs, PUFAs and longevity 

is complex. Higher MUFA:PUFA ratios have been observed in long-lived 

worms and in the daughters of long lived humans, suggesting higher PUFA 

levels could be detrimental [85,86]. PUFAs are more prone to oxidation and 

are thought to increase oxidative damage by further producing free radicals 

[86]. It is therefore possible that only specific PUFAs have beneficial effects 

on the organism, and only as long as they do not reach a critical threshold.  
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With a better understanding of the role of lipid metabolism in health during 

aging comes the opportunity to use this knowledge in the treatment of 

disease. For example, a recent genetic screen revealed that inhibition of 

cholesterol biosynthesis by genetic or pharmacological means is sufficient to 

improve motor performance and lifespan of a mouse model of Rett syndrome 

[87]. Similarly, a mouse model of Cockayne syndrome was shown to improve 

its associated phenotypes upon supplementation of beta-hydroxybutirate, a 

ketone body [88]. These studies underscore the important role that 

modulation of lipid metabolism may have in the treatment of diverse diseases. 

Concordantly, medium chain triglyceride (MCT) supplementation is widely 

used in children as a treatment of drug resistant epilepsy [89]. MCT 

supplementation induces the body to switch into a ketogenic state, where 

lipids become the preferred source of energy. Similarly, ketone body 

supplementation was recently shown to shift the energy source in muscles 

from glycolysis to a lipid oxidation state [90]. The consequence of this switch 

was enhanced performance of athletic activity. However, it remains to be 

determined whether this translates into increased health and lifespan. These 

observations open the exciting possibility that lipid supplementation can be 

used not only in the treatment of disease, but also in its prevention and 

promotion of healthy aging. 

 

Lipidomics leads the way 

In order to identify and quantify the lipid species relevant for many of the 

interventions described above [81,85], researchers are taking advantage of 
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the recent developments in the area of lipidomics, i.e. the analysis of lipid 

metabolites by mass spectrometry techniques [91]. Lipidomics is rapidly 

opening the doors to a new world of information that points at diverse lipid 

species with key roles in the regulation of diverse biological processes. For 

example, a recent and compelling meta-analysis of lipid composition looked at 

the correlation between diverse lipids within multiple tissues and maximum 

lifespan in as many as 35 different species including mice, bats and humans 

[92]. This analysis showed, for example, that structural lipids are more likely to 

be found in a saturated state in the long-lived species. Although not directly 

analyzed, this observation also implies a higher MUFA:PUFA ratio. In 

contrast, energy-related lipids, such as triacyglycerols (TG), were more likely 

to be in an unsaturated state in the long lived species [92]. Although 

preliminary, this study highlights the power lipidomic studies could have in the 

identification of lipid species and their association with longevity.  

 

Concluding remarks and future directions 

Recent studies are starting to uncover the prominent link between different 

lipids, particularly signaling molecules, and aging modulation. Intriguingly, 

many of the life-promoting interventions discussed here share underlying 

proteins and lipids critical for lifespan extension. For example, both DAF-12 

and DAF-16 are involved in lifespan modulation during reduced IIS and 

germline ablation [14,61,66–68]. Similarly, NHR-49 and NHR-80 are 

fundamental for DR and germline ablation induced longevity [34,67]. 

Moreover, lipid turnover and the accumulation of specific lipid molecules, such 

as oleic acid, are important for intervention-induced longevity or even normal 
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aging [80,81,85,92]. All these results suggest that lipid metabolism can be 

affected by multiple life-promoting interventions, albeit at different levels, and 

this underpins the longevity effects. However, these pioneering studies leave 

many new questions to be answered (see Outstanding questions). Future 

studies should address the link between lipid signals, the transcription factors 

they regulate, and the effects on lipid homeostasis these may have by 

regulating the expression of enzymes involved in lipid metabolism. 
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Box 1. Life cycle of C. elegans  

The life cycle of the nematode worm has been widely described (Figure I). 

Briefly, after embryonic development of the fertilized egg, the worm 

undergoes four different larval stages (L1-L4), to finally reach adulthood and 

sexual maturity [93]. At the end of L1, stressful conditions such as 

overcrowding, high temperatures or starvation, trigger the worm to adopt an 

alternative developmental pathway called dauer. The dauer worm is able to 
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survive long periods of time under stressful conditions. Once conditions 

improve, dauer worms resume development at L4 stage to then reach 

adulthood and reproduce [93]. 

 

Box 2. Autophagy and lipid metabolism  

Autophagy, a highly regulated process that degrades cellular components in 

response to diverse cues, such as starvation, is highly associated with health 

and longevity [94]. Autophagy is initiated with the formation of a membrane 

structure called the autophagosome (AP), which then engulfs molecules 

and/or organelles to later fuse with lysosomes and degrade the cargo. AP 

formation is in part regulated by diverse membrane components as it requires 

specific lipids for its formation [95]. For example, studies in yeast demonstrate 

that lipids such as phosphatidylinositol 3-phosphate are enriched in 

endoplasmic reticulum regions that then allow recruitment of proteins involved 

in AP formation [96–99]. Moreover, lipid homeostasis is fundamental for 

proper autophagy, since deletion of enzymes responsible for TG and sterol 

esters completely blocks starvation-induced autophagy [100]. These studies 

highlight the fundamental role of lipid homeostasis in regulation of autophagy, 

not only at the level of lipid signals/transcription factors that regulate 

autophagy-related genes (see text), but also at the level of membrane 

components.  
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Figure 1. Reduced insulin insulin-like signaling (IIS) extends lifespan in 

a DAF-16/DAF-12/NSBP-1 dependent manner. In wild type C. elegans, IIS 

phosphorylates and negatively regulates NSBP-1, a cholesterol binding 

protein, and DAF-16 transcription factor. Under reduced IIS, these proteins 

become dephosphorylated and migrate into the nucleus and interact in a 

cholesterol-dependent manner to modulate the transcription of pro-longevity 

genes. Extension of lifespan by lowered IIS is also dependent on DAF-12 and 

its ligand DA. Worms with reduced IIS cannot maximize lifespan-extension in 

the absence of DA or excess of cholesterol. I: Insulin; P: Phosphate; C: 

Cholesterol; DA; Dafachronic Acids  

 

Figure 2. Different dietary restriction (DR) paradigms promote longevity 

in ways that depend on lipid signals. While different DR interventions in C. 

elegans have at least partially independent mechanisms for lifespan 

extension, they all seem to rely on the regulation of transcription factors that 

act in response to putative lipid signals. Hence, increased lifespan from eat-2 

mutation relies on NHR-49 and NHR-62, although their respective lipid ligands 

(if they have one) remain unknown. NHR-62 is also involved in extension of 

lifespan by BDR, at least at low food concentrations, and NHR-8 and DA are 

also required, although the nature of their interaction is unclear. IF relies on 

DAF-16 and AP-1 to achieve maximum lifespan extension, but whether 

NSBP-1 may play a role here remains unknown. 

 

Figure 3. Germline ablation increases lifespan by modulating lipid 

metabolism. Germ cells inhibit the production of DA. We propose that, as a 
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consequence, the transcriptional activity of both DAF-16 and DAF-12 is 

dampened. Conversely, removal of germ cells allows production of DA and 

transcription of pro-longevity genes by DAF-16 and DAF-12, including genes 

involved in lipid metabolism. These changes promote the generation of 

putative lipid signals, which in turn activate downstream factors such as NHR-

49, NHR-80 and SKN-1 that promote longevity through different 

transcriptional programs. However, these putative lipid signals remain 

unknown. Whether Oleoylethanolamide (OEA) serves as a NHR-80 ligand 

under germline ablation remains unclear. FA stands for fatty acids.  

 

Figure I. Worm life cycle. Representation of C. elegans life cycle at 22ºC. 

Numbers along the arrows represent the hours (hrs) necessary to transition 

from one stage to the next.  


