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Abstract 

Many molecular ecology analyses assume the genotyped individuals are sampled at random 

from a population and thus are representative of the population. Realistically, however, a 

sample may contain excessive close relatives (ECR) because, for example, localized juveniles 

are drawn from fecund species. Our knowledge is limited about how ECR affect the routinely 

conducted elementary genetics analyses, and how ECR are best dealt with to yield unbiased 

and accurate parameter estimates. This study quantifies the effects of ECR on some popular 

population genetics analyses of marker data, including the estimation of allele frequencies, F-

statistics, expected heterozygosity (He), effective and observed numbers of alleles, and the 

tests of Hardy-Weinberg equilibrium (HWE) and linkage equilibrium (LE). It also 

investigates several strategies for handling ECR to mitigate their impact and to yield accurate 

parameter estimates. My analytical work, assisted by simulations, shows that ECR have large 

and global effects on all of the above marker analyses. The naïve approach of simply ignoring 

ECR could yield low-precision and often biased parameter estimates, and could cause too 

many false rejections of HWE and LE. The bold approach, which simply identifies and 

removes ECR, and the cautious approach, which estimates target parameters (e.g. He) by 

accounting for ECR and using naïve allele frequency estimates, eliminate the bias and the 

false HWE and LE rejections, but could reduce estimation precision substantially. The 

likelihood approach, which accounts for ECR in estimating allele frequencies and thus target 

parameters relying on allele frequencies, usually yields unbiased and the most accurate 

parameter estimates. Which of the four approaches is the most effective and efficient may 

depend on the particular marker analysis to be conducted. The results are discussed in the 

context of using marker data for understanding population properties and marker properties.  

 

Introduction 

Genetic markers are an elementary and indispensable tool widely used in studies of 

evolutionary, ecological and conservation biology, and of human genetics and medicine 

(Sunnucks 2000; Selkoe & Toonen 2006). Rich and important information can be gleaned 

from a sample of multilocus marker genotypes, such as that about population demography 

and evolutionary history (Luikart et al. 2003), the basic biology of a species (like mating 

system/strategy/behaviour, migration), and the inheritance of quantitative traits including 

complex human diseases (Risch & Merikangas 1996). 
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 In many studies, a population is represented by a sample of individuals drawn from it. 

To obtain unbiased and accurate estimates of population properties (e.g. subdivision and 

differentiation) or their underlying mechanisms (e.g. genetic drift and selection) leading to 

the observed properties, it is commonly assumed that the sampling is at random with regard 

to kinship. Biased sampling with too many or too few kin compared with that expected under 

random sampling could lead to biased and inaccurate parameter estimates. This is well 

recognized in human genetics studies, where unrecognised relatives cause allele frequency 

misspecifications and thus increased false positives in linkage analysis of inheritable disease 

(Ott 1992). Similarly in genome-wide association studies, cryptic relatedness would violate 

assumptions of statistical independence and introduce misclassification effects (McCarthy et 

al. 2008). It is now a common practice to use marker data to check self-reported pedigrees 

and identify cryptic relatedness. The uncovered close relatives are then removed (e.g. 

Wellcome Trust Case Control Consortium 2007) or explicitly accounted for by genomic-

control approaches (Voight & Pritchard  2005; Zheng et al. 2006). 

 In the evolutionary and conservation studies of wild plant and animal populations, it is 

unclear how often excessive close relatives, ECR, are inadvertently included in a supposedly 

random sample. However, due to the lack of quality control measures such as self-reports in 

humans and because of the high fecundity, small population size and patchy, rather than even, 

spatial distribution of closely related individuals in many plant and animal species, close 

relatives could be rampant in samples. Hansen et al. (1997) showed that juvenile brown trout 

individuals sampled from a small area were represented by just a few families and thus 

provide biased allele frequency estimates. Goldberg & Waits (2010) sampled both tadpoles 

and adults from several Columbia spotted frog populations. They found that tadpole samples 

overall had a higher FST between populations than adult samples. When the full-sib families 

in tadpoles were identified by using the marker data (Wang & Santure 2009) and all siblings 

but one per family were removed, the FST estimates became closer to those estimated from 

adult samples (Goldberg & Waits 2010). However, these and other effects of ECR in a 

sample were not consistent across species (Goldberg & Waits 2010). For a Bayesian 

clustering analysis, it was shown (Anderson & Dunham 2008; Rodríguez-Ramilo & Wang 

2012) that ECR in a sample could ruin the inference of the number of populations represented 

by the sample. 

 Theoretical studies on the sporadic effects of ECR have been concentrated on the 

estimation of allele frequencies (Boehnke 1991; Broman 2001; McPeek et al. 2004) and 
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expected heterozygosity (DeGiorgio & Rosenberg 2008). It is unclear whether other 

population parameters and analyses are also affected by the inclusion of ECR in a sample or 

not. If they are, how great are the effects of ECR and how can ECR be best dealt with for 

mitigating the effects? This study intends to fill the gaps of knowledge by investigating 

systematically the effects of ECR on the most commonly conducted population genetics 

analyses, including the estimation of allele frequencies, expected heterozygosity, F statistics, 

effective and observed numbers of alleles, and the tests for Hardy-Weinberg and linkage 

equilibrium. Based on analytical treatments assisted by simulations, I compare different 

approaches to handling a sample with ECR, and discuss the choice of the approaches in 

practice. 

 

Methods and Results 

By close relatives, I mean relatives of the first (full sibling and parent-offspring) and second 

(avuncular, half sibling, grandparents and grand offspring) degrees. By excessive close 

relatives (ECR), I mean close relatives appearing in a sample at a higher proportion than that 

expected under complete random sampling. I use analytical treatments, where possible, to 

study the effects of ECR on each of a number of commonly conducted population genetics 

analyses. Some of the analytical results are checked and complemented by simulations 

(Appendix S1, Supporting information). The basic assumptions are diploid species and 

codominant markers. The general conclusions are however applicable to other species and 

other kinds of markers.  

Allele frequency 

Some population properties, such as FST, can be inferred directly and solely from allele 

frequency information. Many others, such as FIT, FIS and relatedness, however, require 

genotype as well as allele frequency information for inference. Regardless, allele frequencies 

provide elementary information for many population genetics analyses. 

 For a given sample size, inclusion of ECR reduces the effective sample size and thus 

the precision of allele frequency estimates. As an example, consider a sample of m full 

siblings who share the same pair of parents. Although the sample size of genes is 2m, these 

genes are not independent, coming from only 4 independent parental genes when the parents 

are non-inbred and unrelated and from fewer than 4 independent parental genes when 
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otherwise. The effective sample size of genes is thus 4 at the maximum. Let us now consider 

a locus with two codominant alleles, A and a, whose population frequencies are p and 1-p, 

respectively. If n diploid individuals are sampled at random from a large population at Hardy-

Weinberg equilibrium (HWE), the number of copies of allele A, nA, in the sample follows the 

binomial distribution 

Pr[𝑛𝐴|𝑝, 2𝑛] =
(2𝑛)!

𝑛𝐴!(2𝑛−𝑛𝐴)!
𝑝𝑛𝐴(1 − 𝑝)2𝑛−𝑛𝐴.      (1) 

Suppose m diploid individuals are sampled at random from a single full-sib family in the 

same population. Among the 2m sampled genes, half comes from the same father and half 

from the same mother. The probability that mA of the m genes from a given parent are 

observed to be A allele is   

Pr[𝑚𝐴|𝑝,𝑚] = 𝑝20𝑚−𝑚𝐴 + 2𝑝(1 − 𝑝)
𝑚!

𝑚𝐴!(𝑚−𝑚𝐴)!
(
1

2
)
𝑚

+ (1 − 𝑝)20𝑚𝐴,   (2) 

where 0𝑖 ≡ 1 and 0 when i=0 and i≠0, respectively. (2) was derived by considering the 

probability of each possible parental genotypes, which is 𝑝2, 2𝑝(1 − 𝑝), and (1 − 𝑝)2 for 

genotype AA, Aa and aa, respectively. For a given parental genotype, mA follows the 

binomial distribution with parameters m and q, where q =1, ½, 0 is the frequency of allele A 

in the parental genotype AA, Aa and aa, respectively.  

A combined sample containing n individuals drawn at random from a large population 

at HWE and m individuals drawn at random from a single full sib family in the same 

population has a total number of 2(m+n) genes. When i genes from the random sample, j 

genes from one parent and k genes from the other parent of the full sib family are of allele A, 

the number of copies of A allele in the combined sample is x=i + j +k , with x in the range [0,  

2(m+n)]. This leads to the probability  

Pr[𝑥|𝑝, 2𝑚, 2𝑛] = ∑ Pr⁡[𝑖|𝑝, 2𝑛] Pr[𝑗|𝑝,𝑚] Pr[𝑘|𝑝,𝑚]𝑖,𝑗,𝑘 ,     (3) 

where the summation is over all possible i, j and k values, with constraints i=[0, 2n], j=[0, m], 

k=[0, m], and 𝑖 + 𝑗 + 𝑘 ≡ 𝑥. In (3), Pr⁡[𝑖|𝑝, 2𝑛], Pr[𝑗|𝑝,𝑚], and Pr[𝑘|𝑝,𝑚] are calculated by 

(1), (2) and (2), respectively. When the m individuals are drawn at random from M full sib 

families, with family j (j=1~M) contributing mj individuals such that ∑ 𝑚𝑗 = 𝑚𝑀
𝑗=1 , the 

probability that x of the 2(m+n) genes are of allele A can be derived similarly to (3). The 

equation is however much more complicated, and is thus not shown herein (available upon 
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request). The computation of the probability quickly becomes infeasible with increasing 

values of M, m, and n. 

 The sample allele frequency distributions for some examples calculated by the 

equations above are shown in Figure 1. A marker with two codominant alleles of an equal 

frequency of p=0.5 is assumed at HWE in a large random mating population. A combined 

sample contains n=10 unrelated individuals drawn at random from the population, and m=10 

individuals drawn at random from M=5 full-sib families in the population. The sample size 

distribution, {n, m1, m2, m3, m4, m5}, is {10, 10, 0, 0, 0, 0}, {10, 8, 2, 0, 0, 0}, {10, 6, 2, 2, 0, 

0}, {10, 4, 2, 2, 2, 0}, and {10, 2, 2, 2, 2, 2} for combined samples E1~E5, respectively. 

Removing all but one full sibling from each family, I obtain reduced samples e1~e5, which 

have sample size distributions {10, 1, 0, 0, 0, 0}, {10, 1, 1, 0, 0, 0}, {10, 1, 1, 1, 0, 0}, {10, 1, 

1, 1, 1, 0}, and {10, 1, 1, 1, 1, 1}, respectively. Note, the total sample size is the same, n+m 

=20, for samples E1~E5, but is variable, 11~15, for samples e1~e5. Figure 1 shows that the 

distribution of sample allele frequencies becomes less dispersed with a decreasing imbalance 

in full sib family size in samples E1~E5, and with an increasing sample size when all but one 

full siblings per family are removed in samples e1~e5. Note 𝑝̂ distributions are discrete and 

the sample sizes are unequal for samples e1~e5, which create the illusion that e1~e5 become 

more dispersed in that order, but the opposite is true as shown in the lower panel of Figure 1. 

All of the 10 samples (E1~E5, e1~e5) provide unbiased estimate of p, using the allele 

counting method 

𝑝̂ =
1

2𝑛
∑ 𝑋𝑗
𝑛
𝑗=1 ,          (4) 

where indicator variable Xj is the number of copies of allele A carried by individual j. Xj takes 

values 2, 1 and 0 for genotypes AA, Aa and aa respectively, with the expectation E[Xj] = 2p. 

In (4), n is the individual sample size, which takes values 20 for samples E1~E5, and 11~15 

for samples e1~e5. Although (4) is always unbiased, its precision is affected by the genetic 

structure of the sample. The inclusion of siblings has two effects on the precision of 𝑝̂. On 

one hand, siblings do provide information about allele frequencies and thus act to increase the 

precision. On the other hand, however, they may also act to reduce estimation precision when 

full-sib family sizes are unbalanced. The overall effect depends on family size distribution. 

Full-sib families included in a sample can increase and decrease precision when these 

families have an even and uneven distribution of family size, respectively.  



8 
 

Figure 1 also shows the sampling variance of 𝑝̂ obtained from samples E1~E5 and 

e1~e5. Removing siblings improves the precision of 𝑝̂ when large sib families are sampled 

(E1~E3), but has the opposite effect when all sib families are small (E5). For the 10 samples, 

simulation results are almost identical to those calculated analytically, as shown in Figure 1.  

 Hereafter for easy reference, applying (4) by ignoring relatives is called the naïve 

approach, and applying (4) by identifying and removing all but one relative per family is 

called the bold approach. 

For a sample containing close relatives, neither the naïve nor the bold approach is, in 

general, the best option that gives the most accurate 𝑝̂. As discussed above, it all depends on 

the actual sibship size distribution in a sample. The best strategy in general is to use the 

genetic relationships (pedigree) of the sampled individuals in weighting their genotype 

information for allele frequency estimation. Several methods available (e.g. Boehnke 1991; 

McPeek et al. 2004) are applicable to any known genetic structure of the sampled individuals. 

For the case of a sample containing unknown close relatives including full-sib, half-sib and 

parent-offspring relationships, it is possible to use the genotype data to infer iteratively the 

relationships and allele frequencies jointly by a likelihood approach (Wang & Santure 2009). 

In the simplest case of all close relatives being full siblings, Broman (2001) proposed a 

simple estimator that calculates an allele frequency estimate for each sib family and then 

weights these estimates by the inverse of their sampling variances. Suppose a sample contains 

individuals from M full-sib families, with family i (=1~M) contributing mi individuals. The 

estimator for the frequency of an allele A is 

𝑝̂ =
∑ ∑ 𝑋𝑗𝑖/(𝑚𝑖+1)

𝑚𝑖
𝑗=1

𝑀
𝑖=1

2∑ 𝑚𝑖/(𝑚𝑖+1)
𝑀
𝑖=1

 ,         (5) 

where the indicator variable Xji = 2, 1, 0 when individual j from family i has a genotype 

containing 2, 1, and 0 copies of allele A, respectively. When all sampled individuals are 

unrelated such that mi ≡1, (5) reduces to (4) as expected. Note, estimator (5) uses information 

from all sampled individuals. However, it gives a lower weight, 1/(𝑚𝑖 + 1), to information 

from a larger family i with 𝑚𝑖 individuals. From now on, (5) is called the weighted estimator. 

 A yet better estimator than (5) is obtained by accounting for the sample sibship 

structure in the likelihood framework. For each known or reconstructed sib family, the 

parental genotypes can be reconstructed probabilistically from sibling genotypes (Broman 
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2001; Wang & Santure 2009). The reconstructed parental genotypes, rather than the observed 

genotypes of sampled individuals, are then used in estimating allele frequencies. This 

estimator has no closed form. It is called likelihood estimator hereafter and is implemented in 

an expectation–maximization algorithm, as described in Broman (2001), for the simple case 

of full siblings. For the more general case of multiple types of close relatives (full and half 

siblings, parent-offspring), the likelihood estimator was implemented in a simulated 

annealing algorithm in Wang & Santure (2009). 

 Simulations (Appendix S1) were conducted to check the analytical results of the naïve 

and bold estimators, and to investigate their accuracies against those of weighted and 

likelihood estimators for the five example samples E1~E5. Both weighted and likelihood 

estimators are unbiased, and their sampling variances are shown in Figure 1. In all five cases 

of family size distributions, both estimators yield much better results than the naïve estimator 

(which ignores relatives) and the bold estimator (which removes all but one siblings per 

family). The likelihood estimator is slightly more precise than the weighted estimator, but the 

differences are almost imperceptibly small in all of the five examples. There seems to be little 

advantage of the likelihood estimator over the weighted estimator for the simple case of all 

ECR being full siblings. 

  

F-statistics 

Wright’s (1965) F-statistics (FIS, FST, and FIT) are the traditional and most popular statistics 

used in assessing the distribution of genetic variation at different hierarchical levels of a 

population subdivision. Each of them measures the correlation between homologous genes 

drawn at one hierarchical level (i.e. individuals, subpopulations, total population) relative to 

genes drawn at another hierarchical level. Equivalently, it measures the inbreeding at one 

hierarchical level relative to another. Specifically, FIS and FIT are the inbreeding coefficients 

of an individual (I) relative to the subpopulation (S) and the total population (T) respectively 

to which the individual belongs, and FST is the expected inbreeding coefficient of a 

hypothetical individual from random mating within a subpopulations (S) relative to the total 

population (T). The relationship among the three statistics is (Wright 1965) 

(1 − 𝐹𝐼𝑇) = (1 − 𝐹𝐼𝑆)(1 − 𝐹𝑆𝑇).        (6) 
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F-statistics can be estimated from a sample of individuals drawn at random from each 

of a number of subpopulations, using the pedigree or marker data of sampled individuals. In 

ideal conditions (e.g. when mutations have negligible effects relative to migration and drift, 

Whitlock 2011; Wang 2012, 2015), the two types of information should yield the same 

results in expectation. Herein I investigate the effect of close relatives on F-statistics by the 

genealogical approach, and the results were checked by simulations using the marker 

approach. 

 Let us consider a subdivided population, and denote the probabilities of identical by 

descent (PIBD) for the two homologous genes within an individual, for the two homologous 

genes drawn at random within a subpopulation and within the total population by α, β, and γ, 

respectively. By definition, we have 

𝐹𝐼𝑆 =
𝛼−𝛽

1−𝛽
 , 𝐹𝑆𝑇 =

𝛽−𝛾

1−𝛾
, 𝐹𝐼𝑇 =

𝛼−𝛾

1−𝛾
,        (7) 

which satisfy (6) as expected. 

 Suppose the average PIBD between individuals within a sample drawn from a 

subpopulation is increased from 𝛽 to 𝛽′, because ECR are (intentionally or unintentionally) 

included in the sample. As a result, 𝐹𝐼𝑆 would be expected to be decreased to 

𝐹𝐼𝑆
′ =

𝛼−𝛽′

1−𝛽′
.           (8) 

𝐹𝐼𝑆
′  is always smaller than 𝐹𝐼𝑆, because 𝛽′ > 𝛽 and 𝛼 is unaffected by ECR. The larger the 

increase in PIBD between individuals drawn from within a subpopulation due to the inclusion 

of a greater proportion of close relatives, 𝛽′ − 𝛽, the smaller will be 𝐹𝐼𝑆
′  relative to 𝐹𝐼𝑆. Let us 

consider a numerical example. For a large subpopulation in HWE, we have 𝛼 = 𝛽 = 0 and 

𝐹𝐼𝑆 = 0. When a sample drawn from the subpopulation contains a proportion of δ full-sib 

pairs (PIBD=1/4) and a proportion of 1 − 𝛿 non-sib pairs (PIBD=0), its average PIBD is 

𝛽′ = 𝛿 ×
1

4
+ (1 − 𝛿) × 0 = 𝛿/4. Inserting 𝛽′ = 𝛿/4 into (8) leads to 𝐹𝐼𝑆

′ = −𝛿/4, which is 

smaller than the actual value of 𝐹𝐼𝑆 = 0 of the population. When the frequency of full sib 

pairs in a sample is a quarter (𝛿 = 1/4), then 𝐹𝐼𝑆
′ = −0.0625, much smaller than its real 

value of 0. The inclusion of ECR (i.e. full siblings) in a sample results in negative inbreeding, 

leading possibly to the false conclusion that the subpopulation is affected by admixture 

(hybridization) and/or avoids close relative mating. 
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  Because of the inclusion of ECR, 𝛽′ > 𝛽, and the differentiation between 

subpopulations becomes 

𝐹𝑆𝑇
′ =

𝛽′−𝛾

1−𝛾
.           (9) 

We have always 𝐹𝑆𝑇
′ > 𝐹𝑆𝑇, because 𝛽′ > 𝛽 and 𝛾 is unaffected by ECR. In a subdivided 

population with a high migration rate (m) between subpopulations and/or a large effective 

size (Ne) of subpopulations, we have 𝛽 = 𝛾 = 0 and 𝐹𝑆𝑇 = 0. When a sample containing a 

proportion of δ full-sib pairs is drawn from each subpopulation and is used in estimating 𝐹𝑆𝑇, 

we have 𝛽′ = 𝛿/4 (as derived above) and thus 𝐹𝑆𝑇
′ = 𝛽′ = 𝛿/4 from (9). If a quarter of the 

pairs of individuals drawn from a subpopulation are full sib pairs (𝛿 = 1/4), then FST would 

be estimated as 0.0625, much larger than its real value of 0. Sampling ECR results in an 

increase in estimated differentiation, leading to a false conclusion that the subpopulations are 

small and are isolated (i.e. mNe is small). 

 It is clear from definition (7) that ECR in a sample drawn from a subpopulation do not 

affect 𝐹𝐼𝑇 in expectation, because they cause an increase in 𝛽 but no changes in 𝛼 and 𝛾. ECR 

act to decrease FIS and to increase FST to the same extent. These effects cancel out exactly and 

thus ECR in a sample do not affect FIT estimates in expectation. This conclusion can also be 

reached from (6), given that 𝐹𝐼𝑆 and 𝐹𝑆𝑇 are affected to the same extent but in opposite 

directions by non-random sampling such that (1 − 𝐹𝐼𝑆
′ )(1 − 𝐹𝑆𝑇

′ ) = (1 − 𝐹𝐼𝑆)(1 − 𝐹𝑆𝑇) and 

thus 𝐹𝐼𝑇
′ = 𝐹𝐼𝑇. However, it should be noted that ECR do cause an increased sampling 

variance and thus a decreased accuracy of 𝐹𝐼𝑇 when it is estimated from marker data, because 

ECR result in less precise estimates of allele frequencies (above) which must be used in 

estimating 𝐹𝐼𝑇.  

 Simulations were conducted to check the above analytical results, and to investigate 

the effects of different approaches to estimating allele frequencies on the bias and accuracy of 

FST estimates. I assumed the simple situation of R=20 discrete populations in Wright’s (1931) 

island migration model. The populations had reached equilibrium among mutations, drift and 

migration, with an equilibrium FST value in the range [0, 0.16]. A number of n=50 unrelated 

individuals and a number of m=50 individuals from 5 full sib families were drawn from each 

population. The family size distributions {n, m1, m2, m3, m4, m5}, where mi is the number of 

full siblings from family i, are {50, 50, 0, 0, 0, 0}, {50, 40, 10, 0, 0, 0}, {50, 30, 10, 10, 0, 0}, 

{50, 20, 10, 10, 10, 0}, {50, 10, 10, 10, 10, 10} in the five simulated samples E1~E5. Each 
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sampled individual was genotyped for a locus with k=4 codominant alleles. The ancestral 

allele frequencies, p0 ={p10, p20,…, pk0}, were drawn from a uniform Dirichlet distribution 

𝒟(1,1, … ,1). Conditional on p0, the allele frequencies of a population j (j=1~R), pj ={p1j, 

p2j,…, pkj}, were drawn from the Dirichlet distribution 𝒟(𝑓𝑝10, 𝑓𝑝20, … , 𝑓𝑝𝑘0), where 𝑓 =

1

𝐹𝑆𝑇
− 1 (Nicholson et al. 2002). Given pj, genotype data of an unrelated individual or of full 

siblings from population j were obtained (Appendix S1, Supporting information). 

The simulated genotype data were then used to calculate Nei & Chesser’s (1983) 

nearly unbiased estimator of GST (equivalent to Wright’s FST, see Wang 2012, 2015) 

𝐺̂𝑆𝑇 = 1 − 𝐻̂𝑆/𝐻̂𝑇,          (10) 

where 

𝐻̂𝑆 =
2𝑀̃

(2𝑀̃−1)𝑅
∑ (1 − ∑ 𝑥̂𝑖𝑗

2𝑘
𝑖=1 )𝑅

𝑗=1 ,        (11) 

𝐻̂𝑇 = 1 − ∑ (
1

𝑅
∑ 𝑥̂𝑖𝑗
𝑅
𝑗=1 )

2
𝑘
𝑖=1 +

𝐻̂𝑆

2𝑀̃𝑅
.         (12) 

In (11) and (12), 𝑥̂𝑖𝑗 is the estimated frequency of allele i in the sample from population j, k is 

the number of alleles observed in the set of samples from the R populations, and 𝑀̃ is the 

harmonic mean sample sizes. 𝑥̂𝑖𝑗 was estimated by the naïve, bold and weighted approaches 

and was used in (10-12) to obtain the corresponding FST estimates. The means and RMSEs 

(root mean squared error, =√variance⁡ +⁡bias2) of FST estimates from the naïve, bold and 

weighted approaches are compared in Figure 2. The likelihood estimator is computational 

intensive but has only slight accuracy improvement over the weighted estimator (Figure 1), 

and so it is not considered in estimating FST. 

 Ignoring relatedness by the naïve estimator leads to an overestimate of FST across the 

samples with different proportions of full siblings, and in the entire range of actual FST values 

(0~0.16). For samples E1~E5 from an undifferentiated (true FST =0) population, the 

proportions of sibling pairs, calculated by 
∑ 𝑚𝑖(𝑚𝑖−1)/2
5
𝑖=1

(𝑛+𝑚)(𝑛+𝑚−1)/2
 where 𝑛 = 𝑚 = 50, are 0.247, 

0.167, 0.106, 0.066 and 0.045 respectively, and the predicted FST values by (9) are 0.062, 

0.042, 0.027, 0.016 and 0.011 respectively. These predicted values by the pedigree approach 

are almost identical to the simulated values by the marker approach as shown in Figure 2. 

The naïve estimator is not only biased, but also imprecise. Overall, it has a much larger 
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RMSE than the bold and weighted estimators. The latter two estimators give nearly 

indistinguishable results for all samples and true FST values. 

Expected heterozygosity 

An important measurement of within population genetic variation at a marker locus is 

expected heterozygosity (He), or gene diversity (Nei 1973). It is defined as the probability 

that two homologous genes taken at random (with replacement) from a population at a given 

locus are not identical in state. Equivalently, it is the expected frequency of a heterozygote 

individual if the population is at HWE. Denoting the population frequencies of alleles at a 

locus as 𝑝𝑖 (where i=1~k, 0 < 𝑝𝑖 < 1,∑ 𝑝𝑖 ≡ 1𝑘
𝑖=1 ), He is calculated by 

𝐻𝑒 = ∑ ∑ 2𝑝𝑖
𝑘
𝑗=𝑖+1 𝑝𝑗

𝑘
𝑖=1 = 1 − ∑ 𝑝𝑖

2𝑘
𝑖=1 .       (13) 

He varies in the range 0~1, determined by the number of alleles, k, and the evenness of the 

frequencies of the k alleles. More alleles and/or more even allele frequencies lead to a higher 

He. 

 As a measure of genetic variation, He is informative about the demographic history 

and genetic structure of a population. If a population is found to have a low He relative to 

other populations of the same species at the same marker locus, then it is likely to have a low 

effective population size, to have experienced a recent bottleneck, and to be isolated from 

other populations. He is also informative about population structure when it is compared with 

the observed heterozygosity, Ho. If He > Ho, the apparent deviation from HWE could be 

caused by inbreeding, hidden population subdivision, and genotyping artefacts (e.g. null 

alleles, allelic dropouts). If He < Ho, the apparent deviation from HWE could indicate the 

presence of hybridization or admixture in the population.  

 Now let us consider the effect of sampling ECR on He. Suppose n diploid individuals 

are drawn from a population at HWE for a locus with k codominant alleles. An unbiased 

allele frequency estimate, 𝑝̂𝑖, can be made from the sampled n individuals by eqn (4). Given 

𝑝̂𝑖, an unbiased estimator of He is (Nei & Roychoudhury 1974) 

𝐻̂𝑒 =
2𝑛

2𝑛−1
(1 − ∑ 𝑝̂𝑖

2𝑘
𝑖=1 ).         (14) 

Estimator (14) will become biased when sampled individuals are either inbred or 

related, although 𝑝̂𝑖 from (4) is always unbiased. Suppose the presence of ECR in a sample 
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results in an average PIBD of θ, which is greater than 0 as expected for the corresponding 

PIBD value for a randomly drawn sample. With no inbreeding, we have 𝐹𝐼𝑆 = −𝜃/(1 − 𝜃) 

from (8), and the observed heterozygosity is expected to be 

𝐻̂𝑒
′ =

2𝑛

2𝑛−1
∑ ∑ 2𝑝̂𝑖

𝑘
𝑗=𝑖+1 𝑝̂𝑗

𝑘
𝑖=1 (1 − 𝐹𝐼𝑆) =

2𝑛

(2𝑛−1)(1−𝜃)
(1 − ∑ 𝑝̂𝑖

2𝑘
𝑖=1 ).   (15) 

When θ =0, (15) reduces to (14) as expected. Except for the small sample correction factor 

2𝑛/(2𝑛 − 1), (15) is identical to DeGiorgio & Rosenberg’s (2008) equation (8) derived by a 

much more complicated approach.  

 Hereafter, estimators like (15) which use allele frequencies estimated by the naïve 

approach (i.e. assuming no relatedness) and account for sample relatedness in estimating 

target parameters are called cautious estimators.  

To understand the impact of ECR on He estimates, let us consider a numerical 

example. For simplicity, consider a locus with two codominant alleles, A and a, whose 

population frequencies are p and q=1-p, respectively. If n individuals are sampled at random 

from a large population at HWE, the counts n2, n1 and n0 of genotypes AA, Aa, and aa, 

respectively, follow the multinomial distribution 

Pr[𝑛2, 𝑛1, 𝑛0|𝑝, 𝑛] =
𝑛!

𝑛2!𝑛1!𝑛0!
(𝑝2)𝑛2(2𝑝𝑞)𝑛1(𝑞2)𝑛0.                   (16) 

Suppose m individuals are sampled at random from a single full-sib family in the population. 

The counts m2, m1 and m0 of genotypes AA, Aa, and aa, respectively, in the sample of m full 

siblings have the probability 

Pr[𝑚2, 𝑚1, 𝑚0|𝑝, (𝑚, FS)]

=
𝑚!

𝑚2!𝑚1!𝑚0!
[𝑝40𝑚−𝑚2 + 4𝑝3𝑞 (

1

2
)
𝑚

0𝑚0 + 2𝑝2𝑞20𝑚−𝑚1

+ 4𝑝2𝑞2 (
1

2
)
2𝑚−𝑚1

+ 4𝑝𝑞3 (
1

2
)
𝑚

0𝑚2 + 𝑞40𝑚−𝑚0],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

derived by considering the six possible types of full-sib families (characterized by parental 

genotype combinations) and the probabilities of obtaining the sample from these families 

(Appendix S2, Supporting information). In (17), 0𝑥 ≡ 0 when 𝑥 ≠ 0 and 0𝑥 ≡ 1 when 𝑥 = 0.  
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In the combined sample of n+m individuals, the probability of the counts x2, x1 and x0 

(where x2, x1, x0 ≥0 and 𝑥2 + 𝑥1 + 𝑥0 ≡ 𝑚 + 𝑛) of genotypes AA, Aa, and aa, respectively, is 

Pr[𝑥2, 𝑥1, 𝑥0|𝑝, 𝑛, (𝑚, FS)] = ∑ Pr[𝑛2, 𝑛1, 𝑛0|𝑝, 𝑛]

𝑛𝑖,𝑚𝑖

Pr[𝑚2, 𝑚1, 𝑚0|𝑝, (𝑚, FS)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

where the summation is over all possible 𝑛𝑖 and 𝑚𝑖 values (where 𝑖 = 2, 1, 0), with 

constraints 𝑛2 + 𝑛1 + 𝑛0 ≡ 𝑛, 𝑚2 +𝑚1 +𝑚0 ≡ 𝑚, 𝑛𝑖=[0, 𝑥𝑖] and 𝑚𝑖 ≡ 𝑥𝑖 − 𝑛𝑖 ≥ 0 for 𝑖 =

2, 1, 0. In (18), Pr[𝑛2, 𝑛1, 𝑛0|𝑝, 𝑛] and Pr⁡[𝑚2, 𝑚1, 𝑚0|𝑝, (𝑚, FS)] are calculated by (16) and 

(17), respectively. 

Given 𝑥2, 𝑥1, 𝑥0, He can be estimated by (4) and (14) when all sampled individuals are 

assumed unrelated, and by (4) and (15) when the relatedness among individuals, 𝜃, is known 

and accounted for. In the combined sample containing n unrelated individuals and m full 

siblings, the frequency of full sib pairs is 𝑄[𝑛,𝑚] =
𝑚(𝑚−1)/2

(𝑛+𝑚)(𝑛+𝑚−1)/2
. The coancestry is ¼ and 

0 for a full sib pair and an unrelated pair, respectively. The average coancestry of the 

combined sample is thus 𝜃 = 𝑄[𝑛,𝑚] (
1

4
) + (1 − 𝑄[𝑛,𝑚])(0) =

𝑚(𝑚−1)

4(𝑛+𝑚)(𝑛+𝑚−1)
. The 

distributions of the two He estimators are calculated by (16-18). 

 The distributions of He estimates calculated by (14) and (15) are shown in Figure 3 

(upper panel) for a combined (C) sample with n=m=20, and an unrelated (U) sample obtained 

by removing all but one siblings from sample C (i.e. n=20 and m=1). For both samples, the 

population allele frequency is p=0.5 and thus the actual value of He is 0.5. With sample C, 

both estimators (14) and (15) are highly dispersed. In general, accounting for relatedness by 

(15) gives unbiased He estimates, while ignoring relatedness by (14) underestimates He. The 

U sample has only 21 individuals, roughly half of that of C sample, 40. However, it yields 

much less dispersed He estimates around the true value of 0.5 than C sample. 

 Values of He estimated from sample U or from sample C by estimator (15) are always 

unbiased, irrespective of the actual parameter values of p and He (Figure 3, middle panel). 

The RMSE for sample U is always much smaller than that for sample C obtained by either 

estimator (14) or estimator (15) (Figure 3, lower panel). The maximum difference occurs 

when true He = 0.269 (which is realised when 𝑝 = 0.16 or 𝑝 = 0.84), while the minimum 

difference occurs when true He is either the maximal, 0.5 (i.e. when 𝑝 = 0.5) or close to the 

minimal, 0 (i.e. when 𝑝 → 0 or 𝑝 → 1). The large accuracy advantage of sample U (or the 
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bold approach) over sample C (or the naïve and cautious approaches) is due to largely its 

much smaller sampling variance (Figure 3, upper panel) and secondarily its smaller bias 

(Figure 3, middle panel). This is remarkable considering that sample U is only half as large as 

sample C.  

Although the cautious estimator (15) is unbiased, it has a larger sampling variance and 

is thus less accurate than the naïve estimator (14) in most of the parameter range of p=[0, 1]. 

Parameters like He are mainly determined by allele frequencies. As long as inappropriately 

estimated (e.g. by the naïve approach) allele frequencies are used in estimating these 

parameters, they cannot be estimated accurately, despite they can be estimated without bias 

by accounting for the relatedness structure of the sample.  

 Simulations were also conducted to check the analytical results shown in Figure 3, 

and to investigate how much He estimates can be improved by using the weighted allele 

frequency estimator, (5). In addition to sample C which had a single large full-sib family, the 

simulation also considered a sample containing several small sib families, with structure 

E5={n, m1, m2, m3, m4, m5} = {20, 4, 4, 4, 4, 4}. The simulation results were almost identical 

with the analytical results (not shown Figure 3 for clarity) for samples C and U. Furthermore, 

applying the weighted estimator to C samples yields the most accurate results in all cases. 

Confirming the analytical results, the cautious estimator (15) that accounts for relatedness but 

uses inappropriately (by the naïve approach) estimated allele frequencies is unbiased but 

often yields the worst estimates with the highest RMSE.  

 The numerical example shows that, when ECR are sampled but are ignored, allele 

frequency estimate 𝑝̂𝑖 by (4) is unbiased but 𝑝̂𝑖
2 is biased. The bias leads to an underestimate 

of He. As a result of this and a higher sampling variance, the naïve estimator usually has a 

high RMSE, especially when large full-sib families are sampled. If the relatives in a sample 

can be identified and thus the average relatedness of all sampled individuals is calculated and 

used in estimator (15), then unbiased He can be estimated. However, most often (15) has a 

lower accuracy than (14) because of its larger variance. When a sample is dominated by a 

few large sib families, a better option is the bold approach which identifies and removes all 

but one sibling from each family, and uses only unrelated individuals in estimating He. Such a 

strategy reduces sample size substantially, but still yields unbiased and more accurate 

estimates of He. However, when a sample contains numerous small sib families, the naïve 

method yields more accurate He estimates than the bold method. Over widely different 
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distributions of family sizes in a sample, the best estimates of He are obtained by identifying 

and accounting for (not removing) close relatives in calculating allele frequencies, which are 

then used in calculating He. 

Effective number of alleles 

Effective number of alleles, Ae, was first proposed by Kimura and Crow (1964) and has been 

widely used as a measurement of genetic variation at a locus. It is defined as the number of 

equally frequent alleles it would take to achieve the same He as in a study population where 

the allele frequencies are not equal. The mathematical expression is  

𝐴𝑒 =
1

1−𝐻𝑒
=

1

∑ 𝑝𝑖
2𝑘

𝑖=1

,          (19) 

where 𝑝𝑖 is frequency of allele i (1~k) at a locus with k alleles. 

 Sampling but ignoring ECR results in an underestimate of He, and thus also an 

underestimate of Ae as is clear from (19). For a sample containing ECR such that the average 

PIBD among sampled individuals is θ, the gene diversity can be estimated by (14) and (15) 

when relatedness is ignored and taken into account respectively. Replacing 𝐻𝑒 in (19) by 

estimator (14) and (15) yields estimator 𝐴̂𝑒(14) which ignores relatedness and estimator 𝐴̂𝑒(15) 

which accounts for relatedness, respectively. For both estimators of 𝐴̂𝑒(14) and 𝐴̂𝑒(15), the 

allele frequencies are estimated by the naïve estimator (4) which ignores ECR. 

The distributions, means and RMSEs of 𝐴̂𝑒(14) and 𝐴̂𝑒(15) for the same numerical 

example considered in Figure 3 for He mirror those for He shown by Figure 3, as expected. 

When close relatives are included in a sample but are ignored, the naïve estimator 𝐴̂𝑒(14) is 

downwardly biased. It is however still more accurate than 𝐴̂𝑒(15) due to its lower sampling 

variance. Identifying and removing full siblings leads to a much smaller sample, but gives 

both unbiased and much more accurate estimates of Ae. Not surprisingly, the same conclusion 

as that for He can be reached. Over widely different distributions of family sizes in a sample, 

the most accurate estimates of Ae are obtained by identifying and accounting for close 

relatives in calculating allele frequencies in a likelihood framework, which are then used in 

calculating Ae. 

Observed number of alleles 
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The number of distinctive alleles observed at a locus in a sample of individuals, Ao, is another 

important measure of genetic variation. Also called allelic richness, Ao is more sensitive to 

population demographic changes than He. A population bottleneck can cause a drastic 

reduction in Ao with little effect on He, especially for a highly polymorphic locus with many 

rare alleles. It thus creates an apparent excess of He compared with the heterozygosity 

expected from Ao if the population were at mutation and drift equilibrium. The excess 

calculated from a set of markers can then be used as signal to infer population bottlenecks 

(e.g. Cornuet & Luikart 1996). Ao is also believed to be a measure of genetic diversity more 

appropriate than He for indicating a population's long-term potential for adaptability and 

persistence (Allendorf 1986; Caballero & García-Dorado 2013). 

 Ao reflects both the population and sample properties. It is much more affected by 

sampling intensity than He, and is a non-decreasing function of sample size n.  Consider a 

locus with k alleles of frequencies 𝐩 = (𝑝1, 𝑝2, … , 𝑝𝑘) in a population at HWE. When n 

diploid individuals are drawn at random from the population, the counts of different alleles, 

x=(x1, x2, …, xk) where 𝑥𝑖 ≥ 0 and ∑ 𝑥𝑖
𝑘
𝑖=1 = 2𝑛,  in the sample follow the multinomial 

distribution 

Pr[𝐱|2𝑛, 𝐩] =
(2𝑛)!

∏ 𝑥𝑖!
𝑘
𝑖=1

∏ 𝑝𝑖
𝑥𝑖𝑘

𝑖=1  .        (20) 

Using (20), we can calculate the probability that Ao (=1, 2, …, k) is observed in a sample of n 

individuals. As an example, herein I consider the events that not all k known alleles are 

included in the sample, Ao < k. The probability of the events is 

Pr[𝐴𝑜 < 𝑘|2𝑛, 𝐩] = 1 −∑
(2𝑛)!

∏ 𝑥𝑖!
𝑘
𝑖=1

∏ 𝑝𝑖
𝑥𝑖

𝑘

𝑖=1
𝐱

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 

where the summation is over x=(x1, x2, …, xk) with the constraints 𝑥𝑖 > 0 and ∑ 𝑥𝑖
𝑘
𝑖=1 = 2𝑛. 

 A sample with ECR would have a lower Ao and a higher Pr[𝐴𝑜 < 𝑘|2𝑛, 𝐩] than a 

sample containing the same number of unrelated individuals. Effectively, close relatives 

provide correlated information about Ao and reduce the effective sample size, ne. Let us 

consider a simple example. Suppose a sample contains n individuals drawn at random from a 

large population, and m individuals drawn at random from a full sib family in the same 

population. The total number of genes in the combined sample is 2(𝑛 + 𝑚), but the effective 
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number of genes in the sample, ne, is smaller. The number of independent (i.e. not IBD) 

genes in the m full siblings is x with probability 

Pr[𝑥|𝑞, 2] =
2!

(4−𝑥)!(𝑥−2)!
𝑞4−𝑥(1 − 𝑞)𝑥−2,             (22A) 

where 𝑞 = 21−𝑚 (Appendix S3, Supporting information) and x=2, 3 and 4. For example, the 

probabilities of x=2, 3, 4 independent genes are 0.25, 0.5, and 0.25 respectively in a sample 

of m=2 full siblings, and are 0.004, 0.117 and 0.879 respectively in a sample of m=5 full 

siblings. Therefore, the combined sample with 2(𝑛 + 𝑚) genes has 𝑛𝑒 = 2𝑛 + 2, 2𝑛 + 3 and 

2𝑛 + 4 with the same corresponding probabilities. Considering the three cases together, I 

obtain the probability of Ao < k 

Pr[𝐴𝑜 < 𝑘|𝑛,𝑚, 𝐩] =∑Pr[𝑥|𝑞, 2]

4

𝑥=2

Pr[𝐴𝑜 < 𝑘|2𝑛 + 𝑥, 𝐩],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(22B) 

where Pr[𝑥|𝑞, 2] and Pr[𝐴𝑜 < 𝑘|2𝑛 + 𝑥, 𝐩] are calculated by (22A) and (21), respectively, 

for x=2, 4, and 4. 

Figure 4 shows the effects of allele frequency distribution, sample size, and the 

inclusion of full siblings on Ao, quantified by equation (22B). A locus with 4 alleles of 

frequencies p1=(0.1, 0.2, 0.3, 0.4) and p2=(0.01, 0.02, 0.03, 0.94) is considered. The 2nd 

frequency distribution is much more skewed than the first. Two samples of diploid 

individuals are used to obtain Ao. The first, unrelated sample, contains 𝑛 individuals drawn at 

random from a large population at HWE. The second, related sample, contains 𝑛/2 

individuals drawn at random from the large population and 𝑛/2 individuals drawn at random 

from a full-sib family in the same population. While both samples have the same size of 2n 

genes, the related sample has an effective size, ne, which is only slightly larger than half of 

that of the unrelated sample (𝑛𝑒 = 2𝑛). As is clear from Figure 4, the related sample has a 

much larger Pr[𝐴𝑜 < 𝑘] than the unrelated sample, except when n is trivially small (i.e. < 4). 

The maximal difference occurs when sample size n is intermediate. For a given number of 

individuals, fewer than k=4 alleles are more likely to be observed when close relatives are 

included in the sample, and when rare alleles exist at the locus. Some simulations confirm the 

analytical results and are also shown in the figure. 

Hardy-Weinberg equilibrium (HWE) 
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At HWE, the two alleles at a locus in any diploid individual are independent. As a result, the 

frequency of a genotype is equal to the product of the frequencies of the two alleles in the 

genotype. These genotype frequencies are called Hardy-Weinberg proportions, which are 

realized in a large population by one generation of random mating if there is no difference in 

allele frequencies between males and females and there is no selection at the locus. A test of 

the deviation from HWE is most often one of the first analyses conducted on marker 

genotype data. Such a test is revealing not only for population properties (such as non-

random mating and admixture), but also for marker properties or genotyping abnormalities 

(e.g. allelic dropouts, null alleles, see Bonin et al. 2004). 

 As analysed above, ECR in a sample cause a reduction in the estimated FIS and He, 

and correspondingly an increase in expected frequencies of homozygotes given the observed 

allele frequencies. Therefore, when a sample containing ECR is drawn from a large 

population at HWE and is tested for HWE, the equilibrium is likely to be falsely rejected, 

leading to the possible false conclusion that the population is sub-structured, avoids close 

relative mating, and/or the markers have genotyping problems such as allelic dropouts and 

null alleles. 

 It is not easy to quantify analytically the effect of ECR on HWE tests. A simulation 

was conducted to investigate how often HWE was falsely rejected when ECR were included 

in a sample drawn from a population under HWE. I assumed a large, monoecious, random 

mating (including selfing) population at HWE. A sample of 80 unrelated individuals (called 

unrelated sample hereafter) were drawn at random. Additionally, a number of 5, 10, 20, 40 or 

80 full siblings were also drawn from a single family in the same population, and were 

included in the unrelated sample to form the combined sample. The combined sample and the 

unrelated sample were then independently tested for HWE at a marker locus with simulated 

allele frequencies p=(0.1, 0.2, 0.3, 0.4) or p=(0.01, 0.02, 0.03, 0.94). For each sample, exact 

test for HWE was conducted using the permutation approach (Guo & Thompson 1992; Weir 

1996) with 105 replicates. The proportion of replicate datasets (total = 10000) detected to 

depart from HWE at the 5% significance level was reported separately for combined samples 

and unrelated samples (Figure 5, upper panel). It is clear from the graph that full siblings 

included in the combined sample cause an elevated frequency at which HWE is falsely 

rejected. The larger the proportion of full siblings in a sample, the greater is the rate of 

rejection of HWE. The effect of full siblings is greater with a more even allele frequency 
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distribution. When full sibs are removed and only unrelated individuals are used for HWE 

tests, the rejection rate is always close to the expected value of 0.05. 

Linkage disequilibrium 

The association of alleles within an individual at a single locus measures the deviation from 

HWE. Alleles within an individual at different loci may also be associated, a phenomenon 

called linkage disequilibrium (LD), because of several mutually nonexclusive factors such as 

admixture, random genetic drift, non-random mating, and selection. The loci are not 

necessarily linked physically to become associated, although physical linkage leads to a 

higher chance and a greater extent of association (Hill & Robertson 1968). LD is defined and 

measured by the deviation of the observed genotype or gametic frequency at two or more loci 

from the product of allele frequencies. The degree of LD can be estimated and tested for 

statistical significance directly from the genotype frequencies in a sample of individuals taken 

from the population, whether the gametic phase is known or not.  

 In some analyses, the degree of LD is estimated from a sample of genotypes and is 

used for inferring population parameters such as effective population size (e.g. Hill 1981). In 

many other analyses, however, the degree of LD is of no direct relevance but is tested for 

statistical significance. If two loci are found to deviate significantly from linkage equilibrium 

(LE), then they could be suspected to be linked, under selection, affected by genotyping 

errors, or the population is under non-random mating or is affected by admixture (Slatkin 

2008). To avoid increased type I errors in downstream analyses, it has been suggested to 

discard one locus in a pair of loci with significant LD (e.g. Selkoe & Toonen 2006). Herein I 

show non-random sampling with respect to kin can also lead to significant LD across loci. 

I conducted simulations to investigate the effect of sampling excessive full siblings on 

LD tests. A fixed number of 80 diploid individuals were drawn at random from a large 

population at HWE and LE at two loci with identical allele frequency distribution p1=(0.1, 

0.2, 0.3, 0.4) or p2=(0.01, 0.02, 0.03, 0.94). These allele frequency distributions were chosen 

to represent even (p1) and skewed (p2) distributions. These 80 individuals constitute the 

unrelated sample. A number of 5, 10, 20, 40, or 80 full siblings were taken from a single full-

sib family in the same population and were added to the unrelated sample to constitute the 

combined sample. Both unrelated and combined samples were tested for LD using the exact 

test with the permutation approach (Weir 1996) with 105 replicates. The proportion of 

replicate datasets (total = 1000) in which LD was significant at the 5% significance level was 
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compared between the unrelated and combined samples (Figure 5, lower panel). The pattern 

in LD test results mirrors that in HWE. In short, the inclusion of full siblings yields false 

significant LD. The more evenly distributed the allele frequencies are and the more full 

siblings included in a sample are, the larger is the frequency at which LD is tested significant. 

Discussion 

In almost all population genetics analyses, sampling of individuals is assumed to be at 

random such that the population is adequately represented by the sample and its properties, or 

the underlying genetic mechanisms leading to the properties, can be inferred reliably from the 

sample. For marker-based genetic studies and many others, random sampling is often 

implicitly with respect to kinship. Including too much or too little kin in a sample compared 

with that under random sampling could lead to biased and/or low-precision estimates of 

population parameters, as shown in this study. My results show that, given the large and wide 

effects of non-random sampling, every effort should be made to ensure random sampling of 

individuals in the experimental design and implementation stages. Once a sample is obtained 

and genotyped, effort should also be made to detect possible cryptic close relatives included 

in the sample by analysing the marker data. This becomes a routine of data quality control in 

human genetics, but awaits applications to other organisms in molecular ecology studies. 

When ECR are detected, one needs to consider how best to deal with them. Different 

analyses are affected differently by ECR in a sample, and should ideally be conducted using 

different strategies to deal with non-random sampling. The optional strategies are ignoring 

close relatives (naïve estimator), identifying and removing close relatives (bold estimator), 

estimating allele frequencies by ignoring relatives but then estimating the target parameter 

(e.g. He) by accounting for relatives (cautious estimator), and estimating allele frequencies by 

accounting for relatives, which are then used in calculating the target parameters (weighted 

and likelihood estimators). 

 My analysis shows that the choice of the four estimators depends on the parameter 

being estimated, as well as the actual genetic structure (family size and distribution) of a 

sample. Since Ao estimate is a non-decreasing function of sampled individuals (Figure 4) 

regardless of their relatedness, it is best to disregard relatedness and use all sampled 

individuals (i.e. the naïve estimator) in Ao analysis. In contrast, inclusion of close relatives 

distorts genotype and allele frequencies at a single locus and at multiple loci and thus leads to 

the sporadic rejections of HWE and LE (Figure 5). The best option is to identify and remove 
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close relatives before conducting HWE and LE tests. In the case that a large proportion of 

sampled individuals are relatives, it may be infeasible to remove all relatives as the sample 

size would become too small. If the pedigree of the sampled individuals is available, HWE 

can be tested by accounting for relatedness (Bourgain et al. 2004).  

Many parameters, such as F statistics, He and Ae, are highly dependent on allele 

frequency estimates. All of the 4 options for handling ECR are applicable to estimating these 

parameters from a sample containing relatives. The naïve approach, which ignores 

relatedness completely and estimates the parameters as if all sampled individuals were 

unrelated, leads to unbiased (but imprecise, see Figure 1) allele frequency p estimates. 

However, it results in biased and imprecise estimates of higher order terms of p, such as p2, 

and thus inaccurate estimates of parameters (e.g. F statistics, He and Ae) involving these terms. 

The bold approach, which identifies and removes all but one relative in a family before 

conducting an analysis, always yields unbiased estimates of allele frequency p and target 

parameters (e.g. FST). However, due to the reduction in sample size, it could lead to more 

accurate and less accurate parameter estimates than the naïve approach when family sizes are 

highly unbalanced and are small and balanced, respectively. The cautious approach, which 

estimates allele frequencies by ignoring relatedness (i.e. naïve approach) but estimates the 

focal parameters by accounting for relatedness, yields unbiased but usually imprecise 

parameter estimates. The likelihood approach, which accounts for relatedness in the 

likelihood estimates of allele frequencies and uses the frequencies in calculating focal 

parameters, usually performs the best for those parameters that are dependent allele 

frequencies and their higher order terms (such as F statistics, He and Ae). Some of the results 

comparing the above four options are shown in Figures 1-3.   

 In this paper, I focused on the most popular and elementary population parameters 

analysed from marker data. However, markers enable the analyses of so many parameters 

that it is impossible to consider all of them herein. The effects of ECR on these parameters 

are likely to be qualitatively similar to what I have shown in this study. For example, marker 

data can be collected from 2 (or more) samples taken from the same population and separated 

by a few generations. These temporal samples can be used to calculate a variant of Wright's 

standardized allele frequency variance, F. The differences between F and FST are that F 

measures the differentiation between temporally spaced samples from the same population 

while FST measures the spatial differentiation between populations at the same time, and that 

F is determined by both samples and populations while FST is expected to be determined by 
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populations only. F estimates can be used to calculate the average effective size (Ne) of the 

population during the sampling interval (e.g. Nei & Tajima 1981; Waples 1989). Like many 

other analyses, F and Ne are estimated by assuming random sampling for all temporal 

samples. When ECR are included in any of the temporal samples, F, like FST, will be 

overestimated and Ne underestimated if the relatives are ignored. Similarly, Ne can be 

estimated from the LD observed in a single sample of individuals taken at the same time from 

a population (Hill 1981; Waples & Do 2008). Excessive close relatives inflate the estimates 

of LD, as shown in Figure 5, and thus deflate Ne estimates. Ideally for an accurate estimate of 

Ne, excessive relatives included in a sample should be identified and accounted for in 

calculating allele frequencies and thus F and Ne in the temporal method. Because it is unclear 

how to accommodate relatives in calculating LD, it is unclear how best to deal with ECR in 

estimating Ne from LD. The simulations of Waples and Anderson (2017) provide some 

insight into this problem. 

 The estimation of different population parameters varies in sensitivity to non-random 

sampling, and is thus affected differently by ECR. One parameter critically dependent on 

random sampling for unbiased and accurate estimation is Ne when it is estimated from the 

sibship frequency approach (Wang 2009). As shown by Waples and Anderson (2017), 

removing all siblings from a sample will lead to an overestimated Ne. This is true even when 

a population is very large such that the expected sibship frequency in the population or in a 

randomly drawn sample is very small. The result is not surprising, because sibship frequency 

in a randomly drawn sample is inversely proportional to Ne of the population (Wang 2009). 

Non-random sampling with too many or too few siblings, or manipulating sibling frequencies 

in a truly randomly drawn sample by removing some identified siblings, will result in a 

biased estimate of sibling frequency and thus of Ne. When all siblings are identified and 

removed from a sample, the estimate of Ne from the sibship frequency approach is always 

infinite, irrespective of the actual Ne and sample size. For the estimation of parameters that 

are critically dependent on the relatedness structure of a sample, such as Ne estimated from 

the sibship frequency approach, it is difficult or impossible to use any of the strategies (e.g. 

removing siblings) investigated in this study to eliminate the bias. The only effective strategy 

is to ensure, in experimental design and implementation, that sampling is indeed at random 

with regard to relatedness. 

 It is not abnormal that a sample contains close relatives. A sample of individuals 

drawn truly at random from a population could contain close relatives. The larger the sample 
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and the smaller the population is, the more relatives a random sample is expected to contain. 

For example, siblings would occur at an expected frequency in the order of 1/Ne
 in both the 

population and in a random sample from the population, where Ne is the effective size of the 

sampling population (Wang 2009). A sample becomes abnormal when it contains too many 

or too few relatives than a truly randomly drawn sample of the same size. Such a sample is 

unrepresentative of the source population, and as a result provides biased and imprecise 

parameter estimates as shown in this study. However, as long as the frequency of relatives in 

a (non-randomly drawn) sample does not deviate much from that expected when sampling is 

at random, the estimates of the parameters considered in this study should not be biased much. 

Unfortunately, it is difficult to judge whether a sample is abnormal (i.e. containing too few or 

too many relatives) or not, because the expected frequency of relatives in a natural population 

is seldom known. In this difficult but realistic situation, should we always endeavour to 

identify and deal with close relatives in a sample no matter how frequent they are and how 

frequent they should be under random sampling? Is it possible that removing or accounting 

for relatives in a sample could cause the opposite and serious effects (e.g. decreasing FST)? I 

have not considered the effects of deficient close relatives (because they are under-sampled 

or are identified and removed) in a sample drawn from a small population (i.e. with a 

substantial expected frequency of close relatives). However, the effects are likely to be small 

and negligible on the analyses of those population parameters considered in this study, 

because the frequency of close relatives in a population is expected to be small, in the order 

of 1/Ne.  Except for extremely small populations (say, Ne < 50), blindly identifying and 

accounting for (or removing) close relatives, few or many, in a sample has a high probability 

of beneficial effects and a low probability of small and negligible adverse effects on 

estimating those population parameters shown in this study. For a population with Ne ≥ 50, 

the maximal difference in sibling frequency is ≤0.02 between the population and a sample 

without siblings (because siblings are not sampled, or removed), but is ≥0.98 between the 

population and an inadvertently acquired sample with ECR. The maximal difference in the 

latter case is realized when all sampled individuals come from a single sib family, which is 

possible for fecund species with clustered distributions of relatives, regardless of Ne. 

 In all numerical examples of this study, I used full siblings to represent close relatives 

because they are highly related, and are frequent in juveniles of highly fecund species 

(Hansen et al. 1997; Goldberg & Waits 2010) and could constitute a large proportion of 

sampled individuals. Loosely speaking, the impact of non-random sampling of relatives 
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depends on the product of the relatedness and the frequency of the relatives in a sample, or 

the average relatedness between sampled individuals. Other kinds of close relatives have 

similar effects to full siblings. They are however expected to be either less frequent or less 

related, and thus to be less important than full siblings. For example, although parent-

offspring pairs have the same relatedness as full-sib pairs, they are expected to be less 

frequent in natural populations and in samples. Half sibs could be more abundant than full 

sibs in some species, but their relatedness is only half of that of full sibs. Similarly, cousins 

can also be more copious than full sibs, but their relatedness is a small fraction of that of full 

sibs. This does not mean full sibs are always the most important relatives that determine the 

effect of non-random sampling. For certain species under certain situations, half sibs, cousins 

or other types of relatives singly or collectively may overwhelm the impact of full sibs. 

However, the general patterns and conclusions about the effects of non-random sampling 

obtained in this study using full siblings still apply. 

 It should be emphasized that excessive relatives in a sample have universal effects on 

population parameter estimates. In other words, the effects are expected to be the same for all 

markers, and thus cannot be reduced or removed by simply increasing the number of markers. 

In fact, the effects on parameter estimation accuracy become more prominent with an 

increasing number of markers. This is because accuracy (measured by RMSE) is determined 

by both bias and sampling variance. More markers usually lead to a smaller sampling 

variance, but cannot reduce bias caused by non-random sampling. Therefore, with an increase 

in marker number, the accuracy is increasingly determined by bias rather than sampling 

variance. In other words, with an increase in marker number, bias (due to non-random 

sampling of individuals) becomes more important in determining parameter estimation 

accuracy. Therefore, with the use of more markers, unbiased estimators (e.g. those removing 

relatives or accounting for relatedness) become better than biased but precise estimators (e.g. 

naïve estimator). In human genetics where now hundreds of thousands markers are routinely 

used to map genes responsible for inheritable diseases, precision is no longer an issue but bias 

is. Therefore, it is almost certain that the bold approach of removing close relatives always 

yields better results than the naïve approach, except in the case where the frequency of 

relatives in a sample is used directly as the information in estimating parameters such as Ne 

(Waples & Anderson 2017). On the other hand, more markers mean higher power and 

accuracy in identifying relatives, and thus potentially better parameter estimates by 

accounting for the identified relatives. 
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 Excessive relatives in a sample also affect the estimates of marker specific quantities, 

such as genotyping error rates. Indeed, the deficiency of heterozygotes compared with those 

under HWE at a marker locus is regarded as signalling the presence of null alleles or allelic 

dropouts in PCR (Bonin et al. 2004) at the locus, and has been used to estimate null allele 

frequencies (e.g. Brookfield 1996) and dropout rates (e.g. Johnson & Haydon 2007). A 

critical assumption in these estimation methods is that the sample would be at HWE if there 

were no marker genotyping problems. Thus the excess of observed homozygosity is due 

solely to null alleles or allelic dropouts and can be used for estimating their frequencies. With 

ECR included in a sample, the apparent homozygosity at all marker loci would be reduced as 

shown in this study. If the sample is naively assumed to be taken at random from a population 

at HWE, an underestimate of null allele or dropout frequencies would result. In this context, 

more general and powerful methods have been developed to use known pedigrees for 

inferring marker genotyping errors (including dropouts, null alleles, false alleles) or for 

inferring pedigrees and typing errors jointly (e.g. Sobel et al. 2002; Wang 2004; Wang & 

Santure 2009). In these likelihood frameworks, known or unknown relatedness between 

individuals is not noise but information for identifying erroneous genotypes at particular loci 

and in particular individuals, and for inferring genotyping error rates at each locus. 
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