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Estimating pairwise relatedness in a small sample of
individuals

J Wang

The genetic relatedness between individuals because of their recent common ancestry is now routinely estimated from marker
genotype data in molecular ecology, evolutionary biology and conservation studies. The estimators developed for this purpose
assume that marker allele frequencies in a population are known without errors. Unfortunately, however, these frequencies, upon
which both the definition and the estimation of relatedness are based, are rarely known in reality. Frequently, the only data
available in a relatedness analysis are a sample of multilocus genotypes from which both allele frequencies and relatedness must
be deduced. Furthermore, because of various constraints, sample sizes of individuals can be quite small (say o50 individuals)
in practice. This study shows, for the first time, that the widely used relatedness estimators become severely biased when they
use allele frequencies calculated from an extremely small sample (say o10 individuals). The extent of bias depends on the
sample size, the (unknown) population allele frequencies, the actual relatedness and the estimators. It also shows that
relatedness estimators become even more biased when they use allele frequencies calculated from a sample by omitting a focal
pair of individuals whose relatedness is being estimated. This study modifies two estimators to suit small samples and shows,
both analytically and by analysing simulated and empirical data, that the two modified estimators are much less biased, more
precise and more accurate than the original estimators. These performance advantages of the modified estimators are shown to
increase with a decreasing sample size of individuals and with an increasing value of actual relatedness.
Heredity (2017) 119, 302–313; doi:10.1038/hdy.2017.52; published online 30 August 2017

INTRODUCTION

Inbreeding and relatedness are pivotal concepts in population genetics
theory (Wright, 1921, 1922), and have important applications in many
research areas in quantitative genetics, conservation genetics, forensics,
evolution and ecology (Weir et al., 2006). Two individuals are
genetically related because they have recently shared genealogical
history, or have common ancestors in the recent past. The number
of common ancestors and their distances (that is, the number of
generations) to a pair of individuals determine the (expected) extent of
relatedness between the individuals. Related individuals have more
similar genotypes at each locus because their alleles have a higher
probability of identity by descent (IBD) than unrelated individuals. As
a result, they also tend to have a higher similarity in the phenotype of a
quantitative trait (Falconer and Mackay, 1996; Lynch and Walsh,
1998).
Relatedness is traditionally calculated from pedigree data, as

exemplified by the analysis of Wright (1922) of a Shorthorn cattle
pedigree. Unfortunately, pedigree is rarely available and complete from
natural populations. With the rapid development of genetic markers,
quite a few methods have been proposed (see, for example, Lynch,
1988; Queller and Goodnight, 1989; Li et al., 1993; Loiselle et al., 1995;
Ritland, 1996; Lynch and Ritland, 1999; Wang, 2002, 2007; Milligan,
2003; Thomas, 2010), implemented in computer programs (see, for
example, Hardy and Vekemans, 2002; Wang, 2011a) and applied to
estimating the genetic relatedness between a pair of individuals from
their marker genotypes. Compared with pedigree data, marker data

are easier to collect and do not have to be accumulated over a
prolonged number of generations. A single sample of individuals taken
from a population and genotyped at a number of marker loci provides
all the information necessary for assessing the relative relatedness
between the sampled individuals (Weir et al., 2006). Furthermore,
markers can yield realized rather than expected relatedness as
calculated from pedigrees, and can produce much better relatedness
estimates than pedigrees when they are numerous (Kardos et al., 2015;
Wang, 2016). This marker-based approach has enabled many genetics
studies of natural populations of various plant and animal species
(DeWoody, 2005; Garant and Kruuk, 2005), and has made many
analyses (such as estimating heritability) traditionally based on
pedigrees much more powerful (see, for example, Manolio et al.,
2009).
Marker-based relatedness estimators are developed on the assump-

tion that marker allele frequencies in a suitably defined reference
population (see, for example, Ritland, 1996; Lynch and Ritland, 1999;
Wang, 2014) are known without errors. This allele frequency
information is supposed to be independent of the sample multilocus
genotype data, and the reference population is implicitly assumed to
be large and at random mating such that all homologous genes within
or between reference individuals are not IBD. A shift of reference
populations (that is, reference allele frequencies) will change the
biological meaning and the estimated values of relatedness among
sampled individuals (Anderson and Weir, 2007; Wang, 2011b, 2014).
Strictly under this assumption, a number of relatedness estimators are
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shown to be unbiased (see, for example, Lynch and Ritland, 1999; Van
de Casteele et al., 2001; Wang, 2002, 2011b) and consistent, providing
increasingly accurate estimates with an increase in marker
information.
In reality, however, the strictly defined reference allele frequencies

are never available. Although allele frequency data independent of
sample genotype data can be available in the rare cases of some well-
studied populations (model organisms), these populations are invari-
able structured genetically. Most frequently, the only data one has are
samples of multilocus genotypes, from which one has to deduce allele
frequencies by assuming all individuals are unrelated and non-inbred.
Using these estimated allele frequencies to infer relatedness creates
several problems (Wang, 2014).
First, the average relatedness among sampled individuals becomes

close to zero, and a substantial proportion of the pairwise relatedness
estimates are negative. This is true regardless of the actual genetic
structure of the sample. These results are expected because marker-
based relatedness is more appropriately interpreted as a correlation
coefficient, as originally conceived by Wright (1921, 1922), rather than
the probability of IBD, as used in developing various estimators
(Wang, 2014). A negative relatedness estimate means the individuals
are less related than the average. Such relatedness estimates are
expected to be lower, more or less proportionally, than those when
ancestral reference allele frequencies would have been used. However,
this underestimation of relatedness does not cause problems in the
majority of relatedness analyses (for example, regression and correla-
tion analyses) in which it is the relative rather than absolute values of
relatedness that matters (Wang, 2014).
Second, the relatedness picture of a sample of individuals is

distorted when the sample, small or large, contains a substantial
proportion of close relatives. With allele frequencies estimated by
naively assuming all individuals in the sample are non-inbred and
unrelated, relatedness tends to be more underestimated for closely
related individuals than for loosely related or unrelated individuals
(Wang, 2014). The distorted relatedness estimates could derail or
cause bias of all downstream analyses, no matter whether they depend
on relative (for example, in a correlation analysis) or absolute (for
example, in inferring genealogical relationship) relatedness.
Third, estimating allele frequencies and relatedness from the same

sample of individuals introduces circularity, and results in an under-
estimation of relatedness in the order of 1/N, where N is the number
of sampled individuals (Queller and Goodnight, 1989; Loiselle et al.,
1995; Ritland, 1996; Lynch and Ritland, 1999). The underestimation is
true no matter whether the sample is genetically structured or not. It is
suggested that this bias can be simply removed by adding a correction
factor of order 1/N (Loiselle et al., 1995), or by calculating and using
allele frequencies obtained by omitting the focal pair of individuals
(Queller and Goodnight, 1989; Lynch and Ritland, 1999). In the latter
approach, however, it is recognized that pathological behaviour will
occur when an allele appears only in the focal individuals (Lynch and
Ritland, 1999). In such a case, allele frequency will be estimated to be
zero by this exclusion procedure, causing some relatedness estimators
to become undefined. However, no study has been conducted to check
whether these two bias correction procedures are effective or not.
In the pre-genomics era, small sample sizes and thus the resultant

biases of a relatedness estimator were not a serious problem, compared
with other problems, except when N is extremely small (say, No10).
When a typical set of only 10–20 microsatellites is used in calculating
relatedness, the sampling variance is expected to overwhelm the small
bias in the order of 1/N (Lynch and Ritland, 1999) in determining
estimation accuracy. With the rapid development and applications of

next-generation sequencing, however, hundreds of thousands of
single-nucleotide polymorphisms (SNPs) can be genotyped at ease
for an individual. With this vast volume of data, marker-based
relatedness estimates can be highly precise, and much more accurate
than pedigree-based estimates (Kardos et al., 2015; Wang, 2016).
Furthermore, a dramatic increase in the number of markers usually
accompanies a dramatic decrease in the number of sampled and
genotyped individuals because of practical constraints such as cost.
Moreover, the extremely sparse nature of SNP data given by next-
generation sequencing makes the small sample size problem even
more acute: the number of usable genotypes at any locus is typically
much smaller than the number of sampled individuals. In such a
situation of many more sampled markers (say, millions) than sampled
genotypes at a locus (say, 50 or less), which is typical in the genomic
era, the bias due to a small sample size of individuals becomes
prominent. The number of sampled individuals can also be very small
in other practical situations, such as ancient samples (for example,
museum samples, excavated fossil bones), mixed samples of unknown
sources (for example, confiscated animal products, victims of a
disaster) and samples from highly endangered species.
In this study, I analyse the bias of several popular moment

estimators of relatedness when a small sample of multilocus genotypes
is used for calculating both allele frequencies and relatedness. I also
investigate whether omitting a focal pair of individuals in estimating
allele frequencies can remove or reduce the bias or not. Finally, I
propose a method to modify some of the estimators such that they
provide unbiased and accurate relatedness estimates even when sample
size is extremely small. Simulated and empirical data sets were
analysed to study the behaviour of the original and modified
estimators.

BIAS DUE TO SMALL SAMPLE SIZE

In this section, I quantify the bias caused by calculating both allele
frequencies and relatedness from a small sample of individual
genotypes. For generality, relatedness estimators are described for a
locus with any number of alleles and for multiple loci. For simplicity,
however, the bias of the estimators is investigated by considering a
single locus with two codominant alleles, A and B, with frequencies
p and q (= 1− p) in a large random mating population at Hardy–
Weinberg equilibrium. The bias is confirmed by simulations,
described in the next section, for multiallelic and multiple loci.
In a sample of N individuals drawn at random from the population,

the counts i, j and k for the three genotypes AA, BB and AB,
respectively, at a diallelic locus follow the multinomial distribution

f ½i; j; k pj � ¼ N !

i!j!k!
p2
� �i

q2
� �jð2pqÞk ð1Þ

For a given sample configuration characterized by genotype counts i, j
and k, with i+j+k≡N, allele frequencies can be estimated by assuming
unrelated and non-inbred individuals such that

p̂ ¼ ð2iþ kÞ=ð2NÞ; q̂ ¼ ð2jþ kÞ=ð2NÞ ð2Þ
The average relatedness of the N individuals calculated using p̂ and q̂ is
expected to be negative, roughly in the order of 1/N, because of the
circularity in allele frequency and relatedness estimation (Wang,
2014). In the following, I quantify analytically this bias of several
estimators, when allele frequencies are estimated by including and
omitting a focal pair of individuals whose relatedness is being
estimated.
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Figure 1 Means of different estimators as a function of sample size N. For each estimator, population allele frequencies are p=0.1 or p=0.4, and sample
allele frequencies and relatedness are estimated by either excluding (Exc) or including (Inc) the focal pair of individuals. The expected values of estimator LL
or W are not affected by population allele frequency p, so each line is for both p=0.1 and p=0.4. Note estimators W and LL are equivalent for a diallelic
locus as shown by the graph in the lower right corner.
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Queller and Goodnight estimator
Originally developed by Queller and Goodnight (1989), the estimator
(denoted by QG or r̂QG) has a number of variants in use. Here I use
the symmetrical one obtained by averaging the estimates using each of
the two individuals as reference (see Lynch and Ritland, 1999). If
individuals X and Y have genotypes {a, b} and {c, d}, respectively, at a
locus with n alleles, the estimator is

r̂QG a; b; c; d½ � ¼ 1

2

dac þ dad þ dbc þ dbd � 2ðpa þ pbÞ
2ð1þ dab � pa � pbÞ

þ dac þ dad þ dbc þ dbd � 2ðpc þ pdÞ
2ð1þ dcd � pc � pdÞ

0
BBB@

1
CCCA ð3Þ

where allele indexes a, b, c, d= 1, 2,…, n, pi is the frequency of allele i
(= a, b, c, d), and the Kronecker delta variable δij= 1 if i= j and δij= 0
otherwise. The first and second terms on the right side of (3) give the
estimates when X and Y are used as reference, respectively. For a
number of L loci, the sum of the 2L numerator terms and the sum of
the 2L denominator terms are calculated separately before the division
is conducted to give the final multilocus estimate (Queller and
Goodnight, 1989).
For a diallelic locus (that is, n= 2) with alleles A and B, estimator

(3) is undefined when the reference is a heterozygote, because the
denominator is zero. For example, when X is the reference and it has a
heterozygous genotype {a, b}= {A, B}, then the denominator
2(1+δab− pa− pb)= 0 because δab= 0 and pa+pb≡1. In such a case,
the undefined part of the estimator is set as zero. Alternatively, the
undefined part is abandoned and only the defined part is used as the
estimator. When both parts are undefined, the estimator is regarded as
undefined and abandoned. This alternative treatment could increase
bias (see below) and is thus not used in this study.
A diallelic locus has three possible genotypes and six possible

(ordered) genotype pairs. These are {AA, AA}, {BB, BB}, {AB, AB},
{AA, BB}, {AA, AB} and {BB, AB}, and their corresponding relatedness
estimates calculated by (3) are 1, 1, 0, 1� 1

2p � 1
2q ; 1� 1

4q ; 1� 1
4p,

respectively. Using the genotype distribution (1), the expected average
relatedness in a sample of N individuals is

r QG ¼
XN
i¼0

XN�i

j¼0

f i; j; kjp½ �
f ið1Þ þ f jð1Þ þ f kð0Þ þ f ij 1� 1

2p
� 1

2q

� �

þ f ik 1� 1

4q

� �
þ f jk 1� 1

4p

� �
0
BBB@

1
CCCA
ð4Þ

where f[i,j,k|p] is calculated by (1), k≡N− i− j, f g ¼ gðg�1Þ=2
NðN�1Þ=2 is the

frequency that two individuals show the same genotype whose count is
g in the sample, f gh ¼ gh

NðN�1Þ=2 is the frequency that two individuals
show different genotypes whose counts are g and h (g, h= i, j, k),
respectively, in the sample. It can be shown that Equation (4) reduces
to rQ̄G � 0, irrespective of the sample size N (41) and population
allele frequencies p and q. This means QG estimator is unbiased when
population allele frequencies are known and are used in calculating the
relatedness of the N sampled individuals.
When allele frequencies are unknown and are estimated from the

genotypes of the sample of individuals being considered for related-
ness, the average relatedness estimate is still calculated by (4), with
p and q in the brackets (that is, in the estimators) being replaced by p̂
and q̂, respectively, calculated by (2). It turns out that r QG does not
reduce to zero in general. Its value depends on both population allele
frequencies p and q and sample size N. When N= 3 and 4, for
example, r QG ¼ 1� 8hþ ð27=2Þh2 � 3h3 and r QG ¼ 1� 10hþ
ð80=3Þh2 � ð64=3Þh3 þ ð8=3Þh4 respectively, where h= pq. The effects

of N and p on r̂QG are shown in Figure 1. As can be seen, r̂QG can be
both positively and negatively biased, depending on values of N and p.
With an increasing sample size N, rQ̄G always asymptotes to 0
regardless of p, as expected.
When allele frequencies are estimated from the sample by omitting

the focal pair of individuals, the average relatedness estimate is
expected to be

r QG ¼
XN
i¼0

XN�i

j¼0

f ½i; j; k pj �

f ið1Þ þ f jð1Þ þ f kð0Þ

þ f ij 1� 1

2p̂ð2Þ
� 1

2q̂ð2Þ

 !

þ f ik 1� 1

4q̂ð1Þ

 !
þ f jk 1� 1

4p̂ð1Þ

 !

0
BBBBBBB@

1
CCCCCCCA

ð5Þ
where allele frequency estimates are

p̂ðmÞ ¼ ð2iþ k�mÞ=ð2N � 4Þ;
q̂ðmÞ ¼ ð2jþ k�mÞ=ð2N � 4Þ ð6Þ

for m= 1 and 2. Note that p̂ðmÞ can be zero or one when the focal pair
of individuals are excluded, leaving the estimator undefined. When
i=N− 1 and j= 1, for example, excluding the individual with
genotype {BB} will lead to p̂ð2Þ ¼ 1 and q̂ð2Þ ¼ 0. In such a case, the
estimator for genotype pair {AA, BB} becomes undefined and is set
as zero.
Again (5) does not reduce to zero, and r QG depends on both N and

p, as shown by Figure 1. Calculating allele frequencies by excluding
focal individuals actually increases bias substantially, in contrast to the
usual perception (Queller and Goodnight, 1989; Lynch and Ritland,
1999). When P= 0.1 and N= 20, for example, r QG values are − 0.028
and − 0.222 when the focal pair of individuals are included and
excluded in calculating allele frequencies, respectively.
In Figure 1, r̂QG calculated by (3) is set to zero when it is undefined

(because the denominator is zero). This is the most favourable
treatment because (in theory) the mean estimate across all pairs of
individuals in a sample should be close to zero, and because (in
practice) most individuals in a natural population are expected to be
unrelated. The alternative treatment (that is, abandoning undefined
r̂QG estimates) most often increases the bias. For the case of using all
N= 4 sampled individuals in calculating allele frequencies, r QG ¼
0:58; 0:30;�0:00;�0:15 for the proposed treatment (that is, setting
undefined estimate to zero) and r QG ¼ �0:84;�0:69;�0:41;�0:05
for the alternative treatment, when p= 0.05, 0.1, 0.2 and 0.4,
respectively. The alternative treatment often leads to a highly negative
r̂QG, especially when p is close to zero or one.

Ritland estimator
It was proposed by Li and Horvitz (1953) and was made popular by
Ritland (1996) (denoted by R or r̂R hereafter). For individuals X and Y
with genotypes {a, b} and {c, d} respectively at a locus with n alleles, it
is calculated by

r̂R½a; b; c; d� ¼ 2

n� 1

Xn
i¼1

ðdai þ dbiÞðdci þ ddiÞ
4pi

 !
� 1

" #
ð7Þ

where the Kronecker delta δji= 1 (for i, j= a, b, c, d) if j= i, and δji= 0
if otherwise. In contrast to r̂QG, r̂R is always defined for a segregating
locus (n41). The variance of (7) is proportional to 1/(n− 1), derived
by assuming zero relatedness (Ritland, 1996). The multilocus estima-
tor is obtained by weighting the locus-specific estimates by the inverses
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of their sampling variances. When locus l has nl alleles and relatedness
estimate r̂RðlÞ calculated by (7), the multilocus estimator is
r̂R ¼ PL

l¼1 r̂R lð Þ nl � 1ð Þ� �
=
PL

l¼1 nl � 1ð Þ� �
.

Note that Ritland (1996) estimated coancestry (y) that is the
probability that two homologous genes, one taken at random from
one individual and another taken at random from another individual,
are IBD. For non-inbred individuals, r= 2y and (7), when divided by
2, reduces to Ritland (1996) estimator of y.
For the 6 possible genotype pairs {AA, AA}, {BB, BB}, {AB, AB},

{AA, BB}, {AA, AB} and {BB, AB} at a diallelic locus,
r̂R ¼ 2

p � 2; 2
q � 2; 1

2p þ 1
2q � 2; � 2; 1

p � 2; 1
q � 2, respectively, cal-

culated by (7). The expected average relatedness estimate in a sample
of N individuals is

r R ¼
XN
i¼0

XN�i

j¼0

f i; j; kjp½ �
f i

2

p
� 2

� �
þ f j

2

q
� 2

� �
þ f k

1

2p
þ 1

2q
� 2

� �

þ f ij �2ð Þ þ f ik
1

p
� 2

� �
þ f jk

1

q
� 2

� �
0
BBB@

1
CCCA
ð8Þ

It can be shown that, with any known values of p and q, (8) reduces to
r R � 0, irrespective of the sample size N (41). This means R
estimator is unbiased when allele frequencies are known.
It can be shown that r R does not reduce to zero when allele

frequencies estimated from the sample by Equation (2) are used in
calculating r̂R in (8). When N= 3 and 4, for example, (8) reduces to
r R ¼ �ð2=5Þhð6� 9hþ 2h2) and r R ¼ �ð4=7Þhð4� 10hþ 8h2 �
h3Þ; respectively, where h= pq. The effects of N and p on r R are
shown in Figure 1. As can be seen, r R, unlike r QG, is always negative.
The magnitude of bias depends on values of N and p. With an
increasing sample size N, r R asymptotes to 0, regardless of population
allele frequency p, as expected.
When allele frequencies are estimated by omitting the focal pair of

individuals, r R becomes

r R ¼
XN
i¼0

XN�i

j¼0

f ½i; j; kjp�

f i
2

p̂ð4Þ
� 2

 !
þ f j

2

q̂ð4Þ
� 2

 !

þ f k
1

2p̂ð2Þ
þ 1

2q̂ð2Þ
� 2

 !
þ f ij �2ð Þ

þ f ik
1

p̂ð3Þ
� 2

 !
þ f jk

1

q̂ð3Þ
� 2

 !

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð9Þ

where p̂ðmÞ and q̂ðmÞ are calculated by (6) for m= 2–4. When all copies
of an allele (A or B) in the sample appear in the focal individuals, the
frequency of the allele is estimated to be zero by omitting the focal
individuals. In such cases, r̂R becomes undefined and is set to zero.
Like (8), r R in (9) does not reduce to zero in general. It varies with
both sample size N and allele frequency p. Some numerical examples
showing the effects of N and p on r R are shown in Figure 1. As can be
seen, excluding focal individuals in calculating allele frequencies leads
to an overestimation of relatedness in general. At the same sample size,
more bias is induced by excluding than including focal individuals for
allele frequency estimation.

Lynch and Ritland estimator
For individuals X and Y with genotypes {a, b} and {c, d} respectively,
the estimator (Lynch and Ritland, 1999, denoted by LR or r̂LR

hereafter) is

r̂LR a; b; c; d½ � ¼ pa dbc þ dbdð Þ þ pb dac þ dadð Þ � 4papb
2 1þ dabð Þ pa þ pbð Þ � 8papb

þ pc dda þ ddbð Þ þ pd dca þ dcbð Þ � 4pcpd
2 1þ dcdð Þ pc þ pdð Þ � 8pcpd

ð10Þ

for a single locus. For multiple loci, estimates (10) are weighted by the
inverses of their sampling variances derived by assuming zero
relatedness (Lynch and Ritland, 1999).
For a diallelic locus with equal allele frequencies (p= q= 1/2), the

denominator 2(1+δab)(pa+pb)− 8papb= 0 when the reference indivi-
dual X is a heterozygote and thus δab= 0. In such a case, this part of
the estimate is undefined and is set to zero. This is also true with
individual Y when it is used as the reference.
For the 6 possible genotype pairs {AA, AA}, {BB, BB}, {AB, AB},

{AA, BB}, {AA, AB} and {BB, AB} at a diallelic locus, r̂LR = 1, 1, 1,
�p
2q þ �q

2p ,
3�4p
4�4p þ 1

2�4p,
3�4q
4�4q þ 1

2�4q, respectively, calculated by (10). It can
be shown that, similar to r R in (8), the average r̂LR in a sample of N
individuals is always zero when population allele frequency p is known
and is used in the calculation. It means r̂LR is unbiased with known
allele frequencies.
When allele frequencies are calculated from the sample, the average

relatedness among the N sampled individuals is expected to be

r LR ¼
XN
i¼0

XN�i

j¼0

f ½i; j; kjp�

f ið1Þ þ f jð1Þ þ f kð1Þ þ f ij
�p̂

2q̂
þ�q̂

2p̂

� �

þ f ik
3� 4p̂

4� 4p̂
þ 1

2� 4p̂

� �

þ f jk
3� 4q̂

4� 4q̂
þ 1

2� 4q̂

� �

0
BBBBBBB@

1
CCCCCCCA
ð11Þ

where p̂ and q̂ are calculated by (2). It can be shown r LRa0 in
general. The value of r LR varies with both sample size N and
population allele frequency p. When N= 3 and 4, for example, r LR ¼
1� ð1=2Þhð18� 27h� 22h2Þ and r LR ¼ 1� ð8=3Þ
hð4� 10hþ 8h2 � 15h3Þ, respectively, where h= pq. The effects of
N and p on r LR are shown in Figure 1. As can be seen, r̂LR can be both
negatively and positively biased, depending on values of N and p. With
an increasing sample size N, r LR asymptotes to 0 regardless of
population allele frequency p, as expected.
When allele frequencies are estimated by omitting the focal pair of

individuals, r LR becomes

r LR ¼
XN
i¼0

XN�i

j¼0

f ½i; j; kjp�

f ið1Þ þ f jð1Þ þ f kð1Þ þ f ij
�p̂ð2Þ
2q̂ð2Þ

þ �q̂ð2Þ
2p̂ð2Þ

 !

þ f ik
3� 4p̂ð3Þ
4� 4p̂ð3Þ

þ 1

2� 4p̂ð3Þ

 !

þ f jk
3� 4q̂ð3Þ
4� 4q̂ð3Þ

þ 1

2� 4q̂ð3Þ

 !

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð12Þ

where p̂ðmÞ and q̂ðmÞ are calculated by (6) for m= 2–4. When p̂ðmÞ = 0
or q̂ðmÞ = 0, r̂LR is undefined and is set to zero. Some numerical
examples in Figure 1 show that more bias results from excluding than
including focal individuals in calculating allele frequencies.

Lynch and Li estimator
Proposed by Lynch (1988) and improved by Li et al. (1993), this
estimator (denoted as LL or r̂LL hereafter) calculates the relatedness
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between individuals X and Y using their similarity index SXY, defined
as the average fraction of alleles at a locus in one individual for which
there is another allele in the other individual that is identical in state.
For individuals X and Y with genotypes {a, b} and {c, d}, respectively,
at a locus, the similarity index is

SXY ¼ 1

2

dac þ dad þ dbc þ dbd
2ð1þ dabÞ þ dac þ dad þ dbc þ dbd

2ð1þ dcdÞ
� �

ð13Þ

where the first and second terms in the brackets give the similarity
indexes when individual X and Y are used as the reference,
respectively.
The relatedness between individuals X and Y is

r̂LL a; b; c; d½ � ¼ SXY � S0
1� S0

ð14Þ
where SXY is calculated by (13), and S0 is the expected similarity
index for unrelated individuals (Li et al., 1993). For a locus with n
alleles of frequencies pi in a population, S0 is calculated by (Li et al.,
1993)

S0 ¼ 2t2 � t3 ð15Þ
where

tm ¼
Xn
i¼1

pmi ð16Þ

for m= 2, 3. For multiple loci, the sum of the numerators (one for
each locus) and the sum of the denominators are calculated before
making the division to give the final estimate (Li et al., 1993).
For the 6 possible genotype pairs {AA, AA}, {BB, BB}, {AB, AB},

{AA, BB}, {AA, AB} and {BB, AB} at a diallelic locus,
SXY ¼ 1; 1; 1; 0; 34 ;

3
4, respectively, as calculated by (13), and r̂LL =

1, 1, 1, �S0
1�S0

, 3=4�S0
1�S0

, 3=4�S0
1�S0

, respectively, as calculated by (14). It can be
shown, similar to r̂R in (8), that the average r LL in a sample of N
individuals is always zero, regardless of the value of N, when
population allele frequency p is known and is used in the calculation.
It means r̂LL is unbiased with known allele frequencies.
When allele frequencies estimated from the sample are used in

calculating S0, the expected value of S0 is

S 0 ¼
XN
i¼0

XN�i

j¼0

f i; j; kjp½ � Ŝij
� �

where Ŝij ¼ 2p̂2 þ 2q̂2 � p̂3 � q̂3 is Ŝ0 calculated by (15) and (16)
from a sample containing i, j and k (≡N− i− j) genotypes of AA, BB
and AB, p̂ and q̂ are calculated by (2). After some algebra, Ŝ0 is
simplified to S 0 ¼ 1� hþ h=ð2NÞ, where h= pq. Similarly, the
average observed similarity, SXY, among the N sampled individuals is
expected to be

SXY ¼
XN
i¼0

XN�i

j¼0

f ½i; j; kjp� f ið1Þ þ f jð1Þ þ f kð1Þ þ f ijð0Þ þ f ik
3

4

� �
þ f jk

3

4

� �� �

which simplifies to SXY ¼ 1� h. Inserting S 0 and SXY derived above
into (14) yields the expected value of the average relatedness among
the N sampled individuals,

r LL ¼ 1

1� 2N
ð17Þ

Similar to r̂QG, r̂R and r̂LR, r̂LL is biased when allele frequencies are
estimated from the same sample of individuals whose relatedness is
being estimated. The smaller the sample size N is, the larger the bias
will be. Different from r̂QG, r̂R and r̂LR, however, the bias of r̂LL
depends on N only, is always negative and is independent of the

underlying population allele frequencies (p, q). For comparison, some
numerical values of r LL are shown in Figure 1.
It can be derived similarly that, when allele frequencies are

calculated from the sample by omitting the two focal genotypes,
S 0 ¼ 1� hþ h=ð2N � 4Þ, SXY ¼ 1� h and

r LL ¼ 1

5� 2N
ð18Þ

Equation (18) shows that r̂LL underestimates relatedness, the extent
of the underestimation depends on N only and is unaffected by the
actual population allele frequencies (p, q). For a given sample size N,
more bias is induced by excluding than including the two focal
genotypes in allele frequency estimation (Figure 1). When N= 10, for
example, the bias is − 0.0526 and − 0.0667 when the two focal
individuals are included and excluded in calculating allele frequencies,
respectively.

Wang estimator
This estimator (Wang, 2002, denoted by W or r̂W hereafter) uses the
same similarity index, (13), defined in estimator LL but can estimate
both two- (Φ) and four-gene (Δ) relatedness, and thus the total
relatedness r. It is much more complicated than r̂LL. In the case of a
diallelic locus, the estimator is

F̂W ½a; b; c; d� ¼ 4� 4P̂1 � 3P̂2

� �ð1� t2Þ � 4ð1� P̂1 � P̂2Þ
ð1� t2Þ2

ð19Þ

D̂W ½a; b; c; d� ¼ 1

� 4� 4P̂1 � 3P̂2

� �ð1� t2Þ � 2ð1� P̂1 � P̂2Þ
ð1� t2Þ2

ð20Þ

r̂W ½a; b; c; d� ¼ 4P̂1 þ 3P̂2 � 2ð1þ t2Þ
2ð1� t2Þ ð21Þ

for individuals X and Y with genotypes {a, b} and {c, d} respectively,
where P̂1 ¼ 1 and P̂1 ¼ 0 when SXY= 1 and SXY≠1, respectively, and
P̂2 ¼ 1 and P̂2 ¼ 0 when SXY= 3/4 and SXY≠3/4, respectively. It can be
shown that r̂W ¼ F̂W

2 þ D̂W and r̂W and r̂LL are identical for a diallelic
locus. However, r̂W and r̂LL are different for a locus with more than
two alleles (Wang, 2002).
Estimators (19), (20) and (21) or their multiallelic forms (Wang,

2002) are calculated for a single locus. Following previous work
(Ritland, 1996; Lynch and Ritland, 1999), Wang (2002) derived the
variances of these estimators by assuming zero relatedness. Weighting
single-locus estimates by the inverses of their variances yields multi-
locus estimators (Wang, 2002).
For a single diallelic locus, r̂W and r̂LL have identical properties as

shown above for the latter. For multiple loci, they are slightly different
because different weighting schemes were applied to loci with different
allele frequencies (Wang, 2002). It can be shown that, for a sample of
N unrelated individuals, r W ¼ FW ¼ DW ¼ 0 when population
allele frequencies are known and used in the estimation. However,
when allele frequencies are estimated from the sample with the focal
individuals either included or excluded, F̂W is positively and D̂W is
negatively biased in general (Supplementary Figure S1). Much of the
opposite biases cancel each other that r̂W is much less biased
(Figure 1).

Unbiased relatedness in a small sample
J Wang

307

Heredity



Loiselle estimator
Loiselle et al. (1995) proposed an estimator to calculate the average
coancestry among a group of individuals from their marker genotypes.
The estimator can also be used for two individuals, as shown by
Heuertz et al. (2003), and multiplying the estimator by 2 gives the
relatedness for non-inbred individuals. An important characteristic of
the estimator, denoted as LS or r̂LS hereafter, is that it uses a correction
for small sample sizes. For two individuals X and Y in a sample of N
individuals genotyped at L loci, the relatedness estimator is

r̂LS ¼ 2
PL

l¼1

Pnl
i¼1ðXli � pliÞðYli � pliÞPL

l¼1

Pnl
i¼1 plið1� pliÞ

þ 2

2N � 1
ð22Þ

where Xli (Yli) is the frequency (= 1, 0.5, 0) of allele i (= 1, 2,…, nl) at
locus l (= 1, 2,…, L) in individual X (Y), pli is the frequency of allele i
at locus l estimated from the sample of N individuals and nl is the
number of alleles at locus l. The first term of the estimator gives the
relatedness when allele frequencies are either known (that is, not
estimated from the sample) or estimated from a large sample (that is,
N large). For a single diallelic locus (that is, L= 1 and n1= 2), it is
essentially identical to the estimator of Yang et al. (2011). The second
term of the estimator corrects for the bias caused by estimating pli
from a small sample of N individuals.
For the 6 possible genotype pairs {AA, AA}, {BB, BB}, {AB, AB},

{AA, BB}, {AA, AB} and {BB, AB} at a diallelic locus, r̂LS ¼ 4
p � 4,

4
q � 4, 1p þ 1

q � 4, �4, 2p � 4, 2q � 4, respectively, when allele frequencies
p and q are known (that is, dropping the correction 2/(2N− 1) from
(22)). It can be shown that the average r̂LS in a sample of N individuals
is always zero when known population allele frequency p is used in the
calculation. It means r̂LS is unbiased with known allele frequencies.
When allele frequencies are calculated from the sample of N

individuals, r̂LS for genotype pairs {AA, AA}, {BB, BB}, {AB, AB},
{AA, BB}, {AA, AB} and {BB, AB} are 4

p̂ � C, 4
q̂ � C, 1

p̂ þ 1
q̂ � C,−C,

2
p̂ � C, 2

q̂ � C, respectively, where C= 4− 2/(2N− 1). The average
relatedness among the N individuals is expected to be

r LS ¼
XN
i¼0

XN�i

j¼0

f ½i; j; kjp�
f i

4

p̂
� C

� �
þ f j

4

q̂
� C

� �
þ f k

1

p̂
þ 1

q̂
� C

� �

þ f ij �Cð Þ þ f ik
2

p̂
� C

� �
þ f jk

2

q̂
� C

� �
0
BBB@

1
CCCA

ð23Þ

where p̂ and q̂ are calculated by (2). It can be shown r̂LSa0, despite
the correction for sample size N. The value of r̂LS depends on both
sample size N and population allele frequency p. When N= 3 and 4,
for example, r LS ¼ ð2=5Þð1� 2hð6� hð9� 2hÞÞÞ and r LS ¼ ð2=7Þ
ð1� 4hð4� hð10� hð8� hÞÞÞÞ, respectively, where h= pq. The
effects of N and p on r LS are shown in Figure 1. As can be seen,
r LS is most often negatively biased. The extent of underestimation
depends on values of N and p. The bias of LS estimator is usually
smaller than the other estimators for the same values of N and p,
thanks to the correction for sample size. With an increasing sample
size N, r LS asymptotes to 0 regardless of population allele frequency p,
as expected.

When allele frequencies are estimated by omitting the focal pair of
individuals, r LS becomes

r LS ¼
XN
i¼0

XN�i

j¼0

f ½i; j; kjp�

f i
4

p̂ð4Þ
� C

 !
þ f j

4

q̂ð4Þ
� C

 !

þ f k
1

p̂ð2Þ
þ 1

q̂ð2Þ
� C

 !
þ f ij �Cð Þ

þ f ik
2

p̂ð3Þ
� C

 !
þ f jk

2

q̂ð3Þ
� C

 !

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð24Þ

where p̂ðmÞ and q̂ðmÞ are calculated by (6) for m= 2–4 and C= 4− 2/
(2N− 5). The denominator of C becomes 2N− 5 because 2 focal
individuals are omitted in calculating allele frequencies. Note that p̂ðmÞ
and q̂ðmÞ can be zero when the focal pair of individuals are excluded,
leaving the estimator undefined. In such cases, the estimator is set
to zero.
Like (23), r LS in (24) does not reduce to zero but varies with both

sample size N and allele frequency p. Some numerical examples
showing the effects of N and p on r LS are shown in Figure 1. As can be
seen, excluding focal individuals in calculating allele frequencies leads
to an overestimation of relatedness in general. At the same sample size,
more bias is induced by excluding than including focal individuals for
allele frequency estimation. The large adverse effect of omitting focal
individuals in calculating allele frequencies is still substantial even
when sample size is N= 50.

UNBIASED ESTIMATORS

Estimators r̂LL and r̂W can be modified to become unbiased when
population allele frequencies are estimated from the same small
sample of individuals whose relatedness is being estimated. Consider
a locus with n alleles, and suppose the number of copies of allele i
(i= 1, 2, …, n) is Ni in a sample of N individuals. The sample allele
count configuration is N= {N1, N2,…, Nn}, with

Pn
i¼1 Ni � 2N . The

sum of estimated allele frequencies to the mth power, tm[N], can be
calculated from the sample N as

t̂m½N� ¼
Xn
i¼1

Ym�1

x¼0

Ni � x

2N � x
ð25Þ

for m= 2, 3. Equation (25) corresponds to Equation (16) for the
case of known population allele frequencies. It reduces asymptotically
to Equation (16) with an increasing sample size N, as expected.
It is derived by considering sampling without replacement. Let us
consider the estimation of p2i as an example. The probability that the
first gene drawn at random from the sample is of allele type i is Ni

2N.
Given the first allele i, the probability that the second gene drawn at
random from the remaining sample is also of allele type i is Ni�1

2N�1.
Therefore, the probability of sampling two alleles of type i from the
sample without replacement is p̂2i ¼ Ni

2N

� �
Ni�1
2N�1

� � ¼Q1
x¼0

Ni�x
2N�x.

Summing p̂2i over i for i= 1–n gives t̂2½N� of Equation (25) for
m= 2. Similarly, t̂3½N� is derived by considering the probability of
sampling three genes of the same allele type without replacement from
sample N.
Using t̂m½N� calculated by Equation (25) instead of tm calculated by

Equation (16) leads to an unbiased LL estimator. For a diallelic locus,
the expected value of S0 for a sample of N individuals is

S 0 ¼
XN
i¼0

XN�i

j¼0

f i; j; k pj � 2̂t2½f2iþ k; 2jþ kg� � t̂3½f2iþ k; 2jþ kg�ð Þ½
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Figure 2 Means and RMSEs of different estimators as a function of sample size (N). The genotype data of N individuals at a number of 10 000 SNPs with
uniform allele frequency distribution were simulated and used to estimate allele frequencies and the relatedness of full-sib (FS, r=0.5), parent–offspring
(PO, r=0.5), half-sib (HS, r=0.25) and unrelated (UR, r=0) pairs of individuals.
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where i+j+k≡N and t̂m½f2iþ k; 2jþ kg� is calculated by (25). After
some algebra, S 0 is simplified to Ŝ0 ¼ 1� h, where h= pq. The
average observed similarity, SXY, among the N sampled individuals is
obtained in deriving (17), which is SXY ¼ 1� h: Inserting S 0 and SXY

into estimator r̂LL (14) leads to r̂LL � 0, irrespective of sample size N,
and population allele frequencies p and q.
Similarly, using t̂2½N� by Equation (25) instead of t2 calculated by

Equation (16) leads to unbiased r̂W . However, F̂W and D̂W are still
biased in opposite directions. Their effects on r̂W cancel out exactly
such that r̂W is always unbiased. From hereafter, the modified LL and
W estimators calculated by using (25) are denoted as LLM or r̂LLM and
WM or r̂WM , respectively.

SIMULATIONS

Simulations were conducted to check the above analytical results, and
to investigate other cases such as multiallelic locus, multiple loci and a
mixed sample containing both unrelated and closely related indivi-
duals. A sample of N individuals was drawn from a large outbred
population at Hardy–Weinberg equilibrium and linkage equilibrium.
Two types of samples were considered. For an unrelated sample, all
pairs of sampled individuals were unrelated, as assumed in the
analytical study above. For a mixed sample, one pair of individuals
were related as full sibs (FS), half sibs (HS) or parent offspring (PO)
and the rest of the pairs were unrelated (UR). Each sampled individual
was genotyped at a number of L loci, and each locus had a fixed
number of n codominant alleles with a uniform, equal or triangular
frequency distribution in the population.
All of the sampled genotypes were used in calculating allele

frequencies (that is, no omitting of the focal pair of individuals) and
relatedness estimators. For each parameter combination, R= 105

replicate data sets were simulated and analysed. The quality of a
relatedness estimator was measured by its bias and accuracy RMSE
(root mean squared errors),

B ¼ 1

RM

XR
i¼1

XM
j¼1

ðr � r̂ijÞ ð26Þ

RMSE ¼ 1

RM

XR
i¼1

XM
j¼1

ðr � r̂ijÞ2
 !0:5

ð27Þ

for each relationship (FS, HS, PO, UR), where M is the number of
pairs of individuals in a sample having the relationship, r is the true
value and r̂ij is the estimated value of relatedness. The simulated true
value of r is 0.5, 0.25, 0.5 and 0 for FS, HS, PO and UR, respectively.
The simulations (Figure 2 and Supplementary Figure S2) confirm

the analytical results (above) that all estimators give biased r estimates
for different types of relationships (FS, HS, PO, UR) when the same
genotype data of a small sample of individuals are used to calculate
allele frequencies and relatedness. With a uniform allele frequency
distribution for each of L= 10 000 SNPs, relatedness is always under-
estimated except for the case of LS estimator and UR, regardless of
sample sizes in the range (4, 64), estimators and types of relationships.
The underestimation increases rapidly with a decreasing sample size.
When N= 4, for example, the means of LL (or W), QG, R, LR and LS
estimators are 0.41, 0.20, 0.05, 0.07 and 0.36 for FS dyads; 0.13, − 0.09,
− 0.13, − 0.17 and 0.18 for HS dyads; and − 0.18, − 0.43, − 0.34, − 0.41
and 0.06 for UR dyads. Results for PO dyads are similar to those for
FS dyads.
Relatively, LL (or W) and LS have smaller biases than QG, R and LR

for different relationships (FS, HS, PO, UR). The bias correction,

2/(2N− 1), for small sample size N does not ensure LS is unbiased.
However, the correction works well and reduces the bias of the
estimator substantially for all types of relationships (FS, HS, PO, UR).
Without the correction, LS would have been highly biased for small
samples, just like QG, R and LR. As shown in Figure 2 (and
Supplementary Figure S2), the extent of bias varies with the true
relatedness. The relatedness of closely related individuals (for example,
FS and PO) tends to be much more underestimated than that of
unrelated individuals (UR). As a result, no single correction in terms
of N exists that can make an estimator unbiased for all types of
relationships. The correction of LS results in underestimated and
overestimated relatedness for closely related (for example, FS) and
unrelated (UR) individuals in a mixed sample. Overall, the correction
2/(2N− 1) makes the LS estimator less biased and more accurate than
most of the unmodified estimators when the sample is small
(Figure 2).
All estimators become less biased with an increase in sample size N.

However, the rate of decline in bias with N is slow. Even at a
reasonably large sample size of N= 64 individuals, QG, R and LR
estimators still underestimate relatedness slightly, giving an average r
estimate of ∼ 0.48, 0.23 and − 0.02 for FS (or PO), HS and UR dyads,
respectively. The bias patterns of different estimators for multiallelic
loci (Supplementary Figure S2) are generally similar to those for
diallelic loci (Figure 2). The accuracy patterns, however, are different
because, owing to the huge difference in the number of loci (L),
accuracy (measured by RMSE) is mainly determined by bias and
sampling variance for the diallelic (L= 10 000 in Figure 2) and
multiallelic (L= 20 in Supplementary Figure S2) cases. With an
increase in L, bias should be increasingly more important than
variance in determining accuracy, regardless of the number and
frequency distribution of alleles per locus, and the accuracy pattern
for multiallelic loci shown in Supplementary Figure S2 for L= 20
should approach that for diallelic loci shown in Figure 2 for
L= 10 000.
The modified estimators, LLM and WM, are almost unbiased,

irrespective of N and types of relationships (Figure 2). Because of the
much reduced bias and some reduction in sampling variance (see
Supplementary Figure S2), LLM and WM are much more accurate
than the original estimators when sample size N is small, except for the
case of low relatedness (HS, UR) and few loci (Supplementary
Figure S2). The RMSEs of LLM and WM can be smaller than those
of other estimators by several orders when N is small and true
relatedness is high (Figure 2 and Supplementary Figure S2).

ANALYSIS OF AN EMPIRICAL DATA SET

To investigate the genetic structure of Atlantic salmon in the entire
North American range of the species, Moore et al. (2014) sampled
1080 individuals from 50 populations and genotyped each individual
at 3192 SNP loci. Individuals sampled from within a population were
not studied for relatedness. If they were, relatedness estimates would
be substantially biased because the sample size for each population is
only ⩽ 25 individuals.
To demonstrate the bias of the original estimators and the sample

size-independent properties of the modified estimators, a sample of 25
individuals taken from a single population was analysed. First, the 25
individuals were used to calculate allele frequencies at each locus, and
these estimated frequencies were used to obtain pairwise relatedness
estimates. Second, the 25 individuals were partitioned into 5 non-
overlapping subsamples, each containing 5 individuals. Each subsam-
ple was then analysed for allele frequencies that were then used in
calculating relatedness. If an estimator is robust to small sample size,
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then relatedness estimates for a given dyad obtained from the original
sample (25 individuals) and from the subsamples (each having 5
individuals) should be similar.
Figure 3 (see also Supplementary Figure S3) plots these estimates for

different estimators. The modified estimators, WM and LLM, and the
estimator with bias correction, LS, give very similar, although not
identical, estimates calculated from the subsamples and the original
sample. Most of the points (each showing the relatedness estimates of
a dyad calculated from the original sample and a subsample) are
centred on the diagonal line (Figure 3), and there is no obvious trend
that estimates from the subsamples are uniformly smaller or larger
than those from the original sample. In contrast, all pairwise estimates
obtained from subsamples are much smaller than estimates from the
original sample for each of the five unmodified estimators without bias
correction. For example, the relatedness of a highly related dyad was
estimated by WM, LLM, LS, LR, R and QG to be 0.44, 0.44, 0.23, 0.20,
0.13 and 0.36, respectively, in the original sample, and to be 0.38, 0.39,
0.24, − 0.02, − 0.01 and 0.11, respectively, in the subsamples. A
decrease in sample size reduces the original estimators without bias
correction by ∼ 0.2, reduces the modified estimators only by 0.05 and
increases LS estimator by ∼ 0.01. Despite that LS gives consistent
estimates that are little affected by sample size, it could underestimate
the relatedness of close relatives (as shown in simulations in Figure 2
and Supplementary Figure S2). All estimates from LS tend to shrink

toward 0, with the highest and lowest related dyads whose MW
estimates are 0.44 and − 0.25 having LS estimates of 0.24 and − 0.05,
respectively.

DISCUSSION

Estimating pairwise relatedness from genetic marker data is now a
routine analysis in molecular ecology, evolutionary biology and
conservation studies. The estimators developed for this purpose
invariably assume that population allele frequencies of markers are
known without errors, and the behaviours of these estimators were
usually investigated under this assumption (see, for example, Lynch
and Ritland, 1999; Wang, 2002; Milligan, 2003). Unfortunately,
however, population allele frequencies are rarely known in reality.
Frequently, the only data one has in a relatedness analysis are a sample
of multilocus genotypes. In such a case, we have to calculate both allele
frequencies and relatedness from the same sample. Furthermore,
because of various constraints, sample sizes of individuals (or numbers
of genotypes at a locus, to be precise) can be quite small.
Current relatedness estimators were developed in the pre-genomic

era mainly for application to microsatellite data. Although their bias
due to small sample size is well recognized (see, for example, Queller
and Goodnight, 1989; Ritland, 1996; Lynch and Ritland, 1999), it is
deemed unimportant except when sample size N is small (say,
No100; Ritland, 1996). Furthermore, with just L= 10–30 microsa-
tellites typically used in a relatedness analysis, the accuracy is
dominated by sampling variance rather than bias even when N is
small. In the genomic era, however, the N»L situation is reversed; a
typical large-yet-sparse data set given by next-generation sequencing
could have millions of SNP loci, with each having a small number of
genotypes because of a small number of sampled individuals and a
high rate of missing data. This study showed, for the first time, that
the popular relatedness estimators can become highly biased and their
accuracy is dominated by bias rather than sampling error when they
are applied to such SNP data sets (that is, L»N). The direction (that is,
over- or under-estimation) and extent of bias depends on sample sizes,
the underlying (unknown) population allele frequencies, the estima-
tors and the true relatedness. With regard to sample size N, the bias is
roughly on the order of 1/N. For example, the relatedness of first-
degree relatives (PO, FS) is expected to be 0.5. However, it is estimated
on average to be ∼ 0.27 by R estimator (Figure 2) when N= 10. As a
possible consequence, first-degree relatives may be mistaken as
second-degree relatives if one is unaware of the bias. The same is
observed in the analysis of the salmon SNP data set (Figure 3 and
Supplementary Figure S3).
This study also showed that omitting the focal individuals in

calculating allele frequencies, as suggested in the literature (see, for
example, Queller and Goodnight, 1989; Lynch and Ritland, 1999),
cannot remove the bias of popular relatedness estimators. On the
contrary, this ad hoc treatment in estimating allele frequencies not only
causes a high frequency of undefined estimators but also induces more
biased estimates (Figure 1). This is perhaps not too surprising. At a
small sample size, allele frequencies are estimated without bias by allele
counting method, although estimates of higher-order terms of the
frequencies can be biased (Nei and Chesser, 1983; Weir, 1996). When
a focal pair of individuals is omitted, however, both allele frequencies
and their higher order terms are biased, leading to worse estimates of
relatedness than those when all sampled individuals are used in
calculating allele frequencies.
Among the estimators investigated in this study, the one described

in Loiselle et al. (1995), LS, is the only one that uses a correction for
small sample sizes. Both analytical and simulation results show that,

WM

LLM

LR
● R
● QG
● LS

Figure 3 Scatter graph of relatedness estimates obtained from subsamples
(N=5, y axis) and the original sample (N=25, x axis) of a salmon data set.
An original sample of 25 individuals was taken from a single population,
with each individual genotyped at 3192 SNP loci. Five non-overlapping
subsamples, each having five individuals, were obtained from the original
sample. Each point plots the relatedness estimates for each of 50 dyads
obtained from an estimator using the original sample (x axis) and a
subsample (y axis). The thin diagonal line shows the ideal case when
relatedness estimates made from the original sample and subsamples are
equal across the 50 dyads. Estimators W and LL are not shown in the figure
because they are similar to estimators LR, R and QG. Instead, the modified
estimators WM and LLM are shown in the figure. The slope and intercept of
the six estimators are 0.775 and 0.017 for WM, 0.848 and 0.001 for LLM,
1.046 and −0.207 for LR, 1.202 and −0.172 for R, 0.944 and −0.213
for QG and 1.034 and 0.001 for LS.
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compared with other estimators, LS has substantially reduced biases
for all types of relationships and for different sample sizes. As a result,
it is more accurate than most of the unmodified estimators (Figure 2
and Supplementary Figure S2). However, the correction is insufficient
to make the estimator unbiased (Figure 1). In a mixed sample
containing both related and unrelated individuals, LS tends to under-
estimate and overestimate relatedness for related and unrelated
individuals, respectively. This is not surprising because the extent of
bias of a relatedness estimator varies with true relatedness, and it is
impossible to apply a single correction for small sample size, such as

2
2N�1, to obtain unbiased relatedness estimates for all possible relation-
ships. In contrast, the modified estimators, r̂WM and r̂LLM , are almost
unbiased for all relationships, sample sizes and allele frequency
distributions.
Estimating both allele frequencies and relatedness from the same

sample has three problems (see Introduction; Wang, 2014). This study
has addressed the third problem, underestimation of relatedness due
to small sample sizes. The first problem (that is, negative relatedness
estimates, mean of relatedness estimates across dyads in a sample
being close to zero) is no longer pertinent when relatedness is defined,
understood and used in terms of a correlation coefficient rather than a
probability of IBD (Wright, 1965; Wang, 2014). The second problem
comes from the genetic structure of a sample, no matter whether it is
small or large. When a sample containing both related and unrelated
individuals is used in calculating allele frequencies by (naively)
assuming unrelated individuals, relatedness will be underestimated
because of the biased allele frequency estimates. Indeed, my simulation
in Figure 2 shows that the modified estimators, WM and LLM,
underestimate r for all relationships (FS, PO, UR, …) when sample
size is extremely small such that sample genetic structures become
substantial. However, the bias is rather small. The smallest sample in
Figure 2 has N= 4 individuals or 6 dyads. For the case of FS, the
sample contains one FS dyad and five UR dyads, the FS dyad
frequency being 1/6= 0.167. Despite the high FS frequency, however,
the biases of LLM and WM are rather small. For example, the mean
LLM estimates are 0.48 and − 0.04 for FS and UR, respectively. I also
simulated even smaller samples, with each containing two full siblings
and one unrelated individual and thus a proportion of 1/3= 0.33 full-
sib dyads. The mean LLM estimates are 0.46 and − 0.06 for FS and
UR, respectively, the biases being still reasonably small. Compared
with the huge bias caused by small sample size as shown in this study,
the bias caused by the genetic structure of a sample is negligible.
This study modified the LL and W estimators and showed, using

analytical (Figure 1), simulated (Figure 2 and Supplementary
Figure S2) and empirical data (Figure 3 and Supplementary
Figure S3), that relatedness can be reliably estimated by the modified
estimators with little bias even when sample size is extremely small
(say, 3 individuals). Because of the great reduction in bias and some
decrease in sampling variance (Supplementary Figure S2), the
modified estimators are always much more accurate (that is, smaller
RMSE) than the original estimators, except when few loci are used
(such that RMSE is dominated by sampling variance rather than bias)
and true relatedness is low (for example, UR). The smaller the sample
size is, the greater the accuracy improvements the modified estimates
make. When sample sizes are large or when population allele
frequencies are known, the relative performances of different estima-
tors depend on the true relationship being estimated. Whereas LL and
W usually give the best estimates for highly related dyads (for example,
FS and PO), LR and R usually give the most accurate estimates for
unrelated or loosely related dyads (for example, UR) (Wang, 2002;
Thomas, 2010). When sample sizes are small and many loci are used,

however, the modified estimators, WM and LLM, always perform
better than all of the original estimators, regardless of the actual
relatedness being estimated. The modified estimators are now
implemented in the software package Coancestry (https://www.zsl.
org/science/software/coancestry).
This study assumes an outbred population in which close inbreed-

ing, due to close relative mating such as sib mating and selfing, is
absent or rare. All estimators investigated in this study are valid under
this assumption, whereas estimators LS and R do not require the
assumption and apply to both outbred and inbred populations (Wang,
2007). Similarly, genotyping artefacts causing excessive individual
homozygosity, such as allelic dropouts and null alleles in microsatellite
data and SNPs genotypes called from low-coverage next-generation
sequencing data, could affect the accuracy of estimators WM, LLM,
LL, W, LR and QG, but not of estimators LS and R (Wang, 2007).
However, all estimators are robust to pervasive inbreeding (that is, due
to genetic drift from the finite size or structure of a population), and
to low levels of excessive homozygosity due to either close inbreeding
or genotyping artefacts (say, o10% increase in homozygosity over
that expected under Hardy–Weinberg equilibrium), as demonstrated
for some of the estimators before (Wang, 2007). When close
inbreeding is deemed important in a population, then estimators LS
and R could be preferred over other estimators.
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