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Summary 

1. Genotyping errors are rules rather than exceptions in reality, and are found in virtually 

all but very small datasets. These errors, even when occurring at an extremely low 

rate, can derail many genetic analyses such as parentage/sibship assignments and 

linkage/association studies.  

2. Nonetheless, few robust and accurate methods are available for estimating the rate of 

occurrence of genotyping errors and for identifying individual erroneous genotypes at 

a locus. Methods based on duplicate genotyping are expensive, and estimate genotype 

inconsistency rather than error rate at a locus. Methods based on Hardy-Weinberg 

equilibrium tests have low robustness and low power, and apply only to those 

particular errors that cause excessive homozygosity. Methods based on pedigrees are 

powerful, robust and accurate. However, they rely on known and complete pedigrees 

that are unfortunately rarely available from natural populations in the wild. 

3. I proposed a maximum likelihood method to reconstruct pedigrees from genotype 

data with errors occurring at a roughly estimated (presumed) rate. In this paper, I 

describe how to use the method and inferred pedigree in estimating allelic dropout (or 

null allele) rate and false allele rate jointly at each marker locus, in identifying the 

erroneous genotypes, and in inferring the most likely genotypes at each locus of each 

individual. I examine the power, accuracy and robustness of the method by extensive 

simulations, and demonstrate the usefulness of the method by analysing three 

empirical datasets. 

4. It is concluded that, both pedigrees and the rates of genotyping errors at each locus 

can be reliably estimated from the same genotype data by the same likelihood method, 

when marker information is sufficient and some sampled individuals are first-degree 

relatives. The erroneous genotypes are however inferred conservatively, and are 

reliably detected only when they occur in large families and/or at highly polymorphic 

loci. Estimation of genotyping error rates per locus and identification of erroneous 

genotypes of each individual at each locus should be routinely conducted to assess 

and improve data quality, to highlight markers for optimization of genotyping 

protocols or for replacement, and to enable the integration of genotyping errors in a 

robust statistical analysis.  
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Introduction 

Genotype data are imperfect. All markers suffer from mutations. Many markers also have 

null alleles (Pemberton et al. 1995), and are prone to genotyping errors due to allelic dropouts 

and false alleles (Bonin et al. 2004). Both null alleles and genotyping errors lead to an 

observed genotype being different from the underlying true genotype. Together with 

mutations, they could cause the data to depart from Mendelian inheritance laws on which 

many population genetics analyses are based. These marker imperfections, including 

mutations, null alleles, allelic dropouts and false alleles, are broadly defined as genotyping 

errors, and can have a profound impact on a genetic analysis. Even occurring at a low rate of 

1%, these errors can cause, for examples, false parentage exclusions (e.g. Pemberton et al. 

1995; Wang 2010), false sibship exclusions (Wang 2004), false exclusion of duplicated 

individuals and thus overestimation of population size (Creel et al. 2003; Wang 2016), biased 

estimates of population differentiation (Chapuis & Estoup 2007), and much increased genetic 

map lengths in linkage analysis (e.g. Brzustowicz et al. 1993).  

Genotyping errors can be due to many causes and error rates vary substantially among 

datasets and among loci within a dataset. However, all studies that examined mistypings 

reported a non-negligible error rate, from 0.2% to 15% per locus (Pompanon et al. 2005). 

Unfortunately, with an ever increasing dataset size (i.e. numbers of individuals and loci) and 

an increasing use of high-throughput genotyping (e.g. SNP array and NGS), error rates are 

likely to increase. SNPs called from low coverage NGS data can have a high mistyping rate 

because of NGS’s random sampling nature and other multiple causes such as base-calling and 

alignment errors (Nielson et al. 2011). 

 Genotyping errors are easy to make but are difficult to spot, and their rate of 

occurrence is hard to estimate (Sobel et al. 2002; Douglas et al. 2002). In molecular ecology 

and evolutionary biology literature, error rates are usually defined (e.g. Broquet & Petit 2004; 

Bonin et al. 2004) and estimated (e.g. Johnson & Haydon 2007) from replicated genotyping 

data, such as those from the multitube approach (Bonin et al. 2004). However, such estimated 

error rates are really the frequencies of inconsistencies among replicate genotypes, not 

mistyping rates of the consensus genotypes in the final dataset. Some (hopefully many) errors 

may have been identified and eliminated in reaching the consensus genotypes if many 

duplicate genotypes are obtained and errors are not duplicable. In such an ideal situation, 

inconsistency provides an overestimate of the error rate of consensus genotypes. In contrast, 
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inconsistency can be an underestimate of error rate of the consensus genotypes when 

duplications are few or when the errors due to null alleles, mutations, and short allele 

dominance (Wattier et al. 1998) are themselves duplicable. Unfortunately, it is the error rate 

of the consensus genotypes that are relevant to any downstream analysis, and all types of 

errors, duplicable or not, count.   

 Mistyping rates can be estimated by quantifying the deviation of observed genotype 

frequencies from the expectation under Hardy-Weinberg equilibrium (HWE) (e.g. 

Chakraborty et al. 1992; Brookfield 1996). This approach is effective only in detecting null 

alleles and allelic dropouts, which can cause directional deviations from HWE (i.e. an excess 

of homozygotes). It is ineffective for mistypings such as false alleles and mutations that do 

not cause detectable distortions of genotype frequencies from HWE. The approach makes a 

critical but usually unrealistic assumption that all of the many factors (e.g. nonrandom 

mating), except for marker abnormity, that can potentially cause deviations from HWE are 

absent. Even when the assumption is met, the approach has low sensitivity and power (Cox & 

Kraft 2006), and cannot be used to identify erroneous genotypes individually.  

A pedigree-based approach was proposed both to identify erroneous genotypes and to 

estimate the rate of occurrence of errors at a locus. It is based on examining genotype data 

against Mendelian inheritance laws in a known (e.g. Sobel et al. 2002) or reconstructed (e.g. 

Wang 2004) pedigree. It is robust to the underlying assumptions (e.g. non-random mating), 

applicable to the estimation of all kinds of errors, and is powerful. However, most algorithms 

(e.g. Sobel et al. 2002) rely on a known and correct pedigree that is usually unavailable in 

wild populations in molecular ecology, evolution, and conservation biology studies. In such 

situations, likelihood methods were proposed to reconstruct complete (Wang 2004; Wang & 

Santure 2009) or partial (e.g. Hadfield et al. 2006; Kalinowski et al. 2007) two-generation 

pedigrees of a sample of individuals using their marker genotype data with genotyping errors. 

These methods also have the potential to estimate genotype errors conditioned on the inferred 

pedigrees (Wang 2004). 

 Although the methodology was partly described in Wang (2004) for identifying 

erroneous genotypes and estimating error rate from inferred pedigrees, no studies have been 

conducted to investigate how accurate and powerful the method is, how robust the method is 

to assumptions such as presumed mistyping rates, and what the factors are in determining the 

performance of the method. Clarifying these issues is essential to allow the method to be 
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applied as a general tool for estimating genotype errors without known pedigrees. This study 

undertakes to address these issues by analysing simulated and empirical datasets. The results 

are discussed in the general context of genotype data quality assessment, control, estimation, 

and integration in a downstream genetic analysis. 

Materials and Methods 

I briefly describe the genotyping error models and the pedigree reconstruction models that 

were used (Wang 2004) in reconstructing pedigrees from error-prone genotype data. I will 

then detail the models for detecting erroneous genotypes and estimating error rates from the 

reconstructed pedigrees. Last, I describe a procedure used to simulate data, and a method 

used to assess the accuracy of error estimation methods applied to simulated data. 

GENOTYPING ERROR MODELS  

An error model defines the probability of an observed genotype, or phenotype, conditional on 

an underlying (unknown) genotype. Without genotyping errors, this probability is 1 when the 

genotype and phenotype are identical and is 0 otherwise. With genotyping errors, this 

probability lies between 0 and 1 for each possible genotype-phenotype combination. It is 

difficult to derive a simple, general and accurate error model because error patterns can be 

complex, marker dependent, and variable with genotyping platforms and DNA sample types 

(Bonin et al. 2004). Quite a few error models, with subtle differences, were proposed and 

used in the literature (e.g. Ott 1993; Sobel et al. 2002; Wang 2004). I describe and use the 

two models proposed by Wang (2004) to handle the broadly defined genotyping errors. 

Model of allelic dropouts 

It handles false homozygotes due to allelic dropouts of microsatellites during PCR. An allelic 

dropout occurs when PCR fails to amplify one of an individual’s two homologous genes, 

leading to a false homozygote phenotype when the underlying genotype is a heterozygote. 

For microsatellites, allelic dropouts are believed to be the most frequent type of errors and 

can occur at a high rate when sample DNA quality and quantity is low (Taberlet et al. 1996). 

The error patterns of microsatellites with allelic dropouts mirror those of SNPs from low-

coverage NGS. They are also similar to those produced by null alleles, which cannot be 

amplified by PCR and thus have no detectable phenotypes because of the presence of 

mutations in the primer binding sequences. A null allele homozygote has no detectable 

phenotype, and thus is indistinguishable from missing data. A null allele heterozygote shows 
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a homozygote phenotype of the detectable allele it contains. Both allelic dropouts and null 

alleles cause an apparent excess in homozygotes. As a result, they have similar impacts on a 

genetic analysis, are hardly distinguishable (see below) statistically, and can be handled by 

the same error model in an analysis.  

Assuming both homologous genes in a diploid individual drop out during PCR at the 

same rate ε1 and ignoring double dropouts (Wang 2004), I obtain Pr(G |g  =A1A2)=1 − 2𝑒1, 

𝑒1, and 𝑒1 for a heterozygote genotype g=A1A2 being observed as a phenotype G=A1A2, 

G=A1A1 and G=A2A2 respectively, where 𝑒1 = 𝜀1/(1 + 𝜀1). Under this dropout model, a 

homozygote genotype is unaffected, and shows faithfully the same phenotype at a probability 

of 1. 

Model of false alleles 

Apart from allelic dropouts and null alleles, the broadly defined erroneous phenotypes can 

also come from mutations, false alleles (polymerase errors rendering an allele other than the 

true one), allele miscalling, contaminant DNA, and data entry (Bonin et al. 2004). These 

errors usually are less frequent than dropouts, affect both heterozygote and homozygote 

genotypes, and do not cause an apparent excess of homozygotes. Such errors are pooled, 

termed “false alleles”, and modelled by assuming that the two homologous genes in a diploid 

individual are independent to be incorrectly observed, with a rate ε2. When incorrectly 

observed, an allele is observed to be any other allele at an equal probability of 1/(𝑘 − 1), 

where k is the number of alleles at a locus. Therefore, an allele is correctly observed at a 

probability of 1 − ε2, and incorrectly observed to be any of the other alleles at a probability 

of 𝑒2 = ε2/(𝑘 − 1). 

Probability of a phenotype given genotype 

Combining both error models (Wang 2004) yields the probability of a phenotype, 𝐺𝑢,𝑣, given 

its genotype, 𝑔𝑤,𝑥, 

Pr[𝐺𝑢,𝑣|𝑔𝑤,𝑥] =

{
 
 

 
 (1 − 𝜀2)

2 + 𝑒2
2 − 2𝑒1(1 − 𝜀2 − 𝑒2)

2                     {(𝑢 = 𝑤, 𝑣 = 𝑥)} 

𝑒2(1 − 𝜀2) + 𝑒1(1 − 𝜀2 − 𝑒2)
2          {(𝑢 = 𝑣 = 𝑤); (𝑢 = 𝑣 = 𝑥)}

(2 − 𝛿𝑢𝑣)𝑒2
2                                       {(𝑢 ≠ 𝑤, 𝑢 ≠ 𝑥, 𝑣 ≠ 𝑤, 𝑣 ≠ 𝑥)}

𝑒2(1 − 𝜀2 − 𝑒2)                                                                   {Otherwise}

    eqn 1 

and  
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Pr[𝐺𝑢,𝑣|𝑔𝑤,𝑥] = {

(1 − 𝜀2)
2                                                                           {(𝑢 = 𝑣 = 𝑤)} 

2𝑒2(1 − 𝜀2)                                 {(𝑢 = 𝑤, 𝑣 ≠ 𝑤); (𝑣 = 𝑤, 𝑢 ≠ 𝑤)}

(2 − 𝛿𝑢𝑣)𝑒2
2                                                                 {(𝑢 ≠ 𝑤, 𝑣 ≠ 𝑤)}

   eqn 2 

when 𝑔𝑤,𝑥 is a heterozygote (𝑤 ≠ 𝑥) and homozygote (𝑤 = 𝑥), respectively. In eqns 1-2, the 

Kronecker 𝛿-variable takes values 1 and 0 when allele indexes u=v and u≠v, respectively. 

PEDIGREE RECONSTRUCTION MODELS 

The probability of the phenotypes of all individuals in a pedigree is the likelihood of the 

pedigree (Thomas & Hill 2002; Wang 2004). The likelihood function of a pedigree can be 

rather complicated, depending on the complexity of the pedigree (Wang & Santure 2009). 

For illustration, let us consider a simple pedigree of a single fullsib family containing n 

children. The likelihood of this pedigree, R, given phenotype data D is 

𝐿(𝑅|𝐷) = Pr[𝑅]∑Pr[𝑓] Pr[𝐹|𝑓]∑Pr[𝑚] Pr[𝑀|𝑚]

𝑚𝑓

∏Pr[𝐶𝑖|𝑓,𝑚]

𝑛

𝑖=1

,                            eqn 3 

where f and F are the father’s genotype and phenotype, respectively, and 𝐶𝑖 is the phenotype 

of child i (=1~n). Pr [𝑅] is the prior of R. Pr[𝑓] is the probability of a father genotype. Under 

HWE, Pr[𝑓] = 𝑝𝑤
2  for a homozygote 𝑓 = 𝑔𝑤,𝑤 and Pr[𝑓] = 2𝑝𝑤𝑝𝑥 for a heterozygote 𝑓 =

𝑔𝑤,𝑥, where 𝑝𝑎 is the frequency of allele a (=w, x). Pr [𝐹|𝑓] is the probability of  phenotype F 

given its genotype f. When F is unavailable (i.e. no candidate male is assigned to the father, 

or the assigned candidate has a missing phenotype), Pr [𝐹|𝑓] ≡ 1. Otherwise, it is calculated 

by eqns 1 and 2. To be more exact, therefore, the probability of F is conditional not only on f, 

but also on the error models. Corresponding terms for a mother, m, M, Pr[𝑚] and Pr[𝑀|𝑚], 

are defined and calculated similarly to f, F, Pr[𝑓] and Pr [𝐹|𝑓] for a father, respectively.  

 The probability of 𝐶𝑖 given the parental genotypes, Pr [𝐶𝑖|𝑓,𝑚], can be obtained by 

deriving the underlying genotypes of the child from parental genotypes under Mendelian law, 

and by accounting for mistyping. Suppose 𝑓 = 𝑔𝑤,𝑥 and 𝑚 = 𝑔𝑦,𝑧, then 

Pr[𝐶𝑖|𝑓 = 𝑔𝑤,𝑥 ,𝑚 = 𝑔𝑦,𝑧] =
1

4
(Pr[𝐶𝑖|𝑔𝑤,𝑦] + Pr[𝐶𝑖|𝑔𝑤,𝑧] + Pr[𝐶𝑖|𝑔𝑥,𝑦] + Pr [𝐶𝑖|𝑔𝑥,𝑧]),          eqn 4 

where each term on the right side of eqn 4 is calculated by eqns 1 and 2. 
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A dataset can be explained by a combinatorically large number of possible pedigrees 

with varying likelihood values. A simulated annealing algorithm (Wang 2004) can be used to 

sift through these pedigrees to find the one with the maximum likelihood.  

ERROR ESTIMATION BASED ON A RECONSTRUCTED PEDIGREE  

Conditional on a reconstructed pedigree, the underlying genotype at each locus of each 

individual in the pedigree can be estimated probabilistically. As an example, consider child i 

in a fullsib family as considered by eqn 3. It has 𝑘(𝑘 + 1)/2 possible genotypes at a locus 

with k codominant alleles. The likelihood of the underlying genotype being 𝑔𝑢,𝑣 (where u, v = 

1~k, and v ≥ u) is calculated by eqn 3, with eqn 4 being replaced by 

Pr[𝐶𝑖|𝑓 = 𝑔𝑤,𝑥 ,𝑚 = 𝑔𝑦,𝑧] = 

1

4
Pr[𝐶𝑖|𝑔𝑢,𝑣] (Pr [𝑔𝑢,𝑣|𝑔𝑤,𝑦] + Pr[𝑔𝑢,𝑣|𝑔𝑤,𝑧] + Pr[𝑔𝑢,𝑣|𝑔𝑥,𝑦] + Pr [𝑔𝑢,𝑣|𝑔𝑥,𝑧]).                   eqn 5 

In eqn 5, Pr[𝑔𝑢,𝑣|𝑔𝑠,𝑡] = (𝛿𝑢𝑠𝛿𝑣𝑡 + 𝛿𝑢𝑡𝛿𝑣𝑠)/(1 + 𝛿𝑠𝑡) is the probability that child i has 

genotype 𝑔𝑢,𝑣 when it inherits parental alleles s and t, where s ,t=w ,x ,y ,z  and the Kronecker 

delta 𝛿𝑠𝑡, 𝛿𝑢𝑠, 𝛿𝑣𝑡, 𝛿𝑢𝑡 and 𝛿𝑣𝑠 are defined as above.  

Using Bayes’ rule, these likelihood values can be transformed to posterior 

probabilities of the inferred 𝑘(𝑘 + 1)/2 genotypes. The genotype with the maximum 

posterior probability is the best point estimate. If the posterior probability of the genotype 

identical to the observed phenotype Ci (i.e. no genotype errors) is 𝑇, then a genotype error (or 

an erroneous phenotype Ci) is detected at the significance level 𝑇. Erroneous phenotypes and 

the most likely genotypes of assigned parents are inferred similarly. 

 Error rates 𝜀𝑗 (where j=1,2 for allelic dropouts and false alleles) at each locus can also 

be estimated, conditional on a reconstructed pedigree. For each locus, the likelihood function 

such as eqn 3 is maximised with respect to 𝜀𝑗 varying in the range [0, 1] to obtain the 

maximum likelihood estimate of 𝜀𝑗, 𝜀�̂�. I use Powell's (1964) conjugate direction method to 

find 𝜀�̂�, and the profile likelihood method to find the 95% confidence intervals of 𝜀�̂�. To avoid 

the algorithm converging to a local rather than the global maximum, multiple runs with 

different random starting values of 𝜀1 and 𝜀2 were used in maximizing the likelihood function. 

When the same maximum likelihood value and the same error rate estimates were obtained 
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repeatedly from these replicate runs, the estimates were reported and the algorithm was 

terminated. 

 The algorithm for identifying erroneous phenotypes and inferring the most probable 

underlying genotype for each individual at each marker locus, and the algorithm for 

estimating allelic dropout rates and false allele rates at each locus are implemented in the 

current version of software Colony, available at https://www.zsl.org/science/software/colony. 

SIMULATIONS 

Numerous factors influence the quality of reconstructed pedigrees (Wang 2004) and thus 

genotype error estimates. Herein I focus on just a few of them. 

Actual relatedness 

The performance of the method depends critically on the relatedness structure in a pedigree. 

To show the effects of pedigree relatedness, I conducted three simulations. Simulation 1 

considered a sample of 160 individuals in 160/2M fullsib families, each having 2M individuals, 

where M=0, 1, 2, 3, 4. No candidate males and females as potential parents are available. 

Simulation 2 is the same as simulation 1, except that a fullsib family is replaced by a halfsib 

family in which all individuals share the same father but distinctive mothers. Simulation 3 

considered a sample of 160 unrelated offspring, and a sample of 160 unrelated candidate 

males. The numbers of parent-offspring pairs between the two samples are 10×2M–1 =5, 10, 

20, 40, and 80 for M=0, 1, 2, 3, 4, respectively. Simulations 1-3 used 20 markers, each having 

10 alleles in a uniform frequency distribution and each having an error rate of 𝜀1 = 𝜀2 = 0.05. 

The multilocus genotype of each individual was simulated given the pedigree and simulated 

allele frequencies, assuming HWE and linkage equilibrium. It was then modified according to 

the error models and rates to generate the multilocus phenotypes, which were analysed for 

pedigree and error estimation. 

 

Marker information 

It is determined by the number of loci, the number and frequency distribution of alleles per 

locus, as well as the mistyping and missing data rates. Simulation 4 considered the effect of 

the number of loci, L (=2, 4, 8, 16, 32), when each has 10 alleles, and the number of diallelic 

loci, L (=50, 100, 200, 400, 800). Simulation 5 considered the effect of the number of alleles 

per locus, k (=2, 4, 8, 16, 32), assuming a fixed total number of 𝐿𝑘 = 320 alleles across loci. 

For both simulations, allele frequencies were drawn from a uniform distribution, and the 
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pedigree structure of fullsib families with each having 4 siblings, the sample size, and error 

rates (𝜀1 = 𝜀2 = 0.05) of simulation 1 were adopted.  

 

Prior error rates 

The assumed error rates used in pedigree reconstruction may deviate from the true values, 

and may affect the quality of pedigree and genotyping error inferences. Simulation 6 

generated genotype data at 200 SNPs at a true error rate of 𝜀1 = 𝜀2 = 0.025, using the other 

parameters as those in simulation 4. The data were analysed by assuming widely different 

values of prior error rate.  

  

Actual error rates 

They affect marker information quality and quantity, and thus the quality of reconstructed 

pedigrees and error estimates. To show the pedigree-based method can be applied to data of 

varying error rates, simulation 7 generated data with actual error rates varying in the wide 

range 𝜀1 = 𝜀2 = [0, 0.32]. The values of other parameters were the same as those in 

simulation 4, except that the number of loci was fixed at L =16. 

 

Null allele frequency 

Null alleles are not modelled but their frequency (r) can be estimated as 𝜀1 (see more below). 

Simulation 8 was conducted to check the quality of r estimates when null alleles were 

estimated as allelic dropouts. Twenty loci, each having 10 observable alleles and one null 

allele, were simulated for a sample of 160 offspring coming equally from 40 full-sib families. 

The null allele frequency at each locus was r, varying in the range [0, 0.32], while the other 

allele frequencies follow a uniform distribution. In transforming genotypes to phenotypes, a 

null allele homozygote was taken as missing phenotype, while a null allele heterozygote was 

taken as the homozygote of the observed allele. Allelic dropouts and false alleles were 

assumed absent (𝜀1 = 𝜀2 = 0) in simulating data. 

ANALYSES OF SIMULATED DATA 

For each simulation described above, 100 replicate datasets were generated and analysed by 

the Colony program (Jones & Wang 2010) for estimating 𝜀1 (or r) and 𝜀2, and identifying 

erroneous genotypes. For all but simulation 6, a locus specific value, 𝜀�̌�, was drawn at random 

from a uniform distribution in the range [0.1𝜀𝑖, 2𝜀𝑖], where 𝜀𝑖 (for i=1, 2) was the actual 
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(simulated) error rate. 𝜀�̌� was taken as the roughly estimated or presumed error rate, and was 

used in Colony analyses. For simulation 6, either 𝜀�̌� = 0.1𝜀𝑖 or 𝜀�̌� = 4𝜀𝑖 was adopted for each 

locus in analysing the data. The simulated type of sibship (i.e. full- or half-sib families) and 

the default values of other parameters in Colony were used in analysing the data. 

 For a large random mating population without mutation, selection and migration, a 

marker without genotyping errors should be in HWE. Violations of these assumptions may 

lead to a deviation from HWE. If allelic dropouts are the sole cause of the deviation, then the 

observed deviation can be used to estimate 𝜀1. For a locus with k codominant alleles of 

population frequencies pi (i=1~k) and with dropout rate 𝜀1, the heterozygosity is expected to 

be 

𝐻𝐸 = 𝐻𝑒(1 −
2𝜀1

1+𝜀1
),                 eqn 6 

where 𝐻𝑒 = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1  is the expected heterozygosity under HWE without dropouts (𝜀1 =

0). Eqn 6 shows that 𝐻𝐸 increases monotonically with a decreasing value of 𝜀1 to attain its 

maximum 𝐻𝐸 = 𝐻𝑒 when 𝜀1 = 0. Equating 𝐻𝐸 to the observed heterozygosity 𝐻𝑂 =

𝑛1/(𝑛1 + 𝑛2) where n1 and n2 are the observed numbers of heterozygotes and homozygotes 

respectively, I obtain a moment estimator of 𝜀1, 

𝜀1̂ =
𝐻𝑒−𝐻𝑂

𝐻𝑒+𝐻𝑂
.                   eqn 7 

It turns out that eqn 7 is exactly the same estimator as that derived by Chakraborty et al. 

(1992) for null allele frequency r from a sample of individuals without (or ignoring) missing 

phenotypes. This shows that null alleles and allelic dropouts have the same effect on 

homozygosity, and therefore 𝜀1̂ and �̂� can be estimated by the same equation. In eqns 6 and 7, 

population allele frequencies pi are usually unknown, but can be replaced by estimates from 

sample phenotype data. 

QUALITY OF GENOTYPING ERROR ESTIMATORS 

The mean of estimates was calculated and compared with the true simulated value to indicate 

the bias of an estimator. The accuracy of an estimator was measured by its root mean squared 

error, RMSE, 

𝑅𝑀𝑆𝐸𝑖 = √
1

𝑁
∑ (𝜀�̂�𝑗 − 𝜀𝑖)2
𝑁
𝑗=1

2
,            eqn 8 
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where i=1,2 for allelic dropouts and false alleles, respectively, 𝜀𝑖 is the true value and 𝜀�̂�𝑗 is 

the estimated value from the jth of N replicates, respectively. The bias and accuracy of a null 

allele frequency estimator were measured similarly. 

 For a simulated dataset with M individuals and L loci, the ML phenotypes can be 

partitioned into sets Φ1 and Φ0 containing 𝑛1 erroneous and 𝑛0 error-free phenotypes, with 

𝑛1 + 𝑛0 = 𝑀𝐿. Colony gives the posterior probability, Pr [𝑔𝑥 = 𝐺𝑥|𝐷, 𝑅], of an inferred 

genotype 𝑔𝑥 identical (i.e. no genotyping errors) to the phenotype 𝐺𝑥, given data D and 

pedigree R. The average of these probabilities for phenotype set i is 

𝜌𝑖 =
1

𝑛𝑖
∑ Pr [𝑔𝑥 = 𝐺𝑥|𝐷, 𝑅]𝐺𝑥∈𝛷𝑖

,                eqn 9 

for i=0,1. Thus, 𝜌0 calculates the average posterior probability that a phenotype is inferred to 

be free of genotyping errors when there are no genotyping errors, and 𝜌1 calculates the 

average posterior probability that a phenotype is inferred to be free of genotyping errors when 

there are in fact genotyping errors. Ideally, type I and type II errors of the method are 

minimized when 𝜌0 approaches 1 and 𝜌1 approaches 0. 

 Statistics 𝜌0 and 𝜌1 are sufficient for measuring the power and accuracy of the method 

in identifying erroneous genotypes in simulated data. In empirical datasets, however, whether 

a phenotype is erroneous or not is unknown and forms part of the inferences, and thus the 

statistics cannot be applied. For identifying erroneous phenotypes, I set a threshold T that a 

phenotype Gx is inferred to be correct and erroneous when the posterior probability Pr [𝑔𝑥 =

𝐺𝑥|𝐷, 𝑅] is larger and smaller than T, respectively. T value affects rates of type I and type II 

errors, but its choice is somewhat arbitrary. Considering the conservative nature of 

identifying genotyping errors (Sobel et al. 2002) by pedigree-based analysis, I choose T=0.5 

in calculating frequencies, F0 and F1, that single-locus and single-individual phenotypes that 

are simulated without and with genotyping errors, respectively, are inferred to be erroneous. 

THREE EMPIRICAL DATASETS 

An ant dataset (Hammond et al. 2001), a spectacled caiman dataset (Oliveira et al. 2014), and 

a sockeye salmon dataset (Hauser et al. 2011) were reanalysed for pedigree reconstruction, 

erroneous genotype identification, and genotyping error rate estimation by the method 

described above. Details of the three datasets are in Supporting Information.  
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Results 

Actual relatedness 

For fullsib families, both likelihood method (for 𝜀1̂ and 𝜀2̂) and moment method (for 𝜀1̂) are 

almost unbiased (Figure 1). With an increasing fullsib family size, the likelihood method 

becomes more accurate for both 𝜀1 and 𝜀2, while the moment method becomes less accurate 

for 𝜀1. The likelihood method estimates 𝜀1 more accurately than 𝜀2 when family size is small, 

and the opposite is true otherwise. For 𝜀1̂, the likelihood method is slightly less accurate than 

the moment method when all individuals are unrelated, but quickly becomes more accurate 

with an increasing full sib family size.  

 Similar results were obtained for halfsib pedigrees. The changes in accuracy (RMSE) 

as a function of family size are less dramatic than those of fullsib pedigrees for both methods 

and for both error rates. For pedigrees involving parent-offspring relationships only, the 

likelihood method underestimates 𝜀2 consistently. As a result, it gives less accurate estimates 

of 𝜀2 than those of 𝜀1. For different numbers of parent-offspring dyads in a dataset, the 

likelihood method is always less biased and more accurate than the moment method (Figure 1) 

in estimating 𝜀1. 

 Figure 2 shows the power and accuracy of the likelihood method for identifying 

erroneous genotypes in reconstructed fullsib families. As expected, the power is low in a 

small family with less than 3 siblings, because any sibling phenotypes are compatible with 

Mendelian inheritance, and have similar likelihood values. With an increase in family size, 

the power increases rapidly. At 16 full siblings per family, 41% of the erroneous phenotypes 

were detected as such while only 0.01% of the error-free phenotypes were falsely identified 

as erroneous. Similar results were obtained for halfsib pedigrees. Overall, it is much more 

difficult to identify erroneous genotypes than to estimate error rates. Only those genotyping 

errors that occur in parent-offspring or large sib families are detectable.  

Marker information 

Eqn 7 is a single-locus moment estimator of allelic dropout rate, and its performance is 

therefore unaffected by the number of loci (L) (Figure 3). In contrast, the likelihood estimator 

uses multilocus information to reconstruct pedigrees and to infer genotyping errors. Its 
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performance is therefore sensitive to marker information, increasing rapidly with an increase 

in both L and k (Figure 3). Except when marker information is rather scarce (i.e. small Lk), 

the likelihood method is more accurate and less biased than the moment method for 

estimating 𝜀1. 

Prior error rates 

When prior error rates are smaller than the actual values, the likelihood method yields little 

biased and accurate 𝜀1̂ and 𝜀2̂ values consistently across pedigrees of different family sizes 

(Figure 4), including a pedigree in which all individuals are completely unrelated. The 

likelihood estimates are little improved by an increasing full-sib family size. In contrast, a 

prior much larger than (i.e. 4 times of) the actual error rate leads to overestimated and thus 

inaccurate  𝜀1̂ and 𝜀2̂ values when few sampled individuals are siblings (Figure 4). However, 

with an increasing full-sib family size, the likelihood estimates improve rapidly and converge 

to those obtained with a prior much smaller than the actual error rate. The likelihood 

estimator performs well and is almost independent of the prior error rates for a sample 

containing some full siblings, and for a sample containing few full siblings when 

conservative prior error rates are adopted.  

Actual error rates 

For the wide range of true error rates 𝜀1 = 𝜀2 = [0, 0.32], the likelihood estimates of both 𝜀1 

and 𝜀2 are little biased (Figure 5). The moment method, however, is unbiased only when 𝜀1 is 

small, and underestimates 𝜀1 substantially when it is large. The underestimation occurs 

because, at high values of 𝜀1 = 𝜀2, homozygosity excess produced by allelic dropouts is 

partly destroyed by false alleles which are assumed absent by the moment method. With an 

increasing true error rate of 𝜀1 = 𝜀2, both estimators become less accurate. 

Null allele frequency 

Both likelihood and moment estimators give unbiased estimates of r in the entire range of 

r=[0, 0.32] (Figure 6). The likelihood method also yields unbiased estimates of 𝜀2, whose 

true value is 0. With a decreasing true null allele frequency, the likelihood estimator becomes 

increasingly more accurate than the moment estimator. 

Analysis results of three empirical datasets  
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Colony completely recovered the actual sibship structure of the 377 ant workers, and yielded 

highly consistent error rate estimates at each locus (Supporting Information), regardless of 

the presumed values of 𝜀1 = 𝜀2 in the wide range of [0.001, 0.256]. Additionally, it identified 

eight erroneous phenotypes across the 377 individuals at six loci. These errors are all due to 

false alleles, and are highly reliable thanks to the strong family structure and the haplodiploid 

inheritance of the dataset. 

For the spectacled caiman dataset, the estimated mistyping rates are generally low and 

false allele rates are uniformly higher than allelic dropout or null allele rates across loci 

(Supporting Information). At the low presumed error rate of 0.01, 6 and 2 errors were 

identified across the 174×6=1044 hatchling phenotypes and the 13×6=78 mother phenotypes, 

respectively. Overall, the power and accuracy of the likelihood method in estimating 

mistyping rates and in identifying erroneous phenotypes are lower for this dataset than for the 

ant dataset, because the family sizes are smaller and the species is diploid.                 

For the sockeye salmon dataset, it emerges that microsatellites have higher mistyping 

rates than SNPs (Supporting Information). On average across loci, the estimated null allele 

(or dropout) rate and false allele rate are 3.1% and 1.2% for microsatellites, 1.1% and 0.1% 

for SNPs. For both types of markers, false alleles are much less frequent than null alleles or 

allelic dropouts. This error pattern is in contrast with that in the ant dataset and the spectacled 

caiman dataset, where false alleles are the predominant type of genotyping errors. The 

likelihood method identified 39 erroneous phenotypes across loci among the 211 sampled 

offspring. 

 

Discussion 

This study showed that, given a sufficient, and nowadays realistic, amount of marker data, 

two-generation pedigrees can be reconstructed reliably. Conditional on the inferred pedigree, 

the underlying genotypes can be inferred for the phenotype of each individual at each locus to 

detect genotyping errors and to infer the most likely genotype. Similarly, maximizing the 

probability of the phenotype data given the inferred pedigree yields unbiased and accurate 

estimates of the rate of errors of each type occurred at each locus. The power and accuracy of 

these error estimation methods were checked by analysing simulated data, and demonstrated 

by analysing empirical data. The quality of error estimates based on reconstructed pedigrees 

depends, as partially shown in Figures 1-6, on many factors such as the true pedigree, the 
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quality of an inferred pedigree, the marker informativeness, and the actual error rate. Herein I 

briefly discuss each factor.    

 The types and frequencies of first-degree relatives in a pedigree affect the quality of 

error estimates. Loosely speaking, pedigree-based methods examine the inheritance of marker 

phenotypes against Mendelian laws implied by the pedigree, and a lack of conformity to the 

laws is interpreted as genotyping errors. A fullsib family having more than four distinct 

alleles at a locus, for example, is inconsistent with Mendelian law (Douglas et al. 2002) in 

diploid species, and signifies erroneous phenotypes. The greater the number of closely related 

individuals is in a pedigree, the more power and the higher accuracy the pedigree allows for 

error detection and estimation. This is verified in Figure 1, especially for the cases of fullsib 

and halfsib families. The good news is that, even in the extremely unfavourable case of a 

sample of completely unrelated individuals, the pedigree-based method still provides 

reasonably good estimates of both 𝜀1 and 𝜀2 (Figures 1 and 4), especially when conservative 

prior values of error rates are adopted. 

 My simulations considered three simple structures of pedigrees (full-sib, half-sib, 

parent-offspring) with equal family sizes. However, the method and the general conclusions 

apply to any two-generation pedigrees of any complexity. A genotype error in a large family 

has the largest detrimental effects on analyses such as pedigree reconstruction and linkage 

mapping, but is also the easiest to detect by pedigree-based method. For error detection and 

error rate estimation, therefore, the best and the worst scenarios are a pedigree with uniformly 

large and uniformly small family sizes, respectively, as shown in Figure 1. The intermediate 

scenario is a pedigree with mixed small and large families, where most genotype errors are 

detectable from large families but undetectable from small families. Not only the structure 

and size (i.e. number of individuals), but also the depth (i.e. number of generations) of a 

pedigree affects pedigree-based error inferences. I considered one- (full- and half-sib) and 

two-generation (parent-offspring) pedigrees, but pedigrees with more than two generations 

could allow for more accurate error inferences. Second-degree or more remote relatives (e.g. 

cousins) are also informative about genotype errors. How much more power and accuracy 

can be gained from a pedigree with more than two generations requires further investigation. 

 If a pedigree itself is grossly misconstrued, then its value for marker error estimation 

would be greatly compromised (Figure 3). There are several causes for pedigree mis-

inference, the common ones being a lack of marker information (e.g. few markers with low 
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polymorphisms), low marker quality (e.g. many erroneous or missing genotypes), and a 

difficult true pedigree (e.g. scant close relationships) to reconstruct. The challenge to 

inferring pedigrees and genotyping errors jointly from the same data, especially when teemed 

with mistypings that are difficult to detect (such as those in SNPs, see below and Douglas et 

al. 2002), is enormous and can only be tackled effectively when there is sufficient marker 

information (Figure 3). Previous work avoided the challenge by using a known pedigree in 

estimating genotyping errors (e.g. Sobel et al. 2002). This simplified the inference greatly, 

and enabled the handling of pedigrees of any size and complexity and the handling of linked 

markers (Sobel et al. 2002). In evolutionary biology and molecular ecology studies of wild 

populations, however, pedigrees are rarely available or complete.  

 Marker information and quality determines to what extent a pedigree can be recovered, 

and whether genotyping errors are detectable or not (see below). A set of markers with few 

loci, low polymorphisms (Figure 3) or high typing errors (Figures 5-6) provides insufficient 

information to reveal the underlying pedigree of sampled individuals, resulting in poorly 

reconstructed pedigrees and poorly inferred genotyping errors. If marker information is 

deemed scarce, pedigree reconstruction and error estimation should be conducted with great 

caution. 

 The number and frequency distribution of alleles at a marker locus determines the 

difficulty and thus accuracy and power of error identifications. Errors in diallelic markers, 

such as SNPs, are much more difficult to detect than those in multiallelic markers such as 

microsatellites (Douglas et al. 2002), as shown in Figure 3. This is evident by considering the 

simple case of a family with three or more full siblings without parental genotypes. Any 

genotype combinations are consistent with Mendelian inheritance for a diallelic marker, but 

an increasing proportion of genotype combinations is inconsistent with Mendelian inheritance 

for a marker with an increasing number of alleles (Douglas et al. 2002). 

 It should be emphasized that error detection and error rate estimation are two different 

statistical inferences and have different applications (below). Error detection aims to identify 

erroneous genotypes of each individual at each locus. By nature, error detection is 

conservative because not all errors are detectable (Douglas et al. 2002; Sobel et al. 2002). 

While Mendelian inconsistent errors can be detected reliably, Mendelian consistent errors can 

only be detected with sufficient confidence when they occur in large families and/or at a 

multiallelic locus. Unfortunately, Mendelian consistent errors are usually more abundant than 
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Mendelian inconsistent errors, especially for markers of low polymorphisms such as SNPs 

(Douglas et al. 2002). Nonetheless, both Mendelian consistent and inconsistent errors can 

cause sporadic results, such as those in linkage or disease association studies. The pedigree-

based method can conservatively detect errors in both categories. The high power of error 

detection is exemplified in the ant dataset in which sibship size is uniformly large and the 

species is haplodiploid (Table A1, Supporting Information). Considering the conservative 

nature of error detection, errors detected are probably true, but phenotypes not flagged as 

erroneous are not necessarily error-free.  

 In contrast, error rate estimation aims to give an unbiased inference of the frequency 

of genotyping errors at a locus, despite some genotype errors are undetectable individually. 

Indeed, simulations showed that, whenever the reconstructed pedigree does not deviate much 

from the truth, both allelic dropout (or null allele) rate and false allele rate can be accurately 

estimated (Figure 1, 3-6).  

 Although I focused on the sibship and parentage reconstruction method implemented 

in Colony, other methods that account for genotyping errors also have the potential to infer 

data errors. For example, the program MasterBayes (Hadfield et al. 2006) uses both genotype 

and behaviour data for inferring parentage in a Bayesian framework. It employs the error 

model of Wang (2004), but infers a partial two-generation pedigree by ignoring sibship. As a 

result, it can run much faster than Colony, but may yield less accurate inferences of both 

parentage and genotyping errors due to the ignorance of sibship. As shown in Figures 1 and 4, 

the power and accuracy of pedigree-based estimators depend critically on family size, and are 

particularly poor for false allele rate when it is inferred from individuals who are related as 

parent-offspring only (i.e. no siblings). A formal comparison of Colony, MasterBayes and 

other methods for inferring genotyping errors warrants further studies.   

 What can we do with the identified errors and the estimated error rates? First, they can 

be used to assess the quality of genotype data. Analysis of genotyping errors should be 

routinely conducted, and error rate for each marker should be routinely reported just like the 

number of alleles and the expected heterozygosity.  

Second, the detected errors are useful in improving data quality. If a genotype is 

flagged as erroneous, one should re-examine the original image or genotyping score, and if 

the genotype is still unresolved and resources permit, re-genotype the particular individual at 

the particular locus. When it is impossible to re-genotype because the resources are 
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unavailable or too limited, I suggest, following Sobel et al. (2002), dropping the flagged 

genotype in performing a statistical analysis that is sensitive to data errors. Although the most 

likely genotype of an error-flagged phenotype is provided by the pedigree-based likelihood 

method, it should be treated with caution, even when its posterior probability is high. In 

principle, a flagged erroneous genotype should not be replaced by the inferred most likely 

genotype. Instead, experimental evidence (e.g. images or genotyping scores) should be re-

examined or collected anew to resolve the problem. After all, missing data (by dropping 

flagged genotypes) are better than erroneous data (by accepting incorrectly inferred 

genotypes), as the former leads to a loss of precision and power while the latter to false 

conclusions. 

Third, the estimated error rates are valuable in prioritising and highlighting markers 

for optimization of genotyping protocols or for replacement. A researcher usually chooses 

microsatellites based on their polymorphisms and ease of scoring, but seldom on their error 

rates. However, it could be better to choose markers of lower error rates rather than higher 

polymorphisms in an error-sensitive statistical analysis. More importantly, the estimated error 

rates can be integrated in a statistical framework to use the marker information with 

discretion (Wang 2004; Hadfield et al. 2006). It is probably easy to reduce genotyping error 

rate experimentally, with or without the assistance of a statistical approach shown in this 

study, from a high value (say, 10%) to a low value (say, 1%) by various measures (Bonin et 

al. 2004). However, it is virtually impossible or too expensive to completely eliminate all 

errors. Therefore, the importance of estimating data error rates and integrating them into 

error-tolerant statistical methods cannot be overstated. It is not a good strategy to simply drop 

a marker out of an analysis if it has a high error rate. Such a cautious strategy could reduce 

bias, but can cause a loss of precision due to the waste of information. This is especially true 

when only a few (say 10~20) markers are available to an analysis, and abandoning one 

marker means a substantial loss of information and waste of resources. A better strategy is to 

obtain a good estimate of the error rate of a problematic marker, and to integrate the estimate 

in a downstream analysis. 
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